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Background: Prunus Avium L. dormancy is a complex physiological process that

allows floral outbreaks to survive adverse winter conditions and resume favorable

spring growth. Traditional phenological evaluations and agroclimatic models,

although widely used, exhibit limited resolution and robustness over the years

and cultivars. Epigenetic mechanisms, particularly DNA methylation, have

emerged as critical regulators of dormancy transitions. However, the

integration of methylation data with automatic learning tools (ML) for

predictive modeling remains largely unexplored in perennial species. This study

presents an integrative frame that combines whole-genome bisulfite sequencing

and supervised ML to identify methylation markers at the cytosine and region

level associated with specific dormancy stages in the sweet cherry.

Methods: DNA methylation data sets from three different experiments

underwent classification using Random Forest (RF) and eXtreme Gradient

Boosting (XGBoost), complemented by SHapley Additive exPlanations (SHAP)

for interpretability. The importance of the features was evaluated using the

Integrated Model consensus in the RF, XGBoost, and SHAP metrics.

Results: The selection of features significantly improved the classification

performance in the three-stages models (paradormancy, endodormancy,

ecodormancy) and two-stages (endodormancy and ecodormancy). RF

constantly exceeded XGBoost, achieving an accuracy of up to 97.1% in the

two-stages scenario using informative cytosine level data. The SHAP analyses

demonstrated that the selected feature effectively discriminated among stages of

dormancy and revealed biologically significant epigenetic features. The key

features were distributed not random throughout the genome, often

colocalizing with transposable elements of long terminal repetition (LTR),

particularly LTR/ty3-retrotransposons and LTR/copia families. Some features

also co-localize with QTLs for chilling and heat requirement, flowering time

and maturity date previously identified.
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Conclusions: This study highlights the usefulness of combining high-resolution

methylation data with interpretable ML techniques to identify robust dormancy

biomarkers. The enrichment of the features associated with dormancy within the

transposable elements and the proximal regions of genes suggests an epigenetic

regulation through the remodeling of chromatin mediated by TE. These findings

contribute to a deeper understanding of dormancy mechanisms and offer a basis

for the development of non-destructive tools based on methylation to improve

phenological management in perennial fruit crops.
KEYWORDS

stage predictive model, epigenetics, biomarkers, Prunus avium, feature selection,
bud break
1 Introduction

Dormancy in fruit species such as cherry (Prunus avium L.) is an

essential process that synchronizes flower bud growth and

reproduction with seasonal cycles (Considine and Considine, 2016).

The bud dormancy has been classified into three widely accepted

phases: paradormancy, endodormancy, and ecodormancy, which

respond to physiological and environmental signals, allowing buds

to survive adverse winter conditions and resume development in

spring (Cline and Deppong, 1999; Considine and Considine, 2016).

The dormancy has generally been assessed using destructive

phenological assays (e.g., forcing tests; Baumgarten et al., 2021) and

agroclimatic models (chill hours, chill units, or chill portions;

Luedeling et al., 2011; Baumgarten et al., 2021). However, these

approaches have significant limitations in terms of accuracy and

interannual application due to dynamically changing environmental

conditions (Alonso-González et al., 2020). Therefore, several studies

have sought molecular biomarkers that allow more accurate, rapid,

and noninvasive monitoring of bud physiological status.

During the past decade, progress has been made in the study of

the mechanisms associated with dormancy stages in various species,

improving the general understanding of dormancy transitions in

different species (Rothkegel et al., 2017; Yang et al., 2021; Rothkegel

et al., 2020; Ding et al., 2024). These studies have revealed that

dormancy phases are regulated by DORMANCY-ASSOCIATED

MADS-box (DAM) genes, phytohormones, carbohydrates,

temperature, photoperiod, reactive oxygen species, water

deprivation, cold acclimation, and epigenetic regulation.

Particularly, DNA methylation has emerged as one of the key

epigenetic mechanisms involved in plant development and

environmental responses. In this sense, dynamic changes in

genome methylation patterns throughout the dormancy cycle,

suggesting a functional role for this epigenetic mark in determining

bud fate (Rothkegel et al., 2020; Yang et al., 2021; Kumar et al., 2016).

In this sense, Rothkegel et al. (2017) indicated that in Prunus avium L,

genome methylation patterns are one of the mechanisms that

regulate the MADS-box genes controlling bud dormancy. Similarly,
02
Kumar et al. (2016) showed that DNAmethylation has been linked to

chilling acquisition during dormancy in Malus domestica.

Additionally, high levels of DNA methylation have been observed

during the induction of endodormant floral buds in blueberry

compared to those in the ecodormant stage (Li et al., 2015), which

indicates a dynamic regulation throughout the dormancy stages.

The development of high-throughput sequencing technologies,

such as whole-genome bisulfite sequencing (WGBS), enables the

precise examination of methylation status at individual CpG sites

with high resolution (Zhou et al., 2019). However, this approach

generates highly complex and high-dimensional datasets, where the

number of features (methylated sites) far exceeds the number of

available samples. This problem, coupled with biological variability

between cultivars and climatic heterogeneity between seasons, poses

significant challenges for conventional statistical analyses and

hampers biomarker discovery and straightforward biological

interpretation (Zhang et al., 2018).

Artificial intelligence (AI)-based approaches have shown great

promise for the analysis of complex and high-dimensional molecular

data (Bzdok et al., 2018). However, one of the main limitations of

these algorithms in biology is their interpretability and identification

of biologically relevant variables. In this sense, feature selection is

essential to eliminate noisy features, improve model performance,

and optimize interpretability (Lundberg and Lee, 2017). Ensemble

learning algorithms, such as Random Forest (RF) and eXtreme

Gradient Boosting (XGBoost), have demonstrated exceptional

performance in genomic studies due to their ability to handle

noisy, imbalanced, and high-dimensional data while providing

internal feature importance metrics (Raihan et al., 2023; Peng and

Yu, 2024; Chu et al., 2024; Li et al., 2024; Zhang et al., 2024).

Furthermore, the SHapley Additive exPlanations (SHAP) method

offers a game-theoretic interpretation of each variable’s individual

contribution to model predictions (Lundberg and Lee, 2017). These

models (RF, XGB, and SHAP) have been successfully used to identify

important variables in predictive models for human diseases (Raihan

et al., 2023), agronomic traits (Zhang et al., 2024), precision

agriculture (Li et al., 2024), and seed viability (Chu et al., 2024).
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In this study, DNA methylation profiles obtained via

WGBS with supervised Machine Learning (ML) algorithms (RF

and XGB) and SHAP interpretability analyses were integrated to

identify informative cytosines and methylated regions capable of

discriminating between different dormancy stages in sweet cherry

floral buds. Classification models were constructed for two scenarios:

(i) three classes (paradormancy, endodormancy, and ecodormancy

stages) and (ii) two classes (endodormancy and ecodormancy stages).

This integrative strategy not only improves classification accuracy of

dormancy stages but also provides deeper insights into the epigenetic

mechanisms governing this process, offering potential biomarkers for

breeding programs and more precise tools for phenological

management in perennial fruit species.
2 Materials and methods

2.1 Plant material, sampling, and chilling
requirement determination under forcing
conditions

Adult (9–12-year-old) sweet cherry (Prunus avium L.) trees of

cultivars Santina and Regina were sampled from two commercial

orchards, “Morza” and “Entre Rıós”, located in the Maule and

O’Higgins regions of Chile, respectively during autumn/winter of

2022 (Experiment 3, Table 1). As experiments were performed in

growth chambers (Experiments 1 and 2, Table 1) the cold

accumulation as chilling hours was calculated according to

Weinberger (1950). To facilitate more comprehensible data

comparison labels, all chilling accumulation measurements were

transformed into chilling hours. A second experiment using Regina

cultivar was also performed. Adult (8–10-year-old) sweet cherry

‘Regina’ trees, which were part of the INIA Sweet Cherry Breeding

Program collection located at the Los Tilos Station, Metropolitan

Region of Chile were used. Samples of corresponding branches

bearing floral buds were obtained from this orchard at the

beginning of autumn 2021 (April in the Southern hemisphere)

and subjected to continuous chilling as described by Soto et al.

(2022). Briefly, the collected branches were transported to the

laboratory, disinfected, separated into lots of 4–5 branches, and

stored at 4–6 °C for progressive chilling accumulation.

Floral buds were collected from each cultivar at different chill

accumulation time points, frozen in liquid nitrogen, and transferred
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to our laboratory facilities. The dormancy status at each time point

was assessed through forcing experiments. Bud break percentages

were recorded during 14 days at 25°C under a 16/8 h day/night

photoperiod. After 14 days, the phenological status of floral buds

was scored, and the chilling requirement was considered fulfilled

when at least 50% of the buds burst (BBCH 51 stage; Fadón

et al., 2015).
2.2 Yield and quality analysis of isolated
DNA and sequencing

DNA was extracted from 100 mg of ground frozen tissue using

the DNeasy Plant Mini Kit (Qiagen) following the manufacturer’s

procedure. The DNA eluted in 50 μl of water was quantified by

Qubit DNA High Sensitivity fluorometry assay (Life Technologies).

Its integrity was evaluated on a 0.8% agarose gel. For library

preparation, a 150 bp paired-end sequencing strategy was

conducted by Novogene (USA). Library preparation and

sequencing were performed in an Illumina Novaseq System to

generate ~ 20 Gbp of data per sample.
2.3 BS-seq datasets and processing

Kordia and Royal Dawn cultivars’ raw data were retrieved from

the SRA database (PRJNA610988 and PRJNA610989). These

datasets collection and processing procedures were described by

Rothkegel et al. (2020). Raw data quality analysis was performed on

samples of Kordia (K_2015), Royal Dawn (RD_2015), Regina Los

Tilos (R_2021), Regina Morza (R_M_2022), Regina Entre Rıós

(R_E_2022) and Santina Morza (S_M_2022). Quality assessments

were performed with FastQC v0.12.1 (Andrews, 2010) software and

trimmed with Trim Galore (Krueger et al., 2016), which cuts

adaptors and improves raw data quality (Supplementary Table

S1). Clean bisulfite-treated data were then analyzed with the

Bismark software (Krueger and Andrews, 2011), then mapped to

Prunus avium Tieton v2.0 assembly as the reference genome

(Supplementary Table S2). A deduplication step was required to

remove duplicated alignments caused by excessive PCR

amplification. Then, we proceed with the methylation extraction

step to identify positions of every cytosine in the corresponding

DNA methylation context: CG, CHG, and CHH (where H is A, C,
TABLE 1 Summary of evaluated cultivars, trial locations, required chilling hours per cultivar, chilling hours sampling, and year of the trial.

Cultivar Fields Chill requirement Chill Hour (CH) sampling Year Experiment

Royal Dawn (RD) Mostazal 350–500 CH 0 – 173 – 348 – 516 2015 Experiment 1

Kordia (K) Quillota 1450–1600 CH 0 – 443 – 1295 - 1637 2015 Experiment 1

Santina (S) Morza 600–800 CH 269 - 599 - 973 - 1234 2022 Experiment 3

Regina (R)

Los Tilos 1150-1600 200 – 1160 - 1700 2021 Experiment 2

Entre Rıós (E) 770–830 CH 202 - 463 - 769 - 837 - 959 2022 Experiment 3

Morza (M) 600–800 CH 268 - 599 - 973 - 1234 2022 Experiment 3
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or T) (Supplementary Figure S1). Datasets representing methylated

cytosines and methylated genomic regions were generated following

the BS-seq Analysis Workflow (Figure 1A).

CpG coverage was used to generate a cytosine database used as

an ML algorithm input. In this database, filters were applied. For

individual cytosines, consider at least 4 reads of coverage by

cytosine and present among all samples, resulting in 716,255

cytosines. The filter applied by region was in the previously

filtered cytosines, 4 or more cytosines were looked for within bins

of 100 bp, with a gap of 100 bp between bins. This filter resulted in

69,398 regions. This filtered data was used as input for the

classification analysis, using both RF and XGBoost as machine

learning algorithms.
2.4 Classification and interpretation
methodologies for variables

Two classification algorithms (RF and XGBoost) were

employed to model the classification task. In addition, SHAP

values were used to interpret the classification models, identifying

the most informative features contributing to predictions

(Figure 1B). The SHAP-derived feature importance scores were

compared against the built-in feature importance metrics of both

XGBoost and RF enabling a comprehensive evaluation of key

features relevant to the classification task.

2.4.1 Random forest
The RF algorithm was employed in this study due to its

robustness, interpretability, and its capacity to process high-

dimensional datasets that may contain irrelevant or noisy

features. RF is an ensemble learning method that constructs a

collection of decision trees using two key sources of randomness:
Frontiers in Plant Science 04
(i) bootstrap sampling, which involves drawing random subsets of

the training data with replacement, and (ii) random feature

selection, where only a randomly chosen subset of features is

considered at each decision node when splitting. This dual

randomization strategy helps to reduce model variance and

overfitting, improving generalization (Liu et al., 2012). For

training, the original dataset is divided into in-bag samples (used

to build individual trees) and out-of-bag samples, which serve as an

internal validation set to assess model performance. Approximately

two-thirds of the data are used for training, while the remaining

third is reserved for out-of-bag error estimation, which provides an

unbiased measure of predictive accuracy (Kavzoglu and Teke,

2022). Each decision tree in the ensemble outputs a class

prediction, and the RF model aggregates these results to

determine the final classification. This aggregation is done using a

majority voting mechanism, formally defined as (Breiman, 1996):

H(x) = argarg  o
k

i=1
I(hi(x) = Y)

where H(x) is the final prediction of the RF model for instance x,

hi(x) is the prediction of the i-th decision tree, I is the indicator

function, andY represents a class label. This voting scheme ensures that

the final decision reflects the consensus of the ensemble. In addition to

its predictive capabilities, RF also provides an intrinsic measure of

feature importance. The Gini index measures the decrease in node

impurity contributed by each variable. A higher Gini importance score

indicates a greater contribution to the classification process.

2.4.2 XGBoost
The XGBoost algorithm was utilized in this study as a

complementary classification method due to its high predictive

performance and ability to handle noisy, high-dimensional
FIGURE 1

Workflows. Bisulfite sequencing analysis (A) and Machine Learning-based selection of informative features (B).
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biological data (Kavzoglu and Teke, 2022). Originally proposed by

Chen and Guestrin (2016), XGBoost is based on the gradient

boosting framework and builds models sequentially, where each

subsequent tree attempts to correct the residual errors of the

ensemble constructed so far. Unlike Random Forest, which builds

trees independently, XGBoost optimizes performance by

minimizing a regularized objective function in a stage-wise manner.

At each iteration t, the algorithm adds a new function ft to

improve the model’s prediction. The overall objective function can

be expressed as (Chen and Guestrin, 2016):

L(∅ ) =o
i
l(ŷ i, yi) +o

k

W(fk)

with W(f ) = g T +
1
2
l ‖w j2

where l is a differentiable convex loss function that measures the

difference between the prediction ŷ i and the target yi. The

regularization term Ω penalizes the complexity of the model, thereby

controlling model complexity and reducing the risk of overfitting. For

this, T is the number of leaf nodes in the tree, w is the score of each leaf,

l and g are regularization parameters that control the penalty for

model complexity. This formulation encourages the model to produce

trees with fewer and more informative splits, improving generalization.

XGBoost also implements strategies such as learning rate and column

subsampling to further prevent overfitting.

2.4.3 SHAP
To enhance model interpretability and ensure transparency in the

classification process, this study applied SHAP as a post hoc

interpretability method. SHAP, introduced by Lundberg and Lee

(2017), is a unified framework rooted in cooperative game theory that

quantifies the contribution of each feature to a model’s prediction.

Unlike traditional feature importance scores generated by ensemble

algorithms, SHAP values allow for both global and local

interpretability, revealing not only which features are important but

also how they positively or negatively influence specific predictions.

The SHAP methodology assigns an importance value ji to each
feature, representing the marginal contribution of including that

feature in the prediction model, averaged over all possible feature

subsets. Formally, the Shapley value is defined as:

ji = o
S⊆ F, if g

Sj j ! ( Fj j − Sj j − 1) !
Fj j ! ½fS∪  if g(xS∪  if g) − fS(xS)�

where F is the full set of input features, S is a subset of features not

containing i, fS∪​ if g and fS are retrained, and predictions of these two

models are compared to the current input fS∪​ if g (xS∪​ if g)- fS(xS),
where xS represents the values of the input features in the set S. This

formulation ensures both local accuracy and consistency, two desirable

properties for interpretable machine learning (Bi et al., 2020).
2.5 Feature selection via integrated model
(RF, XGB, and SHAP)

To identify the most relevant and biologically informative

features, a comprehensive feature selection strategy was
Frontiers in Plant Science 05
implemented by integrating importance metrics from four

distinct perspectives: RF, XGB, and SHAP computed over both

RF and XGB models. Each method was used to independently

estimate the relevance of input features based on either intrinsic

model properties or post hoc explanations.

Feature importance scores were derived directly from the

trained RF and XGB models using their respective built-in

ranking mechanisms. In parallel, SHAP values were calculated to

generate explanations for the predictions of both the RF and

XGB models.

To ensure robustness and consistency, only features that

exhibited non-zero importance across all four models: RF, XGB,

SHAP(RF), and SHAP(XGB) were retained. This intersection-based

filtering process served three main purposes: (i) to reduce the

number of input features fed into the final models, (ii) to identify

components with consistent predictive relevance and minimal

redundancy, and (iii) to lower computational complexity and

improve model generalizability. Additionally, by retaining only

consistently informative methylation features, the models

achieved improved interpretability while maintaining high

classification performance in dormancy stage prediction.

All computations were carried out using Python (v3.12.7). RF

and XGB models were implemented using the sklearn and xgboost

libraries, while SHAP analyses were conducted via the SHAP

library. All codes are provided in Supplementary Code S1.
2.6 Model evaluation and performance
metrics

A comprehensive set of evaluation metrics was employed,

including accuracy, precision, recall and F1-score. These metrics

provide a balanced view of classifier performance, particularly in

datasets with class imbalance, as they capture both sensitivity and

specificity of the predictions. The confusion matrix was also utilized

as an intuitive and informative tool for summarizing classification

outcomes across true positives, true negatives, false positives, and

false negatives. Additionally, the Receiver Operating Characteristic

(ROC) curve was used to visualize the trade-off between the true

positive rate and the false positive rate at various decision thresholds.

The area under the ROC curve metric, derived from this curve, was

used to quantify the model’s ability to distinguish between classes.

All metrics were averaged over multiple runs using Repeated

Stratified k-Fold Cross-Validation. This method maintains the class

distribution within each fold and reduces variance due to random

sampling. Two different k-fold strategies were applied depending on

the class distribution:

i) For the classification of paradormancy, ecodormancy and

endodormancy, where the minority class had only 9 instances

(paradormancy), a 3-fold repeated stratified cross-validation was

used to ensure that each fold contained at least one instance from

each class.

ii) For the classification of endormancy and ecodormancy,

where the smallest class had 26 samples (ecodormancy), a 10-fold

repeated stratified cross-validation was performed.
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2.7 DNA methylation quantification, feature
annotation, and visualization

WGBS data was processed to quantify cytosine methylation

levels. Alignment metrics were parsed in R to calculate absolute

and relative methylation levels across CpG, CHG, and CHH contexts.

Absolute methylation percentages were computed per sample based

on the ratio of methylated to total cytosines. For relative methylation,

only methylated cytosines were considered, and their context-specific

contributions were normalized to derive proportions, which were

visualized per sample and chilling hour accumulation. Relevant

cytosines were further classified by dormancy model (2-stages and

3-stages) and feature type (cytosine or region) and formatted into

BED. Feature widths were calculated and their distributions

compared globally and per model using histograms. Then we

looked for shared and unique features across models. Features

selected from the models were then classified into their genomic

contexts: promoter (defined as 2kb upstream from the TSS), gene

bodies, downstream region (2kb downstream from the transcription

termination site), intergenic region (all locations different from

promoter, 5′-UTR, exon, intron, 3′-UTR, or downstream), and a

transposable elements (TEs) annotation developed by our group.
2.8 P. avium Tieton TEs annotation and TE-
features downstream analysis

In order to identify TEs in P. avium Tieton, a de novo annotation

using the RepeatModeler v2.0.5 tool was performed (Flynn et al., 2020).

Since we lacked a reliable and curated database to search for specific

transposable elements in P. avium. Using the BuildDatabase module,

an index to use as RepeatModeler input was generated. This process

writes a classification file that is then used as input for RepeatMasker

v4.1.5 (Smit et al., 2019) and outputs a detailed annotation of identified

transposable elements. Then the distribution of these TEs was

characterized, since many features colocalized with TEs. Package

BEDTools was used to intersect features from the classification

models with genomic contexts: promoters, gene bodies, downstream

region, intergenic region, and the TE annotation previously developed

by our group. TE-associated to model relevant features were

summarized by class and genomic context and visualized to identify

context-specific enrichment patterns. All analyses and visualizations

were performed in R. A circo plot showing this was made using the R

packages: circlize, GenomicRanges, rtracklayer, and Biostrings; P.

avium Tieton annotation file, and our TE annotation. Then, filtered

by long terminal repeats (LTR) and splitted by chromosomes in 100 kb

windows were added tracks of: LTR/ty3-retrotransposons, LTR/Copia,

and the sum of both.
2.9 Features colocalization with
quantitative trait loci

The distribution of methylated cytosines and regions on

chromosome 4 was analyzed since several studies have identified
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QTLs associated with dormancy-related traits in sweet cherry. For

this, four QTLs that were previously developed and associated with

chilling requirements (CR), heat requirements (HR), flowering date

(FD) (Castède et al., 2014), and fruit maturity date (MD) (Calle and

Wünsch, 2020) were used.
3 Results

3.1 Whole-genome bisulfite sequencing of
cultivars of P. avium

By understanding variations in DNA methylation and the

context where methylated cytosine belongs, the regulatory roles of

methylation in the genome can be discovered. The pattern and

abundance of each mC-context contribute to the regulation of gene

expression, transposon repression, or adaptation to environmental

changes, among other functions in plants. The relative contribution

of the three main DNA methylation contexts in sweet cherry

cultivars and sampling years (Supplementary Figure S1) shows

that across all samples, mCG consistently represents the largest

proportion of methylated cytosines, with values ranging from 40%

to 51%. Followed by the mCHG context, whose proportions are

typically between 26% and 34%, while mCHH constitutes the

smallest fraction, with values ranging from 21% to 32%. Overall,

while the relative contributions of each methylation context are

broadly similar across cultivars and years, subtle differences are

evident among samples and conditions. Notably, samples from

Experiment 3 Regina (Entre Rıós, 2022) (Supplementary Figure S1)

present the highest mCG and lowest mCHH proportions. Across all

cultivars, mCHG values remain intermediate and relatively stable.

Additionally, absolute methylation levels were computed in each

sample (Supplementary Table S3). CpG context is highly

methylated in most of the samples. Experiment 1 (Kordia and

Royal Dawn, 2015) showed a particularly high mCHG context, in

both cultivars subject of study.
3.2 Feature subset selection

Feature selection was conducted independently for each input

data type (cytosine-associated methylation and region-specific

methylation) and under two classification scenarios: one

including all three dormancy stages (3-stages: paradormancy,

endodormancy, ecodormancy), and another using only

endodormancy and ecodormancy samples (2-stages). In the three-

class scenario, the cytosine dataset was reduced from 716,255 to 64

features, and the region-based dataset from 69,398 to 217 features.

For the two-class setting, dimensionality was reduced to 297 and

535 features for the cytosine and regional datasets, respectively.

To assess the impact of feature selection on the underlying data

structure, we conducted a t-SNE analysis using both the full and the

reduced feature sets. The initial analysis with all features primarily

revealed sample clustering based on varietal identity across all

comparisons, including both three-stage and two-stage (Figure 2)
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FIGURE 2

t-SNE visualization of cytosine- and region-level methylation profiles before and after feature selection across different model configurations. (A, B)
Visualizations using the full feature sets in the three-stage model: cytosines (A) and methylated regions (B). (C, D) Visualizations using only the informative
features in the three-stage model: cytosines (C) and methylated regions (D). (E, F) Visualizations using the full feature sets in the two-stage model: cytosines
(E) and methylated regions (F). (G, H) Visualizations using only the informative features in the two-stage model: cytosines (G) and methylated regions (H).
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analyses of cytosine and regional methylation profiles. In contrast,

when the analysis was limited to the subset of selected informative

features, the resulting t-SNE plots demonstrated a clearer separation

of samples according to dormancy stages (Figure 2).
3.3 Classification results

3.3.1 Three dormancy stages: paradormancy,
endodormancy and ecodormancy

Four distinct methylation datasets were analyzed: two cytosine-

level datasets (all features: 716,255; informative features: 64) and

two region-level datasets (all features: 69,398; informative features:

217). All datasets were evaluated separately using RF and XGB

classifiers to classify samples into three dormancy stages:

Ecodormancy, Endodormancy and Paradormancy.

For the cytosine complete (unfiltered) dataset, RF achieved

62.1% accuracy, while XGB reached 59.0%. Similarly, with the full

region dataset, RF attained 56.5% accuracy versus XGB’s 49.3%

(Figure 3). Subsequent analysis using feature-selected datasets

revealed significant improvements in classification performance.

RF consistently outperformed XGB across all metrics (accuracy,

precision, recall, F1-score). With the filtered cytosine dataset (64

informative features), RF achieved 87.3% mean accuracy compared
Frontiers in Plant Science 08
to XGB’s 79.1%. The pattern held for the region dataset (217

features), where RF reached 79.1% accuracy versus XGB’s 66.4%

(Figure 3). The t-tests confirmed that the performance differences

between using all features and selected features were statistically

significant (p< 0.05) for both classification models.

Paradormancy remained the most challenging class to predict in all

scenarios. Confusion matrices (Supplementary Figures S2 and S3)

revealed that both RF and XGB consistently misclassified this class,

especially when using the unfiltered datasets. In contrast, classification

performance for endodormancy and ecodormancy improved after

feature selection, with precision and recall values increasing for both

models. The ROC curve analyses (Supplementary Figure S4)

corroborated these findings. The RF model exhibited higher AUC

values than XGB across both datasets with all features (cytosines: 0.73,

regions: 0.72 for RF; cytosines: 0.73, regions: 0.70 for XGB) and for

informative features (cytosines: 0.96, regions: 0.92 for RF; cytosines:

0.92, regions: 0.84 for XGB), further supporting the superiority of RF

and the benefit of dimensionality reduction via feature selection.

3.3.2 Two dormancy stages: endodormancy and
ecodormancy

Due to the limited number of samples in the paradormancy

class, which negatively impacted classification performance, this

category was excluded from subsequent analyses. The focus of this
FIGURE 3

Performance comparison of RF and XGB models using full features and the informative feature dataset. (A, B) Model performances using cytosine-
level data (A) and methylation region-level data (B) in the three-stage classification approach. (C, D) Model performances using cytosine-level data
(C) and methylation region-level data (D) in the two-stage classification approach.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1659345
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Saavedra et al. 10.3389/fpls.2025.1659345
stage was thus narrowed to the binary classification between

endodormancy and ecodormancy stages, using both the cytosine-

level and region-level methylation datasets.

The classification using the complete datasets exhibited low

performance. Specifically, RF achieved an accuracy of 70.7% for

cytosines and 67.4% for regions, while XGB reached only

44.3% and 59.5%, respectively. Confusion matrices from this

analysis (Supplementary Figure S5, S6) revealed considerable

misclassification across both models, and ROC analysis confirmed

limited discriminative power in both datasets when no feature

selection was applied. Classification performance improved

markedly following the dimensionality reduction. As shown in

(Figures 3C, D), RF achieved a mean accuracy of 97.1% for

cytosines and 89.3% for regions, significantly outperforming XGB,

which reached only 65.8% and 66.0%, respectively. Evaluation

metrics (precision, recall, F1-score) mirrored this trend, and ROC

analysis further demonstrated the superior discriminative ability of

RF, which attained an AUC of 1.00 in the cytosine dataset and 0.99

in the region-based dataset, compared to 0.68 and 0.67 for XGB

(Supplementary Figure S7). Moreover, the confusion matrices

(Supplementary Figures S5, S6) illustrate these improvements, in

the cytosine dataset, RF misclassified only three ecodormancy

samples, whereas XGB misclassified 22 (7 of endodormancy and

15 of ecodormancy). For the regional data, RF made six errors,

while XGB misclassified 21 samples in total (8 of endodormancy

and 13 of ecodormancy).

These trends were further examined using t-SNE visualizations

(Figure 2). When applied to the unfiltered datasets, samples tended

to cluster primarily according to varietal background rather than

dormancy stage. In contrast, the filtered datasets containing the

selected informative features revealed more distinct groupings

aligned with dormancy stages, although some degree of sample

mixing remained. This residual overlap may stem from the inherent

limitations of t-SNE, which emphasizes local rather than global

structure. However, it is important to note that t-SNE was used

solely for visualization purposes and played no role in classification

model training.

3.3.3 Explaining the model
Given the superior classification performance of the RF

algorithm over XGB, SHAP analysis was applied to the RF

models to interpret the contribution of individual features toward

dormancy stage classification. This interpretability analysis focused

exclusively on the informative feature sets for both the cytosine-

level and region-level methylation datasets, as previously described.

Figures 4A, B illustrates the SHAP summary plots corresponding to

the three dormancy stages across both datasets. These visualizations

aggregate SHAP values across all samples, providing a ranked overview

of feature importance based on their average impact on the model’s

predictions. In the cytosine dataset (Figure 4A), the features

chr_4_31092165 (cytosine 31092165 located on chromosome 4) and

chr_1_38152240 showed the highest overall impact, particularly in

distinguishing the ecodormancy stage, as indicated by their strong

SHAP contributions. Additional features such as chr_6_8406189,

chr_7_16848224, and chr_4_25227466 also played relevant roles, with
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varying contributions across the three stages. Interestingly, certain

features like chr_4_31050901 and chr_3_23416192 displayed more

influence in differentiating paradormancy, suggesting stage-specific

relevance. On the other hand, in the regional methylation dataset

(Figure 4B), top features included chr_3_9331371_9331488 (region

situated on chromosome 3, specifically among base pairs 9331371 to

9331488) and chr_1_27137350_27137417, both of which had a

particularly strong association with the ecodormancy stage.

Several other regions, such as chr_2_7212899_7213096 and

chr_7_21605184_21605271, also contributed notably, with more

nuanced effects across endodormancy and paradormancy. Notably,

some reg ions , such as chr_6_9727681_9727971 and

chr_3_31797583_31797605, exhibited relatively balanced

contributions across all three dormancy stages, indicating potential

roles in general dormancy regulation. Additionally, Figures 4C, D also

illustrates the comparative feature importance analysis between two

dormancy stages (endodormancy and ecodormancy). In the cytosine

dataset (Figure 4C), features such as chr_4_31092165 and

chr_1_38152240 stood out for their strong influence on the model’s

predictions, particularly in distinguishing the ecodormancy stage. Other

relevant markers included chr_6_8406189 and chr_4_25227466, which

showed moderate contributions across both dormancy classes.

Meanwhile, the methylation dataset (Figure 4D) highlighted

chr_2_7212899_7213096 and chr_3_9331371_9331488 as the most

impactful features, especially associated with ecodormancy. Some

regions, like chr_6_9727681_9727971, exhibited more balanced SHAP

values, suggesting shared roles in dormancy regulation regardless of the

specific stage.

To complement the global analysis, individual SHAP bar plots

were generated to explore how specific features contributed to the

classification of correctly and incorrectly predicted ecodormancy

samples. In Supplementary Figure S8A, the example shows an

ecodormancy sample that was correctly classified. Most SHAP values

are positive and substantial, particularly for features like

chr_1_38152240 and chr_4_31092165, indicating strong support for

the ecodormancy prediction. In contrast, Supplementary Figure S8B

shows an ecodormancy sample that was misclassified as

endodormancy by the model. Here, SHAP values for key features

either decrease in magnitude or switch direction (e.g., chr_1_38152240

and chr_4_31092165 show negative contributions), effectively shifting

the overall model output toward the wrong class. This shift in the

SHAP value distribution in this sample highlights how changes in

individual feature contributions can drive classification errors.scovery

of genomic regions underlying dormancy stages.

To understand the common and unique features of each model,

including the overlap of individual cytosines within regions,

pairwise and multi-set intersection distribution of the relevant

features detected by the two models are shown in Figure 5A. The

largest unique subset corresponds to region features from the 2-

stages model with 500 regions, followed by 283 unique cytosines.

The 3-stages model contributes with 182 unique regions and 58

unique cytosines. Among shared features, only 35 regions and 5

cytosines are common to both models. Relatively few individual

cytosines overlap regions, four cytosines in the 2-stages model co-

localize with regions from the same model, and another four 2-
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stages cytosines overlap regions from both models. A single cytosine

is shared by the two models and is located within a region feature

from the 3-stages model. In addition, no cytosine is common to all

four datasets. The 2-stages model yields the largest feature sets and

the greatest number of model-unique features.

In order to understand the potential functional roles of relevant

features, we looked at their genomic context (Figure 5B. See

Supplementary Figure S9 for the 3-stages model). From a total of

297 cytosines and 535 regions relevant for the 2-stages model, many

of the features are found in transposable elements (TEs), with 127

cytosines and 255 regions located in TEs. Then, the following most

frequent context is promoters, with 71 cytosines and 108 regions,

followed by gene bodies, which harbor 51 cytosines and 96

regions. In the downstream context, we found 37 cytosines and

56 regions, whereas intergenic space contributes the fewest number

of features, harboring 11 cytosines and 20 regions. In every context,

region-level counts exceed cytosine-level counts.

Our pipeline identified a total of 52.79% transposable elements

(TE) in the P. avium cv. Tieton genome. With that curated annotation,

TEs with features were classified by genomic context and class
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(Figure 5C. See Supplementary Figure S10 for 3-stages model). From

our TE annotation, 19 classes (including unknown) were found

distributed among promoters, gene bodies, and downstream regions.

Even though features from the 2-stages model were found in intergenic

regions, none of the TEs with features are located in that genomic

context (Supplementary Table S4). Regarding TE classes, and besides

unknown elements, two classes were enriched in each of the genomic

contexts: LTR/ty3-retrotransposons, and LTR/Copia. Overall, the data

indicates a consistent enrichment of LTR-type across regulatory

(promoter), coding (gene), and proximal downstream segments, with

fewer contributions from other TE classes. LTR/ty3-retrotransposons

elements cluster toward pericentromeric or proximal regions of several

chromosomes, most conspicuously on chromosomes 1, 4, and 5

(Supplementary Figure S11). LTR/Copia TEs, by contrast, are more

dispersed along chromosomal arms. Conversely, chromosomes 3, 6, 7,

and 8 exhibit comparatively sparse LTR coverage.

Features from the model were later visualized to address their

distribution along the eight chromosomes of Prunus avium

(Figure 6A). Chromosome 1 exhibits the highest overall feature

density. A thorough examination of the chromosome reveals an
FIGURE 4

SHAP-based interpretation of feature contributions to dormancy stage classification. (A, B) SHAP summary plots showing the top 20 most impactful
features for classification, based on (A) methylated cytosines and (B) methylated regions in the three-stage classification approach. (C, D) Global
feature importance ranked by mean SHAP values for all samples, highlighting the features with the highest overall contribution using (C) cytosine-
level and (D) region-level methylation data in the two-stage classification approach.
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abundance of region counts, with some regions exhibiting values

exceeding 20 megabase (Mb). This observation is further

complemented by the presence of a significant number of

cytosines. Chromosomes 3, 6, and 7 exhibit low overall region

densities. The distribution of chromosome 4 features counts

primarily located within the range of 25 to 32 Mb, and exhibiting

windows that harbor both feature types. Chromosome 5 exhibits a

distinctive mid-chromosomal high density at 10–15Mb, with a high

number of cytosine counts, and several regions. Chromosome 8

exhibits a limited number of windows with regions and reduced

cytosine densities. The colocalization of cytosines and regions in

high-density within the chromosomes can be observed, including

chromosome 1 at 0–2 Mb and chromosome 5 at 10–15 Mb. Overall,

features are distributed along the genome with some cytosines

clustering within genomic regions of interest such as previously

reported QTLs in P. avium. Figure 6B shows the colocalization

between model features and QTLs associated with flowering date,

temperature requirements (chill and heat), and maturity date. These

QTLs were all identified in chromosome 4 of P. avium cv. Tieton,

highlighting the relevance of linkage group 4 by carrying several

QTLs associated with dormancy related traits.
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4 Discussion

The accurate and timely assessment of dormancy stages is a

critical challenge in perennial horticulture, directly impacting

orchard management and yield optimization. In this study, high-

resolution DNA methylation profiling and machine learning

techniques were integrated to identify robust epigenetic markers

for predicting dormancy in sweet cherry. In plants, methylation

occurs in three different contexts that serve a variety of roles in

mediating environmental signals with molecular regulation. mCG

methylation is found throughout the genome, including gene

bodies, promoters, and repetitive regions, while mCHG and

mCHH methylation are particularly enriched in repetitive

sequences, including transposable elements, and play a key role in

silencing these elements to maintain genome stability.

The results showed that in the three-class scenario, when

methylated cytosines data were used, the paradormancy stage was

misclassified 100% of the time by the RF model and 78% of the time

by XGBoost. In contrast, endodormancy and ecodormancy had

misclassification rates of 0% and 31% with RF, and 25% and 50%

with XGBoost, respectively. Similar results were observed in
FIGURE 5

Features statistics and annotation. (A) Venn diagram of relevant features across the two models under study. Colored ellipses display the number of features
per set: cytosine 2-stages (red), region 2-stages (light blue), cytosine 3-stages (orange), and region 3-stages (green). Overlaps are also indicated, displaying
the number of either cytosines or regions shared, or as unique features per set. (B) Genomic annotation of features from the 2-stages model. Cytosine-level
and region-level features were detected in the model in five genomic contexts: promoter (2 kb upstream of TSS), gene bodies (exonic and intronic regions),
downstream (2 kb downstream 3’), transposable element (TE), and intergenic space (regions not overlapping annotated gene-proximal features). (C) Class-
wise distribution of features from model 2-stages overlapping TEs and their genomic context (Promoter, Gene, and Downstream). Colored bars depicting TE
classes based on our curated annotation.
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methylated regions, where paradormancy exhibited lower

classification efficiency compared to endodormancy and

ecodormancy. This pattern may be explained by the imbalance in

the number of samples per class, which appears to correlate with the

error rate, with paradormancy having the fewest samples (9) and

endodormancy having the most (36). Due to this class imbalance,

both models tended to misclassify paradormancy samples, often

assigning them to the majority class, endodormancy. The poor

predictive performance in classifying unbalanced datasets can be

since machine learning algorithms are designed to maximize overall

accuracy and may struggle to accurately classify the minority class

(Imani et al., 2025). The results of this study showed that RF

outperformed XGBoost in accuracy and efficiency across all classes,

regardless of class imbalance. Similar findings were reported by

Dube and Verster (2023), who observed that RF demonstrated
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robustness to class imbalance and outperformed several machine

learning models, including naïve Bayes, XGBoost, and k-nearest

neighbors, which struggled with imbalanced data.

Feature selection applied to methylated cytosines and regions

improved classification accuracy by approximately 40% for RF and

34% for XGBoost, highlighting the effectiveness of this approach.

Similar findings were reported by Hassan et al. (2023), where

feature selection improved the accuracy of all classification

models. This improvement is due to the effective selection of

features, which ensures that the most relevant information is

extracted from the dataset, enabling more accurate classification

(Javidan et al., 2024). Bolón-Canedo and Alonso-Betanzos (2019)

pointed out that different feature selection methods can yield

varying subsets from the same dataset; thus, the results may lack

stability. Therefore, combining multiple feature selection
FIGURE 6

Genomic distribution of features from the 2-stages model and associated QTLs. (A) The Manhattan plot displays the density of features across the
eight chromosomes of P. avium, binned in 1 Mb intervals. The distribution of cytosine-level features is shown as orange dots, representing the
counts of individual cytosines per 1 Mb window. Region-level features are depicted as blue triangles, indicating the number of regions per 1 Mb
window. The corresponding chromosomes and genomic positions are indicated on the X axis as megabases (Mb). (B) Genomic distribution of
features along P. avium chromosome 4. Each track position is based on the Tieton v2.0 genome annotation, in megabases. QTLs associated with
flowering date (FL), chilling requirements (CR), and heat requirements (HR), in either RxG (Regina x Garnet) or RxL (Regina x Lapins) progenies were
reported by Castède et al. (2015); and maturity date (MD) reported by Calle and Wünsch (2020). Blue lines indicating region features, and orange
lines indicating single cytosine features. Cytosines and regions shorter than 20 kb were expanded to this width for improved visualization.
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techniques, rather than relying on a single method, helps control

variance, mitigates the limitations of individual approaches, and

offers a more comprehensive view of feature relevance, which makes

this approach successful (Bolón-Canedo and Alonso-Betanzos,

2019). Therefore, the approach presented in this study combines

three algorithms for identifying relevant variables, since the

combination provides a better approximation based on the idea

that “two heads are better than one” (Bolón-Canedo and Alonso-

Betanzos, 2019). Consistent with the classification results, RF

outperformed XGBoost in accuracy following feature selection.

Additionally, using methylated cytosine data proved more

effective than using methylated regions, improving classification

accuracy by 11% in RF and 19% in XGBoost. Similarly, Hassan et al.

(2023) also showed that RF consistently outperformed XGBoost,

both on the full dataset and after feature selection. Notably, the

improvement in the classification after feature selection was also

reflected in the t-SNE plots, since the clustering with the original

data set, samples tended to cluster by cultivar rather than dormancy

stage, whereas after feature selection, the clustering aligned more

clearly with dormancy stages.

Despite the overall increase in accuracy after feature selection,

the classification error for paradormancy samples remained high,

ranging from 33% (with methylated cytosines using RF) to 78%

(with methylated regions using XGBoost). This highlights a

significant challenge in accurately classifying the paradormancy

stage compared to endodormancy and ecodormancy. These results

suggest that neither RF nor XGBoost was able to overcome the issue

of class imbalance, even after applying feature selection. It is worth

noting that the SMOTE algorithm, which is designed to generate

synthetic examples of the minority class and alleviate class

imbalance (Fernández et al., 2018), was also tested (data not

shown). However, its application did not lead to improved

classification performance. As a result, in the second scenario,

paradormancy was excluded from the dataset, and only

endodormancy and ecodormancy were used to train and build

the classification models.

In the second scenario, where only endodormancy and

ecodormancy were considered, the RF model showed an increase

in accuracy of 15% with methylated cytosines and 9% with

methylated regions, compared to the three-class scenario. In

contrast, XGBoost experienced a decline in accuracy of 24% and

18% for cytosines and regions, respectively. Consistent with the

second scenario observations, both models showed improved

accuracy when feature selection was applied, reinforcing the

importance of identifying the most informative variables.

However, it is important to note that the observed increase in

accuracy does not necessarily reflect an improvement in the overall

classification performance, since in the three-class scenario, much

of the accuracy lost was tied to the misclassification of

paradormancy samples. In both scenarios, RF consistently

achieved the highest accuracy across all configurations,

confirming its superior performance and greater stability under

both balanced and imbalanced conditions. These findings further

emphasize the limitations of XGBoost when dealing with skewed

datasets, as well as the benefit of applying feature selection to
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enhance the model performance of dormancy stages classification

based on epigenetic information.

Given that RF consistently outperformed XGBoost in accuracy

and robustness across all scenarios, interpretability efforts based on

SHAP focused on RF models trained with the informative

feature sets of both cytosine-level and region-level methylation

data. In the cytosine dataset, features such as chr_4_31092165

and chr_1_38152240 emerged as the most impactful, particularly

for distinguishing the ecodormancy stage. This suggests that

methylation at these loci could be tightly associated with

epigenetic regulation mechanisms unique to ecodormancy. Other

features, like chr_3_23416192 and chr_4_31050901, displayed

stronger relevance for paradormancy, indicating that although

paradormancy was difficult to classify due to data imbalance,

certain epigenetic markers do exist that could potentially improve

its prediction if more balanced data were available. Similarly, in the

regional methylation dataset, regions like chr_3_9331371_9331488

and chr_1_27137350_27137417 had high SHAP values.

Interestingly, some regions, such as chr_6_9727681_9727971,

demonstrated relatively balanced contributions across all three

dormancy stages. This may indicate shared or transitional roles in

the broader regulation of dormancy, potentially pointing to core

epigenetic signatures common to different dormancy stages. The

individual SHAP plots for each dormancy stage (Supplementary

Figure S8) showed that features such as chr_1_38152240

contributed strongly and positively to the correct classification of

ecodormancy samples, while exhibiting negative contributions in

misclassified samples labeled as endodormancy. This highlights the

high discriminative power of this feature in separating these two

stages. In contrast, features like chr_3_8464601, although showing

high SHAP values, presented similar contributions in both

ecodormancy and endodormancy samples. This suggests that it

may not be informative on its own but could contribute to the

model’s predictions through interactions with other features, an

effect often captured by ensemble models like SHAP (Štrumbelj and

Kononenko, 2014).

There are several examples in fruit trees where methylation of

individual cytosines plays key roles during dormancy. Kumar et al.

(2016) examined four developmental stages in apple, including

dormant buds, and showed, using bisulfite–sequenced MSAP

fragments, that the number of methylated cytosines at single loci

correlated with transcript levels of those genes (e.g., an acid

phosphatase 1-like gene and a galactose oxidase-like gene).

Prudencio et al. (2018) in almond found that over 90 % of

cytosines are unmethylated, while approximately 1-1.3 % are fully

methylated in CpG contexts; these polymorphic 5-mC sites were

conserved across two years and between dormant and non–

dormant buds. These studies demonstrate that methylation at

even a handful of cytosines in specific genomic contexts can

meaningfully modulate gene expression. Given their stability and

stage specificity, single–cytosine marks hold considerable promise

as robust biomarkers for dormancy transitions. Although the

precise mechanism by which a single methylated cytosine

influences gene expression remains unclear, we hypothesize that

such effects occur when the cytosine resides within functionally
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relevant regions, particularly transcription factor binding sites or

cis–regulatory modules.

Differences in the number of relevant features were evident

between the dormancy models. The 2-stages model generated the

largest and most unique feature sets, resulting in 500 regions and

283 cytosine unique features. This genome-wide representation is

consistent with the higher predictive power of 2-stage cytosine

methylation data in Random Forest and XGBoost, suggesting that

the additional loci due to the higher input samples, supplies

informative data that improves the classification. By contrast, the

3-stage model contributed a leaner, yet distinct, repertoire of 182

unique regions and 58 unique cytosines, which may represent the

early dormancy stage paradormancy signatures that the 2-stage

model misses.

The reduced number of individual cytosine overlapping regions

in the 2-stages model (4) may imply that single cytosines showmore

sensitivity to coverage noise or local sequence context, whereas

regions provide a more robust, though less precise, relevant

dormancy-associated loci. In order to address those questions, we

searched for the genomic context of those relevant features from the

2-stage model to gather insights about the functional roles of those

cytosines (Figure 5B). The genomic context frequencies rank in the

same order across both feature types. From highest to lowest: TEs,

promoter, gene bodies, downstream, and intergenic, indicating that

cytosine and region features share similar genomic preferences.

Since TEs were the highest genomic context with features, and they

can be located in any of the above genomic contexts, we further

study the genomic context of TEs with features and their

corresponding class (Figure 5). The number of TEs that remained

unclassified is still high for P. avium Tieton annotation, highlighting

the need for cultivar-specific transposable elements annotation.

Certain TE families exhibit preference for specific genomic

features. A well known example is ONSEN, an LTR/Copia element

in Arabidopsis thaliana that integrates preferentially within genes

(Merkulov et al., 2025). Members of the LTR/Copia class often insert

near gene-rich regions, unlike other TEs that target intergenic areas.

Several Copia families including Copia87/ONSEN (Ito et al., 2011),

COPIA37, TERESTRA, and ROMANIAT5 (Pietzenuk et al., 2016)

have been well described as stress-responsive TEs, becoming active

when temperature rises due to heat-responsive elements in their

promoter regions. The LTR/Copia and Ty3, flanked by a promoter

region, can undergo a replication cycle (Oberlin et al., 2017), with the

later ability to confer neighboring genes the responsiveness to abiotic

stressors (Xu et al., 2024). LTR/ty3-retrotransposons elements in P.

avium were found predominantly in heterochromatic regions and

LTR/Copia elements located in euchromatic domains, consistent

with observations in almond (Alioto et al., 2020). TE activity is

often suppressed through epigenetic mechanisms such as the RNA-

directed DNA methylation (RdDM) pathway, which is responsive to

environmental conditions. Nozawa et al. (2022) reported that

ONSEN expression varies across Arabidopsis ecotypes depending

on DNA methylation levels, with the Kyoto ecotype showing

increased expression due to reduced methylation conferring release

from transcriptional silencing. Although the functional dynamics of

TE regulation during dormancy remain unclear in sweet cherry, we
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hypothesize that small RNAs involved in RdDM, previously

characterized in P. avium (Rothkegel et al., 2017; 2020; Kuhn et al.,

2025), may regulate TE transcription and potentially modulate the

expression of adjacent genes involved in dormancy transitions.

Mapping these loci along the eight chromosomes of P. avium

(Figure 6A) revealed broad genome coverage, with particularly relevant

regions on chromosome 1 (0–2 Mb), chromosome 4 (25–32 Mb), and

chromosome 5 (10–15 Mb). Chromosome 4 (LG4, Figure 6B) includes

a well reported QTL hotspot where flowering date (FD), chilling

requirement (CR), and heat requirement (HR) QTLs, identified in

sweet cherry progenies with Regina as the progenitor (Regina × Lapins

and Regina × Garnet), co-localize with maturity date (MD) QTLs

(Castède et al., 2014; Calle and Wünsch, 2020; Calle et al, 2020). Our

model identified a concentration of informative regions, with fewer

cytosine features, suggesting a broader chromatin-level regulation

rather than single-site CpG variation may underlie dormancy

transitions. This is consistent with previous reports demonstrating

that DNA methylation and chromatin remodeling regulate dormancy

release in Prunus (Kuhn et al., 2025; Rothkegel et al., 2020; Zhu et al.,

2020). Within chromosome 4, several biologically relevant candidate

genes have been reported (Castède et al., 2014; Calle and Wünsch,

2020). These include EMF2, a MADS-box transcription factor involved

in floral meristem identity (Yoshida et al., 2001); NUA (Nuclear Pore

Anchor), which regulates nuclear-cytoplasmic transport and

chromatin organization; NAC domain transcription factors

associated with stress responses and developmental control; EXPA1

(Expansin A1), involved in cell wall loosening and bud outgrowth;

bHLH (basic helix-loop-helix) transcription factors implicated in

hormone and light signaling pathways; and WRKY transcription

factors known for their role in stress-responsive gene regulation.

Additionally, a QTL on LG1 includes AGL24-like MADS-box

genes, which are involved in floral transition and respond to

environmental cues, like the DORMANCY-ASSOCIATED MADS-

box (DAM) gene cluster (DAM1 to DAM6) (Castède et al., 2015),

which also overlaps with regions selected by our model. These genes

have been shown to play a central role in the repression of bud

growth during dormancy and its release in response to chilling

accumulation. Castède et al. (2014) identified this region as a key

determinant of phenological variation in sweet cherry, particularly

in high-chill cultivars such as Regina. Additionally, Calle and

Wünsch (2020) demonstrated that this QTL on LG1 remains

significant even in low-chill cultivars, supporting its broad

importance across diverse genetic backgrounds. In our study,

several methylation features selected by the model colocalized

with this QTL region, suggesting that epigenetic regulation

contributes to differential DAM genes expression among cultivars.

Increasing evidence supports the role of DNA methylation in

modulating DAM genes activity during dormancy transitions.

Zhu et al. (2020) showed that changes in methylation levels at the

promoters and gene bodies of DAM genes in peach were associated

with their transcriptional downregulation during chilling

accumulation. Specifically, DNA hypomethylation correlated with

a reduction in DAM transcript levels, suggesting that chilling-

induced epigenetic remodeling facilitates dormancy release.

Similar patterns of dynamic methylation have been reported in
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other Prunus species, underscoring the conserved nature of this

regulatory mechanism. Our results align with these findings and

point to DNA methylation as a key regulatory layer influencing the

dormancy-related function of DAM genes. These observations

support a model in which genetic loci like DAM are subject to

cultivar-specific epigenetic modulation, contributing to phenotypic

diversity in dormancy behavior across sweet cherry germplasm.

Altogether, these results show the relevance of the LG1 QTL and the

DAM cluster as conserved regulators of dormancy, while also

highlighting the potential role of epigenetic variability in shaping

cultivar-specific responses to chilling.
5 Conclusion

This study presents a new integrating frame that combines the

high-resolution DNA methylation profile with automatic

learning approaches to classify dormancy stages in Prunus avium.

The results showed that the methylation data at the cytosine level,

when processed through the selection of features and interpreted

through form values, provide highly informative epigenetic markers

to distinguish endodormancy and ecodormancy stages with high

precision. Among the proven models, RF constantly exceeded

XGBoost in robustness, precision, and interpretability in balanced

and unbalanced scenarios. It is important to note that some of the

methylation features co-localize with related QTLs previously

identified by other groups, such as chilling and heat requirement

flowering date and maturity date. The results of this study

contribute a valuable methodological and conceptual advance for

epigenetic research in these traits. It provides a fundamental

resource for future functional validation studies and prepares the

scenario to develop predictive tools in horticultural management.

When discovering key methylation markers and their genomic

contexts, this study improves our understanding of dormancy

regulation and underlines the importance of epigenetic

mechanisms in the adaptation and resistance of perennial crops.
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