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Introduction: The timely and precise detection of foliar diseases in potatoes, a

food crop of worldwide importance, is essential to safeguarding agricultural

output. In complex field environments, traditional recognition methods

encounter significant challenges, including the difficulty in extracting features

from small and diverse early-stage lesions, blurred edge features due to gradual

transitions between diseased and healthy tissues, and degraded robustness from

background interference such as leaf texture and varying illumination.

Methods: To address these limitations, this study proposes an optimized

lightweight convolutional neural network architecture, termed LDL-

MobileNetV3S. The model is built upon the MobileNetV3 Small backbone and

incorporates three innovative modules: a Lightweight Multi-scale Lite Fusion (LF)

module to enhance the perception of small lesions through cross-layer

connections, a Dynamic Dilated Convolution (DDC) module that employs

deformable convolutions to adaptively capture pathological features with

blurred boundaries, and a Lightweight Attention (LA) module designed to

suppress background interference by assigning spatially adaptive weights.

Results: Experimental results demonstrate that the proposed model achieves a

recognition accuracy of 94.89%, with corresponding Precision, Recall, and F1-

score values of 93.54%, 92.53%, and 92.77%, respectively. Notably, these results

are attained under a highly compact model configuration, requiring only 6.17 MB

of storage and comprising 1.50 million parameters. This is substantially smaller

than benchmark models such as EfficientNet-B0 (15.61 MB / 3.83 M parameters)

and ConvNeXt Tiny (106 MB / 27.8 M parameters).

Conclusion: The proposed LDL-MobileNetV3S model demonstrates superior

performance and efficiency compared to several existing lightweight models.

This study provides a cost-effective and high-accuracy solution for potato leaf

disease diagnosis, which is particularly suitable for deployment on intelligent

diagnostic devices operating in resource-limited field environments.
KEYWORDS

potato leaf disease, MobileNetV3 Small, Lite Fusion, Dynamic Dilated Convolution,
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1 Introduction

As a widely cultivated staple crop worldwide, potato holds

substantial nutritional and economic value, playing a critical role

in safeguarding food security and promoting the growth of cash

crop industries (Kharumnuid et al., 2021). Effective management of

potato production is crucial for ensuring both food supply stability

and the profitability of agricultural systems. However, throughout

the growth cycle of potatoes, their leaves are frequently affected by

various diseases, including late blight, early blight, and viral

infections (Tejas et al., 2023). These diseases compromise plant

health, reduce yield, and degrade product quality, ultimately

causing significant economic losses in agriculture. Therefore,

achieving efficient and accurate detection of potato leaf diseases is

crucial for effective disease management, intelligent agricultural

practices, and the improvement of crop productivity (Kaur

et al., 2024).

Traditional methods for identifying plant diseases primarily rely

on manual field observation and the subjective judgment of

agricultural specialists. While these approaches may yield

acceptable accuracy in localized scenarios, they often suffer from

low efficiency, inconsistent results, and limited scalability.

Moreover, they are inadequate for meeting the demands of

modern precision agriculture, which requires real-time, data-

driven decision-making across large and diverse field conditions.

Consequently, traditional techniques fall short in supporting high-

throughput, automated monitoring essential for large-scale crop

management (Khakimov et al., 2022) (Liu and Wang, 2021).

In recent decades, machine vision and artificial intelligence have

developed rapidly. Image recognition techniques driven by deep

learning have found widespread use in diagnosing plant diseases

(Bhargava et al., 2024). Convolutional Neural Networks (CNNs)

have become a focus of research. They can automatically learn

image features with strong efficiency. CNNs have demonstrated

strong capabilities in identifying leaf diseases and locating affected

regions (Lu et al., 2021). CNNs are capable of extracting critical

features such as color, texture, edge, and structural information

from images. This is achieved through a series of multi-layer

nonlinear transformations. Such processing reduces dependence

on traditional handcrafted feature design. It also enhances the

automation and generalization capabilities of plant disease

recognition systems. These technologies offer a promising

pathway for deploying low-cost, automated monitoring systems

in agricultural fields, greenhouses, and rural environments. For

example, Atila et al. (2021) conducted a systematic evaluation using

the PlantVillage dataset, which includes 54,306 images. Under a

five-fold cross-validation strategy, the EfficientNet-B4 and

ResNet50 architectures achieved average classification accuracies

exceeding 99%. These results significantly surpassed those of

traditional machine learning approaches. Sutaji and Yıldız (2022)

proposed a lightweight feature extraction model based on the

MobileNetV2 and Xception architectures . The model

incorporated a multi-scale depthwise separable convolution

structure to improve recognition accuracy. It maintains a low

parameter count and computational cost. These characteristics
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make the model adaptable to mobile agricultural platforms, such

as handheld diagnostic devices or drone-mounted systems. Liu et al.

(2022a) proposed a hybrid deep learning framework named

DenseACNet. The model integrated a channel attention

mechanism with data augmentation strategies to enhance the

accuracy and robustness of crop disease recognition. This

approach achieved strong classification performance on the

extended PlantVillage dataset. These studies demonstrate that

CNN-based approaches hold strong potential for application in

agricultural image analysis.

However, despite their strong recognition performance, deep

CNNmodels still face major limitations. Their large parameter sizes

and high computational costs hinder deployment on edge devices,

unmanned aerial platforms, and mobile smart farming systems

(Abade et al., 2021) (Zawish et al., 2024). For instance, He et al.

(2016) introduced the well-known ResNet architecture and

developed a deep ResNet-101 model. This model contained over

44 million parameters and requires approximately 7.6 GFLOPs for

inference. While it delivered strong results on high-performance

servers, it posed major challenges for deployment in resource-

constrained environments. Simonyan and Zisserman et al.

(Simonyan and Zisserman, 2014) developed the classical VGG-16

model, which achieved high classification accuracy on the ImageNet

dataset. However, the model contains 138 million parameters and

requires over 15 GFLOPs for inference. These characteristics limit

its ability to meet the dual demands of real-time performance and

energy efficiency in edge computing environments. To address this

issue, researchers have proposed various lightweight network

architectures, including the MobileNet family (Howard et al.,

2017) (Sandler et al., 2018) (Howard et al., 2019), EfficientNet

(Tan and Le, 2019), and ShuffleNet (Zhang et al., 2018). These

models reduce parameter size and computational cost by employing

techniques such as depthwise separable convolution, neural

architecture search, and channel pruning. Such methods enhance

deployment efficiency while maintaining recognition accuracy. In

the context of smart agriculture, these lightweight models provide a

foundation for scalable, real-time monitoring systems applicable to

diverse field conditions.

Although lightweight networks offer advantages for deployment,

they still encounter major challenges. These include early-stage

disease detection, complex background interference, and the

identification of small lesion areas (Mohanty et al., 2016). To

address these issues, recent studies have increasingly integrated

structural optimization with modular enhancements. This approach

aims to improve the semantic representation capacity of lightweight

models. Specific methods include the Attention Mechanism (Woo

et al., 2018), Dilated Convolution (Chen et al., 2018), and Multi-scale

Feature Fusion (Lin et al., 2017) (Liu et al., 2018). Woo et al. (2018)

introduced the CBAM (Convolutional Block Attention Module),

which combines channel and spatial attention mechanisms. This

design enhances the model’s discriminative capability in image

recognition tasks. Many plant disease studies apply CBAM to focus

on key lesion regions and enhance saliency modeling. Xu et al. (2022)

developed a multi-scale dilated convolution structure to achieve

sparse receptive field coverage. This design strengthened the
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model’s ability to identify blurred leaf edges and irregularly shaped

lesions. Ren et al. (2023) used a multi-layer feature fusion strategy to

build shallow enhancement paths. This approach increased the

sensitivity to small lesion areas. These modular integration

strategies help improve the semantic representation capability of

lightweight networks. Nevertheless, achieving a balance between

model accuracy and computational efficiency remains a key

challenge in practical deployment. For example, the plant disease

classification model proposed by Sholihati et al. (2020), which is

based on the VGG-16 architecture, demonstrated high recognition

accuracy. However, due to its substantial parameter count (138

million) and significant computational cost (15.3 billion FLOPs),

the model faces limitations in adapting to the constrained resources

of edge computing environments. Charisma and Adhinata (2023)

applied the DenseNet201 model, which showed strong performance

in extracting features from plant leaves. However, its high

computational complexity limited its suitability for real-time

detection tasks. Likewise, Khan et al. (2020) introduced a tomato

disease identification method based on ResNet50 combined with

saliency graph analysis. Although the model achieved 98.6% accuracy

on the PlantVillage dataset, its computational load (23 million

parameters and 4 billion FLOPs) limited its applicability in edge

environments. These studies indicate that enhancing the feature

extraction capability of lightweight models for small target

detection remains a central challenge in plant disease recognition.

Optimizing such models is essential for balancing detection accuracy

and computational efficiency. This challenge is particularly critical in

agricultural settings, where timely and efficient on-site analysis is vital

for early disease intervention and minimizing crop losses.

Based on these observations, this study introduces a lightweight

neural network that integrates multiple modules and builds upon

the MobileNetV3 Small architecture. The model aims to achieve

high-precision recognition of potato leaf lesions while maintaining

suitability for deployment on low-power devices. The main

contributions of this work are reflected in the following three

innovations: (1) The proposed LF module improves the detection

of fine-grained lesions by combining lightweight channel attention

with cross-layer feature fusion. This design alleviates the common

issue of small target information loss in conventional approaches.

(2) The DDC module dynamically adjusts the receptive field

through dilated convolutions with multiple dilation rates and

adaptive weight allocation. Through this mechanism, the model

becomes more adept at identifying lesions with irregular

morphology. (3) The LA module guides the network to focus on

potential lesion regions using a region-based partition strategy. It

also suppresses background noise through local context modeling,

thereby improving the model’s edge perception and lesion

discrimination. Collectively, these modules contribute to a robust

and efficient model that supports intelligent plant disease diagnosis

in real-world agricultural settings.

Experimental results demonstrate that the proposed LDL-

MobileNetV3S model significantly enhances the recognition

performance for potato leaf diseases while maintaining a

lightweight architecture. Compared with existing lightweight

models, it achieves superior results in key evaluation metrics such
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as accuracy and recall. These outcomes validate the effectiveness of

the multi-module fusion strategy in lightweight neural networks

and offer a practical and scalable solution for real-time plant disease

diagnosis in agricultural edge computing scenarios.
2 Materials and methods

2.1 Data and processing

2.1.1 Dataset
The dataset employed in this study comprises two primary

components: publicly available data and self-acquired data. The

majority of the public data were sourced from the PlantVillage

platform. The dataset comprised 2400 images of potato leaves

gathered under fie ld condit ions . These images were

predominantly captured under controlled conditions (e.g.,

consistent lighting and background), resulting in high image

quality and clarity. Such controlled environments facilitate the

extraction of robust training features for the model. In August

2024, the research team conducted the field component of the self-

acquisition process at the Xufeng Potato Experimental Base in

Wuchuan County, Hohhot City. Utilizing a Huawei Mate 60

smartphone, they captured images of 2348 instances of potato leaf

diseases. This subset of images, which accurately captured field

environmental elements such as natural lighting, complex

backgrounds, and leaf shading, enhanced the model’s ability to

adapt to complex real-world scenarios.

All photographic samples were subjected to rigorous screening

and preprocessing to eliminate instances of blurring, duplication,

and poor clarity, thereby enhancing the overall quality of the

dataset. The final dataset comprises a total of 4748 potato leaf

images, encompassing five distinct categories: healthy leaves and

four types of diseases. Representative samples for each category are

illustrated in Figure 1. To ensure a robust and stable model training

process, the dataset was split using a single fixed stratified partition

with an 8:1:1 ratio for training, validation, and testing sets. This

partitioning strategy also ensured that the categories were evenly

distributed across the subsets, thereby mitigating the potential

impact of class imbalance on model performance. The specific

distribution of the data is detailed in Table 1.

2.1.2 Data augmentation and preprocessing
Due to the limited number of samples in the potato leaf disease

dataset, training a deep neural network remains difficult. Most of

the available data originate from controlled laboratory settings,

while samples from natural field environments are insufficient. This

imbalance restricts the model’s generalization ability in real-world

applications. To address this limitation, this study proposes a

systematic data augmentation strategy. The method enhances

training diversity by simulating various image variations typically

encountered in complex field conditions.

The data augmentation technique employed in this study

consists of four essential components, the effects of which are

illustrated in Figure 2. Initially, the ColorJitter operation is
frontiersin.org
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utilized to randomly adjust the brightness, contrast, and other

attributes of the images. The objective is to emulate the

fluctuating illumination often present in uncontrolled agricultural

environments. Subsequently, a series of geometric transformations,

inc lud ing RandomRota t ion , RandomHor izonta lF l ip ,

RandomVerticalFlip, and RandomAffine, are applied to introduce

spatial variations. These transformations enhance the feature

representation of leaves in diverse orientations and angles,

thereby improving the robustness of the model to different leaf

poses and viewing perspectives. To simulate the common

occurrences of leaf breakage and occlusion in real-world

scenarios, the RandomErasing technique is employed to randomly

erase a portion of the image. This method introduces variability in

the data by simulating partial missing regions, which enhances the

model’s robustness to incomplete or obstructed leaf images.

Furthermore, the RandomResizedCrop operation is utilized to

perform random cropping and resizing of the images. This not

only increases the diversity of image perspectives and compositions

but also helps in augmenting the dataset by generating additional

variations of the leaf images.

To ensure the stability of the training process and the

generalizability of subsequent model transfer, all augmented

images were uniformly resized to 224×224 pixels and normalized

using the mean and standard deviation values from the ImageNet

dataset. Two composite data augmentation schemes were devised to

further investigate the impact of various enhancement strategies on

model performance. The first scheme, Combined1, integrates

luminance adjustment and horizontal flipping to simulate

variations in structural orientation and illumination conditions.

The second scheme, Combined2, combines random rotation with

contrast adjustment to enhance the model’s robustness to angular

changes and color perturbations. The proposed schemes serve to
Frontiers in Plant Science 04
examine the contribution of diverse augmentation approaches to

improving model generalization and accuracy.

In the primary experiments (including ablation and

comparative studies), we employed a unified data augmentation

pipeline, in which the aforementioned augmentation techniques

were sequentially combined to form a fixed process, thereby

effectively enhancing the diversity of the training data. The two

composite augmentation strategies (Combined1 and Combined2)

were only applied in supplementary comparison experiments to

explore the impact of different augmentation combinations on

model performance and were not part of the default training

pipeline. During validation and standard testing, only image

resizing and normalization were applied to ensure fairness in

evaluation. For the final model evaluation, test-time augmentation

(TTA) was introduced, whereby multiple views of each sample

(including flips, rotations, and color perturbations) were generated

and their predictions averaged, in order to further improve the

stability of the evaluation process.
2.2 Introduction to the MobileNetV3 Small
network architecture

Google unveiled MobileNetV3, a small and effective deep neural

system designed for situations with limited resources like embedded

and mobile gadgets in 2019 (Wang et al., 2020). The architectural

principles of MobileNetV1 and V2 are extended and refined in

MobileNetV3 Small, which is specifically designed for mobile

scenarios with limited processing resources (Zhao and Wang,

2022). Owing to its compact structural design and favorable

balance between accuracy and efficiency, MobileNetV3 Small

emerges as a highly competitive candidate among various
TABLE 1 Proportional split of potato leaf dataset.

Split Healthy Early blight Late blight Fungi Virus Sum

Train 800 800 800 608 800 3808

Validation 100 100 100 70 100 470

Test 100 100 100 70 100 470
FIGURE 1

Sample images of potato leaf diseases. (A) Healthy, (B) Early Blight, (C) Late Blight, (D) Fungi, (E) Virus.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1656731
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1656731
lightweight neural network models. The Small version of

MobileNetV3 is particularly well-suited for deployment on end

devices that have limited computational power and are subject to

power consumption constraints. Compared to its Large

counterpart, MobileNetV3 Small exhibits significant advantages in

terms of model size and inference time (Qian et al., 2021). In the

context of engineering deployment, MobileNetV3 Small offers

greater flexibility and convenience. Unlike other lightweight

networks such as ShuffleNet, EfficientNet, or Tiny-YOLO

(Redmon and Farhadi, 2017) (Redmon and Farhadi, 2018), it

maintains a robust capability for image feature extraction while

effectively compressing the number of parameters.

The task of crop disease detection necessitates a model capable

of real-time operation on mobile terminals or edge devices, in
Frontiers in Plant Science 05
addition to possessing robust identification capabilities (Jiang and

Li, 2020). As illustrated in Figure 3, MobileNetV3 Small is selected

as the underlying network architecture in this study. This choice is

primarily driven by the actual deployment environment, which

predominantly consists of field sites where devices often face

challenges such as limited computational power, insufficient

power supply, and stringent response time requirements.

The MobileNetV3 Small model employs a lightweight deep

neural network architecture. It begins with an input image of size

224×224×3. A 3×3 convolutional layer is first applied for feature

extraction and downsampling, reducing the resolution to

112×112×16. This is followed by 11 sequentially stacked Inverted

Residual Bottleneck modules. These modules use different

convolutional kernel sizes, such as 3×3 and 5×5, depending on
FIGURE 2

Data augmentation results. (A) Original, (B) RandomResizedCrop, (C) RandomHorizontalFlip, (D) ColorJitter, (E) RandomRotation, (F) RandomAffine,
(G) RandomErasing, (H) Combined1, (I) Combined2.
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the stage. They apply varying channel expansion ratios. Each

module may also incorporate the SE attention mechanism and

use either the ReLU or HSwish activation function. During the

process, the feature map is gradually reduced to a size of 7×7×96. A

1×1 convolution is then applied to expand the channels to 576.

Global average pooling is used to summarize spatial features. A

feature projection layer, also using 1×1 convolution, generates a

1024-dimensional vector. Finally, a fully connected layer produces

the classification results. This structure is well-suited for image

recognition tasks on mobile and edge devices, as it balances model

accuracy with computational efficiency.
2.3 The LDL-MobileNetV3S classification
model for potato leaf diseases

Despite its good lightweight qualities for mobile deployment

and edge computing capabilities, MobileNetV3 Small still has

certain limitations when it comes to processing images of potato

leaf disease in complex agricultural settings. For instance, the model

is weak in capturing local fine-grained lesion features due to its

insufficient feature expression capabilities, which reduces overall

classification accuracy. Potato diseases manifest in real photos in a

variety of forms and sizes, and the design’s limited capacity to adapt

to illnesses at various scales makes it difficult to establish an efficient

multi-scale feature distribution, thereby lowering recognition
Frontiers in Plant Science 06
performance. Lastly, due to the model’s lack of a mechanism to

focus on particular locations, it can be challenging to accurately

reference the distinct features of the diseased space, this is

vulnerable to confusion between categories.

To overcome the stated limitations, this work presents a

lightweight architecture that extends MobileNetV3 Small through

targeted structural modifications. The improved MobileNetV3

Small model uses standard convolution and multi-layer

Bottleneck blocks to extract features. It integrates the Dynamic

Dilated Convolution module to enhance multi-scale perception and

adds the Lite Fusion module to fuse high-level and low-level

features, improving spatial detail representation. The Lightweight

Attention module then highlights key information. Finally, global

pooling, feature projection, and fully connected layers complete the

classification. This design boosts recognition accuracy and feature

expression while keeping the model lightweight. Figure 4 shows the

entire workflow.

Three specialized enhancement modules are proposed and

incorporated at critical points within the backbone feature

extraction stage.

a. Lite Fusion module

To extract information from high-resolution shallow features,

the module Lite Fusion is inserted after layers 8, 9, and 10 of the

Inverted Residual Bottleneck. These features are channel-enhanced

by the SE attention mechanism, downsampled by a 1×1

convolution, and then concatenated with the deeper features of
FIGURE 3

Architecture of the MobileNetV3S model.
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the current layer. The LiteFusion module facilitates cross-layer

feature fusion, which effectively addresses the problem of

information degradation across network layers. As a result, it

substantially enhances the model’s capability to capture fine-

grained features, thus enabling the network to more accurately

localize and classify small lesions (Chen et al., 2018) (Lin

et al., 2017).

b. Dynamic Dilated Convolution module

In the 4th and 5th Inverted Residual Bottleneck, the standard

Depthwise Convolution is replaced with Dynamic Dilated

Convolution. This module creates three convolution branches

with varying dilation rates (1, 3, and 5) and combines their

outputs using attention-based weighting for dynamic receptive

field modeling. The DynamicDilatedConv module integrates the

principles of Dilated Convolution (Yu and Koltun, 2015) and

Dynamic Convolution mechanisms (Chen et al., 2020). It

adaptively adjusts the receptive field size to capture lesion features

at varying scales. This design significantly enhances the model’s

ability to identify diverse lesion regions in complex agricultural

images. It is particularly effective for detecting lesions with blurred

boundaries, small sizes, irregular shapes, or varying diffusion

patterns. The dynamic adaptation mechanism allows the model to

better address common challenges in real-world scenarios, such as

scale variation and uneven lesion spread.

c. Lightweight Attention module

To improve the model’s localization and recognition accuracy

under complex backgrounds, insert Lightweight Attention after the

last Inverted Residual Bottleneck. This module divides the feature
Frontiers in Plant Science 07
map into multiple fixed windows and applies the QKV self-

attention mechanism within each window to highlight the

diseased spot region and enhance the local structure

modeling ability.

Lastly, the classifier module receives the enhanced higher-order

semantic features. The module employs Softmax to classify five

different potato leaf conditions and consists of Global Average

Pooling (GAP), a Dropout Layer, and a Fully Connected Layer.

Utilizing the model parameters presented in Table 2.

Experimental evaluation was performed using a specialized image

set focused on potato leaf pathology.

2.3.1 Lite Fusion
Using the concept of Feature Pyramid Network (FPN) and

merging the properties of MobileNetV3 Small lightweight structure,

this study proposes a feasible LF fusion proximity.

In the disease recognition task, the design of the LF module is

critical to boost the functionality of models. It receives low-

resolution features from deeper layers, which contain rich

semantic information, and high-resolution features from

shallower layers, which preserve edge and texture details. The

structure is illustrated in Figure 5. To reduce computational costs

and match dimensionality, the module first applies channel

compression to the high-resolution features using a 1×1

convolution. These characteristics are then weighted using the

channel’s focus approach. After that, the high-resolution feature

maps undergo bilinear interpolation downsampling to match the

size of the low-resolution feature maps. Ultimately, the fused multi-
FIGURE 4

Architecture of the LDL-MobileNetV3S model.
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scale semantic features are produced by concatenating the low-

resolution features with the compressed high-resolution features in

the channel dimension.

The module combines the low-resolution and high-resolution

feature maps, enabling the model to make use of either worldwide

and local semantic data to better identify the characteristics of

potato leaf diseases. Its precise calculation procedure is as follows:

The high-resolution feature map X ∈ RB�C�H�W is first

supplied into the SE module, where B denotes batch size, C for

channel count, and H×W for input feature map spatial dimensions

(W stands for width, and H for height). The channel attention

method primarily uses the feature vector X, which is computed as

shown by (Equations 1–3), to reduce the unimportant inputs in

order to improve the expression of the traits and concentrate on

more of the important feature channels.

Sc =
1

H �Wo
H

i=1
o
W

j=1
Xc(i, j) (1)

ec = s(W2d (W1Sc)) (2)

X  0
c = ec · Xc (3)
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With Sc standing for the Squeeze output result for the c-th

channel, which represents the response strength of the global

average for that channel, (Equation 1) determines the average

value for each channel by global average pooling. The intrinsic

value of the c-th channel of the given input characteristic map at

spatial point (i,j) is denoted by the symbol Xc(i,j). (Equation 2)

dynamically learns the weights of each channel, where ec is the

channel attention weight, W1 is the dimensional reduction FC,

which serves to minimize computational effort, W2 is the

dimensional enhancement FC, which restores the original

dimensional, d is the function that activates the ReLU, while s is

the Sigmoid normalization. Channel weighting is shown in

(Equation 3) to improve the response of the key channels.

Second, 1×1 convolution’s channel compression improves

cross-channel information interaction while lowering

computation. (Equations 4, 5), respectively, display the

computation channel-by-channel formulas and the total

convolution operation:

X  0 = W*X (4)

X  0
c0 =o

c

c=1
Wc0 ,cXc (5)
TABLE 2 Parameter settings of the LDL-MobileNetV3S model.

Input size Operation Expsize Output channels ICA/SE Activation Stride

224×224×3 Conv2d, 3×3 – 16 – HSwish 2

112×112×16 Bottleneck, 3×3 16 16 ✓ ReLU 2

56×56×16 Bottleneck, 3×3 72 24 – ReLU 2

28×28×24 Bottleneck, 3×3 88 24 ✓ ReLU 1

28×28×24 Bottleneck (DynamicDilated), 5×5 96 40 ✓ HSwish 2

14×14×40 Bottleneck (DynamicDilated), 5×5 240 40 ✓ HSwish 1

14×14×40 Bottleneck, 5×5 240 40 ✓ HSwish 1

14×14×40 Bottleneck, 5×5 120 48 ✓ HSwish 1

14×14×48 Bottleneck, 5×5 144 48 ✓ HSwish 1

14×14×48 Bottleneck, 5×5 288 96 ✓ HSwish 2

7×7×96 Bottleneck, 5×5 576 96 ✓ HSwish 1

7×7×96 Bottleneck, 5×5 576 96 ✓ HSwish 1

– LiteFusion Module #1 – +Concat ✓ HSwish Upsample×2

– LiteFusion Module #2 – +Concat ✓ HSwish Upsample×2

– LiteFusion Module #3 – +Concat ✓ HSwish Upsample×2

7×7×96 Lightweight Attention – 96 ✓ HSwish –

7×7×96 Conv2d, 1×1 – 576 – HSwish 1

7×7×576 Adaptive Avg Pool – 576 – – –

1×1×576 1×1 Conv (Feature projection) – 1024 – HSwish –

1×1×1024 Dropout (p=0.2) – 1024 – – –

1×1×1024 Fully Connected – num_classes – Softmax –
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where Wc0 ,c is the scalar weight in the weight matrix that joins

the input channel c to the output channel c0, and X  0
c0 indicates the c

0

channel in the consequence feature vector.

Since the size of the high resolution feature differs from that of

the trait of low resolution, the high resolution feature is

downsampled, and its spatial dimension is changed to match that

of the functionality for low resolution, per (Equation 6):

X 00(i, j) =o o Wm,nX
0(m, n) (6)

The feature map X } is the result of channel compression, and

the bilinear interpolation weights are Wm,n. One of the parameter-

free operations, bilinear interpolation may successfully decrease the

amount of data on location lost and offers the benefits of easy

implementation, quick computation and a smooth transition.

Lastly, channel dimension splicing is performed, and Table 3

displays the splicing dimensions. After channel compression and

downsampling, the fused features contain both low-resolution and
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high-resolution features. The spliced features can then be fed into

the deep network for higher-level learning to improve the multi-

scale feature identification capabilities.
2.3.2 Dynamic Dilated Convolution
In deep learning tasks for image classification and target

detection, CNNs typically perform feature extraction from input

images using a fixed-size convolution kernel. However, the

convolution structure with fixed receptive fields has limitations in

handling visual targets with significant scale variations. This is

particularly evident in the task of detecting crop diseases in complex

backgrounds, where lesions vary greatly in morphology, size, and

density. A single-scale convolution kernel finds it difficult to strike a

balance between broad semantic details and local specifics, therefore

hurting the system’s precision and resilience.

DDC is an effective method to enhance the receptive field

modeling capability of CNNs. Traditional dilated convolution
TABLE 3 Input and output dimensions of the LF modules in the LDL-MobileNetV3S model.

Module name Insertion position High-resolution input Low-resolution input Output of fused features

LiteFusion1 After 8th Bottleneck (48, 14, 14) (40, 14, 14) (64, 14, 14)

LiteFusion2 After 9th Bottleneck (48, 14, 14) (96, 14, 14) (96, 14, 14)

LiteFusion3 After 10th Bottleneck (96, 7, 7) (96, 7, 7) (144, 7, 7)
FIGURE 5

Structural flow diagram of the LF module in the LDL-MobileNetV3S model.
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expands the receptive field by introducing interval expansion in the

convolution kernel to obtain more contextual information without

increasing the number of parameters. However, its fixed-dilation-

rate design lacks flexibility to accommodate different scale

objectives. DDC dynamically adjusts the range of receptive field

response by modeling the feature map at multiple scales using

multiple convolution kernels with different dilation rates in parallel

and implementing a channel attention system to adapted weight

each branch’s outputs for fusion, as shown in Figure 6 below.

This strategy effectively distinguishes similar disorders, like

early blight (sharp edges) and late blight (fuzzy edges), in the

early stage and improves detection performance in complex

scenarios such as blurred spot contours and variable scales. The

precise method of calculation will be as follows:

Before calculating the channel attention, the features X (B, C, H,

W) are first input into the DDC for feature extraction. The channel

attention mechanism uses global information to adaptively assign

weights with varying expansion rates by computing the global

average pooling (GAP). This allows the network to dynamically

modify the receptive field according to an input picture. The

formulas are given in (Equations 7, 8):

Fgap =
1

H �Wo
H

i=1
o
W

j=1
X(i, j) (7)

W = Softmax(Linear(Fgap)) (8)

Then, employing multiple expansion rates d (e.g., 1, 3, 5) for the

extraction of attributes at various scales, several parallel 3 × 3

depth-separable convolutions are built, which helps capture

more discriminative patterns in affected zones, thereby enhancing

the model’s decision-making ability. The formula is shown in

(Equation 9):

Fi = X*Ki (9)

where di is a convolution kernel that measures 3 × 3 and Ki is

the expansion rate; each channel is calculated manually to avert

over-computing.

The final feature Fout(B, C, H, W), which aggregates local and

global data to enhance the robustness of illness diagnosis, is then

produced using dynamic weighted summation. The formula for the
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calculation is displayed in (Equation 10):

Fout =o
N

i=1
Wi · Fi (10)

With Wi representing the attention weight and Fi representing

the output of several expansion rate convolutions.

In an effort to improve the accuracy of detecting potato diseases,

this module can broaden the model’s field of perception to

concentrate on both local and global disease aspects. Table 4

depicts the precise insertion positions as well as the input and

output dimensions.

2.3.3 Lightweight Attention
Computer vision applications including target recognition,

image segmentation and image classification have made extensive

use of the attention mechanism in deep learning models (Ghaffarian

et al., 2021). Specifically, the image’s global dependencies might be

better captured by the system for self-attention by modeling the

correlation between various locations within the features, which

improves the model’s feature extraction and image recognition (Hu

et al., 2023).

The typical self-attention structure offers multiple advantages

when it comes to modeling global information. However, its

application in mobile and edge devices is complicated by its high

computational cost and numerous parameters. More lightweight

and real-time models are needed for disease detection systems in

agricultural contexts, they usually run on hardware with little

computing power (like drones, farm terminals, or mobile

devices). Therefore, the current study introduces a lightweight LA

module at the backend of the MobileNetV3 Small model. This

module increases the potential of the network to concentrate on sick

regions without significantly increasing the model’s computational

load, as depicted in Figure 7.

This module expands the capacity of the model to localize the

target spots and suppress irrelevant backgrounds through mutual

feature modeling and local window partitioning. As a result, it

enhances the overall classification accuracy and robustness. The

following is the precise formulating process:

Split the input feature X ∈ RB�C�H�W into a P×P patch: X →

Xpatche ∈ RB�C�H
P�P�W

P �P . Next , the reorganization of the
FIGURE 6

Structural flow diagram of the DDC module in the LDL-MobileNetV3S model.
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dimensions: Xpatch → Xflat ∈ R(B�H
P�W

P )�C�P�P , In this manner, each

patch can be calculated separately.

The Query, Key, and Value (QKV) representations are

generated using a shared 1×1 convolution, and the output is

subsequently split into three separate components. Query and

transposed key scaling and matrix multiplication are used for

calculating the attention score. Softmax normalization is then

used to obtain the attention weights in (Equation 11):

Attention(Q,K) = Softmax(
QKT

ffiffiffiffi

C
p ) (11)

After calculating the final feature Xattn = Attention × V, Value is

weighted and added to the weights that were determined in order to

accomplish feature aggregation. The original size of the feature map

is then restored through transpose and reshape operations. Finally,
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using a convolution with a 1x1 projection to produce an output with

the same spatial dimensions as the input. Through parameter

sharing and localized attention methods, the module drastically

decreases computational complexity while still preserving the

attention mechanism’s primary benefits that are making it

suitable for effective integration into CNN systems.
2.4 Model evaluation metrics

The effectiveness of the modified LDL-MobileNetV3S model in

the potato leaf disease classification task is quantitatively analyzed

in this paper using a range of evaluation metrics, including

incorporating standard classification measures like F1-score,

Accuracy, Precision, and Recall. These measurements are
FIGURE 7

Structural flow diagram of the LA module in the LDL-MobileNetV3S model.
TABLE 4 Input and output dimensions of the DDC module in the LDL-MobileNetV3S model.

Insertion position Input X GAP output FC + softmax output 3×3 conv output Output after fusion

Level 4 (B, 96, 28, 28) (B, 96, 1, 1) (B, 3) (B, 96, 28, 28) (B, 96, 28, 28)

Level 5 (B, 160, 28, 28) (B, 160, 1, 1) (B, 3) (B, 160, 28, 28) (B, 160, 28, 28)
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employed to meticulously and impartially assess the system’s

functionality. Additionally, a confusion matrix is employed for

fine-grained misclassification analysis, with the goal of offering a

thorough summary of the efficiency of the model on both a general

and specific level. The following are the formulas and meanings of

these metrics:

From the perspective of classification modeling, accuracy is a

frequently utilized measure for assessment. It indicates the

proportion of samples that have been correctly classified out of

the entire sample population. The computational process is defined

in (Equation 12):

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

In this context, the term TP (True Positives) denotes the

quantity of samples that the model accurately classified as

diseased. The total quantity sample size that the model reliably

classified as healthy leaves is known as TN (True Negatives). A

sample’s FP (False Positives) reflects the number of instances where

healthy leaves were mistakenly identified as diseased by the model.

And FN (False Negatives) is the quantity of samples in which the

model incorrectly categorized diseased leaves as either healthy or

falling into a different group.

The precision rate, which indicates the percentage of

genuine diseased leaves among all the leaves predicted to be

infected by a certain disease, calculates the percentage of samples

in a given category that the model actually predicts to be positive.

(Equation 13) shows the formula for calculating precision.

Precision =
TP

TP + FP
(13)

For disease control, high precision in disease detection tasks

means that the model is less likely to generate false alarms when

predicting a specific disease. This is of symbolic significance, as it

indicates that fewer healthy leaves are incorrectly recognized

as infected.

Recall is the percentage of all leaves that are truly plagued with a

particular condition and are correctly identified, indicating the

model’s capacity to detect diseased leaves. (Equation 14) presents

its computation formula:
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Recall =
TP

TP + FN
(14)

Enhancing the recall rate is crucial for obtaining early warnings

and implementing precise disease prevention. It is an essential

factor in ensuring agricultural safety and promoting the

development of smart agriculture. The level of the recall rate

directly affects the detection coverage of diseases.

The F1-score, regarded as the equilibrium value of recall

and precision, serves as a comprehensive tool to evaluate how

well these two measures are balanced. Its calculation is provided in

(Equation 15):

F1 − score = 2� Precision� Recall
Precision + Recall

(15)

Within this research, when assessing the enhanced MobileNetV3

Small model’s functionality, we emphasized not only classification

accuracy but also the F1-score. This dual focus ensures that the model

minimizes the misclassification of healthy leaves as diseased while

maximizing the detection of all diseased leaves in practical

applications. The ultimate goal is to provide efficient and reliable

support for disease identification, prevention, and control.
3 Results and analysis

3.1 Ablation study

This study was implemented using the following computational

and software resources: an Intel(R) Core(TM) i5-8300H CPU

operating at 2.30 GHz, equipped with 32 GB of DDR4–2667

compute memory, running on a 64-bit Microsoft Windows 10

operating system. The model building and training were performed

using the PyTorch 2.6.0+cpu deep learning framework within a Python

3.11 environment. This paper’s ablation studies are intended to confirm

the efficacy of the LF, DDC, and LAmodules forMobileNetV3 Small in

potato leaf disease detection tasks. The standard MobileNetV3 Small

(S0) is used as the baseline model. Based on this, different improvement

modules are introduced respectively, and each one module’s effect on

the model’s functionality is examined. Table 5 displays the findings of

the experiment.
TABLE 5 Ablation study results of the LDL-MobileNetV3S model.

Schema Base LF DDC L Loss Accuracy/% Precision/% Recall/% F1 score/%

S0 ✓ 0.279 88.51 87.17 86.64 86.57

S1 ✓ ✓ 0.022 90.21 89.63 89.28 89.19

S2 ✓ ✓ 0.022 90.64 89.93 89.38 89.41

S3 ✓ ✓ 0.022 90.85 90.11 89.66 89.61

S4 ✓ ✓ ✓ 0.023 89.36 88.60 88.23 88.13

S5 ✓ ✓ ✓ 0.021 91.06 89.89 89.67 89.65

S6 ✓ ✓ ✓ 0.022 93.40 93.25 92.29 92.51

S7 ✓ ✓ ✓ ✓ 0.020 94.89 93.54 92.53 92.77
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The baseline scenario (S0) obtained an F1 score of 86.57%, an

accuracy of 88.51%, and a loss value of 0.279 on the test set using the

MobileNetV3 Small model for potato leaf disease detection without

any improvement modules. This suggests that the standard

MobileNetV3 Small is still effective for extracting disease features

in this task, but there is room for improvement. To ascertain how

each part affects the model’s functionality, this study adds the LF,

DDC, and LA modules to the baseline model for testing. The LF

module in S1 (S0 + LF) aims to maximize the recognition ability of

disease areas at various scales and improve the information

interaction across different feature layers. The verification results

show that the module increases the accuracy to 90.21%, the F1 score

to 89.19%, and reduces the loss value to 0.022. This indicates that LF

can significantly enhance the model’s feature extraction capabilities.

By dynamically modifying the accepting field of widened

convolution, the DDC module in configuration S2 (S0 + DDC)

improves the strategy’s capacity to adapt to varying sick section

sizes. The experimental results demonstrate the success of DDC in

capturing multi-scale disease characteristics, with the module

increasing the accuracy to 90.64%, the F1 score to 89.41%, and

reducing the loss value to 0.022. The LA module in S3 (S0 + LA)

reduces computational overhead while enhancing the method’s

focus on the disease region. The experimental results confirm the

module’s key role in disease identification, showing that it improves

the accuracy to 90.85%, the F1 score to 89.61%, and reduces the loss

value to 0.022.

This article evaluates the performance of multi-module

combinations to further analyze the synergies between various

modules. By incorporating the LF and LA modules, S4 (S0 + LF +

LA) improves accuracy to 89.36%, the F1 score to 88.13%, and

reduces the loss value to 0.023. The above results show that there is

still room for development in this combination’s feature extraction

capabilities. When the LF and DDC modules are combined in S5

(S0 + LF + DDC), the accuracy increases to 91.06%, the F1 score

improves to 89.65%, and the loss value drops to 0.021. This

demonstrates that this combination can effectively enhance the

model’s adaptability to the disease area. S6 (S0 + DDC + LA)

combines the DDC and LA modules and achieves significant

improvement in most metrics, with 93.40% accuracy, 92.51% F1

score and a loss value of 0.022. This suggests that DDC and LA have

a strong complementary effect that can help improve the model’s

feature extraction capability. Based on the S6 scheme, S7 (S0 + LF +

DDC + LA) adds the LF module. The outcomes of the studies

demonstrate that this plan performed the best across the board,

with an accuracy of 94.89%, an F1 score of 92.77%, and a loss value

of 0.020. This indicates that the integration of all three modules can

improve classification performance, reduce the loss value, and

significantly enhance the ability to detect potato leaf disease.

Based on findings of the experiment, adding the LF, DDC, and

LA modules individually can improve the disease detection

performance of MobileNetV3 Small. The DDC module shows the

most significant improvement, indicating that the DDC

enhancement method can more effectively increase the model’s
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adaptability to disease areas at various scales. By merging several

modules, the model’s efficacy can be further enhanced; in particular,

S6 demonstrates a significant improvement, suggesting that the

combination of DDC and LA can greatly enhance the approach’s

capabilities to sense multi-scale signals and focus on disease areas.

The fact that S7 achieved the highest accuracy shows that

integrating different components optimizes their individual

benefits, enabling the model to increase classification accuracy

while maintaining low computational complexity and offering a

superior solution for mobile deployment. When combined, the

enhanced approach presented in this paper is capable of improving

MobileNetV3 Small’s detection capacity in the task of detecting

potato leaf disease, enhancing its feature extraction capabilities, and

providing an effective solution for the intelligent diagnosis of potato

diseases while preserving low computational complexity.
3.2 Model effectiveness verification

3.2.1 Confusion matrix
To assess the recognition characteristics of the LDL-MobileNetV3S

model for various types of potato leaf diseases, a confusion matrix

diagramwas created to illustrate the model’s prediction performance in

a multi-category classification task, as shown in Figure 8. The values

along the main diagonal of the confusion matrix represent the

percentage of samples that were correctly classified. The model’s

comprehension of the category improved with a greater value.

Conversely, the off-diagonal values indicate the number of samples

that were misclassified as other categories, which can reflect the degree

of confusion between categories.

3.2.2 Recognition performance for different
disease types

To evaluate the effectiveness of the proposed LDL-

MobileNetV3S model in recognizing potato leaf diseases, the

trained model was tested on a designated test set. The accuracy,

precision, and recall for each disease category—including Early

Blight, Late Blight, Healthy, Virus, and Fungi—were calculated to

comprehensively evaluate the performance of the model. The model

performed satisfactorily in identifying the majority of potato leaf

diseases. With an accuracy of 94.89%, it accurately categorized 446

out of the 470 test samples. Table 6 displays the comprehensive

experimental findings.

3.2.3 Heatmap visualization
In this study, the LDL-MobileNetV3S model is utilized to

construct feature maps of disease images, and Softmax is

employed to classify diseases. To examine the impact of various

disease areas on the model’s classification results, which are difficult

to intuitively understand based solely on the classification results,

this paper employs the Grad-CAM (Gradient-weighted Class

Activation Mapping) (Selvaraju et al., 2017) technique to visualize

the model’s final layer of feature mapping. A selection of potato leaf
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disease images was chosen for the experiment, and the outcomes are

seen in Figure 9. In the illustration, different regions are colored

separately; the closer a hue is to the red area, the more strongly it

correlates with the disease data.

Both the MobileNetV3 Small model and the LDL-

MobileNetV3S model can focus on the disease area, as shown in

Figure 9. However, for small and dispersed lesions such as leaf spot

and early blight, the MobileNetV3 Small model is prone to losing

some disease information during the feature transformation

process. This results in less precise attention to critical disease

locations due to its channel attention mechanism’s inability to

effectively integrate spatial information to enhance feature

representation; even some non-diseased areas received higher

response values. On the other hand, the LDL-MobileNetV3S

model employs the LF mechanism within the Bottleneck structure

to improve multi-scale feature fusion. It also uses DDC to adapt to

disease features at various scales, and incorporates the LA module

to help the model better focus on disease areas. As a result, the

model avoids misclassifying irrelevant areas and generates a more

accurate response with more concentrated disease areas in the

Grad-CAM heatmaps.

In summary, the LDL-MobileNetV3S model presented in this

paper can greatly increase the model’s accuracy and recognition

performance while more precisely concentrating on the key

components of potato leaf diseases.
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3.3 Comparison of different lightweight
models

The aim of this research was to undertake a systematic

comparative experiments to assess the efficacy of the proposed

LDL-MobileNetV3S model in potato leaf disease detection tasks.

This model was compared side by side with popular lightweight and

medium complexity convolutional neural network architectures,

such as ResNet18 (He et al., 2016), MobileVit (Mehta and Rastegari,

2021), MobileNetV3 (small and large versions), ShuffleNetV2 (Ma

et al., 2018), ConvNeXt Tiny (Liu et al., 2022b) and EfficientNet-B0

(Tan and Le, 2019). Each model was trained using the same

preprocessing procedure and training strategy on a consistent

dataset. Performance metrics such as Loss, Accuracy, Precision,

Recall, F1 Score, Model Size, and Parameters were evaluated on the

test set. Table 7 presents the findings from the contrasting studies.

Table 7 shows that classical lightweight models, including

ShuffleNetV2 and MobileNetV3 Small, have previously

demonstrated strong accuracy, reaching 88.08% and 90.05%,

respectively. However, the accuracy of the LDL-MobileNetV3S

model has increased to 94.89%, the highest among all the models

studied and compared. This is in contrast to EfficientNet-B0

(93.23%) and MobileNetV3 Large (89.19%), suggesting that the

three strategies—LF, DDC, and LA—suggested in the present study

greatly enhance the model’s capacity to recognize complex

illness characteristics.

During the model’s training and testing phases, the Loss value

shows the degree of inaccuracy between the actual labels and the

predicted outcomes. Compared to the original MobileNetV3 Small

(0.218) and ShuffleNetV2 (0.247), the enhanced LDL-

MobileNetV3S model achieves the lowest Loss on the test set, at

0.020. Even in terms of loss rate, it outperforms EfficientNet-B0

(0.023), demonstrating better generalization and convergence. This

is attributed to the DDC module, which directs the model to more

effectively focus on important disease regions while preventing

overfitting issues.
TABLE 6 Test results for different disease types.

Category Accuracy/% Precision/% Recall ratio/%

Early Blight 100.00 100.00 100.00

Fungi 90.00 91.30 90.63

Healthy 95.96 96.13 96.02

Virus 95.00 95.95 95.47

Late Blight 93.94 92.08 93.17
FIGURE 8

Confusion matrix for the LDL-MobileNetV3S model on the validation set. (A) MobileNetV3S, (B) LDL-MobileNetV3S.
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In terms of Precision and Recall, the proposed model achieved

93.54% and 92.53%, respectively, indicating a well-balanced

performance between detection accuracy and coverage. Notably,

the model attained an F1 Score of 92.77%, surpassing performance-

optimized models such as EfficientNet-B0 (92.20%) and ConvNeXt

Tiny (91.77%), further demonstrating its superiority in

comprehensive detection capability.

Depending on the model size and quantity of parameters, the

study’s suggested model still maintains a high degree of lightness.

While ensuring a significant increase in performance, its model size

is only 6.17MB and the number of parameters is 1.509M, which is

slightly higher than that of the original MobileNetV3 Small

(5.94MB, 1.45M) but much smaller than that of models such as
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ResNet18, EfficientNet-B0 and ConvNeXt Tiny. As a consequence,

this model is highly suitable for resource-constrained mobile

terminals and smart detection scenarios in agricultural fields, and

it has excellent adaptability for edge deployment. Notably, while

maintaining about the same quantity of parameters as the first

model, the improved model’s accuracy increased from 88.08% to

94.89%, and its F1 Score increased by nearly 6.2% due to structural

optimization. This suggests that structural innovations are more

benefic i a l f o r r ea l -wor ld app l i c a t i ons than s imp ly

stacking parameters.

Figures 10, 11 shows the convergence and classification

performance of each model during training. It is evident that the

LDL-MobileNetV3S model can efficiently learn features from the
TABLE 7 Experimental results of different comparative models.

Model Loss Accuracy/% Precision/% Recall/% F1 score/% Model size/MB Params/M

Mobile Vit 0.717 77.95 78.32 77.55 76.34 5.77 1.37

ResNet18 0.468 81.58 80.84 80.87 79.89 18.34 20.30

MobileNetV3 Small 0.218 88.08 87.17 86.64 86.57 5.94 1.45

MobileNetV3 Large 0.014 89.19 89.10 88.59 88.29 16.25 4.01

ShuffleNetV2 0.247 90.05 89.04 89.18 88.28 8.97 1.20

ConvNeXt Tiny 0.343 91.72 92.02 91.72 91.77 106 27.80

EfficientNet-B0 0.023 93.23 92.86 92.04 92.20 15.61 3.83

LDL-MobileNetV3S 0.020 94.89 93.54 92.53 92.77 6.17 1.50
The bold row indicates the parameter values of the optimized LDL-MobileNetV3S model.
FIGURE 9

Heatmap visualization of the model. Rows from top to bottom: Original , MobileNetV3S, LDL-MobileNetV3S. Columns from left to right: (A) Early
Blight, (B) Late Blight, (C) Fungi, (D) Virus.
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data and converge rapidly, as shown by the low loss values during

training and the rapid decline in the early stages of training. The loss

curve of the current model shows more consistent and lower loss

values throughout training compared to previous models (such as

MobileViT and ResNet18), indicating that it is more adept at

optimizing model parameters. Additionally, the model

outperforms previous network architectures in terms of accuracy

on the test set, demonstrating a quicker rate of accuracy

improvement in the early training phases and ultimately

stabilizing at approximately 94.89% at 100 epochs. In contrast,

other models, including MobileViT and ResNet18, exhibit slower

accuracy growth and lower final accuracy.
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The high accuracy of the LDL-MobileNetV3S model is

attributed to its lightweight architecture combined with the LF

and DDC modules, which enable the model to more effectively

capture disease features at multiple scales. In comparison, although

EfficientNet-B0 and ShuffleNetV2 also demonstrate relatively

strong performance, their final accuracy is lower than that of the

LDL-MobileNetV3S model.

In conclusion, the enhanced model suggested in this study’s

findings achieves optimal recognition performance while preserving

its lightweight characteristics. In the context of crop disease detection,

its strong capability in modeling multi-scale lesion regions and its

effective attention-based feature selection mechanism are key
FIGURE 11

Accuracy curves of different models.
FIGURE 10

Loss curves of different models.
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contributors to the performance improvement. In contrast, although

EfficientNet-B0 and ShuffleNetV2 also perform well, their final

accuracy is not as high as that of the LDL-MobileNetV3S model.
4 Discussion

4.1 Impact of different improvement
modules on model performance

To enhance the model’s ability to identify diverse lesion

patterns in potato leaves across both controlled and field

environments, the LDL-MobileNetV3S model integrates three

novel modules: LF, DDC, and LA. The study examines the extent

to which each module contributes to the overall performance

improvement by progressively introducing the ablation

experiments of the aforementioned modules, as shown in Table 5.

This provides a quantitative basis for model structure optimization.

In particular, the LF module enhances the synergy between

shallow fine-grained texture information and deep semantic

information by combining feature maps at various levels. This

improves the model’s ability to distinguish fine-grained lesion

patterns even in complex backgrounds typical of field

environments. The DDC module incorporates a learnable dilated

convolution structure featuring multiple dilation rates. This structure

can dynamically modify the receptive field in response to the

distribution and shape of the diseased regions within the input

image. This allows for the acquisition of richer information while

maintaining resolution, significantly boosting the model’s robustness

and generalization capabilities, and improving the recognition of

diseased patches with complex shapes or fuzzy boundaries. To assist

the model in concentrating on crucial regions of the image, the LA

module uses a simple spatial concentration function, such as the

disease region. This effectively suppresses background interference,

increases the capacity of the model to perceive spatial distribution,

and increases classification stability and accuracy.

Keeping the computational cost and parameter size of the model

minimal, the three modules together enhance the model’s feature

extraction and discrimination capabilities at various levels. In the final

model (S7), which integrates all the modules, the accuracy rate

reaches 94.89%, and the F1 score is 92.77%. This represents the

best performance among all the experimental schemes and

definitively confirms the efficacy of each structural modification.
4.2 Comparative analysis with mainstream
lightweight models

To verify that the improved model is superior, this study

conducted comparative trials using a range of representative

lightweight neural network models. Table 7 shows that while

EfficientNet-B0 achieves an accuracy of 93.23%, its model size is

15.61 MB with up to 3.83 MB of parameters, which is significantly

larger than the enhanced model proposed in this study. The model
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used in this work, however, keeps its level of complexity lower. (the

model size is only 6.17 MB, and the number of parameters is only

1.50 MB), better strikes an equilibrium among efficacy and

precision, and demonstrates stronger advantages in terms of

lightweighting and practicality. It achieves an accuracy of 94.89%

and an F1 score of 92.77%.

Furthermore, ShuffleNetV2, as a classical lightweight model,

attains a 90.05% accuracy rate, which is lower than the improved

model in this study across several metrics. The difference is

particularly noticeable in the F1 score and recall rate, demonstrating

that the structural improvements introduced in this study significantly

enhance the model’s recognition ability. By improving the recognition

sensitivity to multi-category disease features and optimizing overall

classification performance, the model successfully reduces the rates of

omission and misclassification.

In summary, based on a comprehensive evaluation of

recognition accuracy, computational resource consumption, and

deployment adaptability, the proposed LDL-MobileNetV3S model

demonstrates superior overall performance and is more applicable

to crop disease detection tasks. It provides a reliable technical

foundation for intelligent disease monitoring in the context of

precision agriculture.
5 Conclusions

In order to tackle the issues of complex spot morphology,

notable scale disparities, and ineffective models in potato leaf

disease image recognition, this study proposes a lightweight and

effective LDL-MobileNetV3S model. The model’s sensitivity to

small spots, robustness to diffuse and fuzzy spots, and

responsiveness to critical areas are all enhanced by the addition of

the LF, DDC, and LA modules. This creates a deep feature

extraction model that better suits the requirements of agricultural

applications. The model demonstrates superior performance

compared to other competitive models in key metrics such as

accuracy, precision, recall, and F1 score, as evidenced by its

training and validation on a heterogeneous dataset comprising

both laboratory and field natural photographs. It achieves a

favorable balance between model compactness and high

performance, maintaining a small model size and a limited

number of parameters while delivering recognition performance

comparable to that of larger networks.

Moreover, the model demonstrates excellent inference

performance in the CPU environment. The Median Latency is

18.02 ms, indicating that most inference requests are completed

within this time frame, showcasing fast real-time response

capability. The 95th Percentile Latency is 22.23 ms, which

demonstrates that the model’s inference process is highly stable

with minimal performance fluctuations, as most inference times are

below this value. The Median FPS is 55.5, meaning the model can

process approximately 56 images per second, far exceeding the 30

FPS standard for real-time video streams, confirming the model’s

strong real-time processing capability. These results collectively
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prove that the model is capable of efficient real-time inference with

high throughput on resource-constrained edge devices.

The model provides a reliable and efficient approach for the

identification of potato leaf disease images, holding promise for a

broad spectrum of potential applications. However, the validation

of its deployment in real-world application scenarios, including

mobile terminals, edge computing devices, and UAV platforms,

remains incomplete. While the study has demonstrated

commendable performance in detecting potato leaf disease,

further research is necessary to thoroughly evaluate the model’s

performance metrics, specifically in terms of response time,

resource utilization, and real-time performance when deployed on

terminal devices. Future research will focus on expanding the field

dataset to encompass multi-regional, multi-species, and multi-

seasonal scenarios, as well as deploying lightweight models in

real-world application contexts. Additionally, the development of

a multi-task model architecture will be explored to integrate disease

detection, segmentation, and severity grading into a unified

framework. This work aims to facilitate the large-scale adoption

of deep learning technologies in agricultural production and to

provide more intelligent and precise technical support for crop

disease monitoring.
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