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Soybean is an important grain and cash crop in China, and timely knowledge of its
distribution is crucial for food security. However, traditional survey methods are
time-consuming and limited in coverage. In contrast, satellite remote sensing
enables large-scale, continuous, and cost-effective monitoring, providing
reliable support for crop classification and yield forecasting. However, the high
spectral similarity between soybean and maize during key phenological stages
presents a major challenge for reliable classification. To address this, we propose
a multi-source remote sensing approach that integrates Sentinel-1 SAR and
Sentinel-2 optical time-series imagery. This method combines statistical
descriptors, harmonic fitting parameters, phenological indicators, and radar-
based features within a random forest classifier to achieve accurate soybean
mapping. The study was conducted in the Jiusan Reclamation Area of
Heilongjiang Province using satellite imagery from May to October 2019 for
multi-source classification and temporal analysis. We systematically evaluated
classification performance across different data sources and phenological stages
and introduced the Earliest Identifiable Time (EIT) metric to assess temporal
detection capabilities. Results show that the multi-source fusion approach
outperforms single-source methods, achieving an overall accuracy (OA) of 96.85%,
a Kappa coefficient of 0.9493, and an F1-score of 95.84% for soybean. Notably, SAR
data significantly improved classification during the flowering stage—when optical
imagery is often constrained—resulting in a maximum F1-score increase of 6.96%.
Soybean classification accuracy increased rapidly with crop development, and the EIT
was advanced to Day of Year (DOY) 210, approximately 20 days earlier than with
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optical data alone. These findings demonstrate the effectiveness of multi-source
remote sensing in enhancing both the accuracy and timeliness of crop classification
under complex climatic conditions, offering valuable support for precise soybean
mapping and in-season monitoring.

KEYWORDS

soybean mapping methods, remote sensing, Sentinel-1/2, time-series analysis, early-
season crop identification

1 Introduction

Soybean (Glycine max) is one of the most important plant-
based protein crops worldwide. Its high protein and oil content have
made it a globally cultivated crop, playing a central role in both food
and feed systems (Schmutz et al., 2010; Liu et al., 2017). In China,
soybean serves as both a staple and an economic crop, yet domestic
production meets only a small fraction of national demand (She
et al, 2024). Accurate and timely information on the spatial
distribution of soybean cultivation is essential for assessing
planting scale, informing policy implementation, and supporting
efforts to boost domestic production (Johnson and Mueller, 2021;
Wei et al., 2023).

Remote sensing has emerged as a powerful tool for large-scale,
dynamic, and continuous land surface monitoring. It enables
efficient identification and spatiotemporal analysis of agricultural
features (Weiss et al., 2020; Bian et al., 2023), meeting the precision
requirements of modern smart agriculture while reducing labor and
financial input. By providing timely and consistent crop
information from space, satellite technology helps stabilize supply
chains, supports better policy decisions, and ultimately strengthens
national and global food security. However, in major soybean-
producing regions of China, soybean, maize, and rice are the
dominant crops cultivated within the same agricultural landscape.
Among these, soybean and maize exhibit high phenological and
spectral similarity, especially during the early pod-setting stage,
making their discrimination via single-source optical data
extremely challenging (Chen et al., 2023; You et al,, 2023; Zhang
et al., 2024). Meanwhile, as a typical paddy crop, rice differs from
upland soybean and maize in water demand and growth
environment, yet its spectra can overlap with soybean in specific
phenological phases, like seedling stage with sparse canopy, under
cloud-contaminated optical data. Thus, developing high-accuracy
and efficient mapping methods that simultaneously distinguish
soybean from maize and rice is critical for optimizing cropping
structures, increasing yields, and ensuring national food security (Li
et al., 2023).

The increasing availability of free satellite imagery from
platforms such as Sentinel-1 and Sentinel-2 has transformed
agricultural monitoring, enabling high-resolution observations in
spatial, temporal, radiometric, and spectral dimensions (Roy et al.,
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2014; Defourny et al., 2019; Khan et al.,, 2024). The integration of
these data with advanced algorithms and cloud-based platforms like
Google Earth Engine has made large-scale, field-level crop mapping
more accessible and operational (Dong et al., 2016; Gorelick et al.,
2017). Time-series remote sensing is particularly valuable for
capturing dynamic crop phenology and reducing spectral
confusion between similar crop types, such as maize and soybean,
by leveraging the structured temporal signals embedded in satellite
observations (You et al., 2021; Huang et al., 2024). Machine learning
algorithms, especially Random Forest (RF), are widely used in crop
classification due to their robustness, computational efficiency, and
ability to handle high-dimensional, noisy data (Li et al., 2021; Song
et al,, 2021). RF performs well with time-series data and supports
variable importance ranking, making it suitable for large-scale
agricultural applications (You et al., 2021).

Although high-resolution optical imagery is effective for crop
classification, especially at the end of the growing season, its utility
is often limited in humid or rainy regions due to persistent cloud
cover (Inglada et al., 2016; Jiao et al.,, 2022; Zhu et al., 2022; Maleki
et al, 2024). Synthetic Aperture Radar (SAR), particularly from
Sentinel-1, offers an all-weather, day-and-night imaging capability
that ensures consistent data acquisition regardless of atmospheric
conditions (Asam et al, 2022). SAR is sensitive to vegetation
structure, biomass, and moisture content, complementing the
spectral reflectance captured by optical sensors (Sun et al., 2019;
Liao et al, 2020). For example, SAR can distinguish rice (with
flooded fields in the early stage) from upland soybean/maize via
specular reflection signals from water surfaces, while optical data
excels at capturing chlorophyll-related spectral differences between
soybean and maize. Numerous studies have demonstrated that
combining Sentinel-1 and Sentinel-2 data significantly improves
crop classification accuracy, often outperforming single-source
methods (Gao et al., 2018; Moumni and Lahrouni, 2021; Li et al,,
2022). This fusion leverages the strengths of both sensors: optical
data effectively reflect vegetation activity and phenology, while SAR
provides critical structural information and maintains coverage
under cloud-obscured conditions (Qu et al., 2020; Huang et al,
2022; Xuan et al,, 2023), leading to more robust characterization of
crop dynamics.

Early-season crop type identification, mapping crops in early
growth stages or before harvest, is crucial for supporting in-season
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decision-making (Inglada et al., 2016; You and Dong, 2020; Shen
et al.,, 2025). Early classification benefits applications such as yield
prediction, irrigation scheduling, and agricultural insurance, as well
as land leasing and commodity trading (Konduri et al., 2020; Gallo
et al, 2023; Rezaei et al., 2023). SAR’s all-weather observation
capability is particularly valuable in the early season when optical
imagery is frequently unavailable due to cloud cover (Wei et al,
2023; Zhou et al.,, 2024). Previous studies have shown that fusing
SAR with optical data can achieve classification accuracy equivalent
to that of optical-only data obtained a month later (Inglada et al,
2016), representing a significant advancement in early-season
crop mapping.

Motivated by the increasing demand for accurate and timely
information on soybean and recognizing the synergistic potential of
multi-source time-series remote sensing, this study aims to enhance
robust crop classification and early identification. Specifically, the
objectives are: (1) to develop and evaluate an integrated multi-
source time-series approach using Sentinel-1 SAR and Sentinel-2
optical data for accurate classification of major crops (rice, maize,
and soybean), with a focus on improving soybean mapping; and (2)
to investigate the temporal evolution of classification accuracy
across the growing season, with the goal of determining the
earliest identifiable time—defined as the point at which the
soybean Fl-score exceeds 0.9 (You and Dong, 2020).
Additionally, we aim to quantify the incremental contribution of
SAR data in improving classification accuracy and advancing the
earliest identification window, thereby highlighting its value in
supporting mid-season agricultural monitoring and
decision-making.

2 Materials and methods

2.1 Study area

The Jiusan Reclamation Area is situated in the northwestern
part of Heilongjiang Province, China, covering parts of Heihe,
Suihua, and Qiqihar. Geographically, it spans from 122°24'E to
129°31'E longitude and from 45°30'N to 51°00'N latitude. The
region features gently undulating terrain, forming a transitional
zone between the Lesser Khingan Mountains and the Songnen
Plain. Elevation ranges from 0 to 848 meters, with a general slope
from northeast to southwest. The area experiences a mid-temperate,
semi-humid continental monsoon climate, characterized by dry,
windy springs and warm, humid summers. Annual precipitation
ranges from 400 to 550mm, primarily concentrated between June
and September. This climate regime—marked by the coincidence of
heat and rainfall and large diurnal temperature variation—is highly
conducive to crop growth and dry matter accumulation. The Jiusan
Reclamation Area is a key agricultural production base in China,
particularly for soybean, maize, and rice. Soybean has been
cultivated in the region for decades with consistently stable yields,
while maize acreage has expanded in recent years. Rice cultivation is
concentrated in peripheral areas with sufficient water availability.
According to agricultural statistics from Heilongjiang Province,
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Jiusan ranks among the leading regions nationwide in terms of
soybean planting area and total production, playing a vital role in
ensuring national food security. The geographic location of the
Jiusan Reclamation Area is shown in Figure 1.

2.2 Datasets

2.2.1 Sentinel-2 imagery and preprocessing

The Sentinel-2A and Sentinel-2B satellites, operated by the
European Space Agency (ESA), are equipped with the
MultiSpectral Instrument (MSI), which captures imagery at
spatial resolutions ranging from 10 to 60 meters and provides a
revisit frequency of five days. The MSI records data across 13
spectral bands, covering the visible to shortwave infrared (SWIR)
regions (Immitzer et al., 2016). In this study, we uniformly
resampled all Sentinel-2 bands to 10 meters spatial resolution for
consistency in multi-source data fusion and crop classification—
specifically, using 10-meter resolution bands (Blue, Green, Red,
NIR) directly, and resampling 20-meter bands (Red Edge 2, SWIRI,
SWIR?2) to 10 meters via bilinear interpolation. We employed Level-
2A surface reflectance (SR) products to identify soybean cultivation
in the Jiusan Reclamation Area. These products have been publicly
accessible via the Google Earth Engine (GEE) data catalog since
2019. To mitigate cloud contamination, the QA60 band—a bitmask
containing cloud and cirrus detection information—was used to
mask out opaque clouds and cirrus. All available Sentinel-2 images
acquired between May and October 2019 with cloud cover below
50% were considered. Multiple satellite orbits were included to
ensure complete spatial coverage of the study area. The number of
observations varied across locations, with overlapping orbital paths
resulting in denser temporal coverage in certain regions. In some
cases, multiple acquisitions were made on the same day at different
times, potentially introducing spectral variability. Furthermore,
uneven image availability due to cloud cover and masking criteria
led to irregular temporal intervals between usable observations. To
generate a consistent time series for each pixel, 10-day median
composites were created using all valid observations within each
period (Amani et al., 2020). For regions lacking high-quality data
due to persistent cloudiness or other issues, linear interpolation was
applied using adjacent time steps to fill temporal gaps.

2.2.2 Sentinel-1 imagery and preprocessing

The Sentinel-1A and Sentinel-1B satellites are equipped with C-
band dual-polarization synthetic aperture radar (SAR) sensors,
capable of acquiring imagery with spatial resolutions ranging
from 5 to 40 meters and a revisit interval of 12 days. Sentinel-1
supports four imaging modes: Stripmap (SM), Interferometric
Wide Swath (IW), Extra Wide Swath (EW), and Wave Mode
(WV). Among these, the IW mode is commonly used for land
applications and provides dual-polarization data, specifically
vertical transmit-vertical receive (VV) and vertical transmit—
horizontal receive (VH) polarizations. In this study, we used
Sentinel-1 Ground Range Detected (GRD) products acquired in
IW mode, which have a spatial resolution of 10 meters (azimuth) x
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FIGURE 1
Geographical location of Jiusan Reclamation Area.
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20 meters (range); these were further resampled to 10 meters spatial
resolution (consistent with Sentinel-2) using nearest-neighbor
interpolation to enable pixel-level multi-source data fusion. The
preprocessing workflow included the following steps: (1) thermal
noise removal; (2) radiometric calibration; (3) terrain correction
using Shuttle Radar Topography Mission (SRTM) or ASTER digital
elevation models (DEMs); and (4) conversion of terrain-corrected
backscatter coefficients into decibel (dB) values. To further suppress
speckle noise inherent in SAR imagery, a Refined Lee filter with a
7x7 moving window was applied (Yommy et al., 2015). To ensure
temporal alignment with Sentinel-2 optical data, 10-day composite
images were generated by calculating the median value of all valid
Sentinel-1 observations within each corresponding period.

2.3 Auxiliary data

2.3.1 Crop samples

This study collected a total of 1,424 ground sample points for
soybean, maize, and rice in the study area for the year 2019,
including 621 soybean samples, 588 maize samples, and 215 rice
samples. These samples were collected with a mobile GIS device and
subsequently checked against high-resolution Google Earth imagery
and two seasonal Sentinel-2 RGB composites. Samples with
mislabeling or located on roads and field boundaries were
removed. The dataset was randomly divided into training and
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validation sets with a ratio of 8:2. A cropland mask was applied
to exclude non-cropland pixels and prevent their inclusion in the
crop classification process. Both the crop sample data and the
cropland mask used in this study were derived from the 2019
Cropland Data Layer (CDL2019) for Northeast China (You
et al., 2021).

2.3.2 Statistical yearbook data

To validate the estimated soybean planting areas, official
statistical data for 2019 soybean cultivation areas in Heihe,
Suihua, and Qiqihar were obtained from the 2020 Heilongjiang
Statistical Yearbook. For area accuracy assessment, the classified
10m resolution soybean maps were aggregated within Google Earth
Engine using the pixelArea function to derive the total soybean area.
The absolute difference between the remote sensing-derived
soybean area and the official statistical yearbook records was then
calculated to quantify area estimation error.

2.4 Methodology

The research framework of this study is illustrated in Figure 2
and consists of four main components: (1) Data Preprocessing:
Sentinel-1 and Sentinel-2 time-series imagery was acquired and
processed to remove outliers and cloud contamination, resulting in
a clean and temporally consistent dataset. Smooth, continuous time
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Research framework.

series were constructed through 10-day median compositing and
linear interpolation. (2) Classification Model Development:
Features were extracted from both optical and SAR data,
including spectral bands, vegetation indices, backscatter
coefficients, and polarization metrics. These were integrated with
phenological indicators derived from the time series of EVI
calculated from Sentinel-2 imagery, which capture the timing of
crop growth onset, senescence, and season length. In addition,
statistical descriptors and principal component analysis (PCA)
outputs of the Sentinel-1 backscatter time series (VV, VH, and
related indices) were included to reduce redundancy while retaining
key temporal variations. Together, these features formed a
comprehensive dataset for classification. A Random Forest
classifier was then trained using ground-truth samples for crop
type identification. (3) Result Analysis and Accuracy Assessment:
Classification performance was evaluated using confusion matrices
and five standard metrics. Overall accuracy (OA) reflects the
proportion of correctly classified samples. Producer’s accuracy
(PA) measures omission errors, while user’s accuracy (UA)
measures commission errors. The Kappa coefficient adjusts OA
by accounting for chance agreement. The F1-score, as the harmonic
mean of PA and UA, provides a balanced measure particularly
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useful when class sizes are uneven. Together, these metrics give a
comprehensive evaluation of classification performance. Soybean
planting area was estimated based on a 10-meter resolution
classification map and compared with official statistical yearbook
data to validate area estimation accuracy. (4) Time-Series Dynamic
Analysis: To assess how classification accuracy evolved with crop
growth, we designed a temporal progression experiment. Starting
from May 1 (early sowing period), image sequences were gradually
extended in 10-day steps until October 8 (harvest), resulting in 14
datasets. For each sequence, classification was performed and
evaluated using the same independent validation set. This
procedure allowed us to track temporal changes in accuracy and
to determine the Earliest Identifiable Time (EIT), defined as the first
date when the soybean F1-score exceeded 0.9.

2.4.1 Parameter selection

To improve crop classification performance, this study selected
a set of parameters for feature extraction based on the physiological
and biochemical characteristics of soybean growth. Two categories
of spectral data were employed to classify soybean and other crop
types: (1) reflectance values from six spectral bands, and (2) values
from five vegetation indices (Table 1). The six spectral bands
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TABLE 1 Optical vegetation index.

Indices Formulation*

PNIR ~ Pred
PR + 6 X Pred — 7.5 % Pbiue + 1

EVI EVI =25 x

LSWI LSWT = PNIR ~ Pswiri
PNIR + Pswir
REPI REPI = 705 + 35 x (Pred + Pre3)/2 = Pret
PrE2 ~ PRE1
RENDVI RENDVI = PNIR ~ PRE2
PNIR + PrE2
NDSVI NDPI = Pswirl ~ Pred

Pswir1 + Pred

*pblue, pgreen, pred, pRE1, pRE2, pRE3, pNIR, and pSWIRI1 represent the surface reflectance
of Sentinel-2 MSI bands, corresponding to Band 2 (blue, 496.6 nm (S2A)/492.1 nm (S2B)),
Band 3 (green, 560 nm (S2A)/559 nm (S2B)), Band 4 (red, 664.5 nm (S2A)/665 nm (S2B)),
Band 5 (Red Edge 1, 703.9 nm (S2A)/703.8 nm (S2B)), Band 6 (Red Edge 2, 740.2 nm (S2A)/
739.1 nm (S2B)), Band 7 (Red Edge 3, 782.5 nm (S2A)/779.7 nm (S2B)), Band 8A (NIR, 864.8
nm (S2A)/864 nm (S2B)), and Band 11 (SWIRI, 1613.7 nm (S2A)/1610.4 nm (S2B)),
respectively.

included Red (492.4 nm), Green (559.8 nm), Blue (664.6 nm), Red
Edge 2 (RE2, 740 nm), Shortwave Infrared 1 (SWIRIL, 1610 nm),
and Shortwave Infrared 2 (SWIR2, 2190 nm). Previous studies have
highlighted the potential of SWIR1, SWIR2, and RE2 bands in
effectively distinguishing between maize and soybean (Luo et al,
2021; Chen et al., 2023). In addition, six widely used spectral indices
were calculated: Enhanced Vegetation Index (EVI), Land Surface
Water Index (LSWI), Red Edge Position Index (REPI), Red Edge
Normalized Difference Vegetation Index (RENDVI), and
Normalized Difference Senescence Vegetation Index (NDSVI).
The EVI time series is commonly used to extract temporal and
phenological features for various crops. LSWI, which is sensitive to
both leaf and soil moisture, is particularly effective for
distinguishing rice from upland crops such as maize and soybean.
REPI and RENDVI, which utilize Sentinel-2 red edge bands, are
well-suited for estimating canopy chlorophyll content and
nitrogen levels.

To improve soybean identification accuracy under cloudy
conditions, this study selected five key parameters from Sentinel-1
VV/VH dual-polarized SAR imagery to capture crop structural and

TABLE 2 SAR parameter index.

Parameters Proxies Description
Throughout the soybean growth period,
alterations in the growth status and
Backscattering o o density of soybean leaves, stems, and
Ratio Ovi> Ovv pods can have substantial effects on the
backscattering ratio (Pageot et al.,
2020).
Fluctuations over time in this index
Cross- reflect changes in moisture content and
Polarization OV * Oy structure that are associated with
Ratio Oy + OV phenological development (Khabbazan
et al,, 2019).
RVI can characterize both crop
RVI RVI = ‘; x GQ’I; biomass and the LAI (Chang et al,
GOyn + Oyy 2018).
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physical characteristics across different growth stages (Table 2).
These SAR features include the backscatter coefficients of the VV
and VH polarization channels (6%, and oY), their combined
forms, and the dual-polarization Radar Vegetation Index (RVI)
derived from these channels. The 6%y and 6Yy; coefficients reflect
the radar backscattering response from vertical and horizontal plant
structures, respectively (Pageot et al., 2020). VV polarization is
more sensitive to vertical canopy characteristics and is thus closely
related to soybean biomass and canopy density, while VH
polarization responds more strongly to variations in surface
roughness and structural complexity, making it useful for
detecting changes during mid to late phenological stages. RVI, a
normalized index computed from the VV and VH channels,
effectively characterizes crop canopy vigor and growth dynamics
(Mandal et al., 2020). Additionally, the Cross-Polarization Ratio
(CPR), defined as the ratio of the product to the sum of 6%, and
o9y, enhances sensitivity to backscatter intensity during key
phenological events such as the pod-filling stage (Veloso et al,
2017). Collectively, these SAR-derived parameters provide essential
physical and temporal insights that support robust soybean

classification in multi-source remote sensing applications.

2.4.2 Feature extraction

Based on the spectral curve dynamics of crops and
incorporating phenology and spectral index information, this
study extracted statistical features, peak growth period features,
harmonic fitting features, phenological features, and SAR features
to enhance the discrimination between soybeans and non-soybean
crops, as summarized in Table 3.

1. Statistical Features and Peak Growth Period Features

Statistical features include the maximum, minimum, variance,
and the 15th, 50th, and 90th percentiles of 11 spectral parameters
throughout the entire growth season. The maximum and minimum
values represent the upper and lower bounds of spectral variation,
which differ significantly among crops and help distinguish soybeans
from others. Variance reveals the fluctuation in spectral curves,
reflecting the stability of the growth state. Percentiles provide
spectral distribution information during early, middle, and late
growth stages. All these statistics were calculated at the pixel level
across the full time series, rather than aggregated by plot, which
preserves intra-field variability and enables the detection of mixed
conditions such as intercropping. Peak growth period features are
extracted based on the timing of peak values in the EVI and LSWI
indices. The corresponding “greenest” and “wettest” images are
composited for these peak periods, from which the 11 spectral
parameters are extracted as features representing the crop’s growth
peak. This period typically coincides with soybean pod development,
when its spectral behavior most notably differs from other crops,
making these features especially critical for classification.

2. Harmonic Fitting Features

Harmonic fitting is an effective time series modeling method to
extract periodic features. By treating the time series as a periodic
function and applying Fourier transformation, the original curve
can be reconstructed using several sine and cosine components. The
function is expressed as:
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ft)=ag+ i[ak cos (2wkwt) + by sin (2mkot))
k=1

where f (¢) represents the fitted vegetation index value at time t, a,
is the constant term, a; and by are the coefficients for cosine and sine
terms respectively. 7 is the order of the harmonic fitting, and @ is the
frequency, set to 1.5.t denotes the position of the current day of year
(DOY) within the year, expressed as a decimal between 0 and 1.

3. Phenological Features

Phenological features directly reflect the timing of crop
developmental stages from sowing to maturity and serve as
important remote sensing parameters for representing crop
growth processes. Different crops exhibit distinct spectral
variation timings due to differences in planting dates and growth
cycles, making phenological features effective classification criteria.
The phenological features extracted include: (i) cumulative growing
degree days for the start (SOS), end (EOS), and length (LOS) of the
growing season; (ii) EVI values at SOS and EOS; (iii) cumulative
EVI during the growing season as a proxy for accumulated biomass.
These are extracted using a threshold method: the EVI time series is
sorted and the median value is selected as the threshold. The first
date when EVI exceeds this threshold marks SOS, the last date
marks EOS, and LOS is the difference between the two. This
approach suits single-cropping systems (e.g., soybean, maize,
rice), where EVI typically shows a clear increase and decline pattern.

4. SAR Features

For the four SAR feature parameters, we leveraged the SAR
image time series to extract key crop characteristics, including
statistical and principal component features. The statistical
features are consistent with those used for optical data, covering
maximum, minimum, variance, and the 15th, 50th, and 90th
percentiles of five SAR parameters. These statistics help convey
the average level and temporal variation within crop-specific time
series curves. Additionally, principal component analysis (PCA)
was performed on the Sentinel-1 time series in the temporal
domain, with the first three principal components selected as the
SAR principal component features.

TABLE 3 Summary of classification features.

Feature type Feature name
EVI, LSWI, RENDVI, REPI,
Vegetation Indices Time Series
NDSVI
Visible and Red-Edge Band Time
. B2, B3, B4, B6 (490nm — 740nm)
Series
Shortwave Infrared Band Time Series B11, B12 (1610nm — 2200nm)
Phenological Features SOS EOS LOS
EVI Time Series Features (EVI) Phase and Amplitude
Accumulated Biomass Features EVI
Statistical Features 6V, Oy, CPR, RVI
Principal Component Features GYi> Ovv, CPR, RVI
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2.4.3 Random forest

A Random Forest (RF) classifier was employed to identify
soybean cultivation. As a non-parametric machine learning
algorithm, RF offers strong fault tolerance and has been widely
adopted in crop classification and mapping studies due to its
robustness, accuracy, and efficiency. The algorithm is also well
supported by the Google Earth Engine (GEE) platform, making it
convenient for large-scale implementation. In this study, the RF
model was configured using two key parameters: (1) numberOfTrees,
which defines the number of decision trees in the ensemble. A larger
value generally improves classification accuracy but increases
computation time linearly; this parameter was set to 100. (2)
minLeafPopulation, which specifies the minimum number of
samples required at each leaf node. To reduce the risk of
overfitting, it was set to 10. In addition to classification, the RF
algorithm provides a measure of feature importance, enabling
effective feature ranking and selection. Feature importance was
assessed using the Mean Decrease in Impurity (MDI), which
quantifies the reduction in node impurity contributed by each
feature across all decision trees. Features contributing more to
impurity reduction are considered more informative. Classification
performance was evaluated using an independent test dataset.
Standard accuracy metrics were reported, including overall
accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), the
Kappa coefficient, F1 score, and area-based accuracy.

oa = Ns+No

‘A X PA
F1 score=—— X
UA + PA

‘Areagt — Area,
Area Accuracy =1—--——"———

Areay
Processing method Quantity
5%6
min, max, std, and 15/50/90th percentile 46
2x6
Median method 3x1
Harmonic fitting 1x2
Accumulation 1x1
max, min, mean, stdv, 15/50/90th Tk
percentile
Principal Component Analysis 3x4
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Time series curves of spectral reflectance (a—f), vegetation indices (g—k), and radar-based parameters (l-o) for soybean and other major crops. The
curves are generated from all training samples within the study area. The x-axis represents the day of year (DOY), while the y-axis shows the values
of spectral reflectance and vegetation indices. Solid lines indicate the mean values, and shaded areas represent one standard deviation.

Where Ny is the number of correctly classified soybean samples;
Cs s the total number of samples classified as soybean; T is the total
number of soybean validation samples; Ny, is the number of correctly
classified non-soybean samples; # is the total number of all validation
samples; Areay represents the actual soybean planting area obtained
from statistical yearbook data, while Area,, denotes the soybean
planting area estimated through remote sensing classification.

3 Results and discussion

3.1 Spectral reflectance and backscattering
characteristics of crops

Figure 3 illustrates the time series curves of key spectral bands,
vegetation indices, and SAR backscatter parameters used for crop
classification, highlighting the seasonal dynamics of soybean, maize,
and rice throughout the growing period. In the visible bands (Blue,
Green, and Red), high standard deviations and substantial overlap
among the three crops limit their discriminative power. Specifically,
soybean and maize maintain relatively stable reflectance before
DOY 220, followed by a rapid decline reaching a minimum around
DOY 260. In contrast, rice exhibits a distinct pattern characterized
by an initial decrease, a subsequent rise, and a sharp drop. Red band
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reflectance shows an inverted U-shaped trajectory, consistent across
all crops, reflecting chlorophyll dynamics during the growth cycle.
In the red-edge band (RE2), reflectance increases steadily during
early growth and peaks around DOY 220. Soybean displays the
highest RE2 values prior to this point but declines rapidly thereafter
due to senescence, eventually falling below those of maize and rice.
The SWIR1 and SWIR2 bands, which are sensitive to water content,
show significantly lower reflectance for rice during the inundation
phase (DOY 120-200), distinguishing it from upland crops.
Between DOY 200 and 260, soybean reflectance in these bands
remains consistently higher than maize, offering some potential for
discrimination. For vegetation indices, both EVI and NDVT exhibit
patterns similar to RE2, capturing the physiological transition from
rapid vegetative growth to senescence. However, their time series
also show substantial overlaps across crops. LSWI, which reflects
canopy and surface water content, remains consistently high and
stable for rice throughout the season, providing a reliable indicator
for its identification. NDSVI shows a pronounced rise-then-fall
trend in rice, with greater temporal variability than in soybean and
maize, effectively capturing the phenological rhythm of rice
development. REPI, which correlates with cumulative biomass, is
higher in maize during the late season, indicating a red-edge shift
associated with increased chlorophyll content. RENDVI values are
notably higher for maize than for soybean and rice between DOY
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FIGURE 4

Identification and mapping of soybean planting areas in Jiusan Reclamation Area.

200 and 260, offering improved separability, particularly between
soybean and maize.

SAR-derived features (VV and VH backscatter) are influenced by
both vegetation structure and moisture content and follow a general
rise—fall pattern across all crops. Between DOY 120 and 140, rice exhibits
a sharp decline in backscatter due to specular reflection from water
surfaces, maintaining low values throughout the season, which distinctly
separates it from upland crops. In the VV channel, soybean and maize
backscatter gradually increase from DOY 120 to 200 as canopy moisture
accumulates, then stabilize before declining sharply after DOY 260. In
the VH channel, soybean shows consistently higher backscatter than
maize between DOY 200 and 260, indicating a more complex canopy
structure. The Radar Vegetation Index (RVI) peaks around DOY 200,
with rice maintaining significantly lower values than soybean and maize,
enabling strong crop discrimination. Soybean’s RVI also exhibits less
temporal variability than maize, reflecting greater growth stability. The
Cross-Polarization Ratio (CPR) further enhances classification accuracy;
during the peak growth phase (DOY 220-240), soybean displays higher
CPR values than both maize and rice, making it one of the most
informative SAR-derived features for distinguishing soybean.

3.2 Soybean classification accuracy based
on different data sources

Using multi-source remote sensing data, crops in the study area
were classified, and soybean planting areas were extracted. The
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classification achieved high accuracy, with an overall accuracy (OA)
of 96.85%, a Kappa coefficient of 0.9493, and soybean-specific
metrics of 98.30% for producer accuracy (PA), 93.51% for user
accuracy (UA), 95.84% for Fl-score, and 96.57% for area-based
accuracy. The spatial distribution of soybean cultivation is
illustrated in Figure 4.

Soybean planting was primarily concentrated between 46°N and
48°N, within a hilly transitional zone between the southern edge of
the Lesser Khingan Mountains and the Songnen Plain—an area
characterized by favorable agroecological conditions. The total
soybean area in the study region reached 2.62 million hectares.
Among the administrative divisions, Heihe recorded the largest
planting area, with approximately 1.27 million hectares (48.33% of
the total), mainly distributed across Nenjiang, Wudalianchi, and
Beian, with smaller areas in the northern county of Sunwu. Qigihar
ranked second, with 0.83 million hectares (31.84%), primarily
concentrated in eastern and northern counties including Nehe,
Keshan, Kedong, Baiquan, and Yian, and with scattered fields in
Gannan County in the west. Suihua accounted for 0.52 million
hectares (19.83%), mainly located in the northern counties of
Hailun, Suiling, and Wangkui. Spatially, soybean cultivation
exhibited a relatively clustered distribution, though the field
parcels were generally fragmented, small, and discontinuous. This
pattern is influenced by natural topography, river networks, and the
predominance of smallholder farming. In northern Qigihar,
soybean is often intercropped with maize, and fields tend to be
narrow and elongated (approximately 60m x 1200m), with closely
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Accuracy results of different data sources.

spaced rows. In contrast, northwestern Qigihar and southwestern
Heihe feature more regular and contiguous fields, typically
rectangular and reaching up to 800m x 2400m. In the
mountainous areas of central and northern Heihe, irregular field
shapes are common due to the complex terrain. At the junction of
Heihe, Qigihar, and Suihua, a state-operated farming zone and the
core area of intensive soybean cultivation. Fields in this region are
generally square-shaped (approximately 400m X 400m), clearly
delineated by internal road networks, with minimal
intercropping. The planting system here is more large-scale and
centralized, reflecting a more modern and industrialized
agricultural structure.

In terms of classification performance using individual data
sources (Figure 5), the overall accuracy (OA) and Kappa coefficient
based solely on SAR data reached 83.92% and 0.7384, respectively.
Although these values are lower than those achieved using optical
data, SAR still exhibits a certain level of capability in crop
discrimination. In contrast, the optical-only approach delivered
significantly higher performance, with OA and Kappa values of
96.23% and 0.9394, respectively—second only to the multi-source
fusion method—highlighting its strong ability to distinguish
between crop types. When integrating both optical and SAR data,
the multi-source fusion approach achieved the highest accuracy,
with an OA of 96.85% and a Kappa coefficient of 0.9494. Compared
with the optical-only approach, this represents an improvement of
0.62% in OA and 0.0099 in Kappa; compared with the SAR-only
method, the improvement is more substantial—14.93% in OA and
0.2010 in Kappa. These results suggest that multi-source fusion can
further enhance classification performance, even when starting
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from a high baseline, though the incremental gains over optical
data alone are relatively modest.

From the perspective of soybean identification (Figure 5), the
three data source strategies consistently followed the performance
hierarchy: multi-source > optical > SAR. Evaluation metrics reveal
that the SAR-only approach yielded notably higher user accuracy
(UA) than producer accuracy (PA) for soybean, indicating a
tendency toward underestimation, with the identified soybean
area totaling only 1.985 million hectares. In contrast, both the
optical and multi-source approaches exhibited higher PA than UA,
suggesting more balanced classification outcomes. The F1 scores for
soybean identification were 77.91% for SAR, 95.03% for optical, and
95.84% for the multi-source approach. Area-based accuracy
followed a similar trend: 78.37% (SAR), 95.74% (optical), and
96.57% (multi-source). Compared to optical data, the multi-
source fusion method achieved improvements of 0.81% in F1
score and 0.83% in area accuracy; when compared to SAR, these
improvements rose to 17.93% and 18.20%, respectively. Overall,
while multi-source data only slightly outperforms optical data, it
substantially enhances performance over SAR, underscoring its
value in robust and precise soybean identification.

Figure 6 illustrates crop classification results for four selected
local scenes, comparing outputs derived from optical data alone,
SAR data alone, and a fusion of both data sources. Each
classification map is accompanied by a corresponding reference
map and high-resolution Google Earth imagery for validation. The
optical-only classification already demonstrates strong
performance, with clearly defined crop boundaries and complete
field delineation. Even in regions where soybean and maize are
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Comparison of local classification results under different data sources. (a—d) show four representative local scenes selected from different parts of
the Jiusan Reclamation Area. For each scene, four maps are presented: the optical-only classification, the SAR-only classification, the multi-source
classification, and the corresponding reference map derived from high-resolution Google Earth imagery. In the classification maps, soybean, maize,

and rice are shown in green, yellow, and red, respectively.

intercropped, the model successfully achieves fine-scale
differentiation between the two crops. In contrast, the SAR-only
classification delivers more limited results, capturing only the
general spatial patterns of crop distribution, but exhibiting
considerable speckle noise and frequent misclassifications. The
highest classification accuracy is attained using the multi-source
fusion approach. Although the visual outcomes are broadly similar
to those from the optical-only method, a detailed comparison
reveals that the optical results still contain localized
misclassification patches. These are significantly reduced in the
multi-source results, leading to more precise delineation of crop
field boundaries that align more closely with high-resolution
reference imagery.

Feature selection was conducted using the Mean Decrease in
Impurity (MDI) metric from the Random Forest classifier to assess
the importance of each variable. Based on their importance scores, all
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features were ranked, and a subset comprising the top-ranked 20
features was identified as optimal (Figure 7). Table 4 compares the
classification performance of the full feature set and the selected subset.
The results indicate that the subset yields classification accuracy largely
comparable to that of the full set. The most notable difference is a
roughly 1% decrease in user accuracy (UA) for soybean in the reduced
feature set, resulting in a more pronounced overestimation of soybean
area and a corresponding 3.4% decline in area-based accuracy. Minor
reductions were also observed in overall accuracy (OA), Kappa
coefficient, and soybean F1 score, each by approximately 0.3%.
Notably, this reduction in feature dimensionality achieved an 87%
decrease in data volume. Therefore, the selected 20-feature subset offers
a favorable trade-off, maintaining high classification accuracy while
significantly improving computational efficiency.

The suffixes in the feature names denote specific types of
information: “_EVI” and “_LSWI” represent feature values
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extracted during the respective peak periods of the EVI and LSWI
indices; “_p15,” “_p50,” and “_p90” correspond to the 15th, 50th

« » » «

(median), and 90th percentiles; while “_min,” “_max,” “_mean,”
and “_stdDev” denote common statistical measures, including
minimum, maximum, mean, and standard deviation. The feature
importance ranking indicates that REPI-related features occupy the
highest positions, particularly those derived from the wettest and
greenest composites, as well as median values. This highlights their
critical role in crop classification, especially for soybean
identification, and aligns well with the results from temporal
curve analysis. Features from the shortwave infrared bands
(SWIR1 and SWIR2) also demonstrate strong discriminative
power, comprising 10 of the top 20 features. Additionally, LSWI
and RENDVT features appear frequently, contributing to the
effective identification of rice and to the differentiation between
soybean and maize, respectively. Among SAR-derived features, only
the 90th percentile of VV polarization is included in the optimal

subset, suggesting the dominance of optical features within the

TABLE 4 Accuracy of full feature set and selected feature subset.

Feature set OA Kappa
Full Feature Set 96.85% 0.9493 98.30%
Selected Feature Set 96.63% 0.9460 98.86%

Frontiers in Plant Science

multi-source dataset. This finding is consistent with previous
studies reporting that Sentinel-1 and Sentinel-2 data contribute
approximately 27% and 73%, respectively, to overall crop
classification accuracy. Moreover, the frequent presence of growth
peak features and 90th percentile values reflects that crops exhibit
their greatest spectral separability during peak growth stages.

3.3 Changes in soybean recognition
accuracy with crop growth and temporal
progression

To examine how soybean recognition accuracy varies
throughout different stages of crop development, this study
simulates classification performance over time by defining a series
of image sequences with progressively extended temporal coverage.
As illustrated in Figure 8, the start date is fixed at May lst,
representing the early sowing period, while the end date is

Soybean PA  Soybean UA Soybean F1 score Soybean area accuracy

93.51% 95.84% 96.57%

92.55% 95.60% 93.17%
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incrementally extended in 10-day intervals until October 8th,
corresponding to crop maturity and harvest. This results in a
total of 14 experimental rounds. In each round, Sentinel-1 and
Sentinel-2 imagery within the specified timeframe is used to
construct a time series, which is then analyzed using the proposed
classification method to identify soybean cultivation and assess
recognition accuracy. Due to limited data availability in early stages,
the first experimental round covers the period from May 1st to May
31st. As the season progresses, the image sequence becomes
increasingly complete, leading to gradual improvements in
recognition accuracy. At a certain point, accuracy reaches a
practical threshold that allows for early-season mapping. To
determine this threshold—referred to as the earliest identifiable
time (EIT)—this study adopts the criterion proposed by You and
Dong (2020), whereby the F1 score for soybean classification first
exceeds 0.9. Moreover, this experiment compares the temporal
evolution of classification accuracy across three data input
strategies—optical only, SAR only, and multi-source fusion—
highlighting the advantages of multi-source integration at various
phenological stages. This dynamic assessment of accuracy under
both crop growth and time-series progression underscores the value

10.3389/fpls.2025.1656628

of multi-source data in improving both the precision and timeliness
of soybean identification.

As shown in Figure 9, soybean recognition accuracy is closely
linked to the crop’s phenological development. As growth
progresses, both overall accuracy (OA) and the F1 score steadily
increase. When segmented by phenological stages, average
classification performance improves accordingly: during the
sowing period (DOY < 150), OA reaches 78.27% and F1 score is
74.94%; during the three-leaf stage (DOY 160-180), OA rises to
82.07%, and F1 to 78.22%; in the flowering period (DOY 190-210),
OA improves to 89.23%, and F1 to 86.32%; during the pod-setting
stage (DOY 220-240), OA climbs to 93.80%, and F1 reaches
92.09%; and by the grain-filling and maturity stage (DOY 250-
280), OA reaches 94.72%, with an FI score of 93.23%. Accuracy
gains become less pronounced in the later stages.

The most substantial improvements in accuracy occur during
the flowering and pod-setting stages. These phases correspond to
vigorous vegetative growth, canopy closure, and enhanced
physiological differentiation, making crop-specific spectral and
structural features more detectable. This pattern aligns with the
feature importance analysis, which indicates a higher concentration
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Experimental design for time-series progression analysis. Each row (1-14) represents one classification round, where the image sequence is extended in
10-day increments from May to October. The green bars indicate the imagery coverage period used in each round, while the blue extensions show the
additional time span of images progressively included. The red arrows connect each temporal sequence to its corresponding classification accuracy
result. The bottom axis shows the soybean growth calendar (sowing, seeding, trifoliation, flowering, pod setting, and maturity/harvest).
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of influential features during these periods. In early stages—such as
sowing and the three-leaf phase—soybean plants remain short with
sparse canopy cover, and imagery primarily captures bare soil,
resulting in lower recognition accuracy. By the three-leaf stage,
young stems emerge but the canopy remains underdeveloped,
producing modest accuracy gains (OA and F1 increase by
approximately 3.80% and 3.28%, respectively). The flowering
period marks a critical point for yield formation, as branching
intensifies and canopy cover becomes complete. Both optical and
SAR features are more pronounced, leading to sharper accuracy
gains: OA and F1 improve by 7.16% and 8.10% over the previous
stage. During pod-setting, continued physiological development
and pod enlargement further enhance separability, yielding an
additional OA increase of 4.57% and F1 increase of 5.77%. In the
grain-filling and maturity stages, soybean senescence leads to
spectral stabilization, resulting in only slight accuracy
improvements—0.92% in OA and 1.14% in F1.

When comparing classification performance across different
data sources throughout crop growth, multi-source fusion
consistently achieves the highest accuracy, demonstrating superior
robustness and adaptability. Accuracy improves gradually in the
early season and increases sharply after flowering, plateauing
around DOY 230 (mid-pod-setting). Optical data performs
similarly to multi-source data across most stages and remains the
primary source for remote sensing classification. However, SAR-
only data, despite generally lower accuracy, performs particularly
well during critical stages—especially under conditions of poor
optical image quality due to frequent cloud cover. Notably,
around DOY 190, SAR-based accuracy temporarily surpasses that
of optical data, highlighting its potential for independent
classification in cloudy conditions. Figure 9a further quantifies
SAR’s complementary role. During the sowing and three-leaf
stages, SAR contributes modest OA improvements (~2-3%) due
to limited optical information. As soybeans enter flowering, SAR’s
added value increases significantly, peaking at a 6.69% OA
improvement on DOY 190. This contribution declines during
pod-setting and grain-filling stages, as optical features become
more distinctive and the marginal benefit of SAR diminishes.
Analysis of the FI score trends in Figure 9b reveals consistent
patterns across data sources: slow improvement in early stages,
rapid gains from flowering to pod-setting, and eventual
stabilization. Multi-source fusion consistently yields the highest
F1 score, followed by optical, with SAR alone performing lowest.
Around DOY 200 (mid-flowering stage), F1 scores for optical and
multi-source data surge as soybean canopy and pod characteristics
become prominent. Compared to the previous round, the F1 score
for optical data increases by 12.88%, and for multi-source data by
7.59%. SAR’s F1 score reaches 77.45% on DOY 190 and gradually
peaks at 84.99% by DOY 280. These trends reinforce the
supplementary value of SAR. From sowing to the three-leaf stage,
SAR contributes approximately 3% to the F1 score. During the
flowering stage, this contribution increases to a peak of 6.96%,
before declining in the later stages as optical information
becomes dominant.
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The EIT for soybean using multi-source data is DOY 210 (early
pod-setting stage), when canopy structures become clearly
distinguishable and spectral features are well defined. At this
point, the F1 scores for multi-source, optical, and SAR data are
91.80%, 87.57%, and 78.24%, respectively. Compared to the optical-
only strategy, multi-source fusion advances the EIT by
approximately 20 days, with a 4.23% improvement in F1 score. In
contrast, optical data reaches an F1 score of 90% at DOY 230 (late
pod-setting to early maturity), while SAR data never achieves the
EIT threshold throughout the season.

In summary, incorporating SAR data significantly advances the
EIT by approximately 20 days, enhancing the timeliness of soybean
mapping. This earlier detection capability provides valuable lead
time for downstream applications such as yield forecasting, pest and
disease monitoring, seasonal planning, and agricultural
decision-making.

3.4 Socio-economic implications of early
and accurate crop identification

Early and accurate crop identification provides significant
economic and social benefits across multiple scales. At the
national and regional levels, timely information on crop
distribution and growth conditions enhances yield forecasting and
monitoring, offering governments and markets more reliable
production and supply expectations to support food security
decisions and emergency responses such as reserve management
and relief distribution (Hoefsloot et al., 2012; Setiyono et al., 2014).
At the farm level, detailed crop maps enable more efficient
allocation of inputs such as fertilizers, seeds, and irrigation, while
guiding key management decisions on sowing, irrigation, and pest
control, thereby improving resource-use efficiency, reducing yield
losses, and stabilizing farmers’ incomes (Wu et al., 2023). Beyond
farm management, remote sensing-derived indicators of crop cover
and dynamics are increasingly applied in agricultural insurance,
where they function as claim triggers and inputs for premium
pricing, improving both the efficiency and sustainability of
insurance systems. When combined with crop modeling, these
data further strengthen the transparency and credibility of multi-
risk assessments (Basso et al., 2013; Liu et al., 2025). From a broader
macroeconomic perspective, reliable early assessments help reduce
market uncertainty, stabilize supply chains, and inform price
forecasting. Such high-quality information has been shown to
mitigate global market shocks (Tanaka et al.,, 2023) and
strengthens national food security strategies by providing spatially
and temporally refined data for timely and targeted policy responses
(Zhang et al., 2025).

4 Conclusion

This study addresses the persistent challenges of spectral
confusion and data incompleteness in soybean remote sensing
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Temporal progression results: (a) Bar chart of OA for three data sources with red line indicating SAR contribution; (b) Bar chart of soybean F1 scores
with red line for SAR contribution and black dashed line representing the F1 = 0.9 threshold

classification by proposing a multi-source approach that integrates
Sentinel-1 SAR and Sentinel-2 optical time-series imagery. Through
systematic evaluation, we demonstrate that multi-source data fusion
significantly enhances both the accuracy and timeliness of soybean
identification. The integration of optical and SAR data yielded the
highest classification performance, achieving an overall accuracy
(OA) of 96.85%, a Kappa coefficient of 0.9493, a soybean F1-score
of 95.84%, and an area accuracy of 96.57%. While the improvement
over optical data alone was relatively modest—raising the F1-score
and area accuracy by 0.81% and 0.83%, respectively—the
improvement over SAR-only classification was substantial. This
highlights the strong baseline performance of optical data and the
complementary role of SAR, particularly under cloud-contaminated
or spectrally ambiguous conditions, where SAR data significantly
contributes to classification robustness. Soybean classification
accuracy improved progressively with crop development. During
the sowing stage, weak spectral signals led to low recognition
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accuracy. As soybeans entered the flowering and pod-setting
stages, canopy closure and physiological changes enhanced both
spectral and structural separability, resulting in rapid gains in
classification accuracy. The Fl-score increased from 78.22% in
July to 92.09% in August. Notably, SAR data provided the
greatest incremental value during the flowering and pod-setting
stages, with accuracy gains of up to 6.96%. In contrast, during the
grain-filling and maturity stages, the contribution of SAR
diminished as optical signals became more distinctive and stable.
Furthermore, multi-source data advanced the EIT for soybean to
DOY 210, approximately 20 days earlier than when using optical
data alone. This temporal advancement is crucial for early-season
applications such as yield forecasting, pest and disease monitoring,
and harvest scheduling.

In summary, the integration of multi-source time-series remote
sensing and the targeted extraction of phenological and key-stage
features constitute an effective strategy for high-precision and early
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soybean identification. The methodology proposed in this study
provides both theoretical insights and practical tools for large-scale
agricultural monitoring.
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