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Soybean is an important grain and cash crop in China, and timely knowledge of its

distribution is crucial for food security. However, traditional survey methods are

time-consuming and limited in coverage. In contrast, satellite remote sensing

enables large-scale, continuous, and cost-effective monitoring, providing

reliable support for crop classification and yield forecasting. However, the high

spectral similarity between soybean and maize during key phenological stages

presents a major challenge for reliable classification. To address this, we propose

a multi-source remote sensing approach that integrates Sentinel-1 SAR and

Sentinel-2 optical time-series imagery. This method combines statistical

descriptors, harmonic fitting parameters, phenological indicators, and radar-

based features within a random forest classifier to achieve accurate soybean

mapping. The study was conducted in the Jiusan Reclamation Area of

Heilongjiang Province using satellite imagery from May to October 2019 for

multi-source classification and temporal analysis. We systematically evaluated

classification performance across different data sources and phenological stages

and introduced the Earliest Identifiable Time (EIT) metric to assess temporal

detection capabilities. Results show that the multi-source fusion approach

outperforms single-source methods, achieving an overall accuracy (OA) of 96.85%,

a Kappa coefficient of 0.9493, and an F1-score of 95.84% for soybean. Notably, SAR

data significantly improved classification during the flowering stage—when optical

imagery is often constrained—resulting in a maximum F1-score increase of 6.96%.

Soybean classification accuracy increased rapidly with crop development, and the EIT

was advanced to Day of Year (DOY) 210, approximately 20 days earlier than with
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optical data alone. These findings demonstrate the effectiveness of multi-source

remote sensing in enhancing both the accuracy and timeliness of crop classification

under complex climatic conditions, offering valuable support for precise soybean

mapping and in-season monitoring.
KEYWORDS

soybean mapping methods, remote sensing, Sentinel-1/2, time-series analysis, early-
season crop identification
1 Introduction

Soybean (Glycine max) is one of the most important plant-

based protein crops worldwide. Its high protein and oil content have

made it a globally cultivated crop, playing a central role in both food

and feed systems (Schmutz et al., 2010; Liu et al., 2017). In China,

soybean serves as both a staple and an economic crop, yet domestic

production meets only a small fraction of national demand (She

et al., 2024). Accurate and timely information on the spatial

distribution of soybean cultivation is essential for assessing

planting scale, informing policy implementation, and supporting

efforts to boost domestic production (Johnson and Mueller, 2021;

Wei et al., 2023).

Remote sensing has emerged as a powerful tool for large-scale,

dynamic, and continuous land surface monitoring. It enables

efficient identification and spatiotemporal analysis of agricultural

features (Weiss et al., 2020; Bian et al., 2023), meeting the precision

requirements of modern smart agriculture while reducing labor and

financial input. By providing timely and consistent crop

information from space, satellite technology helps stabilize supply

chains, supports better policy decisions, and ultimately strengthens

national and global food security. However, in major soybean-

producing regions of China, soybean, maize, and rice are the

dominant crops cultivated within the same agricultural landscape.

Among these, soybean and maize exhibit high phenological and

spectral similarity, especially during the early pod-setting stage,

making their discrimination via single-source optical data

extremely challenging (Chen et al., 2023; You et al., 2023; Zhang

et al., 2024). Meanwhile, as a typical paddy crop, rice differs from

upland soybean and maize in water demand and growth

environment, yet its spectra can overlap with soybean in specific

phenological phases, like seedling stage with sparse canopy, under

cloud-contaminated optical data. Thus, developing high-accuracy

and efficient mapping methods that simultaneously distinguish

soybean from maize and rice is critical for optimizing cropping

structures, increasing yields, and ensuring national food security (Li

et al., 2023).

The increasing availability of free satellite imagery from

platforms such as Sentinel-1 and Sentinel-2 has transformed

agricultural monitoring, enabling high-resolution observations in

spatial, temporal, radiometric, and spectral dimensions (Roy et al.,
02
2014; Defourny et al., 2019; Khan et al., 2024). The integration of

these data with advanced algorithms and cloud-based platforms like

Google Earth Engine has made large-scale, field-level crop mapping

more accessible and operational (Dong et al., 2016; Gorelick et al.,

2017). Time-series remote sensing is particularly valuable for

capturing dynamic crop phenology and reducing spectral

confusion between similar crop types, such as maize and soybean,

by leveraging the structured temporal signals embedded in satellite

observations (You et al., 2021; Huang et al., 2024). Machine learning

algorithms, especially Random Forest (RF), are widely used in crop

classification due to their robustness, computational efficiency, and

ability to handle high-dimensional, noisy data (Li et al., 2021; Song

et al., 2021). RF performs well with time-series data and supports

variable importance ranking, making it suitable for large-scale

agricultural applications (You et al., 2021).

Although high-resolution optical imagery is effective for crop

classification, especially at the end of the growing season, its utility

is often limited in humid or rainy regions due to persistent cloud

cover (Inglada et al., 2016; Jiao et al., 2022; Zhu et al., 2022; Maleki

et al., 2024). Synthetic Aperture Radar (SAR), particularly from

Sentinel-1, offers an all-weather, day-and-night imaging capability

that ensures consistent data acquisition regardless of atmospheric

conditions (Asam et al., 2022). SAR is sensitive to vegetation

structure, biomass, and moisture content, complementing the

spectral reflectance captured by optical sensors (Sun et al., 2019;

Liao et al., 2020). For example, SAR can distinguish rice (with

flooded fields in the early stage) from upland soybean/maize via

specular reflection signals from water surfaces, while optical data

excels at capturing chlorophyll-related spectral differences between

soybean and maize. Numerous studies have demonstrated that

combining Sentinel-1 and Sentinel-2 data significantly improves

crop classification accuracy, often outperforming single-source

methods (Gao et al., 2018; Moumni and Lahrouni, 2021; Li et al.,

2022). This fusion leverages the strengths of both sensors: optical

data effectively reflect vegetation activity and phenology, while SAR

provides critical structural information and maintains coverage

under cloud-obscured conditions (Qu et al., 2020; Huang et al.,

2022; Xuan et al., 2023), leading to more robust characterization of

crop dynamics.

Early-season crop type identification, mapping crops in early

growth stages or before harvest, is crucial for supporting in-season
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decision-making (Inglada et al., 2016; You and Dong, 2020; Shen

et al., 2025). Early classification benefits applications such as yield

prediction, irrigation scheduling, and agricultural insurance, as well

as land leasing and commodity trading (Konduri et al., 2020; Gallo

et al., 2023; Rezaei et al., 2023). SAR’s all-weather observation

capability is particularly valuable in the early season when optical

imagery is frequently unavailable due to cloud cover (Wei et al.,

2023; Zhou et al., 2024). Previous studies have shown that fusing

SAR with optical data can achieve classification accuracy equivalent

to that of optical-only data obtained a month later (Inglada et al.,

2016), representing a significant advancement in early-season

crop mapping.

Motivated by the increasing demand for accurate and timely

information on soybean and recognizing the synergistic potential of

multi-source time-series remote sensing, this study aims to enhance

robust crop classification and early identification. Specifically, the

objectives are: (1) to develop and evaluate an integrated multi-

source time-series approach using Sentinel-1 SAR and Sentinel-2

optical data for accurate classification of major crops (rice, maize,

and soybean), with a focus on improving soybean mapping; and (2)

to investigate the temporal evolution of classification accuracy

across the growing season, with the goal of determining the

earliest identifiable time—defined as the point at which the

soybean F1-score exceeds 0.9 (You and Dong, 2020).

Additionally, we aim to quantify the incremental contribution of

SAR data in improving classification accuracy and advancing the

earliest identification window, thereby highlighting its value in

support ing mid-season agr icu l tura l moni tor ing and

decision-making.
2 Materials and methods

2.1 Study area

The Jiusan Reclamation Area is situated in the northwestern

part of Heilongjiang Province, China, covering parts of Heihe,

Suihua, and Qiqihar. Geographically, it spans from 122°24′E to

129°31′E longitude and from 45°30′N to 51°00′N latitude. The

region features gently undulating terrain, forming a transitional

zone between the Lesser Khingan Mountains and the Songnen

Plain. Elevation ranges from 0 to 848 meters, with a general slope

from northeast to southwest. The area experiences a mid-temperate,

semi-humid continental monsoon climate, characterized by dry,

windy springs and warm, humid summers. Annual precipitation

ranges from 400 to 550mm, primarily concentrated between June

and September. This climate regime—marked by the coincidence of

heat and rainfall and large diurnal temperature variation—is highly

conducive to crop growth and dry matter accumulation. The Jiusan

Reclamation Area is a key agricultural production base in China,

particularly for soybean, maize, and rice. Soybean has been

cultivated in the region for decades with consistently stable yields,

while maize acreage has expanded in recent years. Rice cultivation is

concentrated in peripheral areas with sufficient water availability.

According to agricultural statistics from Heilongjiang Province,
Frontiers in Plant Science 03
Jiusan ranks among the leading regions nationwide in terms of

soybean planting area and total production, playing a vital role in

ensuring national food security. The geographic location of the

Jiusan Reclamation Area is shown in Figure 1.
2.2 Datasets

2.2.1 Sentinel-2 imagery and preprocessing
The Sentinel-2A and Sentinel-2B satellites, operated by the

European Space Agency (ESA), are equipped with the

MultiSpectral Instrument (MSI), which captures imagery at

spatial resolutions ranging from 10 to 60 meters and provides a

revisit frequency of five days. The MSI records data across 13

spectral bands, covering the visible to shortwave infrared (SWIR)

regions (Immitzer et al., 2016). In this study, we uniformly

resampled all Sentinel-2 bands to 10 meters spatial resolution for

consistency in multi-source data fusion and crop classification—

specifically, using 10-meter resolution bands (Blue, Green, Red,

NIR) directly, and resampling 20-meter bands (Red Edge 2, SWIR1,

SWIR2) to 10 meters via bilinear interpolation. We employed Level-

2A surface reflectance (SR) products to identify soybean cultivation

in the Jiusan Reclamation Area. These products have been publicly

accessible via the Google Earth Engine (GEE) data catalog since

2019. To mitigate cloud contamination, the QA60 band—a bitmask

containing cloud and cirrus detection information—was used to

mask out opaque clouds and cirrus. All available Sentinel-2 images

acquired between May and October 2019 with cloud cover below

50% were considered. Multiple satellite orbits were included to

ensure complete spatial coverage of the study area. The number of

observations varied across locations, with overlapping orbital paths

resulting in denser temporal coverage in certain regions. In some

cases, multiple acquisitions were made on the same day at different

times, potentially introducing spectral variability. Furthermore,

uneven image availability due to cloud cover and masking criteria

led to irregular temporal intervals between usable observations. To

generate a consistent time series for each pixel, 10-day median

composites were created using all valid observations within each

period (Amani et al., 2020). For regions lacking high-quality data

due to persistent cloudiness or other issues, linear interpolation was

applied using adjacent time steps to fill temporal gaps.

2.2.2 Sentinel-1 imagery and preprocessing
The Sentinel-1A and Sentinel-1B satellites are equipped with C-

band dual-polarization synthetic aperture radar (SAR) sensors,

capable of acquiring imagery with spatial resolutions ranging

from 5 to 40 meters and a revisit interval of 12 days. Sentinel-1

supports four imaging modes: Stripmap (SM), Interferometric

Wide Swath (IW), Extra Wide Swath (EW), and Wave Mode

(WV). Among these, the IW mode is commonly used for land

applications and provides dual-polarization data, specifically

vertical transmit–vertical receive (VV) and vertical transmit–

horizontal receive (VH) polarizations. In this study, we used

Sentinel-1 Ground Range Detected (GRD) products acquired in

IW mode, which have a spatial resolution of 10 meters (azimuth) ×
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20 meters (range); these were further resampled to 10 meters spatial

resolution (consistent with Sentinel-2) using nearest-neighbor

interpolation to enable pixel-level multi-source data fusion. The

preprocessing workflow included the following steps: (1) thermal

noise removal; (2) radiometric calibration; (3) terrain correction

using Shuttle Radar Topography Mission (SRTM) or ASTER digital

elevation models (DEMs); and (4) conversion of terrain-corrected

backscatter coefficients into decibel (dB) values. To further suppress

speckle noise inherent in SAR imagery, a Refined Lee filter with a

7×7 moving window was applied (Yommy et al., 2015). To ensure

temporal alignment with Sentinel-2 optical data, 10-day composite

images were generated by calculating the median value of all valid

Sentinel-1 observations within each corresponding period.
2.3 Auxiliary data

2.3.1 Crop samples
This study collected a total of 1,424 ground sample points for

soybean, maize, and rice in the study area for the year 2019,

including 621 soybean samples, 588 maize samples, and 215 rice

samples. These samples were collected with a mobile GIS device and

subsequently checked against high-resolution Google Earth imagery

and two seasonal Sentinel-2 RGB composites. Samples with

mislabeling or located on roads and field boundaries were

removed. The dataset was randomly divided into training and
Frontiers in Plant Science 04
validation sets with a ratio of 8:2. A cropland mask was applied

to exclude non-cropland pixels and prevent their inclusion in the

crop classification process. Both the crop sample data and the

cropland mask used in this study were derived from the 2019

Cropland Data Layer (CDL2019) for Northeast China (You

et al., 2021).

2.3.2 Statistical yearbook data
To validate the estimated soybean planting areas, official

statistical data for 2019 soybean cultivation areas in Heihe,

Suihua, and Qiqihar were obtained from the 2020 Heilongjiang

Statistical Yearbook. For area accuracy assessment, the classified

10m resolution soybean maps were aggregated within Google Earth

Engine using the pixelArea function to derive the total soybean area.

The absolute difference between the remote sensing–derived

soybean area and the official statistical yearbook records was then

calculated to quantify area estimation error.
2.4 Methodology

The research framework of this study is illustrated in Figure 2

and consists of four main components: (1) Data Preprocessing:

Sentinel-1 and Sentinel-2 time-series imagery was acquired and

processed to remove outliers and cloud contamination, resulting in

a clean and temporally consistent dataset. Smooth, continuous time
FIGURE 1

Geographical location of Jiusan Reclamation Area.
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series were constructed through 10-day median compositing and

linear interpolation. (2) Classification Model Development:

Features were extracted from both optical and SAR data,

including spectral bands, vegetation indices, backscatter

coefficients, and polarization metrics. These were integrated with

phenological indicators derived from the time series of EVI

calculated from Sentinel-2 imagery, which capture the timing of

crop growth onset, senescence, and season length. In addition,

statistical descriptors and principal component analysis (PCA)

outputs of the Sentinel-1 backscatter time series (VV, VH, and

related indices) were included to reduce redundancy while retaining

key temporal variations. Together, these features formed a

comprehensive dataset for classification. A Random Forest

classifier was then trained using ground-truth samples for crop

type identification. (3) Result Analysis and Accuracy Assessment:

Classification performance was evaluated using confusion matrices

and five standard metrics. Overall accuracy (OA) reflects the

proportion of correctly classified samples. Producer’s accuracy

(PA) measures omission errors, while user’s accuracy (UA)

measures commission errors. The Kappa coefficient adjusts OA

by accounting for chance agreement. The F1-score, as the harmonic

mean of PA and UA, provides a balanced measure particularly
Frontiers in Plant Science 05
useful when class sizes are uneven. Together, these metrics give a

comprehensive evaluation of classification performance. Soybean

planting area was estimated based on a 10-meter resolution

classification map and compared with official statistical yearbook

data to validate area estimation accuracy. (4) Time-Series Dynamic

Analysis: To assess how classification accuracy evolved with crop

growth, we designed a temporal progression experiment. Starting

from May 1 (early sowing period), image sequences were gradually

extended in 10-day steps until October 8 (harvest), resulting in 14

datasets. For each sequence, classification was performed and

evaluated using the same independent validation set. This

procedure allowed us to track temporal changes in accuracy and

to determine the Earliest Identifiable Time (EIT), defined as the first

date when the soybean F1-score exceeded 0.9.

2.4.1 Parameter selection
To improve crop classification performance, this study selected

a set of parameters for feature extraction based on the physiological

and biochemical characteristics of soybean growth. Two categories

of spectral data were employed to classify soybean and other crop

types: (1) reflectance values from six spectral bands, and (2) values

from five vegetation indices (Table 1). The six spectral bands
FIGURE 2

Research framework.
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included Red (492.4 nm), Green (559.8 nm), Blue (664.6 nm), Red

Edge 2 (RE2, 740 nm), Shortwave Infrared 1 (SWIR1, 1610 nm),

and Shortwave Infrared 2 (SWIR2, 2190 nm). Previous studies have

highlighted the potential of SWIR1, SWIR2, and RE2 bands in

effectively distinguishing between maize and soybean (Luo et al.,

2021; Chen et al., 2023). In addition, six widely used spectral indices

were calculated: Enhanced Vegetation Index (EVI), Land Surface

Water Index (LSWI), Red Edge Position Index (REPI), Red Edge

Normalized Difference Vegetation Index (RENDVI), and

Normalized Difference Senescence Vegetation Index (NDSVI).

The EVI time series is commonly used to extract temporal and

phenological features for various crops. LSWI, which is sensitive to

both leaf and soil moisture, is particularly effective for

distinguishing rice from upland crops such as maize and soybean.

REPI and RENDVI, which utilize Sentinel-2 red edge bands, are

well-suited for estimating canopy chlorophyll content and

nitrogen levels.

To improve soybean identification accuracy under cloudy

conditions, this study selected five key parameters from Sentinel-1

VV/VH dual-polarized SAR imagery to capture crop structural and
Frontiers in Plant Science 06
physical characteristics across different growth stages (Table 2).

These SAR features include the backscatter coefficients of the VV

and VH polarization channels (s0
VV and s0

VH), their combined

forms, and the dual-polarization Radar Vegetation Index (RVI)

derived from these channels. The s0
VV and s0

VH coefficients reflect

the radar backscattering response from vertical and horizontal plant

structures, respectively (Pageot et al., 2020). VV polarization is

more sensitive to vertical canopy characteristics and is thus closely

related to soybean biomass and canopy density, while VH

polarization responds more strongly to variations in surface

roughness and structural complexity, making it useful for

detecting changes during mid to late phenological stages. RVI, a

normalized index computed from the VV and VH channels,

effectively characterizes crop canopy vigor and growth dynamics

(Mandal et al., 2020). Additionally, the Cross-Polarization Ratio

(CPR), defined as the ratio of the product to the sum of s0
VV and

s0
VH, enhances sensitivity to backscatter intensity during key

phenological events such as the pod-filling stage (Veloso et al.,

2017). Collectively, these SAR-derived parameters provide essential

physical and temporal insights that support robust soybean

classification in multi-source remote sensing applications.

2.4.2 Feature extraction
Based on the spectral curve dynamics of crops and

incorporating phenology and spectral index information, this

study extracted statistical features, peak growth period features,

harmonic fitting features, phenological features, and SAR features

to enhance the discrimination between soybeans and non-soybean

crops, as summarized in Table 3.

1. Statistical Features and Peak Growth Period Features

Statistical features include the maximum, minimum, variance,

and the 15th, 50th, and 90th percentiles of 11 spectral parameters

throughout the entire growth season. The maximum and minimum

values represent the upper and lower bounds of spectral variation,

which differ significantly among crops and help distinguish soybeans

from others. Variance reveals the fluctuation in spectral curves,

reflecting the stability of the growth state. Percentiles provide

spectral distribution information during early, middle, and late

growth stages. All these statistics were calculated at the pixel level

across the full time series, rather than aggregated by plot, which

preserves intra-field variability and enables the detection of mixed

conditions such as intercropping. Peak growth period features are

extracted based on the timing of peak values in the EVI and LSWI

indices. The corresponding “greenest” and “wettest” images are

composited for these peak periods, from which the 11 spectral

parameters are extracted as features representing the crop’s growth

peak. This period typically coincides with soybean pod development,

when its spectral behavior most notably differs from other crops,

making these features especially critical for classification.

2. Harmonic Fitting Features

Harmonic fitting is an effective time series modeling method to

extract periodic features. By treating the time series as a periodic

function and applying Fourier transformation, the original curve

can be reconstructed using several sine and cosine components. The

function is expressed as:
TABLE 1 Optical vegetation index.

Indices Formulation*

EVI EVI = 2:5� rNIR − rred
rNIR + 6� rred − 7:5� rblue + 1

LSWI LSWI =
rNIR − rSWIR1

rNIR + rSWIR1

REPI REPI = 705 + 35� (rred + rRE3)=2 − rRE1
rRE2 − rRE1

RENDVI RENDVI =
rNIR − rRE2
rNIR + rRE2

NDSVI NDPI =
rSWIR1 − rRe d
rSWIR1 + rRe d
*rblue, rgreen, rred, rRE1, rRE2, rRE3, rNIR, and rSWIR1 represent the surface reflectance
of Sentinel-2 MSI bands, corresponding to Band 2 (blue, 496.6 nm (S2A)/492.1 nm (S2B)),
Band 3 (green, 560 nm (S2A)/559 nm (S2B)), Band 4 (red, 664.5 nm (S2A)/665 nm (S2B)),
Band 5 (Red Edge 1, 703.9 nm (S2A)/703.8 nm (S2B)), Band 6 (Red Edge 2, 740.2 nm (S2A)/
739.1 nm (S2B)), Band 7 (Red Edge 3, 782.5 nm (S2A)/779.7 nm (S2B)), Band 8A (NIR, 864.8
nm (S2A)/864 nm (S2B)), and Band 11 (SWIR1, 1613.7 nm (S2A)/1610.4 nm (S2B)),
respectively.
TABLE 2 SAR parameter index.

Parameters Proxies Description

Backscattering
Ratio

s0
VH,  s

0
VV

Throughout the soybean growth period,
alterations in the growth status and
density of soybean leaves, stems, and

pods can have substantial effects on the
backscattering ratio (Pageot et al.,

2020).

Cross-
Polarization

Ratio

s0
VH ∗s0

VV

s0
VV + s0

VH

Fluctuations over time in this index
reflect changes in moisture content and

structure that are associated with
phenological development (Khabbazan

et al., 2019).

RVI RVI ¼ 4� s0
VH

s0
VH + s0

VV

RVI can characterize both crop
biomass and the LAI (Chang et al.,

2018).
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f (t) = a0 +o
n

k=1

½ak cos (2pkwt) + bk sin (2pkwt)�

where f (t) represents the fitted vegetation index value at time   t, a0
is the constant term, ak and bk are the coefficients for cosine and sine

terms respectively. n is the order of the harmonic fitting, and w is the

frequency, set to 1.5.t denotes the position of the current day of year

(DOY) within the year, expressed as a decimal between 0 and 1.

3. Phenological Features

Phenological features directly reflect the timing of crop

developmental stages from sowing to maturity and serve as

important remote sensing parameters for representing crop

growth processes. Different crops exhibit distinct spectral

variation timings due to differences in planting dates and growth

cycles, making phenological features effective classification criteria.

The phenological features extracted include: (i) cumulative growing

degree days for the start (SOS), end (EOS), and length (LOS) of the

growing season; (ii) EVI values at SOS and EOS; (iii) cumulative

EVI during the growing season as a proxy for accumulated biomass.

These are extracted using a threshold method: the EVI time series is

sorted and the median value is selected as the threshold. The first

date when EVI exceeds this threshold marks SOS, the last date

marks EOS, and LOS is the difference between the two. This

approach suits single-cropping systems (e.g., soybean, maize,

rice), where EVI typically shows a clear increase and decline pattern.

4. SAR Features

For the four SAR feature parameters, we leveraged the SAR

image time series to extract key crop characteristics, including

statistical and principal component features. The statistical

features are consistent with those used for optical data, covering

maximum, minimum, variance, and the 15th, 50th, and 90th

percentiles of five SAR parameters. These statistics help convey

the average level and temporal variation within crop-specific time

series curves. Additionally, principal component analysis (PCA)

was performed on the Sentinel-1 time series in the temporal

domain, with the first three principal components selected as the

SAR principal component features.
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2.4.3 Random forest
A Random Forest (RF) classifier was employed to identify

soybean cultivation. As a non-parametric machine learning

algorithm, RF offers strong fault tolerance and has been widely

adopted in crop classification and mapping studies due to its

robustness, accuracy, and efficiency. The algorithm is also well

supported by the Google Earth Engine (GEE) platform, making it

convenient for large-scale implementation. In this study, the RF

model was configured using two key parameters: (1) numberOfTrees,

which defines the number of decision trees in the ensemble. A larger

value generally improves classification accuracy but increases

computation time linearly; this parameter was set to 100. (2)

minLeafPopulation, which specifies the minimum number of

samples required at each leaf node. To reduce the risk of

overfitting, it was set to 10. In addition to classification, the RF

algorithm provides a measure of feature importance, enabling

effective feature ranking and selection. Feature importance was

assessed using the Mean Decrease in Impurity (MDI), which

quantifies the reduction in node impurity contributed by each

feature across all decision trees. Features contributing more to

impurity reduction are considered more informative. Classification

performance was evaluated using an independent test dataset.

Standard accuracy metrics were reported, including overall

accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), the

Kappa coefficient, F1 score, and area-based accuracy.

OA =
NS + NO

n

PA =
NS

CS
 UA =

NS

TS

F1   score =
UA� PA
UA + PA

� 2

Area  Accuracy = 1 −
Areagt − Arears
�
�

�
�

Areagt
TABLE 3 Summary of classification features.

Feature type Feature name Processing method Quantity

Vegetation Indices Time Series
EVI, LSWI, RENDVI, REPI,

NDSVI

min, max, std, and 15/50/90th percentile

5×6

Visible and Red-Edge Band Time
Series

B2, B3, B4, B6 (490nm − 740nm) 4×6

Shortwave Infrared Band Time Series B11, B12 (1610nm − 2200nm) 2×6

Phenological Features SOS EOS LOS Median method 3×1

EVI Time Series Features (EVI) Phase and Amplitude Harmonic fitting 1×2

Accumulated Biomass Features EVI Accumulation 1×1

Statistical Features s0
VH,  s

0
VV,  CPR,  RVI

max, min, mean, stdv, 15/50/90th
percentile

7×4

Principal Component Features s0
VH,  s

0
VV, CPR,  RVI Principal Component Analysis 3×4
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Where NS is the number of correctly classified soybean samples;

CS   is the total number of samples classified as soybean; TS is the total

number of soybean validation samples; NO is the number of correctly

classified non-soybean samples; n is the total number of all validation

samples; Areagt represents the actual soybean planting area obtained

from statistical yearbook data, while Arears denotes the soybean

planting area estimated through remote sensing classification.
3 Results and discussion

3.1 Spectral reflectance and backscattering
characteristics of crops

Figure 3 illustrates the time series curves of key spectral bands,

vegetation indices, and SAR backscatter parameters used for crop

classification, highlighting the seasonal dynamics of soybean, maize,

and rice throughout the growing period. In the visible bands (Blue,

Green, and Red), high standard deviations and substantial overlap

among the three crops limit their discriminative power. Specifically,

soybean and maize maintain relatively stable reflectance before

DOY 220, followed by a rapid decline reaching a minimum around

DOY 260. In contrast, rice exhibits a distinct pattern characterized

by an initial decrease, a subsequent rise, and a sharp drop. Red band
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reflectance shows an inverted U-shaped trajectory, consistent across

all crops, reflecting chlorophyll dynamics during the growth cycle.

In the red-edge band (RE2), reflectance increases steadily during

early growth and peaks around DOY 220. Soybean displays the

highest RE2 values prior to this point but declines rapidly thereafter

due to senescence, eventually falling below those of maize and rice.

The SWIR1 and SWIR2 bands, which are sensitive to water content,

show significantly lower reflectance for rice during the inundation

phase (DOY 120–200), distinguishing it from upland crops.

Between DOY 200 and 260, soybean reflectance in these bands

remains consistently higher than maize, offering some potential for

discrimination. For vegetation indices, both EVI and NDVI exhibit

patterns similar to RE2, capturing the physiological transition from

rapid vegetative growth to senescence. However, their time series

also show substantial overlaps across crops. LSWI, which reflects

canopy and surface water content, remains consistently high and

stable for rice throughout the season, providing a reliable indicator

for its identification. NDSVI shows a pronounced rise-then-fall

trend in rice, with greater temporal variability than in soybean and

maize, effectively capturing the phenological rhythm of rice

development. REPI, which correlates with cumulative biomass, is

higher in maize during the late season, indicating a red-edge shift

associated with increased chlorophyll content. RENDVI values are

notably higher for maize than for soybean and rice between DOY
FIGURE 3

Time series curves of spectral reflectance (a–f), vegetation indices (g–k), and radar-based parameters (l–o) for soybean and other major crops. The
curves are generated from all training samples within the study area. The x-axis represents the day of year (DOY), while the y-axis shows the values
of spectral reflectance and vegetation indices. Solid lines indicate the mean values, and shaded areas represent one standard deviation.
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200 and 260, offering improved separability, particularly between

soybean and maize.

SAR-derived features (VV and VH backscatter) are influenced by

both vegetation structure and moisture content and follow a general

rise–fall pattern across all crops. BetweenDOY 120 and 140, rice exhibits

a sharp decline in backscatter due to specular reflection from water

surfaces, maintaining low values throughout the season, which distinctly

separates it from upland crops. In the VV channel, soybean and maize

backscatter gradually increase fromDOY 120 to 200 as canopy moisture

accumulates, then stabilize before declining sharply after DOY 260. In

the VH channel, soybean shows consistently higher backscatter than

maize between DOY 200 and 260, indicating a more complex canopy

structure. The Radar Vegetation Index (RVI) peaks around DOY 200,

with rice maintaining significantly lower values than soybean andmaize,

enabling strong crop discrimination. Soybean’s RVI also exhibits less

temporal variability than maize, reflecting greater growth stability. The

Cross-Polarization Ratio (CPR) further enhances classification accuracy;

during the peak growth phase (DOY 220–240), soybean displays higher

CPR values than both maize and rice, making it one of the most

informative SAR-derived features for distinguishing soybean.
3.2 Soybean classification accuracy based
on different data sources

Using multi-source remote sensing data, crops in the study area

were classified, and soybean planting areas were extracted. The
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classification achieved high accuracy, with an overall accuracy (OA)

of 96.85%, a Kappa coefficient of 0.9493, and soybean-specific

metrics of 98.30% for producer accuracy (PA), 93.51% for user

accuracy (UA), 95.84% for F1-score, and 96.57% for area-based

accuracy. The spatial distribution of soybean cultivation is

illustrated in Figure 4.

Soybean planting was primarily concentrated between 46°N and

48°N, within a hilly transitional zone between the southern edge of

the Lesser Khingan Mountains and the Songnen Plain—an area

characterized by favorable agroecological conditions. The total

soybean area in the study region reached 2.62 million hectares.

Among the administrative divisions, Heihe recorded the largest

planting area, with approximately 1.27 million hectares (48.33% of

the total), mainly distributed across Nenjiang, Wudalianchi, and

Beian, with smaller areas in the northern county of Sunwu. Qiqihar

ranked second, with 0.83 million hectares (31.84%), primarily

concentrated in eastern and northern counties including Nehe,

Keshan, Kedong, Baiquan, and Yian, and with scattered fields in

Gannan County in the west. Suihua accounted for 0.52 million

hectares (19.83%), mainly located in the northern counties of

Hailun, Suiling, and Wangkui. Spatially, soybean cultivation

exhibited a relatively clustered distribution, though the field

parcels were generally fragmented, small, and discontinuous. This

pattern is influenced by natural topography, river networks, and the

predominance of smallholder farming. In northern Qiqihar,

soybean is often intercropped with maize, and fields tend to be

narrow and elongated (approximately 60m × 1200m), with closely
FIGURE 4

Identification and mapping of soybean planting areas in Jiusan Reclamation Area.
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spaced rows. In contrast, northwestern Qiqihar and southwestern

Heihe feature more regular and contiguous fields, typically

rectangular and reaching up to 800m × 2400m. In the

mountainous areas of central and northern Heihe, irregular field

shapes are common due to the complex terrain. At the junction of

Heihe, Qiqihar, and Suihua, a state-operated farming zone and the

core area of intensive soybean cultivation. Fields in this region are

generally square-shaped (approximately 400m × 400m), clearly

del ineated by internal road networks , with minimal

intercropping. The planting system here is more large-scale and

centralized, reflecting a more modern and industrialized

agricultural structure.

In terms of classification performance using individual data

sources (Figure 5), the overall accuracy (OA) and Kappa coefficient

based solely on SAR data reached 83.92% and 0.7384, respectively.

Although these values are lower than those achieved using optical

data, SAR still exhibits a certain level of capability in crop

discrimination. In contrast, the optical-only approach delivered

significantly higher performance, with OA and Kappa values of

96.23% and 0.9394, respectively—second only to the multi-source

fusion method—highlighting its strong ability to distinguish

between crop types. When integrating both optical and SAR data,

the multi-source fusion approach achieved the highest accuracy,

with an OA of 96.85% and a Kappa coefficient of 0.9494. Compared

with the optical-only approach, this represents an improvement of

0.62% in OA and 0.0099 in Kappa; compared with the SAR-only

method, the improvement is more substantial—14.93% in OA and

0.2010 in Kappa. These results suggest that multi-source fusion can

further enhance classification performance, even when starting
Frontiers in Plant Science 10
from a high baseline, though the incremental gains over optical

data alone are relatively modest.

From the perspective of soybean identification (Figure 5), the

three data source strategies consistently followed the performance

hierarchy: multi-source > optical > SAR. Evaluation metrics reveal

that the SAR-only approach yielded notably higher user accuracy

(UA) than producer accuracy (PA) for soybean, indicating a

tendency toward underestimation, with the identified soybean

area totaling only 1.985 million hectares. In contrast, both the

optical and multi-source approaches exhibited higher PA than UA,

suggesting more balanced classification outcomes. The F1 scores for

soybean identification were 77.91% for SAR, 95.03% for optical, and

95.84% for the multi-source approach. Area-based accuracy

followed a similar trend: 78.37% (SAR), 95.74% (optical), and

96.57% (multi-source). Compared to optical data, the multi-

source fusion method achieved improvements of 0.81% in F1

score and 0.83% in area accuracy; when compared to SAR, these

improvements rose to 17.93% and 18.20%, respectively. Overall,

while multi-source data only slightly outperforms optical data, it

substantially enhances performance over SAR, underscoring its

value in robust and precise soybean identification.

Figure 6 illustrates crop classification results for four selected

local scenes, comparing outputs derived from optical data alone,

SAR data alone, and a fusion of both data sources. Each

classification map is accompanied by a corresponding reference

map and high-resolution Google Earth imagery for validation. The

optical-only classification already demonstrates strong

performance, with clearly defined crop boundaries and complete

field delineation. Even in regions where soybean and maize are
FIGURE 5

Accuracy results of different data sources.
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intercropped, the model successfully achieves fine-scale

differentiation between the two crops. In contrast, the SAR-only

classification delivers more limited results, capturing only the

general spatial patterns of crop distribution, but exhibiting

considerable speckle noise and frequent misclassifications. The

highest classification accuracy is attained using the multi-source

fusion approach. Although the visual outcomes are broadly similar

to those from the optical-only method, a detailed comparison

reveals that the optical results sti l l contain localized

misclassification patches. These are significantly reduced in the

multi-source results, leading to more precise delineation of crop

field boundaries that align more closely with high-resolution

reference imagery.

Feature selection was conducted using the Mean Decrease in

Impurity (MDI) metric from the Random Forest classifier to assess

the importance of each variable. Based on their importance scores, all
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features were ranked, and a subset comprising the top-ranked 20

features was identified as optimal (Figure 7). Table 4 compares the

classification performance of the full feature set and the selected subset.

The results indicate that the subset yields classification accuracy largely

comparable to that of the full set. The most notable difference is a

roughly 1% decrease in user accuracy (UA) for soybean in the reduced

feature set, resulting in a more pronounced overestimation of soybean

area and a corresponding 3.4% decline in area-based accuracy. Minor

reductions were also observed in overall accuracy (OA), Kappa

coefficient, and soybean F1 score, each by approximately 0.3%.

Notably, this reduction in feature dimensionality achieved an 87%

decrease in data volume. Therefore, the selected 20-feature subset offers

a favorable trade-off, maintaining high classification accuracy while

significantly improving computational efficiency.

The suffixes in the feature names denote specific types of

information: “_EVI” and “_LSWI” represent feature values
FIGURE 6

Comparison of local classification results under different data sources. (a–d) show four representative local scenes selected from different parts of
the Jiusan Reclamation Area. For each scene, four maps are presented: the optical-only classification, the SAR-only classification, the multi-source
classification, and the corresponding reference map derived from high-resolution Google Earth imagery. In the classification maps, soybean, maize,
and rice are shown in green, yellow, and red, respectively.
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extracted during the respective peak periods of the EVI and LSWI

indices; “_p15,” “_p50,” and “_p90” correspond to the 15th, 50th

(median), and 90th percentiles; while “_min,” “_max,” “_mean,”

and “_stdDev” denote common statistical measures, including

minimum, maximum, mean, and standard deviation. The feature

importance ranking indicates that REPI-related features occupy the

highest positions, particularly those derived from the wettest and

greenest composites, as well as median values. This highlights their

critical role in crop classification, especially for soybean

identification, and aligns well with the results from temporal

curve analysis. Features from the shortwave infrared bands

(SWIR1 and SWIR2) also demonstrate strong discriminative

power, comprising 10 of the top 20 features. Additionally, LSWI

and RENDVI features appear frequently, contributing to the

effective identification of rice and to the differentiation between

soybean and maize, respectively. Among SAR-derived features, only

the 90th percentile of VV polarization is included in the optimal

subset, suggesting the dominance of optical features within the
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multi-source dataset. This finding is consistent with previous

studies reporting that Sentinel-1 and Sentinel-2 data contribute

approximately 27% and 73%, respectively, to overall crop

classification accuracy. Moreover, the frequent presence of growth

peak features and 90th percentile values reflects that crops exhibit

their greatest spectral separability during peak growth stages.
3.3 Changes in soybean recognition
accuracy with crop growth and temporal
progression

To examine how soybean recognition accuracy varies

throughout different stages of crop development, this study

simulates classification performance over time by defining a series

of image sequences with progressively extended temporal coverage.

As illustrated in Figure 8, the start date is fixed at May 1st,

representing the early sowing period, while the end date is
FIGURE 7

Ranking of features importance.
TABLE 4 Accuracy of full feature set and selected feature subset.

Feature set OA Kappa Soybean PA Soybean UA Soybean F1 score Soybean area accuracy

Full Feature Set 96.85% 0.9493 98.30% 93.51% 95.84% 96.57%

Selected Feature Set 96.63% 0.9460 98.86% 92.55% 95.60% 93.17%
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incrementally extended in 10-day intervals until October 8th,

corresponding to crop maturity and harvest. This results in a

total of 14 experimental rounds. In each round, Sentinel-1 and

Sentinel-2 imagery within the specified timeframe is used to

construct a time series, which is then analyzed using the proposed

classification method to identify soybean cultivation and assess

recognition accuracy. Due to limited data availability in early stages,

the first experimental round covers the period fromMay 1st to May

31st. As the season progresses, the image sequence becomes

increasingly complete, leading to gradual improvements in

recognition accuracy. At a certain point, accuracy reaches a

practical threshold that allows for early-season mapping. To

determine this threshold—referred to as the earliest identifiable

time (EIT)—this study adopts the criterion proposed by You and

Dong (2020), whereby the F1 score for soybean classification first

exceeds 0.9. Moreover, this experiment compares the temporal

evolution of classification accuracy across three data input

strategies—optical only, SAR only, and multi-source fusion—

highlighting the advantages of multi-source integration at various

phenological stages. This dynamic assessment of accuracy under

both crop growth and time-series progression underscores the value
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of multi-source data in improving both the precision and timeliness

of soybean identification.

As shown in Figure 9, soybean recognition accuracy is closely

linked to the crop’s phenological development. As growth

progresses, both overall accuracy (OA) and the F1 score steadily

increase. When segmented by phenological stages, average

classification performance improves accordingly: during the

sowing period (DOY ≤ 150), OA reaches 78.27% and F1 score is

74.94%; during the three-leaf stage (DOY 160–180), OA rises to

82.07%, and F1 to 78.22%; in the flowering period (DOY 190–210),

OA improves to 89.23%, and F1 to 86.32%; during the pod-setting

stage (DOY 220–240), OA climbs to 93.80%, and F1 reaches

92.09%; and by the grain-filling and maturity stage (DOY 250–

280), OA reaches 94.72%, with an F1 score of 93.23%. Accuracy

gains become less pronounced in the later stages.

The most substantial improvements in accuracy occur during

the flowering and pod-setting stages. These phases correspond to

vigorous vegetative growth, canopy closure, and enhanced

physiological differentiation, making crop-specific spectral and

structural features more detectable. This pattern aligns with the

feature importance analysis, which indicates a higher concentration
FIGURE 8

Experimental design for time-series progression analysis. Each row (1–14) represents one classification round, where the image sequence is extended in
10-day increments from May to October. The green bars indicate the imagery coverage period used in each round, while the blue extensions show the
additional time span of images progressively included. The red arrows connect each temporal sequence to its corresponding classification accuracy
result. The bottom axis shows the soybean growth calendar (sowing, seeding, trifoliation, flowering, pod setting, and maturity/harvest).
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of influential features during these periods. In early stages—such as

sowing and the three-leaf phase—soybean plants remain short with

sparse canopy cover, and imagery primarily captures bare soil,

resulting in lower recognition accuracy. By the three-leaf stage,

young stems emerge but the canopy remains underdeveloped,

producing modest accuracy gains (OA and F1 increase by

approximately 3.80% and 3.28%, respectively). The flowering

period marks a critical point for yield formation, as branching

intensifies and canopy cover becomes complete. Both optical and

SAR features are more pronounced, leading to sharper accuracy

gains: OA and F1 improve by 7.16% and 8.10% over the previous

stage. During pod-setting, continued physiological development

and pod enlargement further enhance separability, yielding an

additional OA increase of 4.57% and F1 increase of 5.77%. In the

grain-filling and maturity stages, soybean senescence leads to

spectral stabilization, resulting in only slight accuracy

improvements—0.92% in OA and 1.14% in F1.

When comparing classification performance across different

data sources throughout crop growth, multi-source fusion

consistently achieves the highest accuracy, demonstrating superior

robustness and adaptability. Accuracy improves gradually in the

early season and increases sharply after flowering, plateauing

around DOY 230 (mid-pod-setting). Optical data performs

similarly to multi-source data across most stages and remains the

primary source for remote sensing classification. However, SAR-

only data, despite generally lower accuracy, performs particularly

well during critical stages—especially under conditions of poor

optical image quality due to frequent cloud cover. Notably,

around DOY 190, SAR-based accuracy temporarily surpasses that

of optical data, highlighting its potential for independent

classification in cloudy conditions. Figure 9a further quantifies

SAR’s complementary role. During the sowing and three-leaf

stages, SAR contributes modest OA improvements (~2–3%) due

to limited optical information. As soybeans enter flowering, SAR’s

added value increases significantly, peaking at a 6.69% OA

improvement on DOY 190. This contribution declines during

pod-setting and grain-filling stages, as optical features become

more distinctive and the marginal benefit of SAR diminishes.

Analysis of the F1 score trends in Figure 9b reveals consistent

patterns across data sources: slow improvement in early stages,

rapid gains from flowering to pod-setting, and eventual

stabilization. Multi-source fusion consistently yields the highest

F1 score, followed by optical, with SAR alone performing lowest.

Around DOY 200 (mid-flowering stage), F1 scores for optical and

multi-source data surge as soybean canopy and pod characteristics

become prominent. Compared to the previous round, the F1 score

for optical data increases by 12.88%, and for multi-source data by

7.59%. SAR’s F1 score reaches 77.45% on DOY 190 and gradually

peaks at 84.99% by DOY 280. These trends reinforce the

supplementary value of SAR. From sowing to the three-leaf stage,

SAR contributes approximately 3% to the F1 score. During the

flowering stage, this contribution increases to a peak of 6.96%,

before declining in the later stages as optical information

becomes dominant.
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The EIT for soybean using multi-source data is DOY 210 (early

pod-setting stage), when canopy structures become clearly

distinguishable and spectral features are well defined. At this

point, the F1 scores for multi-source, optical, and SAR data are

91.80%, 87.57%, and 78.24%, respectively. Compared to the optical-

only strategy, multi-source fusion advances the EIT by

approximately 20 days, with a 4.23% improvement in F1 score. In

contrast, optical data reaches an F1 score of 90% at DOY 230 (late

pod-setting to early maturity), while SAR data never achieves the

EIT threshold throughout the season.

In summary, incorporating SAR data significantly advances the

EIT by approximately 20 days, enhancing the timeliness of soybean

mapping. This earlier detection capability provides valuable lead

time for downstream applications such as yield forecasting, pest and

disease monitoring, seasonal planning, and agricultural

decision-making.
3.4 Socio-economic implications of early
and accurate crop identification

Early and accurate crop identification provides significant

economic and social benefits across multiple scales. At the

national and regional levels, timely information on crop

distribution and growth conditions enhances yield forecasting and

monitoring, offering governments and markets more reliable

production and supply expectations to support food security

decisions and emergency responses such as reserve management

and relief distribution (Hoefsloot et al., 2012; Setiyono et al., 2014).

At the farm level, detailed crop maps enable more efficient

allocation of inputs such as fertilizers, seeds, and irrigation, while

guiding key management decisions on sowing, irrigation, and pest

control, thereby improving resource-use efficiency, reducing yield

losses, and stabilizing farmers’ incomes (Wu et al., 2023). Beyond

farm management, remote sensing–derived indicators of crop cover

and dynamics are increasingly applied in agricultural insurance,

where they function as claim triggers and inputs for premium

pricing, improving both the efficiency and sustainability of

insurance systems. When combined with crop modeling, these

data further strengthen the transparency and credibility of multi-

risk assessments (Basso et al., 2013; Liu et al., 2025). From a broader

macroeconomic perspective, reliable early assessments help reduce

market uncertainty, stabilize supply chains, and inform price

forecasting. Such high-quality information has been shown to

mitigate global market shocks (Tanaka et al., 2023) and

strengthens national food security strategies by providing spatially

and temporally refined data for timely and targeted policy responses

(Zhang et al., 2025).
4 Conclusion

This study addresses the persistent challenges of spectral

confusion and data incompleteness in soybean remote sensing
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classification by proposing a multi-source approach that integrates

Sentinel-1 SAR and Sentinel-2 optical time-series imagery. Through

systematic evaluation, we demonstrate that multi-source data fusion

significantly enhances both the accuracy and timeliness of soybean

identification. The integration of optical and SAR data yielded the

highest classification performance, achieving an overall accuracy

(OA) of 96.85%, a Kappa coefficient of 0.9493, a soybean F1-score

of 95.84%, and an area accuracy of 96.57%. While the improvement

over optical data alone was relatively modest—raising the F1-score

and area accuracy by 0.81% and 0.83%, respectively—the

improvement over SAR-only classification was substantial. This

highlights the strong baseline performance of optical data and the

complementary role of SAR, particularly under cloud-contaminated

or spectrally ambiguous conditions, where SAR data significantly

contributes to classification robustness. Soybean classification

accuracy improved progressively with crop development. During

the sowing stage, weak spectral signals led to low recognition
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accuracy. As soybeans entered the flowering and pod-setting

stages, canopy closure and physiological changes enhanced both

spectral and structural separability, resulting in rapid gains in

classification accuracy. The F1-score increased from 78.22% in

July to 92.09% in August. Notably, SAR data provided the

greatest incremental value during the flowering and pod-setting

stages, with accuracy gains of up to 6.96%. In contrast, during the

grain-filling and maturity stages, the contribution of SAR

diminished as optical signals became more distinctive and stable.

Furthermore, multi-source data advanced the EIT for soybean to

DOY 210, approximately 20 days earlier than when using optical

data alone. This temporal advancement is crucial for early-season

applications such as yield forecasting, pest and disease monitoring,

and harvest scheduling.

In summary, the integration of multi-source time-series remote

sensing and the targeted extraction of phenological and key-stage

features constitute an effective strategy for high-precision and early
FIGURE 9

Temporal progression results: (a) Bar chart of OA for three data sources with red line indicating SAR contribution; (b) Bar chart of soybean F1 scores
with red line for SAR contribution and black dashed line representing the F1 = 0.9 threshold.
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soybean identification. The methodology proposed in this study

provides both theoretical insights and practical tools for large-scale

agricultural monitoring.
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