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Introduction: The coat texture characteristics of grains in an image are
informative parameters often used to classify plants into species or varieties.
Intraspecific and interspecies diversity of texture parameters indicates a
significant contribution of the genetic component to the formation of these
traits. However, the structural and molecular properties of the grain shell, which
can determine the texture in the image, have been poorly studied.

Methods: Here, a comprehensive analysis of the texture characteristics of bread
wheat grains from the International Triticeae Mapping Initiative (ITMI) population
was performed based on their digital images.

Results: The assessment of their diversity revealed two characteristic types of
variability: smoothness/roughness and wrinkling along and across the grain axis.
It was shown that both genotype and storage duration in the genbank contribute
significantly to the formation of all grain texture characteristics investigated.
Storage duration was found to be associated with an increase in grain surface
roughness. A significant relationship between texture and grain germination was
found for only one characteristic, GLCM (gray-level co-occurrence matrix)
correlation. QTL analysis identified thirty-six additive and eight pairs of epistatic
loci associated with texture traits. These loci were located on eight wheat
chromosomes. Prioritization of genes in the identified loci and their functional
analysis allowed us to hypothesize a possible link between grain shell texture and
cell wall properties.

Conclusion: The results demonstrate the genetic and environmental
determinants of grain texture traits.
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1 Introduction

The use of machine vision and digital image analysis
technologies allows for the assessment of many quantitative
characteristics of grain size, shape, and color (Huang et al., 2015;
Zhao et al., 2022; Himmelboe et al., 2025). Grain size assessment
characterizes their weight (Kim et al., 2021) and is related to plant
yield (Emebiri and Hildebrand, 2023). Grain shape characteristics
can serve as parameters for machine classification of plants into
varieties or species (Majumdar and Jayas, 2000a; Huang and Chien,
2017; Martin-Gomez et al., 2019, Martin-Gomez et al., 2025). Color
is closely related to the physiological state of grains. It characterizes
the pigment composition of the shell (Del Valle et al, 2018),
pathogen damage to grains (Ahmad et al,, 1999), grain viability
(Dell’ Aquila, 2006), and grain aging processes during storage (Kibar
and Kili¢, 2020; Afonnikov et al., 2022). Grain color characteristics
are also used for automatic plant classification, including in
conjunction with size and shape characteristics (Neuman et al,
1989; Majumdar and Jayas, 2000b; Mebatsion et al., 2013).

Quantitative assessments of grain characteristics based on
digital images are used in QTL analyses or associated single
nucleotide polymorphisms (SNPs) through genome wide
association studies (GWAS) (Williams and Sorrells, 2014;
Sakamoto et al,, 2019; Alemu et al., 2020). This helps to identify
genes that control grain development and its physiological
properties (Jamil et al., 2025).

In addition to shape and color, the texture of objects in images
can be determined, a complex characteristic that reflects the
uniformity or unevenness of an object’s color pattern, as well as
its regularity (Haralick et al., 1973; Galloway, 1975; Humeau-
Heurtier, 2019). Grain texture characteristics are no less
informative than size, shape, or color. They are often used in the
classification of various plants (Majumdar and Jayas, 1999,
Majumdar and Jayas, 2000c; Manickavasagan et al., 2008;
Zapotoczny, 2011; Ropelewska and Jankowski, 2019; Komyshev
et al., 2020; Ropelewska and Rutkowski, 2021; Gierz and Przybyl,
2022; Ropelewska et al., 2022). Their use in addition to other
characteristics improves the accuracy of classification (Majumdar
and Jayas, 2000d). A large number of descriptors have been
developed to describe the texture of objects in an image, based on
the statistical properties of images, various filters, graphs, and a
number of other approaches (Humeau-Heurtier, 2019). Statistical
methods are most often used in the analysis of grains. These
include, in particular, the gray-level co-occurrence matrix
(GLCM) and the gray-level run length matrix (GLRM) (Haralick
et al., 1973; Galloway, 1975). Some researchers use various
components of color spaces instead of gray tones to evaluate
texture characteristics (Ropelewska and Jankowski, 2019).

Despite the active study and use of grain texture characteristics
in images for plant classification tasks, the structural and molecular
properties of the grain shell, which can determine the texture in the
image, have been poorly investigated. On the one hand, texture
depends on surface morphology (smoothness, roughness,
wrinkling, presence of defects). Furthermore, grain texture may
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be due to uneven shell coloration. There are few data on the
functional role of grain surface structure, although there is
evidence of its influence on seed germination in maize (Wang
et al,, 2025) and pea milling properties (Dijkink and Langelaan,
2002). Possible genetic mechanisms that determine grain surface
structure have also been poorly studied. However, in peas, the
GRITTY locus is known to determine seed testa roughness
(Williams et al., 2024).

Previously, we proposed an approach to evaluate the
characteristics of the size, shape and color of wheat grains based
on the analysis of digital images obtained in the laboratory
(Afonnikov et al, 2022). Characteristics for grains of 114
recombinant inbred lines (RILs) from the International Triticeae
Mapping Initiative (ITMI) population harvested in 2014 were
determined and search for quantitative trait loci (QTL) was
performed for them (Arif et al., 2022b). Genes participating in the
metabolic pathways of biosynthesis of carotenoids and flavonoids
have been revealed for loci associated with shell color. Genes
involved in protein ubiquitination, as well as a number of known
transcription factors and enzymes involved in regulating grain
development, have been identified for loci associated with grain
size and shape.

Grains of plants grown in 2003, 2004, 2009, and 2014 were
available in the genbank for 44 RILs. This biological material made
it possible to compare the characteristics of the size, shape, and
color of plant grains harvested in different years and to assess the
effect of storage duration on them (Afonnikov et al, 2022). The
results showed that the duration of storage correlates with changes
in most of the signs of coloration, but not size/shape. The
germination rates were determined for 19 lines from 2003, 2004,
2009, and 2014 harvest year seeds. Statistical analysis has shown the
presence of significant correlations between germination and color
characteristics characterizing the redness of the grain shell
(Afonnikov et al, 2022). These results are in good agreement with
known mechanisms of genetic control of grain color traits (Arif
et al, 2021; Lang et al., 2024), molecular processes in seeds during
aging (Gordeeva et al., 2024; Shvachko and Khlestkina, 2020), as
well as known data on the relationship between redness and seed
dormancy (Groos et al., 2002). The image sets we have obtained
proved to be convenient for identifying the genetic and
environmental determinants of wheat grain traits.

In this study, we determined 16 texture characteristics of grain
coat for the same sets of grain images and performed similar
analysis as in previous works (Afonnikov et al.,, 2022; Arif et al,
2022b). The diversity of characteristics was assessed using grains
from 114 lines harvested in 2014. Analysis of grain images of 44
lines harvested in 2003, 2004, 2009 n 2014 indicated the relationship
between texture characteristics and seed storage duration in the
genbank. The correlation between germination and texture traits
was estimated for the grains of 19 lines harvested in 2003, 2004,
2009 1 2014. 114 lines harvested in 2014 were used to identify QTLs
for texture traits and possible candidate genes controlling their
formation were identified. The results demonstrate the genetic and
environmental determinants of grain coat texture traits.
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2 Materials and methods
2.1 Seed images

Images of grains from the various accessions of the recombinant
inbred lines (RILs) of the mapping population of bread wheat
(Triticum aestivum L.) from the International Triticeae Mapping
Initiative were used. The ITMI mapping population was obtained
by crossing the T. aestivum spring wheat cultivar Opata 85 and the
synthetic hexaploid spring wheat W7984 (Arif et al., 2022b). Plants
of each genotype were grown in the 2003, 2004, 2009 and 2014
seasons. After harvest, the seeds were stored at IPK genbank with an
-18 £ 2 °C and 8 + 2% seed moisture content. Images were taken
from previous works (Afonnikov et al., 2022; Arif et al., 2022b). The
images represent grains on a white background, next to the
ColorChecker calibration palette, which was used to determine
the scale (x-rite ColorChecker® Classic Mini, https://xritephoto.
com/camera; accessed on 20 January 2022). Examples of seed
images are shown in Supplementary Figure SI (Supplementary
File 1).

To analyze the diversity of traits in the population and identify
QTL, grain images of 114 RILs harvested in 2014 were used
(Afonnikov et al., 2022; Arif et al., 2022b). Two images per RIL
were obtained for this sample, each counting 15 and 5 grains,
respectively. Our preliminary analysis demonstrated that this
splitting does not affect the estimation of the seed traits.

Seeds from 44 lines harvested in 2003, 2004, 2009, and 2014
were used to analyze the relationship between texture traits and
harvest year (Afonnikov et al,, 2022). To analyze the relationship
between grain germination and texture characteristics, images of
seeds from 19 lines harvested in 2003, 2004, 2009, and 2014 were
used (Afonnikov et al., 2022). Images for these samples included
from 17 to 20 grains.

These samples were used to perform various types of analysis of
grain coat texture traits as summarized in Supplementary Figure S2
(Supplementary File 1): statistical relationship between traits,
population diversity analysis, relationship with storage duration
in genbank and germination rate, QTL identification, and
gene prioritization.

2.2 Evaluation of seed characteristics in an
image

Digital image processing was performed using the SeedCounter
application (Komyshev et al., 2017), a desktop PC version
supplemented with a color characteristics calculation module
(Afonnikov et al, 2022). Areas corresponding to grains were
identified in the image, and their size, shape, and color
characteristics were evaluated as described earlier. In this study,
we took 12 color characteristics, the average values of the color
components of the pixels in the grain area for the RGB, HSV, Lab,
and YCrCb color spaces (Afonnikov et al., 2022). Their list is given
in Supplementary Table S1 (Supplementary File 1).
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To evaluate texture properties, we used 16 second-order
characteristics determined based on gray level co-occurrence
matrices (GLCM) and gray level run-length matrices (GLRM)
(Haralick et al., 1973; Galloway, 1975; Majumdar and Jayas,
1999). These characteristics allow us to quantitatively describe the
features of micro-relief or surface color inhomogeneities of grains,
which are not always distinguishable by visual inspection. GLCM
describes the spatial distribution of the brightness of neighboring
pixels by evaluating the frequency of co-occurrence of certain
combinations of gray-level values. GLRM evaluates sequences of
pixels with the same brightness, providing information about the
spatial organization of texture elements. This allows characterizing
such surface properties as uniformity, contrast, and texture
complexity. The list of texture features is given in Supplementary
Table S1 (Supplementary File 1), and the definition is given in
Supplementary Tables S2-S4 (Supplementary File 1).

When calculating texture characteristics as both GLCM (for
neighboring pixels) and GLRM (for series) matrices, eight main
directions are distinguished: up, down, left, right, and four diagonally.
In this work, texture characteristics were determined based on grayscale
images summed across all 8 directions (omnidirectional).

2.3 Statistical analysis of grain
characteristics

A preliminary analysis of the images was conducted to exclude
outliers from further consideration, i.e., grains with texture
characteristics whose values deviated from the mean by more
than 3 standard deviations.

To evaluate the Pearson correlation r of texture, size, shape, and
color characteristics, grains from the 2014 harvest were analyzed
(114 RILs). Based on this, the distance d = 1-|#| between pairs of
characteristics was calculated, and then a tree of similarity of
characteristics was reconstructed using the UPGMA method. To
assess the diversity of texture traits in the ITMI population for
grains from the 2014 harvest, the principal component analysis
(PCA) method was used based on a correlation matrix.

Grains from 44 RILs harvested in 2003, 2004, 2009 and 2014
were used to assess the contribution of genetic factors (RIL) and
harvest year to the variability of texture characteristics
implementing one-way analysis of variance (ANOVA). The
contribution of a factor was considered significant at p < 0.05.

The linear correlation between the trait value and the harvest
year for each grain in this sample was assessed based on the
approach proposed earlier (Afonnikov et al., 2022). Data for 3460
grains were used for correlation analysis. The harvest year was
coded for each grain in three ways: binary (Year01, values 0 were
assigned to the years 2003 and 2004; values 1 were assigned to the
years 2009 and 2014); numerical (Year, numerical values of the year
were used); rank (YearRank, values 1, 2, 3, and 4 were assigned to
the years 2003, 2004, 2009, and 2024, respectively). The significance
of correlation between the trait and the harvest year in the three
encodings was independently verified using 2000 replicates of
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permutation and bootstrap tests (randomization of texture trait
values was used) in the sample of 3460 grains. The relationship
between the trait and the harvest year was considered significant if
the correlation coefficient was less than the minimum or greater
than the maximum values in both randomization tests.

The statistical relationship between the trait and germination was
assessed for grains obtained from 19 RILs harvested in 2003, 2004,
2009 and 2014 (1279 grains in total) using Pearson’s correlation
coefficient, as was done previously (Afonnikov et al, 2022).
Preliminary evaluation of the contribution of harvesting year and
genotype to the germination variance demonstrated that the year (but
not genotype) has significant effect. Therefore, to eliminate this effect
mean germination values for the corresponding year were subtracted
from the each genotype and year values. Some outlier values were
removed after that in the germination data (Afonnikov et al., 2022).
Before the analysis, each trait values were standardized so that the
means were equal to 0 and the standard deviations were equal to 1 for
all genotypes. The significance of correlation between the grain coat
texture trait and the germination rate was assessed by randomization
tests as described above.

Statistical data processing was performed using Python 3.10
software (SciPy, sklearn, pandas libraries).

2.4 QTL analysis of grain texture
characteristics

Grains from 114 RILs harvested in 2014 were used for QTL
analysis. Mean values of the grain texture characteristics for each
RIL served as input data.

Experimental procedures to obtain SNPs in ITMI plants for
QTL analysis were described in (Arif et al., 2021).

To capture the variance explained by the molecular markers
such as SNPs mapped to any genome, a refined method known as
“inclusive composite interval mapping” was used as implemented in
the QTLIciMapping 4.2.53 (http://www.isbreeding.net/(latest
released in September 2019). This method currently considered as
the most modern method of QTL detection (Arif et al., 2021). It was
used successfully to detect several QTLs for Fusarium head blight
(Sgarbi et al., 2021) and seed longevity (Arif et al., 2022a) in wheat
and germination related traits in tobacco (Agacka-Moldoch et al.,
2021) applying the QTLIciMapping tool. Therefore, we convened
the IciMapping 4.2.53 to detect the putative additive QTLs of the
traits under consideration applying the inclusive composite interval
mapping (ICIM) command where 1.0 cM was the walking speed.
An LOD score of > 2.0 < 3 was applied to detect QTLs as significant
and > 3.0 as highly significant (Meng et al., 2015).

In order to discover digenic epistasis QTLs to find clues for
latent variation, the ICIM-EPI command was used where LOD was
kept 5.0 cM. Here, the epistasis QTLs with LOD >5 and explaining
> 5% phenotypic variance were reported. All QTLs were assigned
names according the rules set out in the Catalog of Gene Symbols
(McIntosh et al, 2008). Epistasis QTLs were visualized using
“circlize” package in R (Gu et al., 2014).
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In addition to 16 texture traits for QTL identification, we used
their two linear combinations represented by PC1 and PC2 from the
PCA analysis for seeds harvested in 2014. (see above). The QTL
locations for texture traits were compared with QTLs for traits such
as size, shape, and color of grains in images from our previous work
(Arif et al., 2022b).

2.5 Gene prioritization

Gene identification in QTL regions, their functional annotation,
and prioritization were performed according to previously
described procedures (Arif et al., 2022b). The sequences of
markers delimiting QTLs were aligned on IWGS 2.1 wheat
genome sequence (Zhu et al, 2021). Genome sequence and
annotation data were obtained from URGI (https://
urgi.versailles.inra.fr/download/iwgsc/ITIWGSC_RefSeq_
Assemblies/v2.1; accessed on 10 January, 2022). Only ‘high
confidence’ gene annotations were considered. Marker sequences
were obtained from reference (Wang et al., 2014) and Gramene
marker Database (https://archive.gramene.org/markers/; accessed
on 10 January, 2022) (Tello-Ruiz et al., 2021). Marker sequences
were aligned using blastn of the BLAST+ package (Camacho et al.,
2009) using e-value=1e-17 (other parameters were set by default).
Marker locations were selected by choosing appropriate
chromosome and highest sequence identity with the reference.
Search for genes and their functional analysis were performed
only for QTLs which have both left and right markers mapped on
the reference genome.

Genes located within marker borders were selected by expression
level in the grain (TPM>=1). For this purpose, wheat gene expression
data from the expVIP database (Borrill et al., 2016) were used. Data in
text format were downloaded from URGI (https://
urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/
v1.1/iwgsc_refseqvl.1_rnaseq_mapping_2017]July20.zip; accessed on
10 January, 2022). We used data from RNA-seq experiments in
which the column ‘High level tissue’ contains ‘grain’ term.
Additional conversion was performed between annotation ver. 2.1
(genome) and 1.2 (transcriptome) gene IDs.

Since there was no prior knowledge about possible molecular
mechanisms related to seed texture characteristics in wheat, two
approaches for functional annotation and gene prioritization were
used. First, full list of QTL related genes expressed in seeds was
analyzed by DAVID web service, https://davidbioinformatics.nih.
gov/, accessed on 12 April, 2025 (Sherman et al., 2022). Functional
clusters and functional charts of genes were obtained. Clusters and
functional categories were selected using p-values corrected for
multiple hypothesis testing (Benjamini correction and FDR <
0.05). Second, sequences of selected genes were used to search for
KEGG Orthology (KO) annotation by BlastKOALA and
GhostKOALA web-services (Kanehisa et al., 2016). List of KO
IDs was compared with orthologous groups of genes related to
seed development in Arabidopsis and rice according to literature
data, see details in (Arif et al., 2022b).
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3 Results

3.1 Correlations between texture
characteristics and other seed traits

The values of Pearson’s correlation coefficients for pairs of traits
are given in Supplementary Table S5 (Supplementary File 1). The
table shows that significant correlation coefficients are more often
observed for pairs within groups of color, size/shape, and texture
traits, with several texture traits having significant correlation
coefficients with color traits. The tree of grain traits similarity
based on these coefficients is shown in Figure 1. Eight clusters are
distinguished in the tree (at a clustering threshold of d = 1.5). The
first cluster (top to bottom, light green) includes four grain texture
features, three of which are based on GLRM (GLRMsr, GLRMIr,
GLRMTrr), and one is calculated based on the GLCM matrix
(GLCMh). The second cluster (gray) includes two texture features
(GLCMu, GLCMmp). The third cluster (pink) includes five grain
color features that characterize color (Lab_mb, YCrCb_mCb,
Lab_ma, HSV_S, YCrCb_Cr). The next cluster (brown) includes
texture features based on GLRM (GLRMglnu, GLRMrlnu, GLRMe).
The next two clusters, lilac and red, include shape and size features,
respectively. The green cluster includes five texture features based
on GLCM calculation. Finally, the orange cluster includes nine
features. Of these, two outlying features characterize texture
(GLCMc, GLCMi). The remaining features form a tight cluster

10.3389/fpls.2025.1659548

and include three components of the RGB space; the remaining
ones, except for HSV_mH, characterize the lightness/brightness
of pixels.

Thus, the clusters on the dendrogram correspond to several
interrelated groups of characteristics that describe the shape, size,
color, lightness, and texture of the grains. The assignment of
characteristics to clusters reflects their common biological nature.
Note that texture characteristics are grouped into several clusters.
The exceptions are GLCMc and GLCMi, which fall into the
brightness trait cluster but are simultaneously quite distant from
it. This means that grain texture traits reflect specific surface
characteristics that are not related to shape or size and are to
some extent related to the lightness of the grain shell (Figure 1).

3.2 Diversity of ITMI population based on
texture characteristics

We analyzed the diversity of grains in the ITMI population
based on texture characteristics using PCA. The results are shown in
a scatter plot for the two principal components (Figure 2). These
two components account for 78% of the total variance. The diagram
demonstrates the wide variability of the ITMI population in terms
of texture, with no clusters standing out.

The first principal component (PC1) explains half of the total
variance and shows a high positive correlation with features such as
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FIGURE 1
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Hierarchical clustering of grain traits, including texture traits, based on Pearson’s correlation coefficient estimated from their variability in 114 wheat
lines of the ITMI population. The proximity scale is shown on the X-axis. Trait clusters in the diagram are highlighted in different colors.
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GLRMglnu, GLCMc, and GLRMe. This component also shows a
high negative correlation with the GLCMi feature (Figure 2).

It should be noted that high values of this component are
observed for the ITMI_62 line (Figure 2A), whose grains appear to
be the smoothest (Figure 2B). Opata grains also have positive values
for this component, and their surface also appears smooth with
small wrinkles. Conversely, for the ITMI_11 line, the value of this
component is the lowest and negative (Figure 2A). In the image,
these grains appear to be the roughest (Figure 2B). It can be
assumed that the first component reflects the smoothness of the
grain: the higher its value, the smoother the grain surface; the lower
the value, the rougher the grain surface. Note that smooth grains
appear lighter in color than rough ones (ITMI_62, ITMI_11,
Figure 2B), which may partly explain the high correlation
coefficients between some texture and lightness features in
Supplementary Table S5 (Supplementary File 2) and Figure 1.

10.3389/fpls.2025.1659548

The second principal component (PC2) explains a quarter of the
total variance and shows a high positive correlation with features such
as GLCMcp, GLCMcs, GLCMv, and GLRMrlnu. A negative
correlation with this component is observed for the GLCMe
feature. Interestingly, a high positive value for this component is
observed for the Synthetic W7984 sample, whose grains appear
wrinkled, with wrinkles extending along the grain (Figures 2A, B).
Low values for this component are characteristic of the ITMI_74 line
(Figures 2A). Small transverse folds are observed for its grains
(Figure 3B). It can be assumed that the second component reflects
the folding of the grain surface. At the same time, its values probably
characterize the direction of the grain surface wrinkles: low values
correspond to wrinkles directed across the grain, and high values
correspond to wrinkles directed along the grain.

Figure 2 demonstrates the high diversity of grain texture in the
ITMI population and allows to distinguish two main types of
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FIGURE 2
(A) PCA diagram in the space of GLCM and GLRM texture features. The PC1 and PC2 axes correspond to the first and second principal components, with
the corresponding dispersion shares indicated in parentheses. The points correspond to wheat lines, with texture feature projections shown in green. Lines
with extreme component values, including parental genotypes, are shown in red. (B) Grain images for lines with extreme component values.
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Bar plots showing the dependence of four texture characteristics of wheat grains on the year of harvest. (A) GLCMh (GLCM homogeneity); (B) GLCMi
(GLCM inertia); (C) GLCMe (GLCM entropy); (D) GLCMcp (GLCM cluster prominence). The horizontal axis shows the years of storage (2003, 2004,

2009, 2014), and the vertical axis shows the values of the characteristics.

variability: smoothness/roughness and wrinkling along
and across.

3.3 Contributions of genetic components
and harvest year to the diversity of textural
traits

Data for various harvest years were presented for 44 lines.
ANOVA tests were used to estimate the contributions from both
genetic and harvest year factors to the variability of traits related to
grain texture in the image. The results are presented in
Supplementary Table S6 (Supplementary File 1). Results
demonstrated that the variability of all 16 traits is due to a
significant contribution of both genotype and harvest year. The p-
values were significantly less than 5% for all 16 traits and both
factors. The highest p-values were observed for the “genotype”
factor and the GLRMglnu and GLRMe traits (0.00047 and 0.00043,
respectively). This ensures the reliability of the contribution of the
two factors, even when taking into account the correction for
multiple comparisons.

Thus, the results of the analysis confirm that the diversity of
grain texture traits in the studied wheat samples is influenced by
both genetic and environmental (harvest year) factors.
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3.4 The relationship between the harvest
year and texture characteristics

For 44 ITMI lines, trends in grain texture variability depending
on the harvest year were assessed based on Pearson’s correlation
coefficient with three variants of numerical representation of the
harvest year: binary Year01, rank YearRank, and numerical Year.
For each representation of the harvest year, we conducted two
randomization tests with 2,000 replicates, permutation and
bootstrap. With their help, we determined the minimum and
maximum confidence limits of the correlation coefficient.

Results are shown in Table 1. Only two of the 16 texture
characteristics do not have a significant correlation between their
values and the harvest year. The correlation coefficients for the
GLCMv and GLCMe features are less than 0.07 in magnitude. In
addition, for the GLCMcs feature, the correlation coefficient with
the YearRank parameter (0.07) only slightly exceeds the threshold
value (0.06) in magnitude.

In other cases, the correlation coefficient of the trait with the
YearRank variable is equal to or greater than 0.1. The highest
positive correlation coefficients (greater than 0.28) are observed for
traits such as GLCMc, GLCMh, and GLRMlIr. These results
indicates that these traits are greater for grains from a later
harvest year (or shorter storage period in the gene bank).

frontiersin.org


https://doi.org/10.3389/fpls.2025.1659548
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Avzalov et al. 10.3389/fpls.2025.1659548

TABLE 1 Evaluation of Pearson correlation coefficients between grain texture characteristics and harvest year, presented in three encodings.

PermYearRank BootstrapYearRank
YearO1 Year YearRank

Min Max Min Max
GLCMcp -0.16 -0.12 -0.11 -0.05 0.07 -0.05 0.07
GLCMcs -0.11 -0.07 -0.07 -0.06 0.06 -0.05 0.06
GLCMc 0.20 0.26 0.30 -0.06 0.05 -0.06 0.05
GLCMe -0.01 -0.04 -0.06 -0.06 0.06 -0.06 0.06
GLCMh 027 029 0.33 -0.06 0.06 -0.07 0.06
GLCMi -0.33 -0.39 -0.44 -0.06 0.06 -0.07 0.06
GLCMmp 0.06 0.07 0.12 -0.06 0.07 -0.07 0.06
GLCMm 0.11 0.09 0.11 -0.05 0.07 -0.05 0.06
GLCMuy 0.15 0.14 0.17 -0.07 0.06 -0.04 0.06
GLCMy -0.06 -0.03 -0.02 -0.05 0.06 -0.06 0.05
GLRMe 0.14 0.11 0.12 -0.07 0.06 -0.06 0.06
GLRMglnu 0.15 0.12 0.13 -0.06 0.08 -0.07 0.06
GLRMIr 0.21 0.24 0.28 -0.06 0.07 -0.06 0.06
GLRMrlnu 0.13 0.10 0.10 -0.06 0.06 -0.05 0.06
GLRMrr -0.22 -0.25 -0.28 -0.06 0.06 -0.06 0.07
GLRMsr -0.20 -0.22 -0.26 -0.07 0.06 -0.06 0.06

The four right-hand columns show the minimum and maximum threshold values of the correlation coefficients obtained based on permutation (PermYearRank) and bootstrap

(BootstrapYearRank) tests for the rank coding of the harvest year. Values in bold for YearRank parameter are significant according to randomization tests.

Interestingly, these three traits on the principal component diagram
(Figure 2) are collinear with the first principal component, which
can be interpreted as an increase in grain smoothness (Table 1).

The lowest correlation coefficients (< -0.26) are demonstrated by
GLRMSsr, GLRMrr, and GLCMi. The latter has the highest correlation
coefficient among all of them with the YearRank feature (-0.44).
Negative correlation coefficients mean that the lower the harvest year
(and therefore the longer the storage time of the grains), the greater
the value of the feature. Note that the three features indicated in the
principal component diagram (Figure 2) are opposite in relation to
the PC1 component (associated with grain smoothness). Thus, an
increase in the value of these features can be interpreted as an increase
in grain roughness.

Table 1 shows that the correlation coefficients of the features
with the harvest year, determined by different year encodings, are
generally consistent with each other. For example, for GLCMh, the
correlation coefficient with Year01 was r = 0.269, with Year r =
0.292, and with YearRank r = 0.333. At the same time, the YearRank
coding generally shows the lowest absolute values of correlations
with features. Therefore, selecting the threshold for randomization
tests based on it gives more conservative estimates of significance.

Examples of the relationship between the magnitude of certain
traits and the harvest year are shown as box plots in Figure 3 (for other
traits, they are shown in Supplementary Figure S3, Supplementary File
1). These graphs clearly show trends in trait variability depending on
the year if the correlation coefficient estimate differs significantly from
0. For example, for the GLCMh trait (Figure 3A), there is a steady
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increase depending on the harvest year. This is consistent with the
high correlation coefficient values (Table 1).

For the GLCMi trait, on the contrary, the opposite trend is
observed: as the harvest year increases, the value of the trait decreases
(Figure 3B). This is consistent with the negative value of the GLCMi
correlation coefficients with the harvest year (Table 1). It should be
noted that higher GLCMi values correspond to greater grain
roughness (Figures 2A, B) and are higher for earlier harvest years,
i.e., for longer grain storage periods (Figure 3).

For the GLCMe trait (Figure 3C), the values for different harvest
years differ, but no trend with increasing harvest year is observed.
This is consistent with the results in Table 1: there is no significant
statistical relationship between this trait and the harvest year. In
Figure 3D, the values of the GLCMcp trait for the harvest years 2003
and 2004 are slightly higher than the values for 2009 and 2014.
There is a noticeable downward trend with increasing harvest year,
but it is less pronounced than for the GLCMh and GLCMi traits.
This is also consistent with the data in Table 1: the absolute value of
the correlation coefficient with the harvest year for GLCMcp is less
than for GLCMh and GLCMi.

Summarizing the results presented, it can be assumed that the
correlations between texture characteristics and harvest year that we
have identified reflect, in general, an increase in the roughness of
wheat grain coat as the storage period in the genbank increases.
Thus, the results show that storing grains in a genbank leads to
changes in their texture. These changes may reflect structural or
metabolic changes in the grain shell.
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3.5 The relationship between grain
germination and their textural
characteristics

We assessed the relationship between grain texture
characteristics and germination rates. The results are presented in
Supplementary Table S7 (Supplementary File 1). They show that
only one characteristic, GLCMc (GLCM correlation), meets the
criteria for a significant deviation from 0. At the same time, its
correlation coefficient with germination (0.098) only slightly
exceeds the threshold obtained for the permutation (0.087) and
bootstrap (0.097) tests. We note another feature, GLCMi (GLCM
inertia). For it, the correlation coefficient with similarity was -0.102,
which is slightly less than the lower threshold for the bootstrap test
(-0.095), but exceeds the lower threshold for the permutation test
(-0.104). Thus, this feature satisfies the criterion of a significant
deviation from 0 based on the results of only one randomization
test. Interestingly, both GLCMc and GLCMi correlate with grain
lightness features (see Figure 1). At the same time, the GLCMi was
interpreted as characteristics of grain shell roughness (Figure 2).

For the remaining texture parameters, the correlation
coefficients between the normalized values of the trait and
germination are within the ranges obtained from randomization

10.3389/fpls.2025.1659548

tests. Thus, it can be concluded that the statistical relationship
between grain texture traits and their germination is weak.

3.6 QTL mapping for texture traits

For seed texture traits, a total of 36 texture related QTLs were
discovered on chromosomes 2D, 3B, 3D, 4D, 5B, 5D, 7A and 7B
where majority were overlapped with other QTLs (Supplementary
Table S8, Supplementary File 2; Figure 4). For example, there were
four QTLs (Q.GLCMe-2D, Q.GLCMcs-2D", Q.GLCMcp-2D" and
Q.GLRMsr-2D) on chromosome 2D. These QTLs were related to
GLCMe, GLCMcs, GLCMcp and GLRMSr where the log of odds
(LOD) values ranged from 2.5 to 6.1 and the phenotypic variation
explained (PVE) varied from 6.19 to 17.52%. In addition, the QTLs
for GCLMCs and GCLMcp overlapped. Likewise, on chromosome
3B, there were six QTLs (Q.GLCMu-3B°, Q.GLCMmp-3B°,
Q.GLRMsr-3B°, Q.GLRMIr-3B®, Q.GLRMrr-3B° and
Q.GLRMrlnu-3B) linked with GCLMu, GCLMmp, GLRMsr,
GLRMlIr, GLRMrr and GLRMrlnu. Here the LOD ranged from
2.5 to 3.30 and the PVE ranged from 8.58 to 11.87% whereas all the
QTLs except Q.GLRMrlnu-3B were nearly overlapping with each
other (Figure 4).

2D 3p  QGLMu-3D%,
_ S Q.GLCMmp-3D%, 5B
’ = Q.GLCMe-2D Q.GLCMc-3D%, 2= 7A
o Q.pC2-2D Q.GLCMh-3D%, M 7B
Q.GLCMIi-3D%, M
5 Q.GLRMsr-3D%,
Q.GLCMcs-2D", Q.GLRMIr-3D%,
* Q.GLCMcp-2D* Q.GLRMir-30%, Q.PC2-5B R
‘ 3 sr-787,
QGLRMsr2p P Q.RCI-aD% =< ) ~— QGLRMIr-78,
Q.GLCMh-5B :
3B =) Q.GLCMe-3D Q.GLRMrr-78
4D
[ 5D
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8§ | aciemiap®
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FIGURE 4

71
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QTL distribution of various grain texture traits. Each chromosome is drawn to an approximate where each 1 cm distance = ~ 80 cM and
chromosome 7A is shown smaller in comparison to its actual length as indicated by small cut. QTL with similar superscripts are identical loci. For

details, see Supplementary Table S8 (Supplementary File 2).
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On chromosome 3D there were nine QTLs (related to
Q.GLCMu-3D", Q.GLCMmp-3D?, Q.GLCMc-3D", Q.GLCMh-3D",
Q.GLCM;i-3D?, Q.GLRMsr-3D?, Q.GLRMIr-3D, Q.GLRMrr-3D*
and Q.GLCMe-3D) GLCMu, GLCMmp, GLCMc¢, GLCMh,
GLCMi, GLRMsr, GLRMIr, GLRMrr, and GLCMe and all of
them except GLCMe were at the same location. The PVE by
these QTLs ranged from 8.5 to 33.23% and the maximum LOD
was 9.56. On chromosome 4D, there were three QTLs (Q.GLCMc-
4D°, Q.GLCMi-4D’ and Q.GLCMh-4D) related to GLCMc, GLCMi
and GLCMh that explained 4.48 to 10.24% variation and the LOD
remained between 2.67 and 3.41. On chromosome 5B there was one
single QTL Q.GLCMh-5B) related to GLCMh responsible for 9.31%
variation with an LOD value of 3.40. On chromosome 5D, there
were three QTLs (Q.GLCMu-5D° Q.GLCMmp-5D° and
Q.GLRMglnu—5D6) at the exact location related to GLCMu,
GLCMmp and GLRMglnu responsible for > 10% variation and
their LOD ranged from 2.53 to 3.52. There were two separate QTLs
(Q.GLCMc-7A.1 and Q.GLCMc-7A.2) related to GLCMc on
chromosome 7A with LOD values of 9.89 and 14.36 explaining
15.14 and 24.38% variation. Finally, on chromosome 7B, we
detected three overlapping QTLs (Q.GLRMsr-7B”, Q.GLRMIr-7B”
and Q.GLRMrr-7B) for GLRMsr, GLRMIr and GLRMrr where the
LOD value was >3 and the PVE ranged from 8.76 to 10.84.

FIGURE 5

10.3389/fpls.2025.1659548

To capture additional variation, we also used the first two
principal components as trait values and performed the QTL
mapping. Interestingly, we detected five QTLs (three with PCI and
two with PC2) (Supplementary Table S8, Supplementary File 2). The
QTLs of PC1 on chromosomes 3B, 3D and 5D (Q.PCI-3B% Q.PCI-
3D" and Q.PCI-5D°) overlapped exactly with the texture related
QTLs. On the other hand, the two QTLs with PC2 (Q.PC2-2D and
Q.PC2-5B) on chromosomes 2D and 5B did not overlap with other
QTLs. These QTLs explained > 17% phenotypic variance and their
LOD values were also > 5.

Additionally, epistatic analyses further detected a total of eight
pairs that further explained up to 52.66% variation individually
(Supplementary Table S9, Supplementary File 2; Figure 5). From
trait perspective, there were four epistatic pairs of QTLs detected for
GLCMm on chromosomes 1D-3A, 3B-7A, 4A-7A and 4D-7B. The
variation explained by these pairs ranged from 9.79 to 21.96%. One
pair for GLCMe was detected on chromosomes 5B-5D responsible
for 17.95% variation. Another pair was detected for GLRMglnu on
chromosomes 4A-7D causing 21.92% variation in trait expression.
Further, another pair was detected for GLrMrlnu on chromosomes
4A-6B. This pair was responsible for 20.58% variation in the trait.
We also detected an epistatic QTL pair for PCI on chromosomes
3B-3D that explained > 50% variation in PC1 (Figure 5).

Epistasis QTL network of grain texture traits. Outer circular plot represents the hexaploid genome arranged in chromosomes (chrs) 1-21 (1A-7D) in
clockwise direction. Numbers on colored outer circle represents cM on respective chrs. Grey-colored connections represent epistasis QTL

controlling different traits. Similar shaded QTL indicated QTL of similar traits.
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The results of comparing the positions of QTL for texture traits on
chromosomes with QTL for grain size/shape and color traits in images
are shown in Supplementary Table S10 (Supplementary File 2). This
table shows that QTL for texture traits do not coincide with any of the
QTL for grain size and shape traits in the wheat genome. However,
there is an overlap with a large number of grain color traits in two
locations. The first region is located on chromosome 3B at positions
299.179-300.179 cM (delimited by markers Excalibur_c5309_286
and BS00085434_51).

In this location, three QTLs for texture characteristics
(Q.GLRMsr-3B°, Q.GLRMIr-3B°, Q.GLRMrr-3B) and 14 QTLs
for color traits were found. Second region is located on 3D
chromosome at 100-102 cM (delimited by SNPs
CAP12_c2615_128 and BS00067163_51). In this location, 9 QTLs
for texture characteristics (Q.GLCMu-3D?, Q.GLCMmp—3D4,
Q.GLCMc¢-3D", Q.GLCMh-3D", Q.GLCMi-3D?, Q.GLRMsr-3D",
Q.GLRMIr-3D*, Q.GLRMrr-3D* and Q.PCI1-3D*) and 34 QTLs for
color traits were observed.

Other notable QTLs for texture characteristics (Q.GLCMu-3B2,
Q.GLCMmp—3BZ and Q.PCI-3B?) were located on 3B chromosome
at 297.179 ¢cM (delimited by SNPs Excalibur_c36725_96 and
Ku_c24974_674). This region is close to seven QTLs for the color
traits (position 298.179 c¢M, SNPs Ku_c24974_674 and
Excalibur_c5309_286) and has common SNPs Ku_c24974_674
for these loci.

The remaining QTLs for texture traits do not share common
locations on chromosomes with QTLs for color traits.

3.7 Functional analysis and prioritization of
genes within QTL related to texture traits

To prioritize genes based on highly significant QTLs (LOD>3),
we selected 27 QTLs out of 36. Of these, 23 QTLs were related to
texture traits, two to their linear combination PC1 (on
chromosomes 3B and 3D), and two to PC2 (on chromosomes 2D
and 5B). In the wheat genome, these QTLs correspond to 13
regions. For nine of them, we determined the coordinates of the
left and right markers in the IWGS 2.1 genome sequence. The sizes
of the regions ranged from 2 to 80 Mb. Using genome annotation,
1,688 wheat genes were identified that are localized within the
boundaries of these regions. The number of genes per region ranged
from 15 (QTLs on chromosome 3B at position 297.179) to 526 (15
QTLs on chromosome 4D at position 164.488). Lists of selected
QTLs, their position in the genome sequence, and lists of
corresponding genes are provided in Supplementary Table S11
(Supplementary File 2). Of the 1,688 wheat genes, 1,213 genes
were selected based on their expression level in grain. Their list is
provided in Supplementary Table S12 (Supplementary File 2).

These genes were analyzed for functional enrichment using the
DAVID service. Table 2 presents information on two functional
clusters of genes identified by us that demonstrate a statistically
significant association with functional annotation terms. The first
cluster includes genes whose function is associated with the
INTERPRO domains TPR000490 (Glycoside hydrolase family 17;
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13 genes) and IPR044965 ‘Glycoside hydrolase family 17, plant’
(detected for 12 genes), as well as the term GO:0004553 ‘hydrolase
activity, hydrolyzing O-glycosyl compounds’ (detected for
21 genes).

The second cluster contains three significant terms. All of them
are related to ceramide biosynthesis: ‘ceramide biosynthetic process’
(GO:0046513, 7 genes), ‘Lagl/Lacl-like’ domains (IPR016439, 5
genes), sphingosine N-acyltransferase activity (GO:0050291,
5 genes).

Supplementary Table S13 (Supplementary File 2) presents
annotation terms that are significantly represented in the sample
of genes localized in regions of highly significant QTLs according to
DAVID data. In addition to the terms presented in Table 2, the table
contains Uniprot annotation terms ‘Disordered region’ (detected
for 635 genes). Another group of genes is characterized by the
annotation of UP_SEQ_FEATURE sequences (COMPBIAS,
Basic residues).

Thus, the most significantly represented genes we identified for
QTL loci are primarily associated with the glycoside hydrolase
family and ceramide biosynthetic process functions.

The list of genes associated with glycoside hydrolase function
and ceramide biosynthetic process, together with the locus to which
they belong, is given in Supplementary Table S14 (Supplementary
File 2). This table shows that 40% of genes related to glycoside
hydrolase activity (9 out of 23) are located in the QTL region on
chromosome 3D, at position 102 ¢cM. This position was previously
noted for its overlap with a large number of QTLs for the color trait
(Supplementary Table S10, Supplementary File 2). This region is
associated with the largest number of texture traits, nine, which
indicates its high significance. According to Figure 2, some traits
associated with roughness are among these QTLs: Q. GLCMi-3D*
(GLCM inertia), Q.GLCMmp-3D* (GLCM max probability),
Q.GLCMc-3D* (GLCM correlation), Q.PCI-3D* (first principal
component). At the same time, two traits, GLCMi and GLCMc,
are closely related to grain shell lightness traits (Figure I;
Supplementary Table S5, Supplementary File 1). Eight of the 23
glycoside hydrolase genes were localized in the QTL region on
chromosome 4D, position 164.488. Interestingly, this region
corresponds to two QTLs also associated with grain roughness/
smoothness traits: Q.GLCMc-4D° (GLCM correlation) and
Q.GLCMi-4D° (GLCM inertia), which are associated with grain
shell lightness traits.

Most of the genes associated with the ceramide biosynthetic
process are located on chromosome 5B, position 75 cM (4 out of 7).
Two genes are located on chromosome 4D and one on
chromosome 3D.

KEGG orthologous groups were identified for 531 of the 1,213
genes. Analysis of the KEGG annotation showed that a significant
proportion of the genes (almost half) belong to the functional
category “Genetic information processing.” The next categories
are ‘Carbohydrate metabolism’, ‘Signaling and cellular processes’,
‘Environmental information processing’, and ‘Lipid metabolism’.
Based on KO identifiers, 35 genes associated with seed development
processes were identified. Their list is given in Supplementary Table
S15 (Supplementary File 2). They are represented in all loci we
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TABLE 2 Results of analysis by DAVID web-service for the gene Annotation Clusters 1 and 2 (Enrichment Score 4.29 and 3.29, respectively).

Number L
Category Term ID Term P-value Benjamini FDR
of genes

Cluster #1

INTERPRO IPRO00490 Glycoside hydrolase 13 12 2E-06 2E-04 2E-04
family 17

eosi

INTERPRO IPR044965 Glycoside hydrolase 12 11 SE-07 SE-04 SE-04
family 17, plant
Hydrolase activity,

GOTERM_MF_DIRECT GO0:0004553 hydrolyzing O-glycosyl 21 1.9 5E-05 0.03 0.03
compounds

INTERPRO IPRO17853 Glycoside hydrolase 2 20 SE-04 0.16 0.16
superfamily

GOTERM_BP_DIRECT GO000s975 | CRrbohydrate metabolic 28 26 2E-03 0.50 0.50
prOCeSS

UP_KW_MOLECULAR_FUNCTION = KW-0326 Glycosidase 23 21 001 0.29 0.29

Cluster #2

GOTERM_BP_DIRECT GOO04e313 | Ceramide biosynthetic 7 0.7 5E-06 3E-03 3E-03
PrOCeSS

INTERPRO IPRO16439 Lagl/Lacl-like 5 0.5 2E-05 1E-02 1E-02
Sphingosine N-

GOTERM_MF_DIRECT G0:0050291 » 5 0.5 3E-05 1E-02 1E-02
acyltransferase activity

UP_SEQ_FEATURE DOMAIN TLC 5 0.5 9E-04 0.16 0.16

INTERPRO IPRO06634 TLC-dom 5 05 1E-03 0.37 037

SMART SM00724 TLC 5 0.5 1E-03 0.24 024

UP_KW_CELLULAR_COMPONENT = KW-0256 Endoplasmic reticulum 17 16 001 0.24 024
Endoplasmic reticulum

GOTERM_CC_DIRECT GO:0005789 15 16 0.28 1 1
membrane

Significant p-values after Benjamini correction and FDR shown in bold.

detected, except for chromosome 3B. Most (14 genes) are located in
the 4D region of the chromosome, at position 164.488 cM. The
genes associated with seed development include transcription
factors (MADS-box, EREBP-like, MYB, HD-ZIP, AP2-like,
NFYC, 19 genes in total), while the remaining genes encode
various enzymes, kinases, translation regulators, and a number of
others. Based on these data, it is difficult to identify any functional
group specific to these genes.

4 Discussion

The texture of grains in an image is a complex feature that
depends on many factors. The perception of texture depends on the
position of the observer, lighting, and the characteristics of the
object’s surface (Desage et al., 2015). The characteristics of an
object’s surface are determined by its color, material structure,
and relief. Digital representation of texture in images is a complex
task, and none of the many descriptors used to evaluate it provide a
complete representation (Bianconi et al., 2021). For example, the
GLCM (Haralick et al., 1973) and GLRM (Galloway, 1975)
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descriptors used in this work evaluate the spatial variability of
only the intensity of image illumination, but not color.

It can be assumed that the texture properties of grains are
determined by the presence of pigments and their distribution in
the shell, as well as by the structure of the external and internal
tissues of the grain. Inter- and intraspecific differences in grains
based on these characteristics are so pronounced that the use of
texture characteristics allows for highly accurate classification of
plant grains into species (Majumdar and Jayas, 2000c) or varieties
(Ropelewska and Rutkowski, 2021).

This study performed a comprehensive analysis of grain texture
characteristics in images of wheat samples from the ITMI
population. As in many previous studies, significant diversity in
grain texture was observed among the samples. However, the results
obtained in this study allowed the identification of two main types
of grain shell variability: roughness/smoothness and wrinkling
along/across the grain axis (Figure 2). These characteristics are
well known for grains. The wrinkling of pea seeds was observed by
Mendel in his pioneering work on genetics (Williams et al., 2024).
In the work of Jabeen (Jabeen et al., 2023), significant interspecific
differences were found in the grains of the genus Salvia L. in terms
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of both smoothness (smooth/scabrous) and roughness. An analysis
of a large number of morphological characteristics of grains in a
corn population demonstrated significant differences, including
texture traits (Wang et al., 2025).

Using grains from different samples and harvest years as
examples, in the present study it was shown that genetic
components and harvest year make a significant contribution to
the diversity of all 16 texture characteristics of wheat grains. Thus,
like most other wheat grain traits, such as size, shape, and color
(Arif et al, 2021, Arif et al, 2022b), texture characteristics are
influenced by both genetic and environmental factors.

The study shows that grain texture characteristics are
significantly related to the duration of their storage in the
genbank. Previously, we discovered a similar relationship for the
color characteristics of grains from the same wheat population
(Afonnikov et al., 2022). The dependence of color on the duration of
grain storage may be partly related to gradual metabolic changes in
the grain shell, leading to changes in pigment concentration
(Shvachko and Khlestkina, 2020; Pirredda et al., 2023).
Apparently, similar changes may occur in the microstructure of
the grain shell. Interestingly, these changes are characterized by an
increase in the roughness. This may be due to the degradation of
certain structural components of the shell, occurring against the
background of numerous biochemical and structural changes in the
grains during aging (Nagel and Borner, 2010; Arif et al,, 2022a). In
particular, it is known that one of the characteristic changes in the
internal structure of grains subjected to long-term storage is cell
shrinkage (Nadarajan et al., 2023), which can potentially lead to
changes in the surface structure of the grain. Another possible factor
may be changes in the cell wall or the destruction of mucilage
during storage (Sano et al., 2016), which may lead to exfoliation of
the cell wall and an increase in its roughness. However, it is still
challenging to make a definitive judgment about the mechanisms of
the observed variability.

In our work, a reliable correlation between texture
characteristics and grain germination was found for only one
characteristicc CLCM correlation. It is weak, unlike the redness
traits for the same population (Afonnikov et al., 2022), for which the
correlation coefficient with germination reached absolute values
ranging from 0.164 to 0.235, while the threshold values for
randomization tests in most cases did not exceed 0.1 in absolute
terms, as in the present work. Another trait, CLCM inertia, showed
significant deviations from zero only in the bootstrap test. Thus, the
relationship between texture and germination is weak. However, it
is only evident for traits that correlate with grain lightness
and roughness.

A significant correlation between grain coat texture traits and
seed emergence rate was observed for corn (Wang et al., 2025).
However, a recent analysis of peas showed that seed dormancy is
genetically separable from seed coat thickness and roughness
(Williams et al., 2024). These results are contradictory, which
may be due to the influence of a whole complex of factors
affecting grain germination: the structure and water permeability
of the coat, pigment concentration, hormone activity, and many
others (Han and Yang, 2015; Steinbrecher and Leubner-Metzger,
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2017; Farooq et al.,, 2022). These factors may contribute differently
to different plant species. Obviously, more detailed study is needed
to answer the question of the relationship between germination and
the texture of the seed coat of different species.

Our work has identified several QTLs for grain texture traits,
both additive and epistatic. For grain traits obtained from image
analysis, QTL and GWAS analyses are widely used to search for
genes involved in their control in cereals and other plant species
(Jamil et al., 2025). However, to our knowledge, such analysis has
not previously been performed for cereal grain texture traits. The
presence of significant QTLs confirms the genetic basis of texture
traits. The results obtained in this study show that, as in the case of
digital traits of grain color, size, and shape (Arif et al, 2022b;
Afonnikova et al., 2024), for many QTLs, the location of loci in the
genome coincides. This means that the same genes influence the
formation of multiple grain characteristics simultaneously (both
due to the statistical dependence of the traits themselves and due to
the biological mechanisms that determine them). A comparison of
the location of QTLs for sets of characteristics of size, shape, color,
and texture showed that there is no overlap between the loci of
texture and grain size/shape, but for several regions of the genome,
the QTLs of color and texture overlap. The locus associated with the
largest number of wheat grain color/texture traits (a total of 34 color
traits and 10 texture traits) is located on chromosome 3D at
positions 100-102 cM at a distance of ~1. 5 Mb from the
TaMYBI10 gene (Lang et al, 2024), which is involved in the
regulation of grain color and control of pre-harvest sprouting.
This is noteworthy because, in a recent analysis of pea grain traits
related to shell structure (testa thickness and permeability), the loci
of these quantitative traits were found to be closely associated with
Mendel’s pigmentation locus A (Williams et al., 2024).

Modern methods of analyzing high-density marker genetic
maps allow for the prioritization of genes from QTL regions in
the wheat genome (Bargsten et al., 2014; Rezaei et al., 20215 Arif
et al., 2022b; Afonnikova et al., 2024). For texture traits, two
functional groups of genes localized in significant QTL regions
were identified in the current study: those associated with glycoside
hydrolase family 17 and ceramide biosynthetic process. Glycoside
hydrolase family 17 comprises enzymes with several known
activities (Henrissat and Davies, 2000; Minic and Jouanin, 2006;
Minic, 2008): endo-1,3-f-glucanase (EC 3.2.1.6), endo-1,4-f3-
glucanase (EC 3.2.1.74). In plants, glycoside hydrolases family is
involved in the degradation of cell wall polysaccharides (Minic and
Jouanin, 2006). They are also involved in starch sucrose and
raffinose metabolism, seed development in Arabidopsis (Minic,
2008). Proteins of this family were detected experimentally in the
developing wheat endosperm (Suliman et al, 2013). In wheat,
glycoside hydrolase family 17 (GH17) comprises 209 genes
representing four groups of clades in phylogenetic tree (Penning,
2023). Genes of this family involved in wheat defense against R.
cerealis and can inhibit activity of additional pathogenic fungi of
rice, hot pepper and tobacco (Liu et al., 2009). Expression of these
genes has inhibitory effect on fungi commonly associated with
wheat kernel (Zhang et al., 2019). Plant B-1,3-glucanases also play
a role in the degradation of callose in plasmodesmata which form
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channels physically interconnecting the cytoplasm and endoplasmic
reticulum of adjacent cells (Perrot et al., 2022). Interestingly,
reversible callose accumulation is known to be involved in
regulating symplastic connectivity of plant cells and adjacent
epidermal cells at different stages of plant development (Zavaliev
et al.,, 2011).

Ceramides are the basic unit of all sphingolipids signaling
molecules involved in many processes in plants (Lynch and
Dunn, 2004; Pata et al., 2010; Mehta et al., 2021; Liu et al., 2021),
such as plant disease or defense (Berkey et al., 2012), cell membrane
architecture formation and membrane trafficking (Mamode Cassim
et al.,, 2020). Ceramides abundant in seeds as was demonstrated in
durum wheat (Cutignano et al, 2021) and soybean (Gao et al,
2025). Their abundance changes with seed development (Wang
et al,, 2006). As in the case of the glycoside hydrolase family, the
function of these metabolites is also related to the cell wall.
Interestingly, in Arabidopsis sphingolipids together with sterols
are highly enriched in plasmodesmata (Grison et al., 2015). It was
demonstrated that the modulation of the overall sterol composition
of young dividing cells reversibly impaired the plasmodesmata
localization of the glycosylphosphatidylinositol anchored proteins,
including B-1,3-glucanases, resulting in altered callose-mediated
permeability (Grison et al., 2015). This allows us to hypothesize that
the structure/functions of cell walls and cell-to-cell connectivity are
somehow related to the structure of the grain surface and,
consequently, to its texture characteristics.

Current and our previous works (Afonnikov et al., 2022; Arif
et al, 2022b) demonstrated usefulness and efficiency of digital
image processing in analysis of morphological, physiological
wheat grain characteristics and their genetic control. Results of
these works are summarized in (Table 3).

They demonstrated that genetic control of these traits are
complex: more than two QTLs per trait were identified; they are
located in different wheat chromosomes. Size and shape properties
do not change with grain storage duration unlike color traits. Size
and shape properties have no relationship with seed germination

TABLE 3 Genetic control and relationships with physiological
characteristics of the wheat grain size, shape, color and texture traits
obtained from digital images.

Type of traits Size/ Color Texture
shape

Number of traits' 7 48 16

Number of QTLs 42 170 36

Number of chromosomes with QTLs? 15 16 8

Number of genomic regions>’ 19 21 9

Number of traits correlated with
storage duration'

Number of traits correlated with

germination rate’

'this work and Afonnikov et al. (2022);
2this work and Arif et al. (2022b);
*LOD>3, left and right markers mapped to the genome.
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unlike color traits describing redness (Afonnikov et al., 2022).
Interestingly, texture traits are highly related to grain storage
duration but demonstrate absence of the relationship to
germination rate like size and shape traits.

The lack of clarity in the grain texture features in the images
makes it hard to find connections between them and the grain
properties that can be described at the molecular, metabolic, or
structural level. Perhaps such a connection can be established by
searching for correlations between texture and other grain
properties (color, mechanical, biochemical, etc.). For example, in
a study (Wang et al, 2025), it was shown that grain texture
descriptors displayed significant correlations with light
transmissivity parameters determined using a hyperspectral
sensor, several of them negative (texture smoothness, texture
repetition, and pixel correlation) and one positive (texture
roughness). Significant relationships were found between texture
and visible color descriptors of seed coat (similar to our results). No
significant relationship was found for texture characteristics and
seed surface roughness estimated using atomic force microscopy.

From the other hand, more detailed description of texture can
be obtained by using additional characteristics. For example, there
are methods that take into account textural features for different
color spaces, which can describe texture and its dependence on
object color in greater detail (Ropelewska and Rutkowski, 2021;
Ropelewska et al., 2022). They may reveal more subtle associations
between texture and color characteristics and identify more QTLs
for further analysis. A larger number of traits will allow describing
more characteristics of the shell. This will allow to more reliably
search for associations with genetic variations in the complex of
grain texture traits.

5 Conclusion

Here, a comprehensive analysis of the texture of soft wheat
grains in digital images for plants from the ITMI population is
presented. It allowed to characterize the variability of accessions in
terms of texture and demonstrated two main directions of texture
variability related to grain roughness/smoothness and wrinkling. It
was shown that both genotype and the factor of storage duration in
the genbank contribute significantly to the formation of grain
texture characteristics. The relationship between texture traits and
grain germination was found only for one characteristic, GLCM
correlation, and was found to be weak. The QTLs we identified,
both additive and epistatic, which demonstrate that texture traits
are controlled by several loci located on eight chromosomes. The
location of some of these QTLs in the genome overlaps with loci
involved in grain color control. Prioritization of genes in the
identified loci and their functional analysis allowed us to
hypothesize a possible link between texture traits and cell wall
properties. Overall, our analysis showed the complex nature of
wheat grain characteristics such as surface texture. Further study
will shed light on the genetic mechanisms that underlie the
formation of plant grain texture traits.
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