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Introduction: The timely and precise detection of foliar diseases in potatoes, a
food crop of worldwide importance, is essential to safeguarding agricultural
output. In complex field environments, traditional recognition methods
encounter significant challenges, including the difficulty in extracting features
from small and diverse early-stage lesions, blurred edge features due to gradual
transitions between diseased and healthy tissues, and degraded robustness from
background interference such as leaf texture and varying illumination.
Methods: To address these limitations, this study proposes an optimized
lightweight convolutional neural network architecture, termed LDL-
MobileNetV3S. The model is built upon the MobileNetV3 Small backbone and
incorporates three innovative modules: a Lightweight Multi-scale Lite Fusion (LF)
module to enhance the perception of small lesions through cross-layer
connections, a Dynamic Dilated Convolution (DDC) module that employs
deformable convolutions to adaptively capture pathological features with
blurred boundaries, and a Lightweight Attention (LA) module designed to
suppress background interference by assigning spatially adaptive weights.
Results: Experimental results demonstrate that the proposed model achieves a
recognition accuracy of 94.89%, with corresponding Precision, Recall, and F1-
score values of 93.54%, 92.53%, and 92.77%, respectively. Notably, these results
are attained under a highly compact model configuration, requiring only 6.17 MB
of storage and comprising 1.50 million parameters. This is substantially smaller
than benchmark models such as EfficientNet-BO (15.61 MB / 3.83 M parameters)
and ConvNeXt Tiny (106 MB / 27.8 M parameters).

Conclusion: The proposed LDL-MobileNetV3S model demonstrates superior
performance and efficiency compared to several existing lightweight models.
This study provides a cost-effective and high-accuracy solution for potato leaf
disease diagnosis, which is particularly suitable for deployment on intelligent
diagnostic devices operating in resource-limited field environments.

potato leaf disease, MobileNetV3 Small, Lite Fusion, Dynamic Dilated Convolution,
Lightweight Attention
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1 Introduction

As a widely cultivated staple crop worldwide, potato holds
substantial nutritional and economic value, playing a critical role
in safeguarding food security and promoting the growth of cash
crop industries (Kharumnuid et al., 2021). Effective management of
potato production is crucial for ensuring both food supply stability
and the profitability of agricultural systems. However, throughout
the growth cycle of potatoes, their leaves are frequently affected by
various diseases, including late blight, early blight, and viral
infections (Tejas et al., 2023). These diseases compromise plant
health, reduce yield, and degrade product quality, ultimately
causing significant economic losses in agriculture. Therefore,
achieving efficient and accurate detection of potato leaf diseases is
crucial for effective disease management, intelligent agricultural
practices, and the improvement of crop productivity (Kaur
et al., 2024).

Traditional methods for identifying plant diseases primarily rely
on manual field observation and the subjective judgment of
agricultural specialists. While these approaches may yield
acceptable accuracy in localized scenarios, they often suffer from
low efficiency, inconsistent results, and limited scalability.
Moreover, they are inadequate for meeting the demands of
modern precision agriculture, which requires real-time, data-
driven decision-making across large and diverse field conditions.
Consequently, traditional techniques fall short in supporting high-
throughput, automated monitoring essential for large-scale crop
management (Khakimov et al,, 2022) (Liu and Wang, 2021).

In recent decades, machine vision and artificial intelligence have
developed rapidly. Image recognition techniques driven by deep
learning have found widespread use in diagnosing plant diseases
(Bhargava et al.,, 2024). Convolutional Neural Networks (CNNs)
have become a focus of research. They can automatically learn
image features with strong efficiency. CNNs have demonstrated
strong capabilities in identifying leaf diseases and locating affected
regions (Lu et al,, 2021). CNNs are capable of extracting critical
features such as color, texture, edge, and structural information
from images. This is achieved through a series of multi-layer
nonlinear transformations. Such processing reduces dependence
on traditional handcrafted feature design. It also enhances the
automation and generalization capabilities of plant disease
recognition systems. These technologies offer a promising
pathway for deploying low-cost, automated monitoring systems
in agricultural fields, greenhouses, and rural environments. For
example, Atila et al. (2021) conducted a systematic evaluation using
the PlantVillage dataset, which includes 54,306 images. Under a
five-fold cross-validation strategy, the EfficientNet-B4 and
ResNet50 architectures achieved average classification accuracies
exceeding 99%. These results significantly surpassed those of
traditional machine learning approaches. Sutaji and Yildiz (2022)
proposed a lightweight feature extraction model based on the
MobileNetV2 and Xception architectures. The model
incorporated a multi-scale depthwise separable convolution
structure to improve recognition accuracy. It maintains a low
parameter count and computational cost. These characteristics
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make the model adaptable to mobile agricultural platforms, such
as handheld diagnostic devices or drone-mounted systems. Liu et al.
(2022a) proposed a hybrid deep learning framework named
DenseACNet. The model integrated a channel attention
mechanism with data augmentation strategies to enhance the
accuracy and robustness of crop disease recognition. This
approach achieved strong classification performance on the
extended PlantVillage dataset. These studies demonstrate that
CNN-based approaches hold strong potential for application in
agricultural image analysis.

However, despite their strong recognition performance, deep
CNN models still face major limitations. Their large parameter sizes
and high computational costs hinder deployment on edge devices,
unmanned aerial platforms, and mobile smart farming systems
(Abade et al., 2021) (Zawish et al., 2024). For instance, He et al.
(2016) introduced the well-known ResNet architecture and
developed a deep ResNet-101 model. This model contained over
44 million parameters and requires approximately 7.6 GFLOPs for
inference. While it delivered strong results on high-performance
servers, it posed major challenges for deployment in resource-
constrained environments. Simonyan and Zisserman et al.
(Simonyan and Zisserman, 2014) developed the classical VGG-16
model, which achieved high classification accuracy on the ImageNet
dataset. However, the model contains 138 million parameters and
requires over 15 GFLOPs for inference. These characteristics limit
its ability to meet the dual demands of real-time performance and
energy efficiency in edge computing environments. To address this
issue, researchers have proposed various lightweight network
architectures, including the MobileNet family (Howard et al,
2017) (Sandler et al., 2018) (Howard et al., 2019), EfficientNet
(Tan and Le, 2019), and ShuffleNet (Zhang et al., 2018). These
models reduce parameter size and computational cost by employing
techniques such as depthwise separable convolution, neural
architecture search, and channel pruning. Such methods enhance
deployment efficiency while maintaining recognition accuracy. In
the context of smart agriculture, these lightweight models provide a
foundation for scalable, real-time monitoring systems applicable to
diverse field conditions.

Although lightweight networks offer advantages for deployment,
they still encounter major challenges. These include early-stage
disease detection, complex background interference, and the
identification of small lesion areas (Mohanty et al., 2016). To
address these issues, recent studies have increasingly integrated
structural optimization with modular enhancements. This approach
aims to improve the semantic representation capacity of lightweight
models. Specific methods include the Attention Mechanism (Woo
et al., 2018), Dilated Convolution (Chen et al., 2018), and Multi-scale
Feature Fusion (Lin et al., 2017) (Liu et al., 2018). Woo et al. (2018)
introduced the CBAM (Convolutional Block Attention Module),
which combines channel and spatial attention mechanisms. This
design enhances the model’s discriminative capability in image
recognition tasks. Many plant disease studies apply CBAM to focus
on key lesion regions and enhance saliency modeling. Xu et al. (2022)
developed a multi-scale dilated convolution structure to achieve
sparse receptive field coverage. This design strengthened the
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model’s ability to identify blurred leaf edges and irregularly shaped
lesions. Ren et al. (2023) used a multi-layer feature fusion strategy to
build shallow enhancement paths. This approach increased the
sensitivity to small lesion areas. These modular integration
strategies help improve the semantic representation capability of
lightweight networks. Nevertheless, achieving a balance between
model accuracy and computational efficiency remains a key
challenge in practical deployment. For example, the plant disease
classification model proposed by Sholihati et al. (2020), which is
based on the VGG-16 architecture, demonstrated high recognition
accuracy. However, due to its substantial parameter count (138
million) and significant computational cost (15.3 billion FLOPs),
the model faces limitations in adapting to the constrained resources
of edge computing environments. Charisma and Adhinata (2023)
applied the DenseNet201 model, which showed strong performance
in extracting features from plant leaves. However, its high
computational complexity limited its suitability for real-time
detection tasks. Likewise, Khan et al. (2020) introduced a tomato
disease identification method based on ResNet50 combined with
saliency graph analysis. Although the model achieved 98.6% accuracy
on the PlantVillage dataset, its computational load (23 million
parameters and 4 billion FLOPs) limited its applicability in edge
environments. These studies indicate that enhancing the feature
extraction capability of lightweight models for small target
detection remains a central challenge in plant disease recognition.
Optimizing such models is essential for balancing detection accuracy
and computational efficiency. This challenge is particularly critical in
agricultural settings, where timely and efficient on-site analysis is vital
for early disease intervention and minimizing crop losses.

Based on these observations, this study introduces a lightweight
neural network that integrates multiple modules and builds upon
the MobileNetV3 Small architecture. The model aims to achieve
high-precision recognition of potato leaf lesions while maintaining
suitability for deployment on low-power devices. The main
contributions of this work are reflected in the following three
innovations: (1) The proposed LF module improves the detection
of fine-grained lesions by combining lightweight channel attention
with cross-layer feature fusion. This design alleviates the common
issue of small target information loss in conventional approaches.
(2) The DDC module dynamically adjusts the receptive field
through dilated convolutions with multiple dilation rates and
adaptive weight allocation. Through this mechanism, the model
becomes more adept at identifying lesions with irregular
morphology. (3) The LA module guides the network to focus on
potential lesion regions using a region-based partition strategy. It
also suppresses background noise through local context modeling,
thereby improving the model’s edge perception and lesion
discrimination. Collectively, these modules contribute to a robust
and efficient model that supports intelligent plant disease diagnosis
in real-world agricultural settings.

Experimental results demonstrate that the proposed LDL-
MobileNetV3S model significantly enhances the recognition
performance for potato leaf diseases while maintaining a
lightweight architecture. Compared with existing lightweight
models, it achieves superior results in key evaluation metrics such
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as accuracy and recall. These outcomes validate the effectiveness of
the multi-module fusion strategy in lightweight neural networks
and offer a practical and scalable solution for real-time plant disease
diagnosis in agricultural edge computing scenarios.

2 Materials and methods
2.1 Data and processing

2.1.1 Dataset

The dataset employed in this study comprises two primary
components: publicly available data and self-acquired data. The
majority of the public data were sourced from the PlantVillage
platform. The dataset comprised 2400 images of potato leaves
gathered under field conditions. These images were
predominantly captured under controlled conditions (e.g.,
consistent lighting and background), resulting in high image
quality and clarity. Such controlled environments facilitate the
extraction of robust training features for the model. In August
2024, the research team conducted the field component of the self-
acquisition process at the Xufeng Potato Experimental Base in
Wuchuan County, Hohhot City. Utilizing a Huawei Mate 60
smartphone, they captured images of 2348 instances of potato leaf
diseases. This subset of images, which accurately captured field
environmental elements such as natural lighting, complex
backgrounds, and leaf shading, enhanced the model’s ability to
adapt to complex real-world scenarios.

All photographic samples were subjected to rigorous screening
and preprocessing to eliminate instances of blurring, duplication,
and poor clarity, thereby enhancing the overall quality of the
dataset. The final dataset comprises a total of 4748 potato leaf
images, encompassing five distinct categories: healthy leaves and
four types of diseases. Representative samples for each category are
illustrated in Figure 1. To ensure a robust and stable model training
process, the dataset was split using a single fixed stratified partition
with an 8:1:1 ratio for training, validation, and testing sets. This
partitioning strategy also ensured that the categories were evenly
distributed across the subsets, thereby mitigating the potential
impact of class imbalance on model performance. The specific
distribution of the data is detailed in Table 1.

2.1.2 Data augmentation and preprocessing

Due to the limited number of samples in the potato leaf disease
dataset, training a deep neural network remains difficult. Most of
the available data originate from controlled laboratory settings,
while samples from natural field environments are insufficient. This
imbalance restricts the model’s generalization ability in real-world
applications. To address this limitation, this study proposes a
systematic data augmentation strategy. The method enhances
training diversity by simulating various image variations typically
encountered in complex field conditions.

The data augmentation technique employed in this study
consists of four essential components, the effects of which are
illustrated in Figure 2. Initially, the ColorJitter operation is
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(A) Healthy

FIGURE 1

(B) Early Blight (C) Late Blight

(D) Fungi

Sample images of potato leaf diseases. (A) Healthy, (B) Early Blight, (C) Late Blight, (D) Fungi, (E) Virus.

utilized to randomly adjust the brightness, contrast, and other
attributes of the images. The objective is to emulate the
fluctuating illumination often present in uncontrolled agricultural
environments. Subsequently, a series of geometric transformations,
including RandomRotation, RandomHorizontalFlip,
RandomVerticalFlip, and RandomAffine, are applied to introduce
spatial variations. These transformations enhance the feature
representation of leaves in diverse orientations and angles,
thereby improving the robustness of the model to different leaf
poses and viewing perspectives. To simulate the common
occurrences of leaf breakage and occlusion in real-world
scenarios, the RandomErasing technique is employed to randomly
erase a portion of the image. This method introduces variability in
the data by simulating partial missing regions, which enhances the
model’s robustness to incomplete or obstructed leaf images.
Furthermore, the RandomResizedCrop operation is utilized to
perform random cropping and resizing of the images. This not
only increases the diversity of image perspectives and compositions
but also helps in augmenting the dataset by generating additional
variations of the leaf images.

To ensure the stability of the training process and the
generalizability of subsequent model transfer, all augmented
images were uniformly resized to 224x224 pixels and normalized
using the mean and standard deviation values from the ImageNet
dataset. Two composite data augmentation schemes were devised to
further investigate the impact of various enhancement strategies on
model performance. The first scheme, Combinedl, integrates
luminance adjustment and horizontal flipping to simulate
variations in structural orientation and illumination conditions.
The second scheme, Combined2, combines random rotation with
contrast adjustment to enhance the model’s robustness to angular
changes and color perturbations. The proposed schemes serve to

TABLE 1 Proportional split of potato leaf dataset.

examine the contribution of diverse augmentation approaches to
improving model generalization and accuracy.

In the primary experiments (including ablation and
comparative studies), we employed a unified data augmentation
pipeline, in which the aforementioned augmentation techniques
were sequentially combined to form a fixed process, thereby
effectively enhancing the diversity of the training data. The two
composite augmentation strategies (Combinedl and Combined2)
were only applied in supplementary comparison experiments to
explore the impact of different augmentation combinations on
model performance and were not part of the default training
pipeline. During validation and standard testing, only image
resizing and normalization were applied to ensure fairness in
evaluation. For the final model evaluation, test-time augmentation
(TTA) was introduced, whereby multiple views of each sample
(including flips, rotations, and color perturbations) were generated
and their predictions averaged, in order to further improve the
stability of the evaluation process.

2.2 Introduction to the MobileNetV3 Small
network architecture

Google unveiled MobileNetV3, a small and effective deep neural
system designed for situations with limited resources like embedded
and mobile gadgets in 2019 (Wang et al., 2020). The architectural
principles of MobileNetV1 and V2 are extended and refined in
MobileNetV3 Small, which is specifically designed for mobile
scenarios with limited processing resources (Zhao and Wang,
2022). Owing to its compact structural design and favorable
balance between accuracy and efficiency, MobileNetV3 Small
emerges as a highly competitive candidate among various

Healthy Early blight Late blight
Train 800 ‘ 800 ‘ 800 608 800 3808
Validation 100 ‘ 100 ‘ 100 ‘ 70 100 470
Test 100 ‘ 100 ‘ 100 ‘ 70 100 470
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(A) Original
(D) ColorlJitter
(G) RandomErasing (H) Combined1 (I) Combined2
FIGURE 2

Data augmentation results. (A) Original, (B) RandomResizedCrop, (C) RandomHorizontalFlip, (D) ColorJitter, (E) RandomRotation, (F) RandomAffine,

(G) RandomErasing, (H) Combined1, (I) Combined?2.

lightweight neural network models. The Small version of
MobileNetV3 is particularly well-suited for deployment on end
devices that have limited computational power and are subject to
power consumption constraints. Compared to its Large
counterpart, MobileNetV3 Small exhibits significant advantages in
terms of model size and inference time (Qian et al., 2021). In the
context of engineering deployment, MobileNetV3 Small offers
greater flexibility and convenience. Unlike other lightweight
networks such as ShuffleNet, EfficientNet, or Tiny-YOLO
(Redmon and Farhadi, 2017) (Redmon and Farhadi, 2018), it
maintains a robust capability for image feature extraction while
effectively compressing the number of parameters.

The task of crop disease detection necessitates a model capable
of real-time operation on mobile terminals or edge devices, in
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addition to possessing robust identification capabilities (Jiang and
Li, 2020). As illustrated in Figure 3, MobileNetV3 Small is selected
as the underlying network architecture in this study. This choice is
primarily driven by the actual deployment environment, which
predominantly consists of field sites where devices often face
challenges such as limited computational power, insufficient
power supply, and stringent response time requirements.

The MobileNetV3 Small model employs a lightweight deep
neural network architecture. It begins with an input image of size
224x224x3. A 3x3 convolutional layer is first applied for feature
extraction and downsampling, reducing the resolution to
112x112x16. This is followed by 11 sequentially stacked Inverted
Residual Bottleneck modules. These modules use different
convolutional kernel sizes, such as 3x3 and 5x5, depending on
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224x224x3
112x112x16
14x14x48 14x14x48 7x7%96 7x7x96
._’--
Convolution Bottleneck Bottleneck Bottleneck Bottleneck Bottleneck
2d Block 1 Block 8 Block 9 Block 10 Block 11
Fungi
Virus
1x1x1024 1x1x1024 1x1x576
WA /4 0000
1 11 )
LateBlight Linear . Adaptive Convolution
¢ Classifier Deopout Couvolution Avg Pool 2d
Healthy
FIGURE 3

Architecture of the MobileNetV3S model.

the stage. They apply varying channel expansion ratios. Each
module may also incorporate the SE attention mechanism and
use either the ReLU or HSwish activation function. During the
process, the feature map is gradually reduced to a size of 7x7x96. A
1x1 convolution is then applied to expand the channels to 576.
Global average pooling is used to summarize spatial features. A
feature projection layer, also using 1x1 convolution, generates a
1024-dimensional vector. Finally, a fully connected layer produces
the classification results. This structure is well-suited for image
recognition tasks on mobile and edge devices, as it balances model
accuracy with computational efficiency.

2.3 The LDL-MobileNetV3S classification
model for potato leaf diseases

Despite its good lightweight qualities for mobile deployment
and edge computing capabilities, MobileNetV3 Small still has
certain limitations when it comes to processing images of potato
leaf disease in complex agricultural settings. For instance, the model
is weak in capturing local fine-grained lesion features due to its
insufficient feature expression capabilities, which reduces overall
classification accuracy. Potato diseases manifest in real photos in a
variety of forms and sizes, and the design’s limited capacity to adapt
to illnesses at various scales makes it difficult to establish an efficient
multi-scale feature distribution, thereby lowering recognition
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performance. Lastly, due to the model’s lack of a mechanism to
focus on particular locations, it can be challenging to accurately
reference the distinct features of the diseased space, this is
vulnerable to confusion between categories.

To overcome the stated limitations, this work presents a
lightweight architecture that extends MobileNetV3 Small through
targeted structural modifications. The improved MobileNetV3
Small model uses standard convolution and multi-layer
Bottleneck blocks to extract features. It integrates the Dynamic
Dilated Convolution module to enhance multi-scale perception and
adds the Lite Fusion module to fuse high-level and low-level
features, improving spatial detail representation. The Lightweight
Attention module then highlights key information. Finally, global
pooling, feature projection, and fully connected layers complete the
classification. This design boosts recognition accuracy and feature
expression while keeping the model lightweight. Figure 4 shows the
entire workflow.

Three specialized enhancement modules are proposed and
incorporated at critical points within the backbone feature
extraction stage.

a. Lite Fusion module

To extract information from high-resolution shallow features,
the module Lite Fusion is inserted after layers 8, 9, and 10 of the
Inverted Residual Bottleneck. These features are channel-enhanced
by the SE attention mechanism, downsampled by a 1x1
convolution, and then concatenated with the deeper features of
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FIGURE 4
Architecture of the LDL-MobileNetV3S model.

the current layer. The LiteFusion module facilitates cross-layer
feature fusion, which effectively addresses the problem of
information degradation across network layers. As a result, it
substantially enhances the model’s capability to capture fine-
grained features, thus enabling the network to more accurately
localize and classify small lesions (Chen et al, 2018) (Lin
et al., 2017).

b. Dynamic Dilated Convolution module

In the 4th and 5th Inverted Residual Bottleneck, the standard
Depthwise Convolution is replaced with Dynamic Dilated
Convolution. This module creates three convolution branches
with varying dilation rates (1, 3, and 5) and combines their
outputs using attention-based weighting for dynamic receptive
field modeling. The DynamicDilatedConv module integrates the
principles of Dilated Convolution (Yu and Koltun, 2015) and
Dynamic Convolution mechanisms (Chen et al., 2020). It
adaptively adjusts the receptive field size to capture lesion features
at varying scales. This design significantly enhances the model’s
ability to identify diverse lesion regions in complex agricultural
images. It is particularly effective for detecting lesions with blurred
boundaries, small sizes, irregular shapes, or varying diffusion
patterns. The dynamic adaptation mechanism allows the model to
better address common challenges in real-world scenarios, such as
scale variation and uneven lesion spread.

c. Lightweight Attention module

To improve the model’s localization and recognition accuracy
under complex backgrounds, insert Lightweight Attention after the
last Inverted Residual Bottleneck. This module divides the feature
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map into multiple fixed windows and applies the QKV self-
attention mechanism within each window to highlight the
diseased spot region and enhance the local structure
modeling ability.

Lastly, the classifier module receives the enhanced higher-order
semantic features. The module employs Softmax to classify five
different potato leaf conditions and consists of Global Average
Pooling (GAP), a Dropout Layer, and a Fully Connected Layer.

Utilizing the model parameters presented in Table 2.
Experimental evaluation was performed using a specialized image
set focused on potato leaf pathology.

2.3.1 Lite Fusion

Using the concept of Feature Pyramid Network (FPN) and
merging the properties of MobileNetV3 Small lightweight structure,
this study proposes a feasible LF fusion proximity.

In the disease recognition task, the design of the LF module is
critical to boost the functionality of models. It receives low-
resolution features from deeper layers, which contain rich
semantic information, and high-resolution features from
shallower layers, which preserve edge and texture details. The
structure is illustrated in Figure 5. To reduce computational costs
and match dimensionality, the module first applies channel
compression to the high-resolution features using a 1x1
convolution. These characteristics are then weighted using the
channel’s focus approach. After that, the high-resolution feature
maps undergo bilinear interpolation downsampling to match the
size of the low-resolution feature maps. Ultimately, the fused multi-
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TABLE 2 Parameter settings of the LDL-MobileNetV3S model.

10.3389/fpls.2025.1656731

Input size Operation Expsize Output channels ICA/SE Activation Stride
224x224x3 Conv2d, 3x3 - 16 - HSwish 2
112x112x16 Bottleneck, 3x3 16 16 4 ReLU 2
56x56x16 Bottleneck, 3x3 72 24 - ReLU 2
28x28x24 Bottleneck, 3x3 88 24 v ReLU 1
28%28x24 Bottleneck (DynamicDilated), 5x5 96 40 v HSwish 2
14x14x40 Bottleneck (DynamicDilated), 5x5 240 40 v HSwish 1
14x14x40 Bottleneck, 5x5 240 40 v HSwish 1
14x14x40 Bottleneck, 5x5 120 48 4 HSwish 1
14x14x48 Bottleneck, 5x5 144 48 v HSwish 1
14x14x48 Bottleneck, 5x5 288 96 v HSwish 2
7X7%96 Bottleneck, 5x5 576 96 v HSwish 1
7X7%96 Bottleneck, 5x5 576 96 4 HSwish 1

- LiteFusion Module #1 - +Concat v HSwish Upsamplex2
- LiteFusion Module #2 - +Concat '4 HSwish Upsamplex2
- LiteFusion Module #3 - +Concat v HSwish Upsamplex2
7X7x96 Lightweight Attention - 96 v HSwish -
7X7%96 Conv2d, 1x1 - 576 - HSwish 1
7X7x576 Adaptive Avg Pool - 576 - - -
1x1x576 1x1 Conv (Feature projection) - 1024 - HSwish -
1x1x1024 Dropout (p=0.2) - 1024 - - -
1x1x1024 Fully Connected - num_classes - Softmax -

scale semantic features are produced by concatenating the low-
resolution features with the compressed high-resolution features in
the channel dimension.

The module combines the low-resolution and high-resolution
feature maps, enabling the model to make use of either worldwide
and local semantic data to better identify the characteristics of
potato leaf diseases. Its precise calculation procedure is as follows:

RB><C><HXW is first

The high-resolution feature map X €
supplied into the SE module, where B denotes batch size, C for
channel count, and HxW for input feature map spatial dimensions
(W stands for width, and H for height). The channel attention
method primarily uses the feature vector X, which is computed as
shown by (Equations 1-3), to reduce the unimportant inputs in
order to improve the expression of the traits and concentrate on

more of the important feature channels.

Hw
Sc = ngxc(lrj) (1)
e. = 0(W,8(W,S,)) (2)
X, =e, X, 3)
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With S, standing for the Squeeze output result for the c-th
channel, which represents the response strength of the global
average for that channel, (Equation 1) determines the average
value for each channel by global average pooling. The intrinsic
value of the c-th channel of the given input characteristic map at
spatial point (i,j) is denoted by the symbol X (ij). (Equation 2)
dynamically learns the weights of each channel, where e, is the
channel attention weight, W; is the dimensional reduction FC,
which serves to minimize computational effort, W, is the
dimensional enhancement FC, which restores the original
dimensional, 0 is the function that activates the ReLU, while o is
the Sigmoid normalization. Channel weighting is shown in
(Equation 3) to improve the response of the key channels.

Second, 1x1 convolution’s channel compression improves
cross-channel information interaction while lowering
computation. (Equations 4, 5), respectively, display the
computation channel-by-channel formulas and the total
convolution operation:

X' = WeX (4)

Xc‘ = EWC’,CXC (5)
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FIGURE 5

Structural flow diagram of the LF module in the LDL-MobileNetV3S model.

where W, is the scalar weight in the weight matrix that joins
the input channel ¢ to the output channel ¢/, and X C/, indicates the ¢’
channel in the consequence feature vector.

Since the size of the high resolution feature differs from that of
the trait of low resolution, the high resolution feature is
downsampled, and its spatial dimension is changed to match that
of the functionality for low resolution, per (Equation 6):

X"(j) =32 W, X (m,n) (6)

The feature map X} is the result of channel compression, and
the bilinear interpolation weights are W, . One of the parameter-
free operations, bilinear interpolation may successfully decrease the
amount of data on location lost and offers the benefits of easy
implementation, quick computation and a smooth transition.

Lastly, channel dimension splicing is performed, and Table 3
displays the splicing dimensions. After channel compression and
downsampling, the fused features contain both low-resolution and

high-resolution features. The spliced features can then be fed into
the deep network for higher-level learning to improve the multi-
scale feature identification capabilities.

2.3.2 Dynamic Dilated Convolution

In deep learning tasks for image classification and target
detection, CNNs typically perform feature extraction from input
images using a fixed-size convolution kernel. However, the
convolution structure with fixed receptive fields has limitations in
handling visual targets with significant scale variations. This is
particularly evident in the task of detecting crop diseases in complex
backgrounds, where lesions vary greatly in morphology, size, and
density. A single-scale convolution kernel finds it difficult to strike a
balance between broad semantic details and local specifics, therefore
hurting the system’s precision and resilience.

DDC is an effective method to enhance the receptive field
modeling capability of CNNs. Traditional dilated convolution

TABLE 3 Input and output dimensions of the LF modules in the LDL-MobileNetV3S model.

Module name Insertion position

High-resolution input

Low-resolution input = Output of fused features

LiteFusionl After 8th Bottleneck (48, 14, 14) (40, 14, 14) (64, 14, 14)
LiteFusion2 After 9th Bottleneck (48, 14, 14) (96, 14, 14) (96, 14, 14)
LiteFusion3 After 10th Bottleneck (96,7, 7) (96,7, 7) (144, 7, 7)
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expands the receptive field by introducing interval expansion in the
convolution kernel to obtain more contextual information without
increasing the number of parameters. However, its fixed-dilation-
rate design lacks flexibility to accommodate different scale
objectives. DDC dynamically adjusts the range of receptive field
response by modeling the feature map at multiple scales using
multiple convolution kernels with different dilation rates in parallel
and implementing a channel attention system to adapted weight
each branch’s outputs for fusion, as shown in Figure 6 below.

This strategy effectively distinguishes similar disorders, like
early blight (sharp edges) and late blight (fuzzy edges), in the
early stage and improves detection performance in complex
scenarios such as blurred spot contours and variable scales. The
precise method of calculation will be as follows:

Before calculating the channel attention, the features X (B, C, H,
W) are first input into the DDC for feature extraction. The channel
attention mechanism uses global information to adaptively assign
weights with varying expansion rates by computing the global
average pooling (GAP). This allows the network to dynamically
modify the receptive field according to an input picture. The

formulas are given in (Equations 7, 8):

HW .
o = gy 22X )

W = Softmax(Linear(Fy,)) (8)

Then, employing multiple expansion rates d (e.g., 1, 3, 5) for the
extraction of attributes at various scales, several parallel 3 x 3
depth-separable convolutions are built, which helps capture
more discriminative patterns in affected zones, thereby enhancing
the model’s decision-making ability. The formula is shown in
(Equation 9):

Fi = X*Ki (9)

where d; is a convolution kernel that measures 3 x 3 and K; is
the expansion rate; each channel is calculated manually to avert
over-computing.

The final feature Fout(B, C, H, W), which aggregates local and
global data to enhance the robustness of illness diagnosis, is then
produced using dynamic weighted summation. The formula for the

GAP — FC+Softmax

Input X
(B,C.H,W)

FIGURE 6

e ———

10.3389/fpls.2025.1656731

calculation is displayed in (Equation 10):

N
Fout:EIWi'Fi (10)
=

With W, representing the attention weight and F; representing
the output of several expansion rate convolutions.

In an effort to improve the accuracy of detecting potato diseases,
this module can broaden the model’s field of perception to
concentrate on both local and global disease aspects. Table 4
depicts the precise insertion positions as well as the input and
output dimensions.

2.3.3 Lightweight Attention

Computer vision applications including target recognition,
image segmentation and image classification have made extensive
use of the attention mechanism in deep learning models (Ghaffarian
et al,, 2021). Specifically, the image’s global dependencies might be
better captured by the system for self-attention by modeling the
correlation between various locations within the features, which
improves the model’s feature extraction and image recognition (Hu
et al., 2023).

The typical self-attention structure offers multiple advantages
when it comes to modeling global information. However, its
application in mobile and edge devices is complicated by its high
computational cost and numerous parameters. More lightweight
and real-time models are needed for disease detection systems in
agricultural contexts, they usually run on hardware with little
computing power (like drones, farm terminals, or mobile
devices). Therefore, the current study introduces a lightweight LA
module at the backend of the MobileNetV3 Small model. This
module increases the potential of the network to concentrate on sick
regions without significantly increasing the model’s computational
load, as depicted in Figure 7.

This module expands the capacity of the model to localize the
target spots and suppress irrelevant backgrounds through mutual
feature modeling and local window partitioning. As a result, it
enhances the overall classification accuracy and robustness. The
following is the precise formulating process:

Split the input feature X & RE**H*W into a PxP patch: X —
Xpatche € RBXCXExPx5xP Next, the reorganization of the

3x3 DWConv
(@=1)

3x3 DWConv
(d=3)

Channel-wise
Weighted sum

Input X
(B,CH,W)

3x3 DWConv
(d=5)

I___—l___J

Structural flow diagram of the DDC module in the LDL-MobileNetV3S model.
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TABLE 4 Input and output dimensions of the DDC module in the LDL-MobileNetV3S model.

FC + softmax output

3%3 conv output

Output after fusion

Insertion position Input X GAP output
Level 4 (B, 96, 28, 28) (B, 96,1, 1)
Level 5 (B, 160, 28, 28) (B, 160, 1, 1)

dimensions: X4, — Xpor € RB*5x5)xCxPxP Iy this manner, each
patch can be calculated separately.

The Query, Key, and Value (QKV) representations are
generated using a shared 1x1 convolution, and the output is
subsequently split into three separate components. Query and
transposed key scaling and matrix multiplication are used for
calculating the attention score. Softmax normalization is then
used to obtain the attention weights in (Equation 11):

KT
Attention(Q, K) = Softmax( Q

VC

After calculating the final feature X, = Attention x V, Value is

) (11)

weighted and added to the weights that were determined in order to
accomplish feature aggregation. The original size of the feature map
is then restored through transpose and reshape operations. Finally,

(B, 3) (B, 96, 28, 28) (B, 96, 28, 28)

(B, 3) (B, 160, 28, 28) (B, 160, 28, 28)

using a convolution with a 1x1 projection to produce an output with
the same spatial dimensions as the input. Through parameter
sharing and localized attention methods, the module drastically
decreases computational complexity while still preserving the
attention mechanism’s primary benefits that are making it
suitable for effective integration into CNN systems.

2.4 Model evaluation metrics

The effectiveness of the modified LDL-MobileNetV3S model in
the potato leaf disease classification task is quantitatively analyzed
in this paper using a range of evaluation metrics, including
incorporating standard classification measures like Fl-score,
Accuracy, Precision, and Recall. These measurements are

Scaled Dot-
Product
Patch l
Partition Softmax
QKYV Projection 1
(1x1 Conv) Attention-
i Weighted Sum
I ; . :
(B*N)xCx (B*N)xCx (B*N)xCx I
PxP PxP PxP Reshape+
|_ | Permute
K Transpose Output
(B*N)xPxC Projection

FIGURE 7
Structural flow diagram of the LA module in the LDL-MobileNetV3S model.

Frontiers in Plant Science 11

frontiersin.org


https://doi.org/10.3389/fpls.2025.1656731
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

employed to meticulously and impartially assess the system’s
functionality. Additionally, a confusion matrix is employed for
fine-grained misclassification analysis, with the goal of offering a
thorough summary of the efficiency of the model on both a general
and specific level. The following are the formulas and meanings of
these metrics:

From the perspective of classification modeling, accuracy is a
frequently utilized measure for assessment. It indicates the
proportion of samples that have been correctly classified out of
the entire sample population. The computational process is defined
in (Equation 12):

TP+ TN

A - 12
CUTAY = TP Y TN + FP + EN (12)

In this context, the term TP (True Positives) denotes the
quantity of samples that the model accurately classified as
diseased. The total quantity sample size that the model reliably
classified as healthy leaves is known as TN (True Negatives). A
sample’s FP (False Positives) reflects the number of instances where
healthy leaves were mistakenly identified as diseased by the model.
And FN (False Negatives) is the quantity of samples in which the
model incorrectly categorized diseased leaves as either healthy or
falling into a different group.

The precision rate, which indicates the percentage of
genuine diseased leaves among all the leaves predicted to be
infected by a certain disease, calculates the percentage of samples
in a given category that the model actually predicts to be positive.
(Equation 13) shows the formula for calculating precision.

TP

— 13
TP + FP (13)

Precision =

For disease control, high precision in disease detection tasks
means that the model is less likely to generate false alarms when
predicting a specific disease. This is of symbolic significance, as it
indicates that fewer healthy leaves are incorrectly recognized
as infected.

Recall is the percentage of all leaves that are truly plagued with a
particular condition and are correctly identified, indicating the
model’s capacity to detect diseased leaves. (Equation 14) presents
its computation formula:

TABLE 5 Ablation study results of the LDL-MobileNetV3S model.

Schema Base LF DDC L Loss
SO v 0.279
S1 v v 0.022
S2 v v 0.022
S3 v v 0.022
S4 v v v 0.023
S5 v v v 0.021
S6 v v v 0.022
S7 v v v v 0.020
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TP

Recall = ———
ccall = 5" FN

(14)

Enhancing the recall rate is crucial for obtaining early warnings
and implementing precise disease prevention. It is an essential
factor in ensuring agricultural safety and promoting the
development of smart agriculture. The level of the recall rate
directly affects the detection coverage of diseases.

The Fl-score, regarded as the equilibrium value of recall
and precision, serves as a comprehensive tool to evaluate how
well these two measures are balanced. Its calculation is provided in
(Equation 15):

Precision x Recall

F1 —score =2 X (15)

Precision + Recall

Within this research, when assessing the enhanced MobileNetV3
Small model’s functionality, we emphasized not only classification
accuracy but also the F1-score. This dual focus ensures that the model
minimizes the misclassification of healthy leaves as diseased while
maximizing the detection of all diseased leaves in practical
applications. The ultimate goal is to provide efficient and reliable
support for disease identification, prevention, and control.

3 Results and analysis

3.1 Ablation study

This study was implemented using the following computational
and software resources: an Intel(R) Core(TM) i5-8300H CPU
operating at 2.30 GHz, equipped with 32 GB of DDR4-2667
compute memory, running on a 64-bit Microsoft Windows 10
operating system. The model building and training were performed
using the PyTorch 2.6.0+cpu deep learning framework within a Python
3.11 environment. This paper’s ablation studies are intended to confirm
the efficacy of the LF, DDC, and LA modules for MobileNetV3 Small in
potato leaf disease detection tasks. The standard MobileNetV3 Small
(S0) is used as the baseline model. Based on this, different improvement
modules are introduced respectively, and each one module’s effect on
the model’s functionality is examined. Table 5 displays the findings of
the experiment.

Accuracy/%  Precision/% Recall/% F1 score/%
88.51 87.17 86.64 86.57
90.21 89.63 89.28 89.19
90.64 89.93 89.38 89.41
90.85 90.11 89.66 89.61
89.36 88.60 88.23 88.13
91.06 89.89 89.67 89.65
93.40 93.25 92.29 92.51
94.89 93.54 92.53 92.77
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The baseline scenario (S0) obtained an F1 score of 86.57%, an
accuracy of 88.51%, and a loss value of 0.279 on the test set using the
MobileNetV3 Small model for potato leaf disease detection without
any improvement modules. This suggests that the standard
MobileNetV3 Small is still effective for extracting disease features
in this task, but there is room for improvement. To ascertain how
each part affects the model’s functionality, this study adds the LF,
DDC, and LA modules to the baseline model for testing. The LF
module in S1 (SO + LF) aims to maximize the recognition ability of
disease areas at various scales and improve the information
interaction across different feature layers. The verification results
show that the module increases the accuracy to 90.21%, the F1 score
to 89.19%, and reduces the loss value to 0.022. This indicates that LF
can significantly enhance the model’s feature extraction capabilities.
By dynamically modifying the accepting field of widened
convolution, the DDC module in configuration S2 (SO + DDC)
improves the strategy’s capacity to adapt to varying sick section
sizes. The experimental results demonstrate the success of DDC in
capturing multi-scale disease characteristics, with the module
increasing the accuracy to 90.64%, the F1 score to 89.41%, and
reducing the loss value to 0.022. The LA module in S3 (SO + LA)
reduces computational overhead while enhancing the method’s
focus on the disease region. The experimental results confirm the
module’s key role in disease identification, showing that it improves
the accuracy to 90.85%, the F1 score to 89.61%, and reduces the loss
value to 0.022.

This article evaluates the performance of multi-module
combinations to further analyze the synergies between various
modules. By incorporating the LF and LA modules, S4 (SO + LF +
LA) improves accuracy to 89.36%, the F1 score to 88.13%, and
reduces the loss value to 0.023. The above results show that there is
still room for development in this combination’s feature extraction
capabilities. When the LF and DDC modules are combined in S5
(SO + LF + DDC), the accuracy increases to 91.06%, the F1 score
improves to 89.65%, and the loss value drops to 0.021. This
demonstrates that this combination can effectively enhance the
model’s adaptability to the disease area. S6 (SO + DDC + LA)
combines the DDC and LA modules and achieves significant
improvement in most metrics, with 93.40% accuracy, 92.51% F1
score and a loss value of 0.022. This suggests that DDC and LA have
a strong complementary effect that can help improve the model’s
feature extraction capability. Based on the S6 scheme, S7 (SO + LF +
DDC + LA) adds the LF module. The outcomes of the studies
demonstrate that this plan performed the best across the board,
with an accuracy of 94.89%, an F1 score of 92.77%, and a loss value
0f 0.020. This indicates that the integration of all three modules can
improve classification performance, reduce the loss value, and
significantly enhance the ability to detect potato leaf disease.

Based on findings of the experiment, adding the LF, DDC, and
LA modules individually can improve the disease detection
performance of MobileNetV3 Small. The DDC module shows the
most significant improvement, indicating that the DDC
enhancement method can more effectively increase the model’s
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adaptability to disease areas at various scales. By merging several
modules, the model’s efficacy can be further enhanced; in particular,
S6 demonstrates a significant improvement, suggesting that the
combination of DDC and LA can greatly enhance the approach’s
capabilities to sense multi-scale signals and focus on disease areas.
The fact that S7 achieved the highest accuracy shows that
integrating different components optimizes their individual
benefits, enabling the model to increase classification accuracy
while maintaining low computational complexity and offering a
superior solution for mobile deployment. When combined, the
enhanced approach presented in this paper is capable of improving
MobileNetV3 Small’s detection capacity in the task of detecting
potato leaf disease, enhancing its feature extraction capabilities, and
providing an effective solution for the intelligent diagnosis of potato
diseases while preserving low computational complexity.

3.2 Model effectiveness verification

3.2.1 Confusion matrix

To assess the recognition characteristics of the LDL-MobileNetV3S
model for various types of potato leaf diseases, a confusion matrix
diagram was created to illustrate the model’s prediction performance in
a multi-category classification task, as shown in Figure 8. The values
along the main diagonal of the confusion matrix represent the
percentage of samples that were correctly classified. The model’s
comprehension of the category improved with a greater value.
Conversely, the off-diagonal values indicate the number of samples
that were misclassified as other categories, which can reflect the degree
of confusion between categories.

3.2.2 Recognition performance for different
disease types

To evaluate the effectiveness of the proposed LDL-
MobileNetV3S model in recognizing potato leaf diseases, the
trained model was tested on a designated test set. The accuracy,
precision, and recall for each disease category—including Early
Blight, Late Blight, Healthy, Virus, and Fungi—were calculated to
comprehensively evaluate the performance of the model. The model
performed satisfactorily in identifying the majority of potato leaf
diseases. With an accuracy of 94.89%, it accurately categorized 446
out of the 470 test samples. Table 6 displays the comprehensive
experimental findings.

3.2.3 Heatmap visualization

In this study, the LDL-MobileNetV3S model is utilized to
construct feature maps of disease images, and Softmax is
employed to classify diseases. To examine the impact of various
disease areas on the model’s classification results, which are difficult
to intuitively understand based solely on the classification results,
this paper employs the Grad-CAM (Gradient-weighted Class
Activation Mapping) (Selvaraju et al., 2017) technique to visualize
the model’s final layer of feature mapping. A selection of potato leaf
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FIGURE 8
Confusion matrix for the LDL-MobileNetV3S model on the validation set

disease images was chosen for the experiment, and the outcomes are
seen in Figure 9. In the illustration, different regions are colored
separately; the closer a hue is to the red area, the more strongly it
correlates with the disease data.

Both the MobileNetV3 Small model and the LDL-
MobileNetV3S model can focus on the disease area, as shown in
Figure 9. However, for small and dispersed lesions such as leaf spot
and early blight, the MobileNetV3 Small model is prone to losing
some disease information during the feature transformation
process. This results in less precise attention to critical disease
locations due to its channel attention mechanism’s inability to
effectively integrate spatial information to enhance feature
representation; even some non-diseased areas received higher
response values. On the other hand, the LDL-MobileNetV3S
model employs the LF mechanism within the Bottleneck structure
to improve multi-scale feature fusion. It also uses DDC to adapt to
disease features at various scales, and incorporates the LA module
to help the model better focus on disease areas. As a result, the
model avoids misclassifying irrelevant areas and generates a more
accurate response with more concentrated disease areas in the
Grad-CAM heatmaps.

In summary, the LDL-MobileNetV3S model presented in this
paper can greatly increase the model’s accuracy and recognition
performance while more precisely concentrating on the key
components of potato leaf diseases.

TABLE 6 Test results for different disease types.

Precision/% Recall ratio/%

Category = Accuracy/%

Early Blight 100.00 100.00 100.00
Fungi 90.00 91.30 90.63
Healthy 95.96 96.13 96.02
Virus 95.00 95.95 95.47
Late Blight 93.94 92.08 93.17
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3.3 Comparison of different lightweight
models

The aim of this research was to undertake a systematic
comparative experiments to assess the efficacy of the proposed
LDL-MobileNetV3S model in potato leaf disease detection tasks.
This model was compared side by side with popular lightweight and
medium complexity convolutional neural network architectures,
such as ResNet18 (He et al., 2016), MobileVit (Mehta and Rastegari,
2021), MobileNetV3 (small and large versions), ShuffleNetV2 (Ma
etal., 2018), ConvNeXt Tiny (Liu et al., 2022b) and EfficientNet-B0
(Tan and Le, 2019). Each model was trained using the same
preprocessing procedure and training strategy on a consistent
dataset. Performance metrics such as Loss, Accuracy, Precision,
Recall, F1 Score, Model Size, and Parameters were evaluated on the
test set. Table 7 presents the findings from the contrasting studies.

Table 7 shows that classical lightweight models, including
ShuffleNetV2 and MobileNetV3 Small, have previously
demonstrated strong accuracy, reaching 88.08% and 90.05%,
respectively. However, the accuracy of the LDL-MobileNetV3S
model has increased to 94.89%, the highest among all the models
studied and compared. This is in contrast to EfficientNet-B0
(93.23%) and MobileNetV3 Large (89.19%), suggesting that the
three strategies—LF, DDC, and LA—suggested in the present study
greatly enhance the model’s capacity to recognize complex
illness characteristics.

During the model’s training and testing phases, the Loss value
shows the degree of inaccuracy between the actual labels and the
predicted outcomes. Compared to the original MobileNetV3 Small
(0.218) and ShuffleNetV2 (0.247), the enhanced LDL-
MobileNetV3S model achieves the lowest Loss on the test set, at
0.020. Even in terms of loss rate, it outperforms EfficientNet-B0
(0.023), demonstrating better generalization and convergence. This
is attributed to the DDC module, which directs the model to more
effectively focus on important disease regions while preventing
overfitting issues.
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FIGURE 9

Heatmap visualization of the model. Rows from top to bottom: Original , MobileNetV3S, LDL-MobileNetV3S. Columns from left to right: (A) Early

Blight, (B) Late Blight, (C) Fungi, (D) Virus.

In terms of Precision and Recall, the proposed model achieved
93.54% and 92.53%, respectively, indicating a well-balanced
performance between detection accuracy and coverage. Notably,
the model attained an F1 Score of 92.77%, surpassing performance-
optimized models such as EfficientNet-B0 (92.20%) and ConvNeXt
Tiny (91.77%), further demonstrating its superiority in
comprehensive detection capability.

Depending on the model size and quantity of parameters, the
study’s suggested model still maintains a high degree of lightness.
While ensuring a significant increase in performance, its model size
is only 6.17MB and the number of parameters is 1.509M, which is
slightly higher than that of the original MobileNetV3 Small
(5.94MB, 1.45M) but much smaller than that of models such as

TABLE 7 Experimental results of different comparative models.

ResNet138, EfficientNet-B0 and ConvNeXt Tiny. As a consequence,
this model is highly suitable for resource-constrained mobile
terminals and smart detection scenarios in agricultural fields, and
it has excellent adaptability for edge deployment. Notably, while
maintaining about the same quantity of parameters as the first
model, the improved model’s accuracy increased from 88.08% to
94.89%, and its F1 Score increased by nearly 6.2% due to structural
optimization. This suggests that structural innovations are more
beneficial for real-world applications than simply
stacking parameters.

Figures 10, 11 shows the convergence and classification
performance of each model during training. It is evident that the
LDL-MobileNetV3S model can efficiently learn features from the

Loss Accuracy/% Precision/% Recall/% F1 score/%  Model size/MB Params/M
Mobile Vit 0717 77.95 78.32 77.55 76.34 5.77 1.37
ResNet18 0.468 81.58 80.84 80.87 79.89 18.34 20.30
MobileNetV3 Small 0218 88.08 87.17 86.64 86.57 5.94 1.45
MobileNetV3 Large 0.014 89.19 89.10 88.59 88.29 16.25 401
ShuffleNetV2 0.247 90.05 89.04 89.18 88.28 8.97 1.20
ConvNeXt Tiny 0343 91.72 92.02 91.72 91.77 106 27.80
EfficientNet-B0 0.023 93.23 92.86 92.04 92.20 15.61 3.83
LDL-MobileNetV3$ 0.020 94.89 93.54 92.53 92.77 6.17 1.50

The bold row indicates the parameter values of the optimized LDL-MobileNetV3S model.
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Loss curves of different models.

data and converge rapidly, as shown by the low loss values during
training and the rapid decline in the early stages of training. The loss
curve of the current model shows more consistent and lower loss
values throughout training compared to previous models (such as
MobileViT and ResNetl8), indicating that it is more adept at
optimizing model parameters. Additionally, the model
outperforms previous network architectures in terms of accuracy
on the test set, demonstrating a quicker rate of accuracy
improvement in the early training phases and ultimately
stabilizing at approximately 94.89% at 100 epochs. In contrast,
other models, including MobileViT and ResNetl18, exhibit slower
accuracy growth and lower final accuracy.
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The high accuracy of the LDL-MobileNetV3S model is
attributed to its lightweight architecture combined with the LF
and DDC modules, which enable the model to more effectively
capture disease features at multiple scales. In comparison, although
EfficientNet-BO and ShuffleNetV2 also demonstrate relatively
strong performance, their final accuracy is lower than that of the
LDL-MobileNetV3S model.

In conclusion, the enhanced model suggested in this study’s
findings achieves optimal recognition performance while preserving
its lightweight characteristics. In the context of crop disease detection,
its strong capability in modeling multi-scale lesion regions and its
effective attention-based feature selection mechanism are key
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contributors to the performance improvement. In contrast, although
EfficientNet-BO and ShuffleNetV2 also perform well, their final
accuracy is not as high as that of the LDL-MobileNetV3S model.

4 Discussion

4.1 Impact of different improvement
modules on model performance

To enhance the model’s ability to identify diverse lesion
patterns in potato leaves across both controlled and field
environments, the LDL-MobileNetV3S model integrates three
novel modules: LF, DDC, and LA. The study examines the extent
to which each module contributes to the overall performance
improvement by progressively introducing the ablation
experiments of the aforementioned modules, as shown in Table 5.
This provides a quantitative basis for model structure optimization.

In particular, the LF module enhances the synergy between
shallow fine-grained texture information and deep semantic
information by combining feature maps at various levels. This
improves the model’s ability to distinguish fine-grained lesion
patterns even in complex backgrounds typical of field
environments. The DDC module incorporates a learnable dilated
convolution structure featuring multiple dilation rates. This structure
can dynamically modify the receptive field in response to the
distribution and shape of the diseased regions within the input
image. This allows for the acquisition of richer information while
maintaining resolution, significantly boosting the model’s robustness
and generalization capabilities, and improving the recognition of
diseased patches with complex shapes or fuzzy boundaries. To assist
the model in concentrating on crucial regions of the image, the LA
module uses a simple spatial concentration function, such as the
disease region. This effectively suppresses background interference,
increases the capacity of the model to perceive spatial distribution,
and increases classification stability and accuracy.

Keeping the computational cost and parameter size of the model
minimal, the three modules together enhance the model’s feature
extraction and discrimination capabilities at various levels. In the final
model (S7), which integrates all the modules, the accuracy rate
reaches 94.89%, and the F1 score is 92.77%. This represents the
best performance among all the experimental schemes and
definitively confirms the efficacy of each structural modification.

4.2 Comparative analysis with mainstream
lightweight models

To verify that the improved model is superior, this study
conducted comparative trials using a range of representative
lightweight neural network models. Table 7 shows that while
EfficientNet-BO achieves an accuracy of 93.23%, its model size is
15.61 MB with up to 3.83 MB of parameters, which is significantly
larger than the enhanced model proposed in this study. The model
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used in this work, however, keeps its level of complexity lower. (the
model size is only 6.17 MB, and the number of parameters is only
1.50 MB), better strikes an equilibrium among efficacy and
precision, and demonstrates stronger advantages in terms of
lightweighting and practicality. It achieves an accuracy of 94.89%
and an F1 score of 92.77%.

Furthermore, ShuffleNetV2, as a classical lightweight model,
attains a 90.05% accuracy rate, which is lower than the improved
model in this study across several metrics. The difference is
particularly noticeable in the F1 score and recall rate, demonstrating
that the structural improvements introduced in this study significantly
enhance the model’s recognition ability. By improving the recognition
sensitivity to multi-category disease features and optimizing overall
classification performance, the model successfully reduces the rates of
omission and misclassification.

In summary, based on a comprehensive evaluation of
recognition accuracy, computational resource consumption, and
deployment adaptability, the proposed LDL-MobileNetV3S model
demonstrates superior overall performance and is more applicable
to crop disease detection tasks. It provides a reliable technical
foundation for intelligent disease monitoring in the context of
precision agriculture.

5 Conclusions

In order to tackle the issues of complex spot morphology,
notable scale disparities, and ineffective models in potato leaf
disease image recognition, this study proposes a lightweight and
effective LDL-MobileNetV3S model. The model’s sensitivity to
small spots, robustness to diffuse and fuzzy spots, and
responsiveness to critical areas are all enhanced by the addition of
the LF, DDC, and LA modules. This creates a deep feature
extraction model that better suits the requirements of agricultural
applications. The model demonstrates superior performance
compared to other competitive models in key metrics such as
accuracy, precision, recall, and F1 score, as evidenced by its
training and validation on a heterogeneous dataset comprising
both laboratory and field natural photographs. It achieves a
favorable balance between model compactness and high
performance, maintaining a small model size and a limited
number of parameters while delivering recognition performance
comparable to that of larger networks.

Moreover, the model demonstrates excellent inference
performance in the CPU environment. The Median Latency is
18.02 ms, indicating that most inference requests are completed
within this time frame, showcasing fast real-time response
capability. The 95th Percentile Latency is 22.23 ms, which
demonstrates that the model’s inference process is highly stable
with minimal performance fluctuations, as most inference times are
below this value. The Median FPS is 55.5, meaning the model can
process approximately 56 images per second, far exceeding the 30
FPS standard for real-time video streams, confirming the model’s
strong real-time processing capability. These results collectively
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prove that the model is capable of efficient real-time inference with
high throughput on resource-constrained edge devices.

The model provides a reliable and efficient approach for the
identification of potato leaf disease images, holding promise for a
broad spectrum of potential applications. However, the validation
of its deployment in real-world application scenarios, including
mobile terminals, edge computing devices, and UAV platforms,
remains incomplete. While the study has demonstrated
commendable performance in detecting potato leaf disease,
further research is necessary to thoroughly evaluate the model’s
performance metrics, specifically in terms of response time,
resource utilization, and real-time performance when deployed on
terminal devices. Future research will focus on expanding the field
dataset to encompass multi-regional, multi-species, and multi-
seasonal scenarios, as well as deploying lightweight models in
real-world application contexts. Additionally, the development of
a multi-task model architecture will be explored to integrate disease
detection, segmentation, and severity grading into a unified
framework. This work aims to facilitate the large-scale adoption
of deep learning technologies in agricultural production and to
provide more intelligent and precise technical support for crop
disease monitoring.
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