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Rice serves as the staple food for over 50% of the world's population, making its

yield prediction crucial for food security. The number of panicles per unit area is a

core parameter for estimating rice yield. However, traditional manual counting

methods suffer from low efficiency and significant subjective bias, while

unmanned aerial vehicle (UAV) images used for panicle detection face

challenges such as densely distributed panicles, large scale variations, and

severe occlusion. To address the above challenges, this paper proposes a rice

panicle detection model based on an improved You Only Look Once version 11x

(YOLOv11x) architecture. The main improvements include: 1) Introducing a Bi-

level Routing Attention (BRA) mechanism into the backbone network to improve

the feature representation capability for small objects; 2) Adopting a

Transformer-based detection head (TransHead) to capture long-term spatial

dependencies; 3) Integrating a Selective Kernel (SK) Attention module to achieve

dynamic multi-scale feature fusion; 4) Designing a multi-level feature fusion

architecture to enhance multi-scale adaptability. Experimental results

demonstrate that the improved model achieves an mAP@0.5 of 89.4% on our

self-built dataset, representing a 3% improvement over the baseline YOLOv11x

model. It also achieves a Precision of 87.3% and an F1-score of 84.1%,

significantly outperforming mainstream algorithms such as YOLOv8 and Faster

R-CNN. Additionally, panicle counting tests conducted on 300 rice panicle

images show that the improved model achieves R2 = 0.85, RMSE = 2.33, and

rRMSE = 0.13, indicating a good fitting effect. The proposed model provides a

reliable solution for intelligent in-field rice panicle detection using UAV images

and holds significant importance for precise rice yield estimation.
KEYWORDS

field rice, panicle detection, YOLOv11x, UAV image, SK attention, feature fusion
1 Introduction

As a staple food for over 50% of the world’s population, rice plays a crucial role in global

food security (Mohidem et al., 2022). In the 2023/24 crop year, the world’s rice production

amounted to roughly 523.8 million tons, with a cultivated area of about 168 million

hectares. Fluctuations in rice yield directly influence the global food security landscape.
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Rice yield has three key components: panicle number, grain number

per panicle, and grain weight. Among these, the number of panicles

per unit area is the core phenotypic parameter most easily regulated

by field management (Slafer et al., 2014; Ferrante et al., 2017).

Traditional manual methods for counting panicles face bottlenecks

such as being time-consuming, labor-intensive, subjective, and

lacking standardization. These limitations make it challenging to

fulfill the requirements of high-throughput phenotypic analysis in

smart agriculture. Therefore, developing automated, high-precision

rice panicle detection technology has become a critical entry point

for breaking through the limitations of yield prediction accuracy

and achieving precision agricultural management.

Image processing and machine learning are currently the primary

technical approaches for panicle detection (Lin and Guo, 2020; Chen

et al., 2023; Santiago et al., 2024). By extracting features such as color,

shape, and texture from RGB images of rice panicles, machine

learning methods can be used to establish panicle detection models

for identifying and counting panicles. Duan et al. (2015) proposed a

new method for detecting rice panicles at the heading stage through

multi-angle color image analysis of rice plants. Their workflow

included extracting the i2 plane from original color images,

segmenting the images, identifying panicles using artificial neural

networks, and calculating the number of panicles in the current

image.Wu et al. (2019) developed an image analysis method based on

a linear regression model to estimate the number of grains per rice

panicle, achieving accuracy rates of 96% and 97% for japonica and

indica rice, respectively. Carlier et al. (2022) combined RGB and

multispectral image features of wheat ears and assessed three

algorithms including random forest, multi-layer perceptron, and

support vector machine based on superpixel classification, which

realized automatic segmentation of wheat ears at the pixel level.

Although machine learning based panicle counting methods possess

advantages such as high speed, high throughput and nondestructive

detection (Tan et al., 2023), they require manual feature extraction

and demonstrate inadequate robustness against noise like uneven

illumination and complex backgrounds in field conditions. These

limitations reduce the algorithms’ generalization ability and hinder

their wider application.

In recent years, the rapid development of object detection

algorithms based on deep learning has provided new solutions for

rice panicle detection (Xiao et al., 2020; Xu et al., 2020; Deng et al.,

2021). Zhang et al. (2021) improved Faster R-CNN by

incorporating multiple optimization strategies including dilated

convolution, K-means clustering and ROIAlign, proposing an

improved Faster R-CNN based panicle detection method. This

method achieved an mAP of 80.3%, representing a 2.4%

improvement over the original model. Sun et al. (2022) developed

a general detection model for curved panicles based on YOLOv4,

enabling UAV image recognition of hybrid indica rice in complex

field backgrounds. Lu et al. (2024) established an automatic plot

segmentation algorithm and constructed a Panicle-ViT instance

segmentation network combining ViT with Mask R-CNN,

developing an automated, high-throughput method for field plot

segmentation and panicle quantification. Wang et al. (2022)

proposed a panicle detection and counting method based on deep
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learning for large-scale field images that effectively preserves small

panicle features. Liang et al. (2024) enhanced YOLOv5 by

incorporating two attention mechanisms including shuffle

attention and gather excite attention, and replacing standard

convolutions with GSConv, ultimately developing a rotated

panicle detection model for field rice yield estimation. Seng et al.

(2025) replaced the original C3 module in YOLOv5 with

VoVGSCSP and substituted the backbone with lightweight

GhostNet to reduce computational complexity, proposing the

YOLOv5s-Slim Neck-GhostNet panicle recognition model. This

optimized model achieved an mAP of 97.2% on test sets, showing

1.8% improvement over baseline while reducing model size by

5.7M parameters.

Unmanned aerial vehicles (UAVs), characterized by their

compact size, lightweight design, simple operation, low

maintenance costs, and high flexibility (Shao et al., 2021), have

emerged as a novel lowaltitude remote sensing platform. Equipped

with high-resolution RGB cameras, multispectral cameras, or

LiDAR sensors, UAVs are capable of swiftly collecting massive

amounts of the necessary image data, making them an important

tool for agricultural data collection. Consequently, UAVs have

seen widespread application in agricultural fields in recent years

(Cai et al., 2022; Lin et al., 2025; Song et al., 2025). While UAVs

significantly enhance the scope and efficiency of data acquisition,

they also present certain limitations in image quality.

Additionally, low-altitude aerial images of rice fields exhibits

several challenging characteristics: dense panicle distribution, a

high proportion of small objects, and severe occlusion between

plants. These factors pose new challenges to the accuracy of

panicle detection models in UAV-based scenarios (Zhao

et al., 2021).

As of now, YOLOv11 is the latest version in the YOLO series,

integrating improved model architecture designs, enhanced feature

extraction techniques, and optimized training methodologies based

on previous iterations. Through these refinements, YOLOv11

delivers superior feature extraction capabilities, faster processing

speeds, and higher accuracy with reduced parameter requirements.

Therefore, this paper takes YOLOv11x as the fundamental network,

improves the backbone, detection head, and feature fusion parts,

and incorporates SK Attention to establish a field rice panicle

detection model based on the improved YOLOv11x. The aim is

to enhance the accuracy of rice panicle detection in UAV images of

field rice.
2 Materials and methods

2.1 UAV image acquisition

This study conducted UAV-based field image acquisition on

September 11, 2024, at the breeding experimental base of Liaoning

Rice Research Institute (123.45°E, 41.80°N). This period coincided

with the late grain-filling stage when panicle shapes were stable, and

rice panicles were fully developed with stable morphology, ensuring

that UAVs could capture clear panicle contour images. Data
frontiersin.org
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collection employed a DJI Mavic 3 Multispectral drone equipped

with a 4/3 CMOS image sensor (20 MP effective resolution). To

avoid cloud cover and ensure sufficient light, the image acquisition

was carried out under clear and cloudless weather conditions,

specifically from 10:00 to 14:00. The minimum flight altitude was

set at 12 meters to guarantee sufficient image resolution for

subsequent analysis. The UAV autonomously followed predefined

flight paths with 80% front overlap and 60% side overlap settings to

ensure comprehensive image coverage. Acquired nadir-view RGB

images featured a resolution of 5280×3956 pixels, with camera

parameters configured as follows: ISO range 100-6400, 84°field of

view equivalent to 24mm focal length, aperture adjustable from f/

2.8 to f/11, and focus range set from 1 meter to infinity,

guaranteeing full-field scene clarity throughout the imaging area.

The resulting UAV image of the study area is presented in Figure 1.
2.2 Dataset production

The dataset production workflow is shown in Figure 2,

involving key steps such as preprocessing, sample cropping,

manual annotation, and data augmentation. First, preprocessing

operations including grayscale stretching and geometric correction

were performed on the original images. Subsequently, the

preprocessed images were cropped using a sliding window with a
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0.6 overlap ratio, generating 306 original samples of 128×128 pixels.

The rice panicles were manually annotated using LabelImg

software, and the annotation results were saved in XML file

format, including object bounding box coordinates and

category information.

To enhance the model ’s generalization ability, data

augmentation operations including noise addition, random

occlusion, rotation, translation, and brightness reduction were

performed on the obtained rice panicle images and annotation

files. After data augmentation, the final dataset comprises 4545

images, with 4131 images in the training set and 414 images in the

validation set.
2.3 Improved YOLOv11x model for rice
panicle detection

2.3.1 YOLOv11x model
As a deep learning model widely used in the field of object

detection, the YOLO model has undergone multiple versions of

iterative upgrades since its proposal in 2015, achieving significant

improvements in detection accuracy, speed, and computational

efficiency (Ye et al., 2024). Among them, YOLOv11, officially

released by the YOLO community in 2024, is the latest version of

the series. YOLOv11 expands and upgrades based on the
FIGURE 1

Study area.
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architecture of YOLOv8, significantly enhancing object detection

performance by achieving the best balance between speed and

accuracy (Ali and Zhang, 2024).

The main architecture of YOLOv11 is shown in Figure 3. The

backbone, a vital part of the YOLO framework, is responsible for

extracting multi-scale features from the input image. YOLOv11’s

backbone consists of convolutional layers, C3k2 modules, SPPF

modules, and C2PSA modules. The structure of the convolutional

layers is similar to previous YOLO versions, enabling feature

extraction from the image. The C3k2 module, a new

improvement introduced in YOLOv11, replaces the C2f module

used in previous versions, contributing to enhanced computational

efficiency. YOLOv11 retains the SPPF module but introduces a new

C2PSA module afterward. The C2PSA module embeds a multi-

head attention mechanism within a C2 module, enhancing spatial

attention in feature maps and improving detection accuracy for

smaller or partially occluded objects. The neck integrates features

across various scales and transfers them to the head for prediction.

After upsampling and concatenation, YOLOv11’s neck connects

C3k2 modules in series to boost the speed and performance of the

feature aggregation process. The head processes the feature maps

from the neck and outputs predictions for object detection and

classification. YOLOv11 ’s head employs two Depthwise

Convolution (DWConv) layers that only handle spatial

convolution, no longer processing channel-wise convolution,

effectively reducing parameter computation and improving

computational efficiency.

YOLOv111 offers five distinct model variants: YOLOv11x,

YOLOv11l, YOLOv11m, YOLOv11s, and YOLOv11n. This paper

selects YOLOv11x, which demonstrates the highest detection

accuracy and the best recognition performance, as the

foundational framework for subsequent improvements.
1 https://github.com/ultralytics/ultralytics.
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2.3.2 Improved YOLOv11x model
This paper focuses on detecting in-field rice panicles,

characterized by their high density, small size, dense distribution

patterns, and frequent occlusion. Although YOLOv11x

demonstrates superior detection capabilities, its accuracy in

addressing these complex agricultural small-object detection

challenges remains insufficient. To overcome the limitations of

YOLOv11x for in-field panicle detection, we propose an

improved YOLOv11x model incorporating four key architectural

modifications: backbone network improvement, detection head

improvement, attention mechanism improvement, and feature

fusion improvement. The modified architecture is illustrated

in Figure 4.

2.3.3 Improved YOLOv11x backbone
When dealing with in-field panicle detection, the panicle images

captured by UAVs are characterized by complex backgrounds, low

object resolution, and dense distribution. To address the above

issues, a BiFormer module based on the Bi-level Routing Attention

(BRA) mechanism is introduced into the YOLOv11x

backbone network.

Attention mechanisms constitute a core building module in

vision Transformers, enabling the modeling of long-term

dependencies. Traditional attention mechanisms require

computing pairwise token interactions across all spatial positions,

resulting in high computational complexity and substantial

memory overhead. While existing research has proposed

improvements such as local windows, axial stripes, dilated

windows, and deformable attention, most methods aim to address

this challenge by introducing handcrafted, content-agnostic sparsity

into attention computation. BRA that proposed by Zhu et al. (2023)

addresses scalability challenges in Multi-Head Self-Attention

(MHSA) through a dynamic, query-aware sparse attention

mechanism. Its workflow, illustrated in Figure 5A, operates as

follows: For a query, most irrelevant key-value pairs are first
FIGURE 2

Dataset production workflow. (A) Image preprocessing procedure. (B) Annotation examples. (C) Data augmentation examples: (a) Noise addition.
(b) Rotation. (c) Translation. (d) Random occlusion. (e) Brightness reduction.
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filtered out at the coarse-grained region level, and then fine-grained

token-to-token attention is applied exclusively within the union of

remaining candidate regions.

BiFormer (Zhu et al., 2023) is a general-purpose vision

Transformer that uses BRA as its fundamental building module.

It follows the architectural design of most vision Transformers with

a four-stage pyramid structure. Specifically, BiFormer comprises

four sequential modules. Each module first applies overlapping

patch embedding, then increases the number of channels and

reduces the input spatial resolution through patch merging, and

finally performs feature transformation via stacked BiFormer

modules. Figure 5B illustrates the structural diagram of the

BiFormer module, comprising four key components: DWConv,

Layer Normalization (LN), BRA, and Multi-Layer Perceptron

(MLP). Among them, the DWConv is used to implicitly encode

relative position information, reducing model parameters and

computational complexity. The LN accelerates training and

improves the model’s generalization ability. The MLP adjusts the

attention weights to enhance focus on different features. By

employing the BRA mechanism, the BiFormer module can focus

on important features at different levels, thereby paying more

attention to regions containing small objects and extracting more

accurate features. Meanwhile, BiFormer uses a pyramid network

structure to achieve multi-scale object detection. Additionally,

sparse sampling in BiFormer better preserves the fine-grained
Frontiers in Plant Science 05
features of small objects from UAV perspectives and enables

more precise selection of receptive fields.

2.3.4 Improved YOLOv11x head
This paper applies a Transformer-based detection head

(TransHead) into YOLOv11 to improve the model’s predictive

performance for small objects (Zhu et al., 2021). The core of

TransHead lies in leveraging the powerful ability of Transformers

to model long-term dependencies. In object detection tasks,

traditional detection heads are often built based on convolutional

neural networks (CNNs). Convolutional operations mainly

concentrate on local information and have limited capabilities in

capturing long-term dependencies between objects and global

contextual information. By replacing the original detection head

of YOLOv11 with TransHead, the model can adaptively focus on

features at different positions in the image through the self-

attention mechanism of Transformers. This enables the model to

better capture associations between objects and global contextual

information, thus enhancing its adaptability to complex scenarios

and performance in detecting small objects.
2.3.5 SK Attention
The structure of the Selective Kernel (SK) Attention mechanism

(Li et al., 2019) is illustrated in Figure 6, comprising three
FIGURE 3

Architecture of YOLOv11.
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operations: Split, Fuse, and Select. The Split operation employs 3×3

and 5×5 convolutional kernels to process input images, generating

two feature maps denotedU1 andU2. During the Fuse stage, weights

for both kernels are computed, and the feature maps U1 and U2

undergo element-wise summation to produce feature map U.

Global average pooling is then applied to U, yielding feature

vector S. This vector undergoes dimensionality reduction via a

fully connected layer, producing reduced-dimension vector Z. Two

additional fully connected layers subsequently restore

dimensionality, generating feature vectors matching the original

dimensions. The Select operation employs the softmax activation

function for normalization to compute weight scores corresponding

to each channel. These weights are then applied to the feature maps,

followed by information fusion of the two recalibrated feature maps

to generate the final output image. Compared to the input image,

the output dynamically integrates multi-scale features through
Frontiers in Plant Science 06
selective fusion, significantly enhancing the representation of

critical visual information.

2.3.6 Feature fusion
In object detection models, feature fusion is one of the key

techniques for improving model performance (Lian et al., 2024;

Deng et al., 2020). The original YOLOv11x employs a relatively

simple feature fusion strategy, which exhibits limitations when

dealing with complex small object detection tasks. Therefore, this

paper enhances the original YOLOv11x by incorporating multiple

feature fusion modules across different scales to improve the

model’s adaptability to multi-scale objects.

The improvements to the YOLOv11 feature fusion stage primarily

encompass five components: RepBlock, InjectionMultiSumAutoPool,

AdaptConcat, TransBasicLayer, and PyramidPoolAgg. The

PyramidPoolAgg module processes input feature maps of varying
FIGURE 4

Architecture of improved YOLOv11.
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sizes, endowing the model with scale invariance. By employing pooling

operations at different scales to capture multi-scale image information, it

effectively expands the receptive field and enhances the utilization of

global information. The TransBasicLayer module integrates a

Transformer mechanism, which has demonstrated exceptional feature

extraction capabilities across multiple fields like natural language

processing and object detection. Leveraging this mechanism, it

extracts higher-level features from the output of the PyramidPoolAgg

module, providing high-quality input feature maps for subsequent

network operations. The AdaptConcat module performs adaptive

average pooling on two input feature layers of different sizes before
Frontiers in Plant Science 07
concatenation. The InjectionMultiSumAutoPool module accounts for

the disparities between nearby local feature layers and distant global

feature layers. By assigning weights to local feature layers and combining

them with global layers, it creates a new feature layer that significantly

highlights objects during training, improving the model’s ability to

capture and recognize key information. The RepBlock module operates

on structural reparameterization technology, which enables the model

to adopt amulti-branch structure during training to learn richer features

and enhance expressiveness, while transforming into a single-branch

structure during inference to reduce computational overhead and

improve efficiency and speed.
FIGURE 5

Structure of BRA and BiFormer. (A) BRA. (B) BiFormer.
FIGURE 6

Structure of SK Attention.
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2.3.7 Model training
The rice panicle detection model presented in this paper was

trained and tested on a Windows 10 (64-bit) operating system. The

computing environment comprised an INTEL(R) XEON(R) GOLD

6530 CPU, an NVIDIA L40S GPU, and 881 GB RAM. The

experiments were conducted using PyTorch 2.0.1 as the deep

learning framework, with CUDA 11.8 and CUDNN 8.7.0.0 for

GPU acceleration. Python served as the programming language.

Prior to training, the network was initialized with weights pre-

trained on the YOLO dataset. Hyperparameter configurations for

the model training phase are detailed in Table 1.

2.3.8 Performance metrics
This paper employs Precision (P), Recall (R), F1-score, and

mean Average Precision (mAP) as performance metrics to evaluate

the detection effect of the rice panicle detection model under

complex field conditions. The expressions of these four metrics

are shown in Equations 1–5:

Precision =
TP

TP + FP
� 100% (1)

Recall =
TP

TP + FN
� 100% (2)

F1 − score = 2� Precision� Recall
Precision + Recall

(3)

mAP =
1
Co

C

i=1
APi � 100% (4)

where

AP =

Z 1

0

P(R)dR (5)

TP, TN, FP, and FN denote the numbers of true positives, true

negatives, false positives, and false negatives, respectively, and C

denotes the number of classes.

Precision refers to the proportion of true positives out of all the

positive predictions made by the model. Recall is defined as the

proportion of true positives out of all the actual positives. These two

metrics reflect the accuracy and coverage of the model’s predictions.

The F1-score, calculated as the harmonic mean of Precision and

Recall, serves as a comprehensive evaluation metric that balances
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both measures to avoid overemphasis on a single extreme value,

thus providing an overall evaluation of model performance. The

mAP comprehensively evaluates the model’s detection accuracy

across different classes (Zhang et al., 2024). It is calculated by

computing the Average Precision (AP) for each class and then

taking the mean of these values. In this paper, mAP with an

Intersection over Union (IoU) threshold of 0.5 (mAP@0.5) is

used to measure the model’s detection performance, where a

higher mAP@0.5 value indicates better detection capabilities.

In addition, for the rice panicle counting results, this paper uses

the coefficient of determination (R2), root mean square error

(RMSE), and relative RMSE (rRMSE) as performance metrics to

evaluate the accuracy of the model in counting rice panicles.Their

expressions are shown in Equations 6–8:

R2 = 1 −o
n

i=1
(yi − ŷ i)

2

on

i=1
(yi − �yi)

2
  (6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

r
(7)

rRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1
(yi − ŷ i)

2
q

�yi
(8)

where yi, ŷ iand �yirepresent the true value, predicted value, and

mean true value of rice panicle counting in the test

samples, respectively.
3 Results

3.1 Ablation experiments

To verify the effectiveness of the improved method proposed in

this paper, ablation experiments are carried out on the same dataset

to determine the effect of each improvement point. Based on the

original YOLOv11x model, improvements such as backbone, head,

SK Attention, and feature fusion are sequentially added, with the

remaining model training parameters kept the same. The results of

the ablation experiments are shown in Table 2, where “✓” and “×”

indicate the use and non-use of the corresponding

improvements, respectively.

From Table 2, it can be seen that after introducing the backbone

improvement, the Recall of the model increases by 1.4%, and

mAP@0.5 increases by 1.1%. After introducing the backbone and

head improvements, all performance metrics of the model are

significantly improved, with the F1-score increasing by 1.2% and

mAP@0.5 increasing by 1.3%. Further adding SK Attention to the

model improves the Precision by 2.6% and mAP@0.5 by 2.1%.

Finally, by improving the network structure of the feature fusion

stage, the model achieves an mAP@0.5 of 89.1%, an increase of 2.7%

compared to the original network.

The ablation results above clearly demonstrate the positive

contributions of each improved module to the model ’s

performance, while the synergistic effects of these modules further
TABLE 1 Hyperparameter configurations.

Hyperparameters Configuration

Optimizer SGD

Momentum 0.9

Initial learning rate 0.001

Weight decay 0.0005

Epoch 200
frontiersin.org

https://doi.org/10.3389/fpls.2025.1656505
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2025.1656505
validate the rationality of the overall architecture design. BRA

dynamically filters irrelevant regions through its Bi-level Routing

Attention mechanism, significantly enhancing feature extraction for

small objects in densely occluded environments. TransHead

leverages the global modeling capability of Transformers to

compensate for the limitations of traditional CNN heads in

capturing long-term spatial dependencies. SK Attention improves

the model’s adaptability to scale variations through dynamic multi-

scale kernel selection, while the multilevel feature fusion module

further integrates local details with global context via cross-scale

information interaction. Experimental results demonstrate that the

synergistic effects of these four components lead to a significant

improvement in detection accuracy for in-field rice panicle

detection using UAV images.
3.2 Comparison with other detection
models

3.2.1 Comparison of detection results
The improved rice panicle detection model based on

YOLOv11x is compared with current mainstream object detection

algorithms. All detection models use the same dataset and data

augmentation methods, and the model training parameters are all

identical. The performance metrics of the five detection models are

presented in Table 3.

As presented in Table 3, the method proposed in this paper

achieves the highest Precision (87.3%), F1score (84.1%) and mAP@

0.5 (89.4%). Compared with the baseline model YOLOv11x, the

improved model increases Precision by 3%, Recall by 2.4%, F1-score

by 2.7% and mAP@0.5 by 3%. When compared with the widely used

YOLOv8 model, the improved model demonstrates a 6.2% increase in
Frontiers in Plant Science 09
Precision, 3.1% in Recall, 4.6% in F1-score and 3.7% in mAP@0.5. In

comparison with the YOLOv11l model, the improved model shows a

5.8% improvement in Precision, 1.9% in Recall, 3.8% in F1-score and

3.1% in mAP@0.5. Although the improved model has a slight decrease

in Recall when compared with the Faster R-CNN model, it achieves a

1.5% increase in F1-score and a significant 12.4% increase inmAP@0.5.

These results clearly demonstrate that the improved model

proposed in this paper possesses higher detection accuracy and

exhibits superior detection performance. It outperforms both the

baseline model and other mainstream object detection algorithms

in multiple key performance metrics, which benefits from the

synergistic effect of the introduced BRA, TransHead, SK

Attention mechanism, and optimized feature fusion module.

These components collectively enhance the model’s ability to

capture densely distributed, large scale-varied, and occluded rice

panicles in UAV images, validating its effectiveness and

advancement in in-field rice panicle detection tasks.

Figure 7 shows the mAP curves and P-R curves of different

network models. As depicted in Figure 7A, the mAP values of

different models eventually converges gently as the number of

iterations increases, and the improved model exhibits a higher

convergence accuracy. Figure 7B reveals that the area under the

P-R curve of the improved model is closer to 1, indicating that the

algorithm’s detection performance is superior. Additionally, as can

be seen from Figure 8, the improved model is capable of covering

the rice panicle regions with highly accurate bounding boxes for

manually annotated panicles. Even when faced with variations in

panicle morphology and background interference, the model can

still effectively detect the objects, demonstrating its robustness in the

task of rice panicle detection in UAV images under field conditions.

The comparison of recognition results between our proposed

method and the original YOLOv11x model is shown in Figure 9. It
TABLE 2 Results of ablation experiments.

Backbone Head
SK

Attention
Feature
fusion

Precision Recall F1-score mAP@0.5

× × × × 84.3% 78.6% 81.4% 86.4%

✓ × × × 84.4% 80.0% 82.1% 87.5%

✓ ✓ × × 85.2% 80.1% 82.6% 87.7%

✓ ✓ ✓ × 86.9% 80.4% 83.5% 88.5%

✓ ✓ ✓ ✓ 87.3% 81.0% 84.1% 89.4%
TABLE 3 Comparison of performance metrics of different models.

Model Precision Recall F1-score mAP@0.5

Faster R-CNN 76.4% 90.0% 82.6% 77.0%

YOLOv8 81.1% 77.9% 79.5% 85.7%

YOLOv11l 81.5% 79.1% 80.3% 86.3%

YOLOv11x 84.3% 78.6% 81.4% 86.4%

Improved YOLOv11x
(Our method)

87.3% 81.0% 84.1% 89.4%
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can be seen that there are missed detections in the recognition

results of the original YOLOv11x model. In contrast, our method

optimizes the network structure based on YOLOv11x, which

effectively eliminates such missed detection cases. Consequently,

the improved model demonstrates significantly enhanced capability

in detecting small objects in complex field scenarios, thereby

exhibiting superior performance in-field rice panicle detection.
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3.2.2 Comparison of rice panicle counting results
To verify the counting accuracy of the rice panicle detection

model, 300 rice panicle images are selected for testing, and Non-

Maximum Suppression (NMS) is used to achieve rice panicle

counting. The confidence threshold is set as p=0.5 and the IoU

threshold is set as IoU=0.5. The counting metrics of the proposed

rice panicle detection model and the other four compared models
FIGURE 7

The mAP curves and P-R curves of different network models. (A) mAP curves. (B) P-R curves.
FIGURE 8

Recognition results of the improved model. (A) Annotated images. (B) Recognition results of the improved YOLOv11x model.
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are shown in Table 4. It can be seen that the counting results of our

method are R2 = 0.85, RMSE=2.33, and rRMSE=0.13, which are all

the best among the five algorithms. Meanwhile, from the

comparison between the true number of rice panicles and the

number predicted by our model shown in Figure 10, it can be

seen that the predicted values can well fit the true values, further

verifying the counting accuracy of the proposed model. The

counting results of the other compared models are shown in

Supplementary Figures S1–4.
4 Discussion

Experimental results in Section 3 demonstrate that the

enhanced performance of our proposed improved YOLOv11x

model for in-field rice panicle detection and counting arises from

the synergistic interplay of its various modified modules.

Specifically, the BRA mechanism integrated into the backbone

network operates via a dynamic feature screening process: it first

identifies potential rice panicle regions at the coarse-grained level,

followed by fine-grained token-to-token attention computations

within the retained candidate regions. This dual-step approach

effectively mitigates interference from complex background noise
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and strengthens the model’s capability to extract features of high-

density, small-sized panicles.

The original detection head is replaced with the TransHead, which

leverages the self-attention mechanism inherent to Transformers. This

modification enhances the model’s capacity to capture long-term

dependencies, allowing it to better associate the morphological and

structural features of rice panicles with contextual information.

Consequently, detection accuracy is improved in scenarios

characterized by mutual occlusion and complex backgrounds.

The incorporation of the SK Attention mechanism enables the

model to dynamically select and fuse multi-scale features, thereby

strengthening the perception of key panicle information.

Additionally, the multi-scale feature fusion module further

integrates local details with global context, effectively boosting the

model’s adaptability to rice panicles of varying growth states and

scales in field environments. Together, the synergistic effect of these

mechanisms drives the significant improvements in the model’s

detection accuracy and counting precision.

Table 5 demonstrates the influence of different UAV flight altitudes

and input image sizes on the performance of the improved YOLOv11x

model. As shown in the table, the model achieves the best performance

at a UAV flight altitude of 12 meters with an input size of 128×128

pixels. Specifically, it reaches a Precision of 95.4%, an F1-score of

87.4%, and an mAP@0.5 of 84.6%. Meanwhile, the inference time for a

single image is the shortest, at 0.0438 seconds. As the input size

increases, the model performance shows a downward trend. When the

input size is 384×384 pixels, the mAP@0.5 drops to 74.7%, and the

inference time increases to 0.1189 seconds. This indicates that small-

sized inputs are more conducive for the model to capture the local

features of rice panicles. In contrast, large-sized inputs may introduce

more background noise. This makes feature extraction more difficult

and leads to a decrease in detection accuracy and speed.

When the UAV flight altitude increases to 15 meters, the model

performance generally declines. For example, with an input size of

128×128 pixels, the Precision drops to 89.4%, the mAP@0.5
FIGURE 9

Comparison of recognition results between our proposed method and the original YOLOv11x model (Yellow boxes indicate missed detections).
TABLE 4 Comparison of performance metrics for rice panicle
counting results.

Model R2 RMSE rRMSE

Faster R-CNN 0.54 4.12 0.22

YOLOv8 0.60 3.84 0.21

YOLOv11l 0.66 3.57 0.19

YOLOv11x 0.82 2.58 0.14

Improved YOLOv11x
(Our method)

0.85 2.33 0.13
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decreases to 73.8%, and the inference time increases to 0.0701

seconds. This phenomenon indicates that the increase in flight

altitude reduces image resolution and causes the loss of object detail

information, thereby affecting the model’s detection ability for small

objects. Additionally, when the input size is 384×384 pixels, the

model performance further deteriorates. The mAP@0.5 is 58.6%,

and the inference time is 0.1213 seconds. This suggests that under

high UAV flight altitudes, large-sized inputs exacerbate the problem

of object blurring and further weaken the model performance.

It is worth noting that the improved YOLOv11x-based rice panicle

detection model proposed in this paper exhibits significant differences

in model architecture and applicable scenarios compared with existing

studies (Seng et al., 2025; Liang et al., 2024). In terms of model

architecture, the latter two are both based on YOLOv5, while this

paper is built on the more advanced YOLOv11x, whose native

architecture has better feature extraction efficiency and parameter
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balance, providing a stronger foundation for improvements.

Regarding applicable scenarios, Seng et al. (2025) focus on

lightweight detection for near-ground high resolution images;

although Liang et al. (2024) realize in-field rice panicle detection

using UAVs, their work targets low-altitude scenarios with a flight

altitude of only 1.1–3 meters. In contrast, this paper is aimed at UAV

images captured at 12–15 meters. In complex scenarios with dense

panicles and large scale variations, it achieves an mAP@0.5 of 89.4%

and counting results with R2 = 0.85 and RMSE=2.33, making it more

suitable for large-scale field monitoring.
5 Conclusion

This paper proposes an improved rice panicle detection model

based on YOLOv11x for detecting rice panicles in UAV images with
FIGURE 10

Comparison between the true number of rice panicles and the number predicted by the improved YOLOv11x model.
TABLE 5 Performance metrics of the improved YOLOv11x with different input image sizes at various UAV flight altitudes.

UAV
flight altitude

Input
image size

Precision Recall F1-score mAP@0.5 Time (s)

12 m

128×128
256×126

95.4%
77.1%

80.6%
76.6%

87.4%
76.9%

84.6%
78.1%

0.0438
0.0871

300×300 81.0% 71.3% 75.8% 76.7% 0.1140

384×384 79.2% 73.7% 76.4% 74.7% 0.1189

15 m

128×128
256×126

89.4%
74.4%

61.1%
65.0%

72.6%
69.4%

73.8%
68.9%

0.0701
0.1151

300×300 67.8% 58.8% 63.0% 63.4% 0.1175

384×384 60.5% 55.7% 58.0% 58.6% 0.1213
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complex field backgrounds. In the improved YOLOv11x model, the

BiFormer module is introduced into the backbone network to

enhance the feature extraction capability for small objects. The

Transformer-based detection head is adopted to capture long-term

dependency relationships. The SK Attention mechanism is

combined to dynamically fuse multi-scale features, and the

feature fusion module is optimized to improve multi-scale

adaptability. Ablation experiments verify the effectiveness of each

improved module. Comparative experiments show that the

improved model achieves a Precision of 87.3%, an F1-score of

84.1%, and an mAP@0.5 of 89.4%, significantly outperforming the

original YOLOv11x, YOLOv11l, and mainstream algorithms like

YOLOv8 and Faster R-CNN. This provides practical technical

support for large-scale rice panicle detection by UAVs. Panicle

counting tests on 300 rice panicle images demonstrate the model’s

good fitting performance, with R2 = 0.85, RMSE=2.32, and

rRMSE=0.13. However, the detection accuracy of our model

decreases when dealing with large-sized input images. In the

future, we will further explore high-precision rice panicle

detection technologies for large-sized UAV images of field rice.
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