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Introduction: The coat texture characteristics of grains in an image are

informative parameters often used to classify plants into species or varieties.

Intraspecific and interspecies diversity of texture parameters indicates a

significant contribution of the genetic component to the formation of these

traits. However, the structural and molecular properties of the grain shell, which

can determine the texture in the image, have been poorly studied.

Methods: Here, a comprehensive analysis of the texture characteristics of bread

wheat grains from the International Triticeae Mapping Initiative (ITMI) population

was performed based on their digital images.

Results: The assessment of their diversity revealed two characteristic types of

variability: smoothness/roughness and wrinkling along and across the grain axis.

It was shown that both genotype and storage duration in the genbank contribute

significantly to the formation of all grain texture characteristics investigated.

Storage duration was found to be associated with an increase in grain surface

roughness. A significant relationship between texture and grain germination was

found for only one characteristic, GLCM (gray-level co-occurrence matrix)

correlation. QTL analysis identified thirty-six additive and eight pairs of epistatic

loci associated with texture traits. These loci were located on eight wheat

chromosomes. Prioritization of genes in the identified loci and their functional

analysis allowed us to hypothesize a possible link between grain shell texture and

cell wall properties.

Conclusion: The results demonstrate the genetic and environmental

determinants of grain texture traits.
KEYWORDS

wheat grains, digital images, texture characteristics, genetic and environmental factors,
grain aging, QTL, gene prioritization
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1 Introduction

The use of machine vision and digital image analysis

technologies allows for the assessment of many quantitative

characteristics of grain size, shape, and color (Huang et al., 2015;

Zhao et al., 2022; Himmelboe et al., 2025). Grain size assessment

characterizes their weight (Kim et al., 2021) and is related to plant

yield (Emebiri and Hildebrand, 2023). Grain shape characteristics

can serve as parameters for machine classification of plants into

varieties or species (Majumdar and Jayas, 2000a; Huang and Chien,

2017; Martıń-Gómez et al., 2019, Martıń-Gómez et al., 2025). Color

is closely related to the physiological state of grains. It characterizes

the pigment composition of the shell (Del Valle et al., 2018),

pathogen damage to grains (Ahmad et al., 1999), grain viability

(Dell’Aquila, 2006), and grain aging processes during storage (Kibar

and Kılıç, 2020; Afonnikov et al., 2022). Grain color characteristics

are also used for automatic plant classification, including in

conjunction with size and shape characteristics (Neuman et al.,

1989; Majumdar and Jayas, 2000b; Mebatsion et al., 2013).

Quantitative assessments of grain characteristics based on

digital images are used in QTL analyses or associated single

nucleotide polymorphisms (SNPs) through genome wide

association studies (GWAS) (Williams and Sorrells, 2014;

Sakamoto et al., 2019; Alemu et al., 2020). This helps to identify

genes that control grain development and its physiological

properties (Jamil et al., 2025).

In addition to shape and color, the texture of objects in images

can be determined, a complex characteristic that reflects the

uniformity or unevenness of an object’s color pattern, as well as

its regularity (Haralick et al., 1973; Galloway, 1975; Humeau-

Heurtier, 2019). Grain texture characteristics are no less

informative than size, shape, or color. They are often used in the

classification of various plants (Majumdar and Jayas, 1999,

Majumdar and Jayas, 2000c; Manickavasagan et al., 2008;

Zapotoczny, 2011; Ropelewska and Jankowski, 2019; Komyshev

et al., 2020; Ropelewska and Rutkowski, 2021; Gierz and Przybył,

2022; Ropelewska et al., 2022). Their use in addition to other

characteristics improves the accuracy of classification (Majumdar

and Jayas, 2000d). A large number of descriptors have been

developed to describe the texture of objects in an image, based on

the statistical properties of images, various filters, graphs, and a

number of other approaches (Humeau-Heurtier, 2019). Statistical

methods are most often used in the analysis of grains. These

include, in particular, the gray-level co-occurrence matrix

(GLCM) and the gray-level run length matrix (GLRM) (Haralick

et al., 1973; Galloway, 1975). Some researchers use various

components of color spaces instead of gray tones to evaluate

texture characteristics (Ropelewska and Jankowski, 2019).

Despite the active study and use of grain texture characteristics

in images for plant classification tasks, the structural and molecular

properties of the grain shell, which can determine the texture in the

image, have been poorly investigated. On the one hand, texture

depends on surface morphology (smoothness, roughness,

wrinkling, presence of defects). Furthermore, grain texture may
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be due to uneven shell coloration. There are few data on the

functional role of grain surface structure, although there is

evidence of its influence on seed germination in maize (Wang

et al., 2025) and pea milling properties (Dijkink and Langelaan,

2002). Possible genetic mechanisms that determine grain surface

structure have also been poorly studied. However, in peas, the

GRITTY locus is known to determine seed testa roughness

(Williams et al., 2024).

Previously, we proposed an approach to evaluate the

characteristics of the size, shape and color of wheat grains based

on the analysis of digital images obtained in the laboratory

(Afonnikov et al, 2022). Characteristics for grains of 114

recombinant inbred lines (RILs) from the International Triticeae

Mapping Initiative (ITMI) population harvested in 2014 were

determined and search for quantitative trait loci (QTL) was

performed for them (Arif et al., 2022b). Genes participating in the

metabolic pathways of biosynthesis of carotenoids and flavonoids

have been revealed for loci associated with shell color. Genes

involved in protein ubiquitination, as well as a number of known

transcription factors and enzymes involved in regulating grain

development, have been identified for loci associated with grain

size and shape.

Grains of plants grown in 2003, 2004, 2009, and 2014 were

available in the genbank for 44 RILs. This biological material made

it possible to compare the characteristics of the size, shape, and

color of plant grains harvested in different years and to assess the

effect of storage duration on them (Afonnikov et al, 2022). The

results showed that the duration of storage correlates with changes

in most of the signs of coloration, but not size/shape. The

germination rates were determined for 19 lines from 2003, 2004,

2009, and 2014 harvest year seeds. Statistical analysis has shown the

presence of significant correlations between germination and color

characteristics characterizing the redness of the grain shell

(Afonnikov et al, 2022). These results are in good agreement with

known mechanisms of genetic control of grain color traits (Arif

et al., 2021; Lang et al., 2024), molecular processes in seeds during

aging (Gordeeva et al., 2024; Shvachko and Khlestkina, 2020), as

well as known data on the relationship between redness and seed

dormancy (Groos et al., 2002). The image sets we have obtained

proved to be convenient for identifying the genetic and

environmental determinants of wheat grain traits.

In this study, we determined 16 texture characteristics of grain

coat for the same sets of grain images and performed similar

analysis as in previous works (Afonnikov et al., 2022; Arif et al.,

2022b). The diversity of characteristics was assessed using grains

from 114 lines harvested in 2014. Analysis of grain images of 44

lines harvested in 2003, 2004, 2009 и 2014 indicated the relationship

between texture characteristics and seed storage duration in the

genbank. The correlation between germination and texture traits

was estimated for the grains of 19 lines harvested in 2003, 2004,

2009 и 2014. 114 lines harvested in 2014 were used to identify QTLs

for texture traits and possible candidate genes controlling their

formation were identified. The results demonstrate the genetic and

environmental determinants of grain coat texture traits.
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2 Materials and methods

2.1 Seed images

Images of grains from the various accessions of the recombinant

inbred lines (RILs) of the mapping population of bread wheat

(Triticum aestivum L.) from the International Triticeae Mapping

Initiative were used. The ITMI mapping population was obtained

by crossing the T. aestivum spring wheat cultivar Opata 85 and the

synthetic hexaploid spring wheat W7984 (Arif et al., 2022b). Plants

of each genotype were grown in the 2003, 2004, 2009 and 2014

seasons. After harvest, the seeds were stored at IPK genbank with an

-18 ± 2 °C and 8 ± 2% seed moisture content. Images were taken

from previous works (Afonnikov et al., 2022; Arif et al., 2022b). The

images represent grains on a white background, next to the

ColorChecker calibration palette, which was used to determine

the scale (x-rite ColorChecker® Classic Mini, https://xritephoto.

com/camera; accessed on 20 January 2022). Examples of seed

images are shown in Supplementary Figure S1 (Supplementary

File 1).

To analyze the diversity of traits in the population and identify

QTL, grain images of 114 RILs harvested in 2014 were used

(Afonnikov et al., 2022; Arif et al., 2022b). Two images per RIL

were obtained for this sample, each counting 15 and 5 grains,

respectively. Our preliminary analysis demonstrated that this

splitting does not affect the estimation of the seed traits.

Seeds from 44 lines harvested in 2003, 2004, 2009, and 2014

were used to analyze the relationship between texture traits and

harvest year (Afonnikov et al., 2022). To analyze the relationship

between grain germination and texture characteristics, images of

seeds from 19 lines harvested in 2003, 2004, 2009, and 2014 were

used (Afonnikov et al., 2022). Images for these samples included

from 17 to 20 grains.

These samples were used to perform various types of analysis of

grain coat texture traits as summarized in Supplementary Figure S2

(Supplementary File 1): statistical relationship between traits,

population diversity analysis, relationship with storage duration

in genbank and germination rate, QTL identification, and

gene prioritization.
2.2 Evaluation of seed characteristics in an
image

Digital image processing was performed using the SeedCounter

application (Komyshev et al., 2017), a desktop PC version

supplemented with a color characteristics calculation module

(Afonnikov et al., 2022). Areas corresponding to grains were

identified in the image, and their size, shape, and color

characteristics were evaluated as described earlier. In this study,

we took 12 color characteristics, the average values of the color

components of the pixels in the grain area for the RGB, HSV, Lab,

and YCrCb color spaces (Afonnikov et al., 2022). Their list is given

in Supplementary Table S1 (Supplementary File 1).
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To evaluate texture properties, we used 16 second-order

characteristics determined based on gray level co-occurrence

matrices (GLCM) and gray level run-length matrices (GLRM)

(Haralick et al., 1973; Galloway, 1975; Majumdar and Jayas,

1999). These characteristics allow us to quantitatively describe the

features of micro-relief or surface color inhomogeneities of grains,

which are not always distinguishable by visual inspection. GLCM

describes the spatial distribution of the brightness of neighboring

pixels by evaluating the frequency of co-occurrence of certain

combinations of gray-level values. GLRM evaluates sequences of

pixels with the same brightness, providing information about the

spatial organization of texture elements. This allows characterizing

such surface properties as uniformity, contrast, and texture

complexity. The list of texture features is given in Supplementary

Table S1 (Supplementary File 1), and the definition is given in

Supplementary Tables S2–S4 (Supplementary File 1).

When calculating texture characteristics as both GLCM (for

neighboring pixels) and GLRM (for series) matrices, eight main

directions are distinguished: up, down, left, right, and four diagonally.

In this work, texture characteristics were determined based on grayscale

images summed across all 8 directions (omnidirectional).
2.3 Statistical analysis of grain
characteristics

A preliminary analysis of the images was conducted to exclude

outliers from further consideration, i.e., grains with texture

characteristics whose values deviated from the mean by more

than 3 standard deviations.

To evaluate the Pearson correlation r of texture, size, shape, and

color characteristics, grains from the 2014 harvest were analyzed

(114 RILs). Based on this, the distance d = 1−∣r∣ between pairs of

characteristics was calculated, and then a tree of similarity of

characteristics was reconstructed using the UPGMA method. To

assess the diversity of texture traits in the ITMI population for

grains from the 2014 harvest, the principal component analysis

(PCA) method was used based on a correlation matrix.

Grains from 44 RILs harvested in 2003, 2004, 2009 and 2014

were used to assess the contribution of genetic factors (RIL) and

harvest year to the variability of texture characteristics

implementing one-way analysis of variance (ANOVA). The

contribution of a factor was considered significant at p < 0.05.

The linear correlation between the trait value and the harvest

year for each grain in this sample was assessed based on the

approach proposed earlier (Afonnikov et al., 2022). Data for 3460

grains were used for correlation analysis. The harvest year was

coded for each grain in three ways: binary (Year01, values 0 were

assigned to the years 2003 and 2004; values 1 were assigned to the

years 2009 and 2014); numerical (Year, numerical values of the year

were used); rank (YearRank, values 1, 2, 3, and 4 were assigned to

the years 2003, 2004, 2009, and 2024, respectively). The significance

of correlation between the trait and the harvest year in the three

encodings was independently verified using 2000 replicates of
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permutation and bootstrap tests (randomization of texture trait

values was used) in the sample of 3460 grains. The relationship

between the trait and the harvest year was considered significant if

the correlation coefficient was less than the minimum or greater

than the maximum values in both randomization tests.

The statistical relationship between the trait and germination was

assessed for grains obtained from 19 RILs harvested in 2003, 2004,

2009 and 2014 (1279 grains in total) using Pearson’s correlation

coefficient, as was done previously (Afonnikov et al., 2022).

Preliminary evaluation of the contribution of harvesting year and

genotype to the germination variance demonstrated that the year (but

not genotype) has significant effect. Therefore, to eliminate this effect

mean germination values for the corresponding year were subtracted

from the each genotype and year values. Some outlier values were

removed after that in the germination data (Afonnikov et al., 2022).

Before the analysis, each trait values were standardized so that the

means were equal to 0 and the standard deviations were equal to 1 for

all genotypes. The significance of correlation between the grain coat

texture trait and the germination rate was assessed by randomization

tests as described above.

Statistical data processing was performed using Python 3.10

software (SciPy, sklearn, pandas libraries).
2.4 QTL analysis of grain texture
characteristics

Grains from 114 RILs harvested in 2014 were used for QTL

analysis. Mean values of the grain texture characteristics for each

RIL served as input data.

Experimental procedures to obtain SNPs in ITMI plants for

QTL analysis were described in (Arif et al., 2021).

To capture the variance explained by the molecular markers

such as SNPs mapped to any genome, a refined method known as

“inclusive composite interval mapping” was used as implemented in

the QTLIciMapping 4.2.53 (http://www.isbreeding.net/(latest

released in September 2019). This method currently considered as

the most modern method of QTL detection (Arif et al., 2021). It was

used successfully to detect several QTLs for Fusarium head blight

(Sgarbi et al., 2021) and seed longevity (Arif et al., 2022a) in wheat

and germination related traits in tobacco (Agacka-Mołdoch et al.,

2021) applying the QTLIciMapping tool. Therefore, we convened

the IciMapping 4.2.53 to detect the putative additive QTLs of the

traits under consideration applying the inclusive composite interval

mapping (ICIM) command where 1.0 cM was the walking speed.

An LOD score of > 2.0 ≤ 3 was applied to detect QTLs as significant

and > 3.0 as highly significant (Meng et al., 2015).

In order to discover digenic epistasis QTLs to find clues for

latent variation, the ICIM-EPI command was used where LOD was

kept 5.0 cM. Here, the epistasis QTLs with LOD ≥5 and explaining

≥ 5% phenotypic variance were reported. All QTLs were assigned

names according the rules set out in the Catalog of Gene Symbols

(McIntosh et al., 2008). Epistasis QTLs were visualized using

“circlize” package in R (Gu et al., 2014).
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In addition to 16 texture traits for QTL identification, we used

their two linear combinations represented by PC1 and PC2 from the

PCA analysis for seeds harvested in 2014. (see above). The QTL

locations for texture traits were compared with QTLs for traits such

as size, shape, and color of grains in images from our previous work

(Arif et al., 2022b).
2.5 Gene prioritization

Gene identification in QTL regions, their functional annotation,

and prioritization were performed according to previously

described procedures (Arif et al., 2022b). The sequences of

markers delimiting QTLs were aligned on IWGS 2.1 wheat

genome sequence (Zhu et al., 2021). Genome sequence and

annotat ion data were obta ined from URGI (https : / /

urgi .versai l les . inra.fr/download/iwgsc/IWGSC_RefSeq_

Assemblies/v2.1; accessed on 10 January, 2022). Only ‘high

confidence’ gene annotations were considered. Marker sequences

were obtained from reference (Wang et al., 2014) and Gramene

marker Database (https://archive.gramene.org/markers/; accessed

on 10 January, 2022) (Tello-Ruiz et al., 2021). Marker sequences

were aligned using blastn of the BLAST+ package (Camacho et al.,

2009) using e-value=1e-17 (other parameters were set by default).

Marker locations were selected by choosing appropriate

chromosome and highest sequence identity with the reference.

Search for genes and their functional analysis were performed

only for QTLs which have both left and right markers mapped on

the reference genome.

Genes located within marker borders were selected by expression

level in the grain (TPM>=1). For this purpose, wheat gene expression

data from the expVIP database (Borrill et al., 2016) were used. Data in

tex t format were downloaded f rom URGI (ht tps : / /

urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/

v1.1/iwgsc_refseqv1.1_rnaseq_mapping_2017July20.zip; accessed on

10 January, 2022). We used data from RNA-seq experiments in

which the column ‘High level tissue’ contains ‘grain’ term.

Additional conversion was performed between annotation ver. 2.1

(genome) and 1.2 (transcriptome) gene IDs.

Since there was no prior knowledge about possible molecular

mechanisms related to seed texture characteristics in wheat, two

approaches for functional annotation and gene prioritization were

used. First, full list of QTL related genes expressed in seeds was

analyzed by DAVID web service, https://davidbioinformatics.nih.

gov/, accessed on 12 April, 2025 (Sherman et al., 2022). Functional

clusters and functional charts of genes were obtained. Clusters and

functional categories were selected using p-values corrected for

multiple hypothesis testing (Benjamini correction and FDR <

0.05). Second, sequences of selected genes were used to search for

KEGG Orthology (KO) annotation by BlastKOALA and

GhostKOALA web-services (Kanehisa et al., 2016). List of KO

IDs was compared with orthologous groups of genes related to

seed development in Arabidopsis and rice according to literature

data, see details in (Arif et al., 2022b).
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3 Results

3.1 Correlations between texture
characteristics and other seed traits

The values of Pearson’s correlation coefficients for pairs of traits

are given in Supplementary Table S5 (Supplementary File 1). The

table shows that significant correlation coefficients are more often

observed for pairs within groups of color, size/shape, and texture

traits, with several texture traits having significant correlation

coefficients with color traits. The tree of grain traits similarity

based on these coefficients is shown in Figure 1. Eight clusters are

distinguished in the tree (at a clustering threshold of d = 1.5). The

first cluster (top to bottom, light green) includes four grain texture

features, three of which are based on GLRM (GLRMsr, GLRMlr,

GLRMrr), and one is calculated based on the GLCM matrix

(GLCMh). The second cluster (gray) includes two texture features

(GLCMu, GLCMmp). The third cluster (pink) includes five grain

color features that characterize color (Lab_mb, YCrCb_mCb,

Lab_ma, HSV_S, YCrCb_Cr). The next cluster (brown) includes

texture features based on GLRM (GLRMglnu, GLRMrlnu, GLRMe).

The next two clusters, lilac and red, include shape and size features,

respectively. The green cluster includes five texture features based

on GLCM calculation. Finally, the orange cluster includes nine

features. Of these, two outlying features characterize texture

(GLCMc, GLCMi). The remaining features form a tight cluster
Frontiers in Plant Science 05
and include three components of the RGB space; the remaining

ones, except for HSV_mH, characterize the lightness/brightness

of pixels.

Thus, the clusters on the dendrogram correspond to several

interrelated groups of characteristics that describe the shape, size,

color, lightness, and texture of the grains. The assignment of

characteristics to clusters reflects their common biological nature.

Note that texture characteristics are grouped into several clusters.

The exceptions are GLCMc and GLCMi, which fall into the

brightness trait cluster but are simultaneously quite distant from

it. This means that grain texture traits reflect specific surface

characteristics that are not related to shape or size and are to

some extent related to the lightness of the grain shell (Figure 1).
3.2 Diversity of ITMI population based on
texture characteristics

We analyzed the diversity of grains in the ITMI population

based on texture characteristics using PCA. The results are shown in

a scatter plot for the two principal components (Figure 2). These

two components account for 78% of the total variance. The diagram

demonstrates the wide variability of the ITMI population in terms

of texture, with no clusters standing out.

The first principal component (PC1) explains half of the total

variance and shows a high positive correlation with features such as
FIGURE 1

Hierarchical clustering of grain traits, including texture traits, based on Pearson’s correlation coefficient estimated from their variability in 114 wheat
lines of the ITMI population. The proximity scale is shown on the X-axis. Trait clusters in the diagram are highlighted in different colors.
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GLRMglnu, GLCMc, and GLRMe. This component also shows a

high negative correlation with the GLCMi feature (Figure 2).

It should be noted that high values of this component are

observed for the ITMI_62 line (Figure 2A), whose grains appear to

be the smoothest (Figure 2B). Opata grains also have positive values

for this component, and their surface also appears smooth with

small wrinkles. Conversely, for the ITMI_11 line, the value of this

component is the lowest and negative (Figure 2A). In the image,

these grains appear to be the roughest (Figure 2B). It can be

assumed that the first component reflects the smoothness of the

grain: the higher its value, the smoother the grain surface; the lower

the value, the rougher the grain surface. Note that smooth grains

appear lighter in color than rough ones (ITMI_62, ITMI_11,

Figure 2B), which may partly explain the high correlation

coefficients between some texture and lightness features in

Supplementary Table S5 (Supplementary File 2) and Figure 1.
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The second principal component (PC2) explains a quarter of the

total variance and shows a high positive correlation with features such

as GLCMcp, GLCMcs, GLCMv, and GLRMrlnu. A negative

correlation with this component is observed for the GLCMe

feature. Interestingly, a high positive value for this component is

observed for the Synthetic_W7984 sample, whose grains appear

wrinkled, with wrinkles extending along the grain (Figures 2A, B).

Low values for this component are characteristic of the ITMI_74 line

(Figures 2A). Small transverse folds are observed for its grains

(Figure 3B). It can be assumed that the second component reflects

the folding of the grain surface. At the same time, its values probably

characterize the direction of the grain surface wrinkles: low values

correspond to wrinkles directed across the grain, and high values

correspond to wrinkles directed along the grain.

Figure 2 demonstrates the high diversity of grain texture in the

ITMI population and allows to distinguish two main types of
FIGURE 2

(A) PCA diagram in the space of GLCM and GLRM texture features. The PC1 and PC2 axes correspond to the first and second principal components, with
the corresponding dispersion shares indicated in parentheses. The points correspond to wheat lines, with texture feature projections shown in green. Lines
with extreme component values, including parental genotypes, are shown in red. (B) Grain images for lines with extreme component values.
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variability: smoothness/roughness and wrinkling along

and across.
3.3 Contributions of genetic components
and harvest year to the diversity of textural
traits

Data for various harvest years were presented for 44 lines.

ANOVA tests were used to estimate the contributions from both

genetic and harvest year factors to the variability of traits related to

grain texture in the image. The results are presented in

Supplementary Table S6 (Supplementary File 1). Results

demonstrated that the variability of all 16 traits is due to a

significant contribution of both genotype and harvest year. The p-

values were significantly less than 5% for all 16 traits and both

factors. The highest p-values were observed for the “genotype”

factor and the GLRMglnu and GLRMe traits (0.00047 and 0.00043,

respectively). This ensures the reliability of the contribution of the

two factors, even when taking into account the correction for

multiple comparisons.

Thus, the results of the analysis confirm that the diversity of

grain texture traits in the studied wheat samples is influenced by

both genetic and environmental (harvest year) factors.
Frontiers in Plant Science 07
3.4 The relationship between the harvest
year and texture characteristics

For 44 ITMI lines, trends in grain texture variability depending

on the harvest year were assessed based on Pearson’s correlation

coefficient with three variants of numerical representation of the

harvest year: binary Year01, rank YearRank, and numerical Year.

For each representation of the harvest year, we conducted two

randomization tests with 2,000 replicates, permutation and

bootstrap. With their help, we determined the minimum and

maximum confidence limits of the correlation coefficient.

Results are shown in Table 1. Only two of the 16 texture

characteristics do not have a significant correlation between their

values and the harvest year. The correlation coefficients for the

GLCMv and GLCMe features are less than 0.07 in magnitude. In

addition, for the GLCMcs feature, the correlation coefficient with

the YearRank parameter (0.07) only slightly exceeds the threshold

value (0.06) in magnitude.

In other cases, the correlation coefficient of the trait with the

YearRank variable is equal to or greater than 0.1. The highest

positive correlation coefficients (greater than 0.28) are observed for

traits such as GLCMc, GLCMh, and GLRMlr. These results

indicates that these traits are greater for grains from a later

harvest year (or shorter storage period in the gene bank).
FIGURE 3

Bar plots showing the dependence of four texture characteristics of wheat grains on the year of harvest. (A) GLCMh (GLCM homogeneity); (B) GLCMi
(GLCM inertia); (C) GLCMe (GLCM entropy); (D) GLCMcp (GLCM cluster prominence). The horizontal axis shows the years of storage (2003, 2004,
2009, 2014), and the vertical axis shows the values of the characteristics.
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Interestingly, these three traits on the principal component diagram

(Figure 2) are collinear with the first principal component, which

can be interpreted as an increase in grain smoothness (Table 1).

The lowest correlation coefficients (< -0.26) are demonstrated by

GLRMsr, GLRMrr, and GLCMi. The latter has the highest correlation

coefficient among all of them with the YearRank feature (-0.44).

Negative correlation coefficients mean that the lower the harvest year

(and therefore the longer the storage time of the grains), the greater

the value of the feature. Note that the three features indicated in the

principal component diagram (Figure 2) are opposite in relation to

the PC1 component (associated with grain smoothness). Thus, an

increase in the value of these features can be interpreted as an increase

in grain roughness.

Table 1 shows that the correlation coefficients of the features

with the harvest year, determined by different year encodings, are

generally consistent with each other. For example, for GLCMh, the

correlation coefficient with Year01 was r = 0.269, with Year r =

0.292, and with YearRank r = 0.333. At the same time, the YearRank

coding generally shows the lowest absolute values of correlations

with features. Therefore, selecting the threshold for randomization

tests based on it gives more conservative estimates of significance.

Examples of the relationship between the magnitude of certain

traits and the harvest year are shown as box plots in Figure 3 (for other

traits, they are shown in Supplementary Figure S3, Supplementary File

1). These graphs clearly show trends in trait variability depending on

the year if the correlation coefficient estimate differs significantly from

0. For example, for the GLCMh trait (Figure 3A), there is a steady
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increase depending on the harvest year. This is consistent with the

high correlation coefficient values (Table 1).

For the GLCMi trait, on the contrary, the opposite trend is

observed: as the harvest year increases, the value of the trait decreases

(Figure 3B). This is consistent with the negative value of the GLCMi

correlation coefficients with the harvest year (Table 1). It should be

noted that higher GLCMi values correspond to greater grain

roughness (Figures 2A, B) and are higher for earlier harvest years,

i.e., for longer grain storage periods (Figure 3).

For the GLCMe trait (Figure 3C), the values for different harvest

years differ, but no trend with increasing harvest year is observed.

This is consistent with the results in Table 1: there is no significant

statistical relationship between this trait and the harvest year. In

Figure 3D, the values of the GLCMcp trait for the harvest years 2003

and 2004 are slightly higher than the values for 2009 and 2014.

There is a noticeable downward trend with increasing harvest year,

but it is less pronounced than for the GLCMh and GLCMi traits.

This is also consistent with the data in Table 1: the absolute value of

the correlation coefficient with the harvest year for GLCMcp is less

than for GLCMh and GLCMi.

Summarizing the results presented, it can be assumed that the

correlations between texture characteristics and harvest year that we

have identified reflect, in general, an increase in the roughness of

wheat grain coat as the storage period in the genbank increases.

Thus, the results show that storing grains in a genbank leads to

changes in their texture. These changes may reflect structural or

metabolic changes in the grain shell.
TABLE 1 Evaluation of Pearson correlation coefficients between grain texture characteristics and harvest year, presented in three encodings.

Trait Year01 Year YearRank
PermYearRank BootstrapYearRank

Min Max Min Max

GLCMcp -0.16 -0.12 -0.11 -0.05 0.07 -0.05 0.07

GLCMcs -0.11 -0.07 -0.07 -0.06 0.06 -0.05 0.06

GLCMc 0.20 0.26 0.30 -0.06 0.05 -0.06 0.05

GLCMe -0.01 -0.04 -0.06 -0.06 0.06 -0.06 0.06

GLCMh 0.27 0.29 0.33 -0.06 0.06 -0.07 0.06

GLCMi -0.33 -0.39 -0.44 -0.06 0.06 -0.07 0.06

GLCMmp 0.06 0.07 0.12 -0.06 0.07 -0.07 0.06

GLCMm 0.11 0.09 0.11 -0.05 0.07 -0.05 0.06

GLCMuy 0.15 0.14 0.17 -0.07 0.06 -0.04 0.06

GLCMv -0.06 -0.03 -0.02 -0.05 0.06 -0.06 0.05

GLRMe 0.14 0.11 0.12 -0.07 0.06 -0.06 0.06

GLRMglnu 0.15 0.12 0.13 -0.06 0.08 -0.07 0.06

GLRMlr 0.21 0.24 0.28 -0.06 0.07 -0.06 0.06

GLRMrlnu 0.13 0.10 0.10 -0.06 0.06 -0.05 0.06

GLRMrr -0.22 -0.25 -0.28 -0.06 0.06 -0.06 0.07

GLRMsr -0.20 -0.22 -0.26 -0.07 0.06 -0.06 0.06
The four right-hand columns show the minimum and maximum threshold values of the correlation coefficients obtained based on permutation (PermYearRank) and bootstrap
(BootstrapYearRank) tests for the rank coding of the harvest year. Values in bold for YearRank parameter are significant according to randomization tests.
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3.5 The relationship between grain
germination and their textural
characteristics

We assessed the relationship between grain texture

characteristics and germination rates. The results are presented in

Supplementary Table S7 (Supplementary File 1). They show that

only one characteristic, GLCMc (GLCM correlation), meets the

criteria for a significant deviation from 0. At the same time, its

correlation coefficient with germination (0.098) only slightly

exceeds the threshold obtained for the permutation (0.087) and

bootstrap (0.097) tests. We note another feature, GLCMi (GLCM

inertia). For it, the correlation coefficient with similarity was -0.102,

which is slightly less than the lower threshold for the bootstrap test

(-0.095), but exceeds the lower threshold for the permutation test

(-0.104). Thus, this feature satisfies the criterion of a significant

deviation from 0 based on the results of only one randomization

test. Interestingly, both GLCMc and GLCMi correlate with grain

lightness features (see Figure 1). At the same time, the GLCMi was

interpreted as characteristics of grain shell roughness (Figure 2).

For the remaining texture parameters, the correlation

coefficients between the normalized values of the trait and

germination are within the ranges obtained from randomization
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tests. Thus, it can be concluded that the statistical relationship

between grain texture traits and their germination is weak.
3.6 QTL mapping for texture traits

For seed texture traits, a total of 36 texture related QTLs were

discovered on chromosomes 2D, 3B, 3D, 4D, 5B, 5D, 7A and 7B

where majority were overlapped with other QTLs (Supplementary

Table S8, Supplementary File 2; Figure 4). For example, there were

four QTLs (Q.GLCMe-2D, Q.GLCMcs-2D1, Q.GLCMcp-2D1 and

Q.GLRMsr-2D) on chromosome 2D. These QTLs were related to

GLCMe, GLCMcs, GLCMcp and GLRMSr where the log of odds

(LOD) values ranged from 2.5 to 6.1 and the phenotypic variation

explained (PVE) varied from 6.19 to 17.52%. In addition, the QTLs

for GCLMCs and GCLMcp overlapped. Likewise, on chromosome

3B, there were six QTLs (Q.GLCMu-3B2, Q.GLCMmp-3B2,

Q.GLRMsr -3B3 , Q.GLRMlr -3B3 , Q.GLRMrr -3B3 and

Q.GLRMrlnu-3B) linked with GCLMu, GCLMmp, GLRMsr,

GLRMlr, GLRMrr and GLRMrlnu. Here the LOD ranged from

2.5 to 3.30 and the PVE ranged from 8.58 to 11.87% whereas all the

QTLs except Q.GLRMrlnu-3B were nearly overlapping with each

other (Figure 4).
FIGURE 4

QTL distribution of various grain texture traits. Each chromosome is drawn to an approximate where each 1 cm distance = ~ 80 cM and
chromosome 7A is shown smaller in comparison to its actual length as indicated by small cut. QTL with similar superscripts are identical loci. For
details, see Supplementary Table S8 (Supplementary File 2).
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On chromosome 3D there were nine QTLs (related to

Q.GLCMu-3D4, Q.GLCMmp-3D4, Q.GLCMc-3D4, Q.GLCMh-3D4,

Q.GLCMi-3D4, Q.GLRMsr-3D4, Q.GLRMlr-3D4, Q.GLRMrr-3D4

and Q.GLCMe-3D) GLCMu, GLCMmp, GLCMc, GLCMh,

GLCMi, GLRMsr, GLRMlr, GLRMrr, and GLCMe and all of

them except GLCMe were at the same location. The PVE by

these QTLs ranged from 8.5 to 33.23% and the maximum LOD

was 9.56. On chromosome 4D, there were three QTLs (Q.GLCMc-

4D5, Q.GLCMi-4D5 and Q.GLCMh-4D) related to GLCMc, GLCMi

and GLCMh that explained 4.48 to 10.24% variation and the LOD

remained between 2.67 and 3.41. On chromosome 5B there was one

single QTL Q.GLCMh-5B) related to GLCMh responsible for 9.31%

variation with an LOD value of 3.40. On chromosome 5D, there

were three QTLs (Q.GLCMu-5D6 , Q.GLCMmp-5D6 and

Q.GLRMglnu-5D6) at the exact location related to GLCMu,

GLCMmp and GLRMglnu responsible for > 10% variation and

their LOD ranged from 2.53 to 3.52. There were two separate QTLs

(Q.GLCMc-7A.1 and Q.GLCMc-7A.2) related to GLCMc on

chromosome 7A with LOD values of 9.89 and 14.36 explaining

15.14 and 24.38% variation. Finally, on chromosome 7B, we

detected three overlapping QTLs (Q.GLRMsr-7B7, Q.GLRMlr-7B7

and Q.GLRMrr-7B7) for GLRMsr, GLRMlr and GLRMrr where the

LOD value was >3 and the PVE ranged from 8.76 to 10.84.
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To capture additional variation, we also used the first two

principal components as trait values and performed the QTL

mapping. Interestingly, we detected five QTLs (three with PCI and

two with PC2) (Supplementary Table S8, Supplementary File 2). The

QTLs of PC1 on chromosomes 3B, 3D and 5D (Q.PC1-3B2, Q.PC1-

3D4 and Q.PC1-5D6) overlapped exactly with the texture related

QTLs. On the other hand, the two QTLs with PC2 (Q.PC2-2D and

Q.PC2-5B) on chromosomes 2D and 5B did not overlap with other

QTLs. These QTLs explained > 17% phenotypic variance and their

LOD values were also > 5.

Additionally, epistatic analyses further detected a total of eight

pairs that further explained up to 52.66% variation individually

(Supplementary Table S9, Supplementary File 2; Figure 5). From

trait perspective, there were four epistatic pairs of QTLs detected for

GLCMm on chromosomes 1D-3A, 3B-7A, 4A-7A and 4D-7B. The

variation explained by these pairs ranged from 9.79 to 21.96%. One

pair for GLCMe was detected on chromosomes 5B-5D responsible

for 17.95% variation. Another pair was detected for GLRMglnu on

chromosomes 4A-7D causing 21.92% variation in trait expression.

Further, another pair was detected for GLrMrlnu on chromosomes

4A-6B. This pair was responsible for 20.58% variation in the trait.

We also detected an epistatic QTL pair for PC1 on chromosomes

3B-3D that explained > 50% variation in PC1 (Figure 5).
FIGURE 5

Epistasis QTL network of grain texture traits. Outer circular plot represents the hexaploid genome arranged in chromosomes (chrs) 1–21 (1A–7D) in
clockwise direction. Numbers on colored outer circle represents cM on respective chrs. Grey-colored connections represent epistasis QTL
controlling different traits. Similar shaded QTL indicated QTL of similar traits.
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The results of comparing the positions of QTL for texture traits on

chromosomes with QTL for grain size/shape and color traits in images

are shown in Supplementary Table S10 (Supplementary File 2). This

table shows that QTL for texture traits do not coincide with any of the

QTL for grain size and shape traits in the wheat genome. However,

there is an overlap with a large number of grain color traits in two

locations. The first region is located on chromosome 3B at positions

299.179–300.179 cM (delimited by markers Excalibur_c5309_286

and BS00085434_51).

In this location, three QTLs for texture characteristics

(Q.GLRMsr-3B3, Q.GLRMlr-3B3, Q.GLRMrr-3B3) and 14 QTLs

for color traits were found. Second region is located on 3D

ch r omo some a t 1 00–102 cM (d e l im i t e d b y SNP s

CAP12_c2615_128 and BS00067163_51). In this location, 9 QTLs

for texture characteristics (Q.GLCMu-3D4, Q.GLCMmp-3D4,

Q.GLCMc-3D4, Q.GLCMh-3D4, Q.GLCMi-3D4, Q.GLRMsr-3D4,

Q.GLRMlr-3D4, Q.GLRMrr-3D4 and Q.PC1-3D4) and 34 QTLs for

color traits were observed.

Other notable QTLs for texture characteristics (Q.GLCMu-3B2,

Q.GLCMmp-3B2 and Q.PC1-3B2) were located on 3B chromosome

at 297.179 cM (delimited by SNPs Excalibur_c36725_96 and

Ku_c24974_674). This region is close to seven QTLs for the color

traits (position 298.179 cM, SNPs Ku_c24974_674 and

Excalibur_c5309_286) and has common SNPs Ku_c24974_674

for these loci.

The remaining QTLs for texture traits do not share common

locations on chromosomes with QTLs for color traits.
3.7 Functional analysis and prioritization of
genes within QTL related to texture traits

To prioritize genes based on highly significant QTLs (LOD>3),

we selected 27 QTLs out of 36. Of these, 23 QTLs were related to

texture traits, two to their linear combination PC1 (on

chromosomes 3B and 3D), and two to PC2 (on chromosomes 2D

and 5B). In the wheat genome, these QTLs correspond to 13

regions. For nine of them, we determined the coordinates of the

left and right markers in the IWGS 2.1 genome sequence. The sizes

of the regions ranged from 2 to 80 Mb. Using genome annotation,

1,688 wheat genes were identified that are localized within the

boundaries of these regions. The number of genes per region ranged

from 15 (QTLs on chromosome 3B at position 297.179) to 526 (15

QTLs on chromosome 4D at position 164.488). Lists of selected

QTLs, their position in the genome sequence, and lists of

corresponding genes are provided in Supplementary Table S11

(Supplementary File 2). Of the 1,688 wheat genes, 1,213 genes

were selected based on their expression level in grain. Their list is

provided in Supplementary Table S12 (Supplementary File 2).

These genes were analyzed for functional enrichment using the

DAVID service. Table 2 presents information on two functional

clusters of genes identified by us that demonstrate a statistically

significant association with functional annotation terms. The first

cluster includes genes whose function is associated with the

INTERPRO domains IPR000490 (Glycoside hydrolase family 17;
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13 genes) and IPR044965 ‘Glycoside hydrolase family 17, plant’

(detected for 12 genes), as well as the term GO:0004553 ‘hydrolase

activity, hydrolyzing O-glycosyl compounds’ (detected for

21 genes).

The second cluster contains three significant terms. All of them

are related to ceramide biosynthesis: ‘ceramide biosynthetic process’

(GO:0046513, 7 genes), ‘Lag1/Lac1-like’ domains (IPR016439, 5

genes), sphingosine N-acyltransferase activity (GO:0050291,

5 genes).

Supplementary Table S13 (Supplementary File 2) presents

annotation terms that are significantly represented in the sample

of genes localized in regions of highly significant QTLs according to

DAVID data. In addition to the terms presented in Table 2, the table

contains Uniprot annotation terms ‘Disordered region’ (detected

for 635 genes). Another group of genes is characterized by the

annotation of UP_SEQ_FEATURE sequences (COMPBIAS,

Basic residues).

Thus, the most significantly represented genes we identified for

QTL loci are primarily associated with the glycoside hydrolase

family and ceramide biosynthetic process functions.

The list of genes associated with glycoside hydrolase function

and ceramide biosynthetic process, together with the locus to which

they belong, is given in Supplementary Table S14 (Supplementary

File 2). This table shows that 40% of genes related to glycoside

hydrolase activity (9 out of 23) are located in the QTL region on

chromosome 3D, at position 102 cM. This position was previously

noted for its overlap with a large number of QTLs for the color trait

(Supplementary Table S10, Supplementary File 2). This region is

associated with the largest number of texture traits, nine, which

indicates its high significance. According to Figure 2, some traits

associated with roughness are among these QTLs: Q.GLCMi-3D4

(GLCM inertia), Q.GLCMmp-3D4 (GLCM max probability),

Q.GLCMc-3D4 (GLCM correlation), Q.PC1-3D4 (first principal

component). At the same time, two traits, GLCMi and GLCMc,

are closely related to grain shell lightness traits (Figure 1;

Supplementary Table S5, Supplementary File 1). Eight of the 23

glycoside hydrolase genes were localized in the QTL region on

chromosome 4D, position 164.488. Interestingly, this region

corresponds to two QTLs also associated with grain roughness/

smoothness traits: Q.GLCMс-4D5 (GLCM correlation) and

Q.GLCMi-4D5 (GLCM inertia), which are associated with grain

shell lightness traits.

Most of the genes associated with the ceramide biosynthetic

process are located on chromosome 5B, position 75 cM (4 out of 7).

Two genes are located on chromosome 4D and one on

chromosome 3D.

KEGG orthologous groups were identified for 531 of the 1,213

genes. Analysis of the KEGG annotation showed that a significant

proportion of the genes (almost half) belong to the functional

category “Genetic information processing.” The next categories

are ‘Carbohydrate metabolism’, ‘Signaling and cellular processes’,

‘Environmental information processing’, and ‘Lipid metabolism’.

Based on KO identifiers, 35 genes associated with seed development

processes were identified. Their list is given in Supplementary Table

S15 (Supplementary File 2). They are represented in all loci we
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detected, except for chromosome 3B. Most (14 genes) are located in

the 4D region of the chromosome, at position 164.488 cM. The

genes associated with seed development include transcription

factors (MADS-box, EREBP-like, MYB, HD-ZIP, AP2-like,

NFYC, 19 genes in total), while the remaining genes encode

various enzymes, kinases, translation regulators, and a number of

others. Based on these data, it is difficult to identify any functional

group specific to these genes.
4 Discussion

The texture of grains in an image is a complex feature that

depends on many factors. The perception of texture depends on the

position of the observer, lighting, and the characteristics of the

object’s surface (Désage et al., 2015). The characteristics of an

object’s surface are determined by its color, material structure,

and relief. Digital representation of texture in images is a complex

task, and none of the many descriptors used to evaluate it provide a

complete representation (Bianconi et al., 2021). For example, the

GLCM (Haralick et al., 1973) and GLRM (Galloway, 1975)
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descriptors used in this work evaluate the spatial variability of

only the intensity of image illumination, but not color.

It can be assumed that the texture properties of grains are

determined by the presence of pigments and their distribution in

the shell, as well as by the structure of the external and internal

tissues of the grain. Inter- and intraspecific differences in grains

based on these characteristics are so pronounced that the use of

texture characteristics allows for highly accurate classification of

plant grains into species (Majumdar and Jayas, 2000c) or varieties

(Ropelewska and Rutkowski, 2021).

This study performed a comprehensive analysis of grain texture

characteristics in images of wheat samples from the ITMI

population. As in many previous studies, significant diversity in

grain texture was observed among the samples. However, the results

obtained in this study allowed the identification of two main types

of grain shell variability: roughness/smoothness and wrinkling

along/across the grain axis (Figure 2). These characteristics are

well known for grains. The wrinkling of pea seeds was observed by

Mendel in his pioneering work on genetics (Williams et al., 2024).

In the work of Jabeen (Jabeen et al., 2023), significant interspecific

differences were found in the grains of the genus Salvia L. in terms
TABLE 2 Results of analysis by DAVID web-service for the gene Annotation Clusters 1 and 2 (Enrichment Score 4.29 and 3.29, respectively).

Category Term ID Term
Number
of genes

% P-value Benjamini FDR

Cluster #1

INTERPRO IPR000490
Glycoside hydrolase
family 17

13 1.2 2E-06 2E-04 2E-04

INTERPRO IPR044965
Glycoside hydrolase
family 17, plant

12 1.1 5E-07 5E-04 5E-04

GOTERM_MF_DIRECT GO:0004553
Hydrolase activity,
hydrolyzing O-glycosyl
compounds

21 1.9 5E-05 0.03 0.03

INTERPRO IPR017853
Glycoside hydrolase
superfamily

22 2.0 5E-04 0.16 0.16

GOTERM_BP_DIRECT GO:0005975
Carbohydrate metabolic
process

28 2.6 2E-03 0.50 0.50

UP_KW_MOLECULAR_FUNCTION KW-0326 Glycosidase 23 2.1 0.01 0.29 0.29

Cluster #2

GOTERM_BP_DIRECT GO:0046513
Ceramide biosynthetic
process

7 0.7 5E-06 3E-03 3E-03

INTERPRO IPR016439 Lag1/Lac1-like 5 0.5 2E-05 1E-02 1E-02

GOTERM_MF_DIRECT GO:0050291
Sphingosine N-
acyltransferase activity

5 0.5 3E-05 1E-02 1E-02

UP_SEQ_FEATURE DOMAIN TLC 5 0.5 9E-04 0.16 0.16

INTERPRO IPR006634 TLC-dom 5 0.5 1E-03 0.37 0.37

SMART SM00724 TLC 5 0.5 1E-03 0.24 0.24

UP_KW_CELLULAR_COMPONENT KW-0256 Endoplasmic reticulum 17 1.6 0.01 0.24 0.24

GOTERM_CC_DIRECT GO:0005789
Endoplasmic reticulum
membrane

15 1.6 0.28 1 1
Significant p-values after Benjamini correction and FDR shown in bold.
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of both smoothness (smooth/scabrous) and roughness. An analysis

of a large number of morphological characteristics of grains in a

corn population demonstrated significant differences, including

texture traits (Wang et al., 2025).

Using grains from different samples and harvest years as

examples, in the present study it was shown that genetic

components and harvest year make a significant contribution to

the diversity of all 16 texture characteristics of wheat grains. Thus,

like most other wheat grain traits, such as size, shape, and color

(Arif et al., 2021, Arif et al., 2022b), texture characteristics are

influenced by both genetic and environmental factors.

The study shows that grain texture characteristics are

significantly related to the duration of their storage in the

genbank. Previously, we discovered a similar relationship for the

color characteristics of grains from the same wheat population

(Afonnikov et al., 2022). The dependence of color on the duration of

grain storage may be partly related to gradual metabolic changes in

the grain shell, leading to changes in pigment concentration

(Shvachko and Khlestkina, 2020; Pirredda et al., 2023).

Apparently, similar changes may occur in the microstructure of

the grain shell. Interestingly, these changes are characterized by an

increase in the roughness. This may be due to the degradation of

certain structural components of the shell, occurring against the

background of numerous biochemical and structural changes in the

grains during aging (Nagel and Börner, 2010; Arif et al., 2022a). In

particular, it is known that one of the characteristic changes in the

internal structure of grains subjected to long-term storage is cell

shrinkage (Nadarajan et al., 2023), which can potentially lead to

changes in the surface structure of the grain. Another possible factor

may be changes in the cell wall or the destruction of mucilage

during storage (Sano et al., 2016), which may lead to exfoliation of

the cell wall and an increase in its roughness. However, it is still

challenging to make a definitive judgment about the mechanisms of

the observed variability.

In our work, a reliable correlation between texture

characteristics and grain germination was found for only one

characteristic, CLCM correlation. It is weak, unlike the redness

traits for the same population (Afonnikov et al., 2022), for which the

correlation coefficient with germination reached absolute values

ranging from 0.164 to 0.235, while the threshold values for

randomization tests in most cases did not exceed 0.1 in absolute

terms, as in the present work. Another trait, CLCM inertia, showed

significant deviations from zero only in the bootstrap test. Thus, the

relationship between texture and germination is weak. However, it

is only evident for traits that correlate with grain lightness

and roughness.

A significant correlation between grain coat texture traits and

seed emergence rate was observed for corn (Wang et al., 2025).

However, a recent analysis of peas showed that seed dormancy is

genetically separable from seed coat thickness and roughness

(Williams et al., 2024). These results are contradictory, which

may be due to the influence of a whole complex of factors

affecting grain germination: the structure and water permeability

of the coat, pigment concentration, hormone activity, and many

others (Han and Yang, 2015; Steinbrecher and Leubner-Metzger,
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2017; Farooq et al., 2022). These factors may contribute differently

to different plant species. Obviously, more detailed study is needed

to answer the question of the relationship between germination and

the texture of the seed coat of different species.

Our work has identified several QTLs for grain texture traits,

both additive and epistatic. For grain traits obtained from image

analysis, QTL and GWAS analyses are widely used to search for

genes involved in their control in cereals and other plant species

(Jamil et al., 2025). However, to our knowledge, such analysis has

not previously been performed for cereal grain texture traits. The

presence of significant QTLs confirms the genetic basis of texture

traits. The results obtained in this study show that, as in the case of

digital traits of grain color, size, and shape (Arif et al., 2022b;

Afonnikova et al., 2024), for many QTLs, the location of loci in the

genome coincides. This means that the same genes influence the

formation of multiple grain characteristics simultaneously (both

due to the statistical dependence of the traits themselves and due to

the biological mechanisms that determine them). A comparison of

the location of QTLs for sets of characteristics of size, shape, color,

and texture showed that there is no overlap between the loci of

texture and grain size/shape, but for several regions of the genome,

the QTLs of color and texture overlap. The locus associated with the

largest number of wheat grain color/texture traits (a total of 34 color

traits and 10 texture traits) is located on chromosome 3D at

positions 100–102 cM at a distance of ~1. 5 Mb from the

TaMYB10 gene (Lang et al., 2024), which is involved in the

regulation of grain color and control of pre-harvest sprouting.

This is noteworthy because, in a recent analysis of pea grain traits

related to shell structure (testa thickness and permeability), the loci

of these quantitative traits were found to be closely associated with

Mendel’s pigmentation locus A (Williams et al., 2024).

Modern methods of analyzing high-density marker genetic

maps allow for the prioritization of genes from QTL regions in

the wheat genome (Bargsten et al., 2014; Rezaei et al., 2021; Arif

et al., 2022b; Afonnikova et al., 2024). For texture traits, two

functional groups of genes localized in significant QTL regions

were identified in the current study: those associated with glycoside

hydrolase family 17 and ceramide biosynthetic process. Glycoside

hydrolase family 17 comprises enzymes with several known

activities (Henrissat and Davies, 2000; Minic and Jouanin, 2006;

Minic, 2008): endo-1,3-b-glucanase (EC 3.2.1.6), endo-1,4-b-
glucanase (EC 3.2.1.74). In plants, glycoside hydrolases family is

involved in the degradation of cell wall polysaccharides (Minic and

Jouanin, 2006). They are also involved in starch sucrose and

raffinose metabolism, seed development in Arabidopsis (Minic,

2008). Proteins of this family were detected experimentally in the

developing wheat endosperm (Suliman et al., 2013). In wheat,

glycoside hydrolase family 17 (GH17) comprises 209 genes

representing four groups of clades in phylogenetic tree (Penning,

2023). Genes of this family involved in wheat defense against R.

cerealis and can inhibit activity of additional pathogenic fungi of

rice, hot pepper and tobacco (Liu et al., 2009). Expression of these

genes has inhibitory effect on fungi commonly associated with

wheat kernel (Zhang et al., 2019). Plant b-1,3-glucanases also play

a role in the degradation of callose in plasmodesmata which form
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channels physically interconnecting the cytoplasm and endoplasmic

reticulum of adjacent cells (Perrot et al., 2022). Interestingly,

reversible callose accumulation is known to be involved in

regulating symplastic connectivity of plant cells and adjacent

epidermal cells at different stages of plant development (Zavaliev

et al., 2011).

Ceramides are the basic unit of all sphingolipids signaling

molecules involved in many processes in plants (Lynch and

Dunn, 2004; Pata et al., 2010; Mehta et al., 2021; Liu et al., 2021),

such as plant disease or defense (Berkey et al., 2012), cell membrane

architecture formation and membrane trafficking (Mamode Cassim

et al., 2020). Ceramides abundant in seeds as was demonstrated in

durum wheat (Cutignano et al., 2021) and soybean (Gao et al.,

2025). Their abundance changes with seed development (Wang

et al., 2006). As in the case of the glycoside hydrolase family, the

function of these metabolites is also related to the cell wall.

Interestingly, in Arabidopsis sphingolipids together with sterols

are highly enriched in plasmodesmata (Grison et al., 2015). It was

demonstrated that the modulation of the overall sterol composition

of young dividing cells reversibly impaired the plasmodesmata

localization of the glycosylphosphatidylinositol anchored proteins,

including b-1,3-glucanases, resulting in altered callose-mediated

permeability (Grison et al., 2015). This allows us to hypothesize that

the structure/functions of cell walls and cell-to-cell connectivity are

somehow related to the structure of the grain surface and,

consequently, to its texture characteristics.

Current and our previous works (Afonnikov et al., 2022; Arif

et al., 2022b) demonstrated usefulness and efficiency of digital

image processing in analysis of morphological, physiological

wheat grain characteristics and their genetic control. Results of

these works are summarized in (Table 3).

They demonstrated that genetic control of these traits are

complex: more than two QTLs per trait were identified; they are

located in different wheat chromosomes. Size and shape properties

do not change with grain storage duration unlike color traits. Size

and shape properties have no relationship with seed germination
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unlike color traits describing redness (Afonnikov et al., 2022).

Interestingly, texture traits are highly related to grain storage

duration but demonstrate absence of the relationship to

germination rate like size and shape traits.

The lack of clarity in the grain texture features in the images

makes it hard to find connections between them and the grain

properties that can be described at the molecular, metabolic, or

structural level. Perhaps such a connection can be established by

searching for correlations between texture and other grain

properties (color, mechanical, biochemical, etc.). For example, in

a study (Wang et al., 2025), it was shown that grain texture

descriptors displayed significant correlations with light

transmissivity parameters determined using a hyperspectral

sensor, several of them negative (texture smoothness, texture

repetition, and pixel correlation) and one positive (texture

roughness). Significant relationships were found between texture

and visible color descriptors of seed coat (similar to our results). No

significant relationship was found for texture characteristics and

seed surface roughness estimated using atomic force microscopy.

From the other hand, more detailed description of texture can

be obtained by using additional characteristics. For example, there

are methods that take into account textural features for different

color spaces, which can describe texture and its dependence on

object color in greater detail (Ropelewska and Rutkowski, 2021;

Ropelewska et al., 2022). They may reveal more subtle associations

between texture and color characteristics and identify more QTLs

for further analysis. A larger number of traits will allow describing

more characteristics of the shell. This will allow to more reliably

search for associations with genetic variations in the complex of

grain texture traits.
5 Conclusion

Here, a comprehensive analysis of the texture of soft wheat

grains in digital images for plants from the ITMI population is

presented. It allowed to characterize the variability of accessions in

terms of texture and demonstrated two main directions of texture

variability related to grain roughness/smoothness and wrinkling. It

was shown that both genotype and the factor of storage duration in

the genbank contribute significantly to the formation of grain

texture characteristics. The relationship between texture traits and

grain germination was found only for one characteristic, GLCM

correlation, and was found to be weak. The QTLs we identified,

both additive and epistatic, which demonstrate that texture traits

are controlled by several loci located on eight chromosomes. The

location of some of these QTLs in the genome overlaps with loci

involved in grain color control. Prioritization of genes in the

identified loci and their functional analysis allowed us to

hypothesize a possible link between texture traits and cell wall

properties. Overall, our analysis showed the complex nature of

wheat grain characteristics such as surface texture. Further study

will shed light on the genetic mechanisms that underlie the

formation of plant grain texture traits.
TABLE 3 Genetic control and relationships with physiological
characteristics of the wheat grain size, shape, color and texture traits
obtained from digital images.

Type of traits
Size/
shape

Color Texture

Number of traits1 7 48 16

Number of QTLs2 42 170 36

Number of chromosomes with QTLs2 15 16 8

Number of genomic regions2,3 19 21 9

Number of traits correlated with
storage duration1

1 44 14

Number of traits correlated with
germination rate1

0 7 1
1this work and Afonnikov et al. (2022);
2this work and Arif et al. (2022b);
3LOD>3, left and right markers mapped to the genome.
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Cervantes, E. (2019). Morphological description and classification of wheat kernels
based on geometric models. Agronomy 9, 399. doi: 10.3390/agronomy9070399
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Perrot, T., Pauly, M., and Ramıŕez, V. (2022). Emerging roles of b-glucanases in plant
development and adaptative responses. Plants 11, 1119. doi: 10.3390/plants11091119

Pirredda, M., Fañanás-Pueyo, I., Oñate-Sánchez, L., and Mira, S. (2023). Seed
longevity and ageing: a review on physiological and genetic factors with an emphasis
on hormonal regulation. Plants 13, 41. doi: 10.3390/plants13010041
frontiersin.org

https://doi.org/10.1002/ece3.3804
https://doi.org/10.1117/12.2081622
https://doi.org/10.1016/S0260-8774(01)00044-9
https://doi.org/10.1016/S0260-8774(01)00044-9
https://doi.org/10.1007/s00438-023-02051-z
https://doi.org/10.3390/ijms23158502
https://doi.org/10.1016/S0146-664X(75)80008-6
https://doi.org/10.48130/seedbio-0025-0006
https://doi.org/10.1038/s41598-022-23838-x
https://doi.org/10.18699/vjgb-24-56
https://doi.org/10.1105/tpc.114.135731
https://doi.org/10.1007/s001220200004
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1002/pmic.201400375
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1104/pp.124.4.1515
https://doi.org/10.1016/j.compag.2024.109884
https://doi.org/10.3390/s17040809
https://doi.org/10.15258/sst.2015.43.3.16
https://doi.org/10.1109/ACCESS.2018.2890743
https://doi.org/10.1111/plb.13473
https://doi.org/10.1007/s42976-025-00630-x
https://doi.org/10.1016/j.jmb.2015.11.006
https://doi.org/10.1111/jfpp.14951
https://doi.org/10.1016/j.eja.2021.126237
https://doi.org/10.18699/VJ20.626
https://doi.org/10.3389/fpls.2016.01990
https://doi.org/10.1111/tpj.16676
https://doi.org/10.1016/j.xplc.2021.100214
https://doi.org/10.1007/s10529-009-9958-8
https://doi.org/10.1007/s10529-009-9958-8
https://doi.org/10.1111/j.1469-8137.2004.00992.x
https://doi.org/10.1006/jaer.1998.0388
https://doi.org/10.13031/2013.3107
https://doi.org/10.13031/2013.3067
https://doi.org/10.13031/2013.3068
https://doi.org/10.13031/2013.3069
https://doi.org/10.1002/1873-3468.13987
https://doi.org/10.1016/j.jcs.2007.06.008
https://doi.org/10.1016/j.jcs.2007.06.008
https://doi.org/10.3390/agronomy9070399
https://doi.org/10.3390/plants14101522
https://doi.org/10.1016/j.compag.2012.09.007
https://doi.org/10.3390/plants10061098
https://doi.org/10.1016/j.cj.2015.01.001
https://doi.org/10.1007/s00425-007-0668-y
https://doi.org/10.1016/j.plaphy.2006.08.001
https://doi.org/10.1016/j.plaphy.2006.08.001
https://doi.org/10.3390/plants12030471
https://doi.org/10.1017/S0960258509990213
https://doi.org/10.1016/S0733-5210(89)80047-5
https://doi.org/10.1111/j.1469-8137.2009.03123.x
https://doi.org/10.1111/j.1469-8137.2009.03123.x
https://doi.org/10.3390/d15111135
https://doi.org/10.3390/plants11091119
https://doi.org/10.3390/plants13010041
https://doi.org/10.3389/fpls.2025.1659548
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Avzalov et al. 10.3389/fpls.2025.1659548
Rezaei, E., Hervan, E. M., Azadi, A., Etminan, A., and Ramshini, H. (2021).
Prioritisation of candidate genes in QTL regions for seed germination and early
seedling growth in bread wheat (Triticum aestivum) under salt-stress conditions.
Crop Pasture Sci. 72, 1. doi: 10.1071/CP20319

Ropelewska, E., and Jankowski, K. J. (2019). Classification of the seeds of traditional
and double-low cultivars of white mustard based on texture features. J. Food Process
Eng. 42, e13077. doi: 10.1111/jfpe.13077

Ropelewska, E., and Rutkowski, K. P. (2021). Differentiation of peach cultivars by
image analysis based on the skin, flesh, stone and seed textures. Eur. Food Res. Technol.
247, 2371–2377. doi: 10.1007/s00217-021-03797-9

Ropelewska, E., Sabanci, K., Aslan, M. F., and Azizi, A. (2022). A novel approach to
the authentication of apricot seed cultivars using innovative models based on image
texture parameters. Horticulturae 8, 431. doi: 10.3390/horticulturae8050431

Sakamoto, L., Kajiya-Kanegae, H., Noshita, K., Takanashi, H., Kobayashi, M., Kudo,
T., et al. (2019). Comparison of shape quantification methods for genomic prediction,
and genome-wide association study of sorghum seed morphology. PloS One 14,
e0224695. doi: 10.1371/journal.pone.0224695

Sano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., and Seo, M. (2016).
Staying alive: molecular aspects of seed longevity. Plant Cell Physiol. 57, 660–674.
doi: 10.1093/pcp/pcv186
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