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Medicinal plants serve as a crucial source of traditional Chinese medicine and
have garnered considerable attention due to their unique bioactive compounds
and notable pharmacological properties. However, during natural growth, these
plants are frequently susceptible to infection by various pathogenic
microorganisms, pests and nematodes, leading to reduced yields and
inconsistent accumulation of medicinal compounds, thereby significantly
limiting their resource development and utilization. WRKY transcription factors
(TFs) are central regulators of plant immunity that integrate pathogen-perception
signals, coordinate signaling pathways, and transcriptionally control defense-
gene expression. This review provides a systematic synthesis of current
knowledge on the regulatory mechanisms of WRKY TFs in the immune
responses of medicinal plants. Emphasis is placed on their roles in cellular
metabolic regulation, activation of Mitogen-Activated Protein Kinase (MAPK)
signaling pathways, integration of phytohormone signaling, and the
biosynthesis of secondary metabolites. In addition, we highlight that WRKY TFs
orchestrate immune responses at multiple levels through epigenetic
mechanisms, including DNA methylation and histone modifications.
Furthermore, it is proposed that transgenic approaches and Cut-Dip-Budding
(CDB)-mediated transformation be integrated with gene editing technologies
such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), in
conjunction with artificial intelligence (Al)-assisted identification of key
regulatory elements. This integrated strategy offers novel insights and
theoretical support for establishing efficient immune regulatory networks and
breeding disease-resistant medicinal plant varieties.
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1 Introduction

Plants are naturally versatile and diverse, serving as essential
sources of nutrients, pharmaceuticals, and chemical components
(Owusu Adjei et al,, 2021). Medicinal plants in particular contain
natural compounds of important value in both traditional and
(Tanvir et al,, 2024). They can be classified
according to their medicinal parts, therapeutic effects, or main

modern medicine

chemical constituents. For example, roots and rhizomes include
Panax ginseng C.A.Mey. (Li et al., 2025a); flowers include Lonicera
japonica Thunb. (Li et al., 2025b); leaves include Ginkgo biloba L.
(Liu et al., 2022); fruits and seeds include Lycium barbarum L. (Shi
et al., 2025); and whole herbs include Leonurus japonicus Houtt.
(Weietal,, 2023). In terms of therapeutic effects, Artemisia annua L.
is a typical antimalarial (Angupale et al., 2024), Curcuma longa L. is
widely used for its notable anti-inflammatory effects (Tian et al,
2025), and Astragalus membranaceus Bunge is valued for its
(Wang et al., 2022a). These
representative species are not only widely used in traditional

immunomodulatory potential

medicine but also demonstrate significant immunological and
therapeutic effects in modern pharmacological studies.

However, during their growth and development, medicinal
plants are frequently attacked by viruses, pathogens, pests and
nematodes (Han et al., 2025), which seriously affect their quality
and medicinal value. Plants have developed sophisticated immune
mechanisms in response to pathogen invasion (Yu et al., 2024). The
plant immune system consists of two main layers of active defense.
The first layer is triggered by the recognition of pathogen-associated
molecular patterns (PAMPs) and host-derived damage-associated
molecular patterns (DAMPs) by pattern recognition receptors
(PRRs), which activate PAMP-triggered immunity (PTI). The
second layer involves intracellular receptors called nucleotide-
binding leucine-rich repeat receptors (NLRs), which trigger
effector-triggered immunity (ETI) (Yuan et al, 2021). Although
different receptors initiate PTI and ETI through separate signaling
pathways, their downstream immune responses share significant
overlap (Yuan et al., 2021). For example, PTT and ETI are closely
linked through common signaling pathways like cell wall
remodeling (Wan et al, 2021), activation of Mitogen-Activated
Protein Kinase (MAPK) cascades, production of reactive oxygen
species (ROS), and phytohormone signaling (Yang et al., 2025).

In plant immune response, transcription factors are central to
(Xiang et al., 2025). The
WRKY transcription factor (TF) family serves as a central

the regulation of immune pathways

regulator of plant immunity, modulating PTI and ETI responses
either positively or negatively, while enhancing disease resistance
through the regulation of secondary metabolite accumulation and
epigenetic modifications (Chen et al., 2024a). Although the core
components of plant immune mechanisms are largely conserved
across species, medicinal plants display a unique characteristic: their
immune signaling is closely integrated with secondary metabolite
production, a feature that not only strengthens disease resistance
but also directly affects their medicinal value (Li et al., 2025¢; Zhao
et al.,, 2023; Li et al., 2025d).
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Currently, however, systematic understanding of WRKY
transcription factors (TFs) in medicinal plant immunity remains
limited. This study examines their regulatory role in innate immune
responses and offers a foundation for enhancing disease resistance
in medicinal plants.

2 From structure to function: the role
of WRKY TFs in plant defense

WRKY TFs are a widely distributed family of plant-specific
transcriptional regulators that recognize W-box sequences
(TTGACT/C) in DNA and play crucial roles in diverse
physiological processes, including seed germination, root
development, stress adaptation, and immune defense (Wang et al,
2024a). In this paper, we specifically focus on their central role in
mediating plant responses to pathogen invasion, emphasizing their
key position as hubs within the defense regulatory network. WRKY
proteins typically contain at least one WRKY domain, approximately
60 amino acids in length, featuring a highly conserved WRKYGQK
motif at the N-terminus and a zinc finger motif at the C-terminus,
both of which are essential for DNA binding (Zhang et al., 2023a).
Based on structural characteristics, the WRKY family has been
classified into three distinct groups. Group I contains two WRKY
domains, each associated with a C,H,-type zinc finger motif at the C-
terminus. Groups II and III possess a single WRKY domain, with C-
terminal zinc finger motifs of the C,H, and C,HC types, respectively
(Rushton et al., 2010). These structural features enable WRKY TFs to
recognize and bind specifically to W-box elements (TTGACT/C) in
the promoters of downstream target genes, thereby precisely
regulating gene expression and contributing to various biological
processes (Li et al., 2024a), particularly those involved in plant
immune responses (Liu et al., 2025).

During plant immune responses, WRKY TFs drive
transcriptional reprogramming by recognizing and binding to W-
box elements in the promoters of target genes, thereby activating
key components of the salicylic acid (SA) signaling pathway, such as
NPRI1/3, TGA, and PRI, to enhance disease resistance (Li et al.,
2024b). Studies have shown that RhAWRKY30 directly binds to the
W-box in the RhCADI promoter, promoting lignin biosynthesis
and enhancing resistance to Botrytis cinerea Pers. in Rosa spp (Li
et al,, 2024c¢). Similarly, class Ilc WRKYs bind to the W-box in the
GhMKK2 promoter, thereby increasing Gossypium hirsutum L.
resistance to Fusarium oxysporum Schltdl (Wang et al., 2022b). In
addition, WRKY TFs often act synergistically with other TFs to
regulate immune responses. For example, in Rheum palmatum L.,
WRKY and MYB factors synergistically activate genes involved in
flavonoid biosynthesis, thereby promoting the accumulation of
defensive secondary metabolites and enhancing both immune and
chemical defenses (Zhou et al., 2022a).

Although WRKYs also participate in plant developmental
processes, they establish relatively independent regulatory hubs
during immune responses, with certain signaling pathways
potentially shared with developmental networks (Liu, et al., 2024).
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This functional divergence enables the WRKY gene family to
integrate multiple signals within complex transcriptional networks,
thereby achieving precise reprogramming of immune-related gene
expression and maintaining a central role in plant defense. To better
illustrate these roles, we summarized the classification of WRKY TFs
in medicinal plants and their immune mechanisms (Table 1).

10.3389/fpls.2025.1659732

TABLE 1 Classification of medicinal plant WRKY transcription factors and their mechanism of action in plant immunity.

3 Mechanisms of WRKY-mediated
immune responses in medicinal plants
WRKY TFs serve as central hubs in the immunoregulatory

networks of medicinal plants, synergistically modulating multiple
layers of defense, including structural barrier reinforcement,

Form WRKY Medicinal plant Machine A pathogen Diseases Bibliography
members
I AtWRKY33 | Arabidopsis thaliana Reduces the MeJA pathway defence gene Alternaria brassicicola; gray mold (Zheng et al.,
PDF1.2 expression; reduces the SA pathway Botrytis cinerea black spot 2006)
defence gene PR-1. disease
Binds to and activates the expression of the
promoter of the secondary metabolite
camalexin biosynthesis gene
AtWRKY55 Enhancement of PDFI.2 expression through Pectobacterium soft rot disease (Kang et al,,
regulation of ORA59 promotes immune carotovorum ssp. 2024)
responses against soft rot disease carotovorum (Pcc)

BcWRKY33A | Brassica chinensis Direct activation of BcMYB51-3 and Botrytis cinerea Gray mold (Wang et al,,
downstream IGS biosynthetic gene 2022c)
expression

SIWRKY3 Solanum lycopersicum Regulation of TPK1b affects the SA and Botrytis cinerea Gray mold (Luo et al,, 2024)
ROS signalling pathways and negatively
regulates resistance
SIWRKY22 Promotes stomatal closure and prevents Pseudomonas syringae pv. bacterial speck (Ramos et al.,
SIWRKY25 pathogen invasion through stomata tomato 2023)

MAWRKY17 | Malus domestica MAMPK3-MdWRKY17-MdDMR6 pathway Colletotrichum fructicola Glomerella leaf (Shan et al,,
leads to apple disease susceptibility; spot (GLS) 2021b)
MdAWRKY17 promotes SA degradation
(MdDMR6 is the promoter of the salicylic
acid degradation gene)

MAWRKY20 | Malus domestica Binds to the promoter region of the Fusarium solani apple replanting  (Zhao et al.,
immune-related gene MdPRI and activates disease (ARD) 2025)
its expression

FaWRKY25 | Fragaria x ananassa Negative regulation of strawberry JA Botrytis cinerea gray mold (Jia et al., 2020)
‘Benihoppe’ resistance signalling disease
CaWRKY3 Capsicum annuum L. Induced by SA/MeJA/ETH; initiated defense Ralstonia solanacearum bacterial wilt (Hussain et al.,,
genes (CaPR1, CaNPR1, CaDEFI) 2024)
NbWRKY1 Nicotiana Binds to WHIRLY1 and inhibits WHIRLY1 Geminivirus geminivirus (Sun et al., 2023)
benthamiana promoter activity, thereby deregulating infection
WHIRLY1's negative regulation of
NbWRKY40, NbPRI, and NbPR2 and
activating plant immune responses
11 PIWRKY65 | Paeonia lactiflora Regulation of PIPR gene expression Alternaria tenuissima leaf spot disease =~ (Wang et al.,
2020b)

RhWRKY13 | Rosa sp. Inhibition of RACKX3, RhABI4 expression B. cinerea Gray mold (Liu et al., 2023)

TliWRKY34 Isatis indigotica Positive regulation of lignin accumulation Ralstonia solanacearum bacterial wilt (Xiao et al.,
and stress tolerance 2020)

SIWRKY8 Solanum lycopersicum Reduced SIPRI and SIPR5 expression; up- Phytophthora infestans late blight; (Gao et al., 2020)
regulated SIPRIal, SIPR7 expression gray mold

SIWRKY16 Suppression of SA (PR-1) and JA (PI) Meloidogyne javanica root-knot (Kumar et al.,
signalling pathway-related genes negatively nematode worm = 2023)
regulates immune disease
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TABLE 1 Continued

Form WRKY Medicinal plant Machine A pathogen Diseases Bibliography
members
AtWRKY75  Arabidopsis thaliana Interaction with JAZ8 derepresses the SA Botrytis cinerea; (Chen et al.,
gene ORA59 and positively regulates Alternaria brassicicola 2021d)
resistance
CaWRKY22b | Capsicum annuum Induction of HR cell death and H,0, Ralstonia solanacearum bacterial wilt (Shi et al., 2024)
accumulation; activation of JA-responsive disease

genes such as CaDEF1

AtWRKY8 Arabidopsis thaliana. Direct regulation of ABI4, ACS6 and Tobacco mosaic virus Tobacco mosaic (Chen et al.,
ERF104 expression in ABA and ET immune China strain (TMV-cg) disease 2013)
signalling pathways

LrWRKY39 | Lilium regale Wilson Activation of SA signalling pathway-related Botrytis cinerea gray mold (Fu et al,, 2022)
genes enhances plant resistance to disease
Phytophthora grey mold

LrWRKY3 Lilium regale Wilson Involved in JA and SA-mediated signal Fusarium oxysporum Fusarium wilt (Wang et al,,
transduction; up-regulated the expression 2022d)

levels of PRs and SODs; regulated defence-
related genes

PnWRKY9 Panax Involved in MeJA signal transduction Fusarium solani root rot (Zheng et al.,
notoginseng (Burk) pathway to enhance disease resistance 2022)
F.H. Chen
PnWRKY15 | Panax Up-regulation of resistance-related gene Fusarium solani root rot (Su et al., 2023b)
notoginseng (Burk) PnOLPI, activation of JA/SA signalling
F.H. Chen pathway
CaWRKY08- | Capsicum annuum Activation of defence-related genes (1 PRI, Phytophthora capsici Phytophthora (Cheng et al,,
4 2 PR4, 1 pathogen-related gene) blight 2024)
CmWRKYI15- | Chrysanthemum Interacts with CmNPRI to activate the Puccinia horiana chrysanthemum (Gao et al., 2022)
1 morifolium expression of genes involved in downstream white rust
pathogenesis that enhance resistance (CWR)

through the SA pathway

CsWRKY65 | Citrus sinensis Up-regulates the expression of defence Penicillium digitatum Green mold (Wang et al,,
genes (e.g. ROS generation-related genes 2021b)

and disease-course-related protein genes),

induces ROS accumulation and activates

plant defence signalling pathways

AktWRKY11/ | Akebia trifoliata Involved in the regulation of pathogen- Colletotrichum acutatum Anthracnose (Wen et al.,

18/21/31/47 associated PTI/ETI immune responses 2022)

—2/51/65
111 JeWRKY2 Jatropha curcas L. Regulation of SA mediated antioxidant Macrophomina phaseolina charcoal rot (Dabi et al.,
enzymes disease 2020)

GhWRKY70 Gossypium hirsutum Positive regulation of the jasmonic acid (JA) Verticillium dahliae Verticillium wilt (Zhang et al.,
signalling pathway 2023b)

PhWRKY30 | Petunia hybrida Activation of SA biosynthesis gene PhPAL2b Tobacco rattle virus Leaf curling; (Wang et al,,
expression regulates disease resistance (TRV) Chlorosis; 2025)

Tobacco mosaic virus Leaf mottling
(TMV)

JrWRKY21 Juglans regia L. JrWRKY21 interacts with the transcriptional Colletotrichum walnut (Zhou et al.,
activator JrPTI5L to induce protein JrPR5L gloeosporioides anthracnose 2022¢)
expression

JrWRKY4 JrWRKY4 was up-regulated by infestation, Colletotrichum anthrax of (Mu et al., 2024)
activated JrSTH2L expression and gloeosporioides walnuts

synergistically regulated immunity with
JrPHL8 and JrVQ4 to enhance immunity

ShWRKY81 Solanum habrochaites Activation of the SA signalling pathway to Oidium neolycopersici powdery mildew = (Wang et al.,
promote the expression of SAI and 2023b)
downstream gene defence genes (e.g. PRI,

(Continued)
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TABLE 1 Continued

WRKY
members

Form Machine

Medicinal plant

10.3389/fpls.2025.1659732

A pathogen Diseases Bibliography

PR5); enhancement of H,0, accumulation
and hypersensitivity reaction (HR)
Activation of SA signalling pathway related
genes and inhibition of JA signalling

pathway related genes

LrWRKY4la | Lilium regale Wilson Activation of SA signalling pathway related Botrytis cinerea gray mold (Fu et al,, 2022)
genes and inhibition of JA signalling
pathway related genes

CaWRKY70 | Cicer arietinum L. Negative regulation inhibits CaMPK9- Fusarium oxysporum f. wilt (Chakraborty
CaWRKY40 signal transduction; inhibits sp. ciceri Racel (Focl) et al., 2020)
defence genes PRI, PR5

MiWRKY53 | Morus indica Mediation of defence pathways through SA, Pseudomonas syringae bacterial speck  (Negi et al., 2021)
including activation of the SA signalling PstDC3000 disease
pathway, upregulation of PR-1 gene
expression

CaWRKY01- | Capsicum annuum L. Activation of the same 4 defence-related Phytophthora capsici Phytophthora (Cheng et al,,

10 genes (1 PRI, 2 PR4 and 1 pathogen-related blight 2024)

gene)

OscWRKY1 Ocimum sanctum Binding the promoters of key genes of the Pseudomonas syringae pv. | bacterial disease (Joshi et al.,
phenylpropane pathway (e.g. PAL and C4H) Tomato DC3000 2022)

in Arabidopsis thaliana activates their
expression and increases the content of
rosmarinic acid, thereby enhancing disease

resistance.

oxidative stress mitigation, signal transduction, and metabolic
defenses in response to pathogen attack (Wang et al., 2024a;
Chen et al,, 2025a). In Arabidopsis thaliana (L.) Heynh., WRKY
research has primarily elucidated their conserved roles in plant
immunity (Wang et al., 2024a). By contrast, in medicinal plants
such as Panax notoginseng (Burk.) F.H.Chen (Su et al, 2024),
Gastrodia elata Bl f. glauca S. Chow (Wang et al, 2020a), and
Salvia miltiorrhiza Bunge (Yu et al., 2025), WRKY factors more
prominently mediate the crosstalk between immune signaling
networks and secondary metabolic pathways (Li et al., 2025¢c).
Their downstream MAPK cascades and hormone signaling
pathways exhibit species-specific responses, thereby tightly
coupling defense reactions with the biosynthesis of medicinally
active metabolites. This integration represents the defining feature
that distinguishes immune research in medicinal plants from
studies in other plant systems (Li et al., 2025¢, e).

Mechanistically, WRKY TFs upregulate genes involved in lignin
biosynthesis, thereby enhancing cell wall-mediated defense. They also
modulate antioxidant enzyme systems to alleviate pathogen-induced
ROS accumulation and reduce oxidative damage. At the level of
signal transduction, WRKY TFs often act synergistically with the

Frontiers in Plant Science

MAPK cascade to promote the activation of defense-related genes. In
the hormonal signaling network, WRKYs finely regulate immune
responses by interacting with key phytohormones, including
jasmonic acid (JA), SA, and ethylene (Wang et al., 2024a; Javed
and Gao, 2023). For example, PnAWRKY9 in Panax notoginseng
activates the JA signaling pathway, enhances the expression of the
antimicrobial peptide gene PnDEFLI, and increases resistance to
Fusarium solani (Zheng et al., 2022). Meanwhile, WRKY TFs have
also been shown to directly or indirectly regulate genes involved in
the biosynthesis of key secondary metabolites, such as flavonoids,
terpenoids, and alkaloids, thereby enhancing metabolic defenses. For
instance, EbLWRKY30, EbWRKY31, and EbWRKY44 are co-expressed
with structural genes involved in flavonoid biosynthesis in Erigeron
breviscapus (Vaniot) Hand.-Mazz., leading to enhanced antioxidant
capacity and disease resistance (Song et al., 2024d).

Collectively, these studies demonstrate that WRKY factors play
a central, multidimensional, and synergistic role in the immune
network of medicinal plants, providing novel insights for the
molecular breeding of highly resistant medicinal plant varieties.
These regulatory mechanisms are further illustrated in the immune
signaling network of medicinal plants (Figure 1).
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3.1 WRKY mediates the regulation of
medicinal plant immune responses at the
intracellular physiological and biochemical
level

3.1.1 WRKY mediates lignin regulation of
medicinal plant immune responses

In various medicinal plants, WRKY TFs have been shown to play
a crucial role in lignin biosynthesis and pathogen defense. As a major
component of plant secondary cell walls (Ma, 2024), lignin serves as a
key marker of bio-induced immune responses (Xiao et al., 2022). It
constitutes the first line of defense against pathogen invasion by
interacting with cellulose and other cell wall components to enhance
mechanical strength and reduce permeability (Ma, 2024). WRKY TFs
contribute to plant immune responses by regulating the
phenylpropanoid pathway, thereby promoting lignin accumulation
(Xiao et al, 2023). For example, WRKY11 in Lilium regale Wilson
enhances resistance to usarium oxysporum by suppressing the
expression of the LrCell gene, thereby reducing cellulase activity
and increasing lignin content (Chen et al, 2025b). SmMWRKY40 in
Salvia miltiorrhiza and NtWRKY28 in Nicotiana tabacum L. are both
involved in regulating lignin biosynthesis. Studies have shown that
SmWRKY40 is associated with phenylpropanoid metabolism and the
stability of root cellular structures (Yu et al., 2025), while NtWRKY28
upregulates the expression of key lignin biosynthetic genes (such as
CAD, CCR, and HCT) and promotes the accumulation of defense-
related metabolites, including lignin and flavonoids, thereby
significantly enhancing resistance to aphid infestation (Chu et al,
2025). Overall, WRKY TFs play a central role in immune response by
promoting lignin biosynthesis, reinforcing mechanical barriers, and
coordinating the regulation of secondary metabolic pathways, thereby
enhancing environmental adaptability and stress tolerance.

3.1.2 WRKY-mediated regulation of antioxidant
enzymes in medicinal plant immunity

Upon pathogen attack, plants not only establish a first line of
defense by strengthening cell wall mechanical properties, but also
rapidly activate an immune signaling network centered around ROS
(Haghpanah et al., 2025). ROS function as key signaling molecules
that initiate defense pathways during early immune responses, but
their excessive accumulation induces oxidative stress and leads to
cellular damage. To maintain ROS balance, plants regulate the
expression of antioxidant enzymes (including superoxide dismutase
(SOD), catalase (CAT), and peroxidase (POD)) through WRKY TFs,
thereby scavenging excess ROS and enhancing disease resistance.

PnWRKY27 in Panax notoginseng specifically binds to the
PnPRPLI1 promoter, promoting PnPRPLI protein synthesis,
which in turn regulates the expression and enzymatic activities of
antioxidant enzymes (CAT, POD, and SOD), maintains
intracellular ROS homeostasis, and enhances resistance to
Fusarium root rot (Su et al., 2024). Overexpression of CsWRKY25
in Citrus spp. and heterologous expression of SpWRKY1 in
Nicotiana tabacum upregulate the transcription and enzymatic
activity of antioxidant enzymes such as SOD, CAT, and POD,
promote ROS scavenging, and activate phosphorylation-related
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signaling pathways, thereby enhancing plant resistance to
pathogens (Wang et al.,, 2021la; Li et al., 2015a). In
Chrysanthemum morifolium, constitutive overexpression of
CmWRKY48 markedly suppressed aphid population growth,
indicating its pivotal role in aphid resistance (Li et al., 2015b).

It is noteworthy that not all WRKY TFs contribute to positive
regulation of plant defense. For example, overexpression of
CaWRKY20 suppressed the transcription of ROS scavenging-
related enzyme genes (CaCAT, CaPOD, and CaSOD), thereby
reducing the ROS scavenging capacity of cells, leading to
excessive accumulation of H,0,, and weakening the resistance of
plants to Colletotrichum spp (Li et al., 2025f). In addition,
overexpression of CrmWRKY53 suppressed POD gene expression,
thereby increasing Chrysanthemum susceptibility to aphids and
offering a molecular basis for its susceptibility mechanism (Zhang
et al., 2020).

At the same time, ROS functions as an upstream signal in the
MAPK cascade, triggering the phosphorylation and activation of
MPK3/MPK6 (mitogen-activated protein kinase 3/6) and other
kinases. WRKY TFs regulate ROS homeostasis and act as MAPK
pathway targets, linking signal perception to gene expression and
mediating plant immune responses.

3.2 WRKY-mediated protein kinase MAPK
cascade pathway regulates immune
responses in medicinal plants

The MAPK cascade response, which consists of three layers of
kinases: Mitogen-Activated Protein Kinase Kinase Kinase
(MAPKKK), Mitogen-Activated Protein Kinase Kinase (MAPKK),
and MAPK, is one of the immune signaling pathways that is rapidly
activated by plants upon sensing pathogens (Wu and Wang, 2024).
Once activated, MAPKs regulate the expression of specific
downstream immune-related genes by modulating the activity of
various TFs, including WRKY, MYB, and ERF (Zhang and Zhang,
2022). Among these, WRKY TFs have been identified as primary
targets of MAPKs and play a central role in immune signaling by
bridging signal transduction with downstream gene expression
(Laflamme, 2023).

In Arabidopsis thaliana, PAMP signaling activates two distinct
MAPK-WRKY pathways. One is the MEKK1 (mitogen-activated
protein kinase kinase kinase 1)-MKK4/5 (mitogen-activated protein
kinase kinase 4/5)-MPK3/6 cascade, leading to the activation of
WRKY22 and WRKY29, which enhances plant resistance to
pathogens (Asai et al,, 2002). The other is the MEKK1-MKK1/2-
MPK4 pathway, in which MPK4 phosphorylates the transcriptional
regulatory protein MAP kinase substrate 1 (MKSI). MKSI
subsequently regulates its interacting partner WRKY33, which
negatively regulates the plant immune response to prevent
excessive activation. However, under certain pathogen stresses,
such as infection by Pseudomonas spp., WRKY33 remains active.
In such cases, WRKY33 can mediate the expression of downstream
defense-related genes (Kong et al., 2012). Additionally, WRKY33 is
activated by MPK3/6-mediated phosphorylation, which promotes
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the expression of camalexin biosynthesis genes in coordination with
ERFI, thereby enhancing Arabidopsis resistance to Botrytis cinerea
(Zhou et al., 2022b).

This mechanism has also been observed in other plant species.
In Nicotiana tabacum, NtWRKY4, NtWRKY6, and NtWRKYI0
interact with the MAPK cascade and positively regulate immune
responses against whitefly infestation (Yao et al., 2020a). Similarly,
PnWRKY35 from Panax notoginseng has been shown to activate
MAPK signaling and enhance disease resistance when ectopically
expressed in Nicotiana tabacum (Li et al., 2025a). However, in
Malus domestica, activation of the MKK4-MPK3-WRKY17
signaling pathway reduces SA levels, resulting in increased
susceptibility to Glomerella leaf spot, indicating that this MAPK-
WRKY module may function as a negative regulator in plant
immunity (Shan et al,, 2021).

In summary, MAPK-WRKY signaling modules play widespread
roles in pathogen recognition and immune regulation across diverse
plant species and can function in both positive and negative regulation,
emphasizing the complexity and precise modulation of plant immune
networks required for maintaining dynamic homeostasis.

Frontiers in Plant Science 07

3.3 WRKY mediates hormonal regulation of
immune responses in medicinal plants

Upon pathogen attack, the MAPK cascade is rapidly activated,
leading to the phosphorylation and activation of WRKY TFs, which
serve as key hubs that link early pathogen recognition to downstream
immune responses. WRKY TFs form a core regulatory network for
disease resistance by modulating antagonistic and synergistic
interactions among immune-related hormones such as SA, JA, and
ET, and by coordinating signaling pathways involving gibberellin
(GA), brassinosteroids (BR), auxin (IAA), and strigolactones (SL) to
enhance precise pathogen recognition and improve environmental
adaptability in plants (Wani et al,, 2021; Wang et al., 2023a; Goyal
et al,, 2023). This complex regulatory framework is depicted in the
map of WRKY-regulated hormonal immune defense mechanisms in
medicinal plants (Figure 2).

In the model plant Arabidopsis thaliana, WRKY70 serves as a
pivotal node in the antagonistic regulation between SA and JA/ET,
promoting the expression of SA-dependent resistance genes such as
PR proteins while repressing genes in the JA/ET pathway
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(Jiang et al., 2015). In addition, WRKY25, WRKY33, WRKY11, and
WRKY17 also participate in this crosstalk regulation (Li et al., 2004;
Journot-Catalino et al., 2006; Zheng et al., 2007). In Nicotiana
attenuata, NaWRKY3 functions as a key transcriptional regulator
during Alternaria alternata infection, activating jasmonate
biosynthetic genes (NaLOX3), ethylene biosynthetic genes
(NaACS1, NaACOI), ROS-generating genes (NaRbohD), and
defense-related secondary metabolite genes (NaF6’HI, NaBBL23),
thereby enhancing antifungal immunity through the integration of
hormonal, oxidative, and metabolic responses (Xu et al., 2023).
These findings provide important insights into elucidating the
immune mechanisms of medicinal plants.

In medicinal plants, WRKY TFs likewise serve as central hubs of
hormone regulatory networks. For example, in Pinus massoniana,
exogenous signaling molecules (MeJA, SA, etc.) rapidly induce the
expression of PmWRKY31, which regulates PmLp8 to activate
downstream hormone signaling and terpene biosynthesis genes,
thereby elevating endogenous levels of MeJA, GA, SA, and abscisic
acid (ABA), promoting the accumulation of terpenes and volatiles,
and ultimately enhancing resistance to Dendrolimus punctatus
(Chen et al,, 2021a). In Panax ginseng, PnWRKY15 synergistically
regulates the SA and JA pathways and activates the resistance gene
PnOLPI, thereby strengthening resistance to root rot disease (Su
et al,, 2023);Similarly, in Paeonia lactiflora, PPIWRKY®65 induces the
expression of defense genes such as PIPRI and enhances systemic
immune responses, possibly through the coordination of SA-JA
signaling (Wang et al., 2020b).

In addition to the backbone hormones such as SA, JA, and ET,
WRKY TFs are also widely involved in the defense regulation of
hormones including ABA, cytokinin (CK), and BR. In Nicotiana
attenuata, NaWRKY70 directly activates the biosynthetic genes of
JA (NaAOS, NaJAR4) and ABA (NaNCEDI, NaXD]I-like), while
simultaneously promoting the accumulation of NaF6’HI-mediated
defense metabolites, scopoletin and scopolin, thereby rapidly
initiating resistance against Alternaria alternata (Song and Wu,
2024b; Song and Wu, 2024c). Several studies have demonstrated
that ABA and CK often act antagonistically in plant immunity. In
Rosa hybrida, ABA enhances susceptibility, whereas exogenous CK
increases resistance. Mechanistically, R‘WRKY13 strengthens
defense against grey mould by repressing the CK-degrading gene
RhCKX3 and the ABA-responsive factor RhABI4, thereby
enhancing CK signaling and suppressing ABA responses (Liu
et al., 2023). Moreover, BR was also shown to improve rose petal
resistance to Botrytis cinerea, possibly by regulating the expression
of TFs such as WRKY, together with cell wall receptors and
hormone signaling-related genes (Liu et al., 2018).

In summary, WRKY TFs, as key regulatory nodes of hormone
signaling, not only coordinate synergism and antagonism among
immune hormones, but also construct an efficient and dynamic
immune network by regulating defense genes and metabolic
pathways to help medicinal plants to cope with the complex
pathogen environment.
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3.4 WRKY mediates secondary metabolite
synthesis to regulate immune responses in
medicinal plants

In recent years, plant immunity research has gradually
expanded from traditional focuses on pathogen recognition and
signal transduction to defense strategies centering on secondary
metabolite-mediated immunity. These metabolites not only have
strong toxic inhibitory effects on pathogenic microorganisms, but
also serve as important barriers for plants against multiple classes of
stresses by modulating insect feeding behavior and nematode
movement. Pathogen, pest or nematode infestation induces key
TFs such as WRKY, MYB, bHLH, etc., which regulate multiple
metabolic pathways and promote the accumulation of multiple
classes of defensive metabolites such as alkaloids, terpenoids,
phenolics (including flavonoids), and phytoalexins (Jahan et al,
2025; Ali et al., 2024; Monsalvo et al.,, 2024; Cai et al.,, 2023; Yang
et al., 2024a). Among them, plant antitoxins (phytoalexins) are
specific metabolites synthesized de novo during infection,
originating from the phenylpropanoid pathway, terpenoid or
indole pathways (Wu et al., 2023; Munoz-Hoyos and Stam, 2023;
Yadav et al., 2020), and are not only able to kill pathogens directly,
but also act as signaling molecules to amplify host immune response
(Zhao et al., 2023; Zhan et al., 2022; Adhikary and Dasgupta, 2023).

It has been shown that erucamide synthesized by Arabidopsis
thaliana under stress blocks the assembly of the bacterial T3SS
needle protein SctF, thereby reducing pathogenicity and
establishing a metabolite-based defense system (Miao et al., 2025).
In addition, the volatile secondary metabolite citral was found to
down-regulate several effector genes (e.g., PcAvh137, PcAvh238,
PcSCR5) in Phytophthora capsici, effectively reducing its infectivity
(Song et al, 2023). These findings highlight the dual role of
secondary metabolites in plant disease resistance and insect
defense. Meanwhile, in Arabidopsis thaliana, AtWRKY33
promotes camalexin accumulation through the MAPK signaling
pathway, and this metabolite not only enhances resistance to
pathogens but also exerts an inhibitory effect on aphids (Zhou
et al, 2022b; Kettles et al., 2013; Chen and Zhang, 2024b). In
Nicotiana attenuata, NaWRKY70 activates the transcription of
NaF6’HI1, a key gene in coumarin biosynthesis, thereby
promoting the accumulation of scopoletin and its glycoside
scopolin, which enhances resistance to Alternaria alternata (Song
and Wu, 2024b, ¢; Sun et al,, 2014). Studies in these model plants
provide an important foundation for elucidating WRKY-regulated,
secondary metabolite-mediated immune mechanisms.

In medicinal plants, the defensive function of WRKY TFs is
closely linked to the metabolic regulation of their unique active
components, reflecting an integration of immune defense and
pharmacological value. For example, in Withania somnifera,
WsWRKY1 enhances resistance to insect feeding by regulating
withanolide accumulation and phytosterol-mediated defense
pathways (Singh et al, 2017). In Artemisia annua, AaWRKY1
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and AaWRKY17 positively regulate the expression of artemisinin-
synthesising genes (AaDBR2, AaCYP71AVI1, AaADS), thereby
strengthening immune responses against Pseudomonas syringae
pv. tomato DC3000; meanwhile, artemisinin exerts anti-malarial
effects by disrupting Plasmodium proteins (Han et al., 2014; Zhan
et al,, 2023; Chen et al, 2021b). In Taxus spp., TcCWRKY1,
TcWRKY33, and Tc(WRKY26 activate key genes such as DBAT
to promote paclitaxel accumulation, which shows antimicrobial
activity in vitro, though its direct role in enhancing resistance in
planta remains unconfirmed (Li et al., 2013; Chen et al,
2021c, 2022).

Phenolic and flavonoid compounds exhibit antimicrobial activity,
reinforce cell walls, and induce systemic acquired resistance (SAR), a
crucial component of sustained defense (Saini et al., 2024; Li et al,,
2025c). For example, in medicinal plants including Erigeron
breviscapus (Song et al., 2024d), Passiflora edulis (Ma et al., 2024),

Frontiers in Plant Science

Sophora flavescens (Li et al., 2024d), and Lycium barbarum (Tong
et al,, 2025), multiple WRKY TFs (e.g, EbWRKY44, PeWRKY30,
StWRKY29, LcWRKY3, and LcWRKY13) positively regulate
flavonoid accumulation, while others, such as PeWRKY12, may act
as negative regulators to maintain immune homeostasis. PpWRKY70
activates the promoters of 4CL and PAL, thereby increasing the
synthesis of total phenolics, flavonoids, and lignin, and enhancing
Prunus persica fruit resistance to Rhizopus stolonifer, highlighting the
key regulatory role of WRKY TFs in the phenylalanine pathway and
plant immunity (Ji et al., 2021).

In conclusion, WRKY TFs play a crucial role in enhancing the
direct defense of medicinal plants against pathogens by regulating
the synthesis of diverse classes of secondary metabolites, thus
broadening the understanding of plant immune regulation. To
further illustrate these regulatory relationships, we summarize the
classification of WRKY-regulated secondary metabolites (Table 2).
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4 WRKY mediates epigenetic
regulation of immune responses in
medicinal plants

Notably, WRKY TFs regulate their own expression as well as
downstream defense genes through epigenetic mechanisms such as
DNA methylation and histone modifications, enabling precise
control of immune responses.

When plants are attacked by pathogens, epigenetic
modifications, including DNA methylation, histone acetylation,
and histone methylation, alter the chromatin state of WRKY
genes and their targets, thereby precisely regulating immune
responses. Under pathogen-infected conditions, WRKY TFs bind
to regulatory elements introduced by domesticated transposable
elements (TEs) and modulate these elements through H3K27me3
modifications and DNA methylation, enabling Arabidopsis to
activate precise immune responses during pathogen attack (Barco
et al., 2019; Halter et al., 2021; Hure et al., 2025; Li et al., 2023). In
addition, acetylation of histones H3 and H4, as well as H3K4
methylation in the WRKY promoter region, may facilitate
transcriptional initiation of WRKY genes during pathogen
infection (Jaskiewicz et al., 2011). Following Pseudomonas
syringae infection of wild-type Arabidopsis, Trithorax 1 (ATX1)
activates WRKY70 by catalyzing trimethylation of histone H3 lysine
4 (H3K4me3), thereby enhancing SA signaling-mediated disease
resistance (Alvarez-Venegas et al., 2007). Furthermore, Arabidopsis
LDLI and LDL2, homologous to human lysine demethylase 1-like
1, remodel chromatin accessibility by demethylating histone H3K4
at defense gene loci such as WRKY22, WRKY40, and WRKY70,
thereby influencing the epigenetic regulation of plant immunity
(Noh et al., 2021).

A growing body of evidence highlights the critical role of non-
coding RNAs in plant immunity. For example, WRKY1 activates
the expression of IncRNA33732, which in turn upregulates RBOH,
leading to ROS, particularly H,O, accumulation during the early
immune response in tomato, thereby enhancing resistance to
Phytophthora infestans (Cui et al, 2019). In rice, researchers
identified a circular RNA named circ-WRKY9, which encodes a
peptide of 88 amino acids (WRKY9-88aa). Overexpression of this
peptide not only effectively inhibits rice stripe mosaic virus (RSMV)
infection but also enhances immunity against rice blast and
bacterial leaf blight (Pan et al., 2025).

5 Outlook

Medicinal plants harbor diverse bioactive compounds and
exhibit strong responsiveness to environmental fluctuations and
pathogen attacks. Diseases not only reduce plant growth and yield
but also directly compromise the stability and quality of medicinal
compounds. In recent years, the integration of CRISPR/Cas gene
editing and synthetic biology with high-throughput
transcriptomics, proteomics, and metabolomics has accelerated
research on immune networks and key TFs in medicinal plants,
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offering novel theoretical frameworks and technical tools to
improve disease resistance.

Existing studies have identified some immune regulatory
modules through histological analyses. However, significant
challenges remain, including unclear mechanisms and a
disconnect between basic research and practical applications,
making the transition to molecular breeding difficult. In the
future, the integration of artificial intelligence and biotechnology
is expected to overcome this bottleneck by enabling functional
prediction of key immune genes, regulatory network modeling, and
intelligent screening of the superior germplasm, thereby
establishing a highly efficient and smart disease-resistant breeding
system. By reconstructing transcription factor regulatory networks
and optimizing signaling pathways, disease resistance in medicinal
plants can be significantly enhanced, providing a solid foundation
for the high-quality and sustainable development of the Chinese
herbal medicine industry.

In conclusion, systematic analyses of key TFs’ immune
functions in medicinal plants, integrated with multi-omics, gene
editing, and artificial intelligence approaches, are anticipated to
bridge the gap between basic research and breeding applications,
thus facilitating the synergistic advancement of disease resistance
research and the breeding of superior medicinal plant cultivars.

5.1 Molecular design breeding to
accelerate transformation

To enhance the immunity of medicinal plants, immune-related
factors can be heterologously expressed, overexpressed, or
suppressed using transgenic breeding approaches utilizing
advanced genetic transformation technologies, the Cut-Dip-
Budding (CDB) technique. Such approaches not only confer
desirable genetic traits to medicinal plants, facilitating gene
function elucidation and targeted trait improvement, but also
improve plant yield and enhance tolerance to pathogen
infestation (Yan et al., 2022).

In transgenic research, commonly employed biological
transformation methods include Agrobacterium-mediated and virus-
mediated approaches. For instance, transferring WRKY disease
resistance genes into medicinal plants through Agrobacterium-
mediated transformation has been shown to effectively enhance their
pathogen resistance. In papaya, overexpression of CpWRKY50 via
Agrobacterium infiltration positively regulates anthracnose resistance
by promoting JA signaling (Yang et al, 2024b). Similarly,
Agrobacterium-mediated transformation of CsWRKY48 into tobacco
enhanced its resistance to aphids (Wang et al., 2024b).

However, traditional genetic transformation methods are
restricted to a limited number of medicinal plants and are often
time-consuming. To overcome this limitation, the improved CDB
technique was developed, allowing direct infection of medicinal
plant organs, including the roots of Taraxacum mongolicum and
Rehmannia, as well as the petiole of Salvia miltiorrhiza. This
method not only enhances transformation efficiency but also
prevents the formation of callus tissue and hairy roots (Cao et al,
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TABLE 2 Classification of WRKY-regulated secondary metabolites.

Form Name Medicinal plant WRKY Machine Bibliography
alkaloid berberine Coptis chinensis Franch CcWRKY7; WRKY binds and activates the target gene CcCCNMT (Huang et al,,
CcWRKY29; 2023)
CcWRKY32
tropane alkaloid Anisodus acutangulus AaWRKY11 Binds to and activates expression of the AaH6H1 promoter and is (Zhou et al.,
involved in tropane alkaloid synthesis 2024)
camalexin Arabidopsis thaliana AtWRKY33 JA, ET regulation leads to camalexin accumulation and enhances (Zhou et al.,
pathogen resistance 2020)
camptothecin Opbhiorrhiza pumila OpWRKY2 Activation of the core gene of the camptothecin pathway OpTDC (Hao et al,, 2021)
Vincristine Catharanthus roseus CrWRKY1 Activation of TDC and ZCT genes (Suttipanta et al.,
2011)
melatonin Manihot esculenta MeWRKY20; Increased Manihot esculenta melatonin levels 3-fold (Wei et al., 2018)
MeWRKY75
Benzylisoquinoline | Nelumbo nucifera NnWRKY70a; = Positive regulation of phenylethylamine alkaloids (BIAs) (Li et al., 2022)
alkaloids NnWRKY70b | biosynthesis in response to jasmonic acid signaling
withanolide Withania somnifera WsWRKY1 Regulation of triterpenoid alkaloid withanolide accumulation (Singh et al.,
2017)
terpenoid | Tanshinones Salvia miltiorrhiza SmWRKY2 Up-regulation of the expression of the synthetic gene SmCPS (Deng et al.,
Bunge 2019)
artemisinin Artemisia annua AaWRKY17 Binding to the promoter of the artemisinin biosynthesis gene ADS (Chen et al.,
against Pseudomonas syringae 2021b)
Saponins Panax ginseng PgWRKY4X Binds to the PgSE (squalene epoxidase) promoter and activates (Yao et al,,
saponin synthesis 2020b)
Patchoulol Pogostemon cablin PatWRKY71 Regulates Patchoulol biosynthesis (Li et al., 2024e)
(Blanco) Benth
sesquiterpene Agquilaria sinensis AsWRKY44 Inhibition of Sesquiterpene Biosynthesis Gene ASSI Transcription (Sun et al., 2020)
(Lour.) Gilg
taxol Taxus TcWRKY26 Activates expression of the taxol biosynthesis gene DBAT to (Chen et al.,
promote taxol synthesis 2022)
ginsenoside Panax quinquefolius PqWRKY1 Involvement of MeJA in ginsenoside synthesis in response to (Sun et al., 2013)
MeJA
carotenoid Solanum lycopersicum L. | SIWRKY35 Activation of SIDXSI gene expression in the MEP pathway (Yuan et al,,
2022)
monoterpene Litsea cubeba LcWRKY17 Binds to the promoter region of monoterpene synthesis-related (Gao et al,, 2023)
genes (e.g. TPS42) and activates their expression
B-ocimene Jasminum sambac JsWRKY51 Binding to the promoter region of genes related to aromatic (Lu et al,, 2023)
terpene synthesis (e.g. TPS) activates their expression
phenolic Lignin and Nicotiana tabacum L. NtWRKY28 Regulation of Lignin and Flavonoids Synthesis Gene Expression (Chu et al,, 2025)
compound | flavonoids Improves Defense Against M. persicae
flavonoids Lycium ruthenicum LrWRKY32 Stimulation of LrCYP75B1 expression, rutin synthesis (Du et al,, 2024)
Murr.
lignan Isatis indigotica TIiWRKY34 Binding to the promoter region of Ii4CL3, a key rate-limiting (Xiao et al.,
enzyme gene for lignan synthesis 2020)
lignin Rosa spp. RhWRKY30 Activates the expression of RhCADI, a key gene for lignin (Li et al., 2024f)
biosynthesis, promotes lignin accumulation, and enhances rose
petal resistance to gray mold
Proanthocyanidins = Vitis quinquangularis VqWRKY56 Activation of PA biosynthetic genes for enhanced resistance to (Wang et al,,
Powdery mildew pathogens 2023c)
lignin Gossypium hirsutum GhWRKY1- Activation of GhPAL6 and GhCOMT1 expression positively (Hu et al,, 2021)
like regulates cotton resistance to Verticillium dahliae
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TABLE 2 Continued

Medicinal plant

Machine

10.3389/fpls.2025.1659732

Bibliography

anthocyanins Malus domestica MAdWRKY40 Interaction with MAMYBI activates anthocyanins biosynthesis- (An et al,, 2019)
related gene expression
Acteoside Rehmannia glutinosa RgWRKY37 Activates the promoter activity of genes key to acteoside (Wang et al,,
biosynthesis (e.g. RgUGT and RgPAL). 2021c)
baicalin Scutellaria baicalensis SbWRKY75; Activation of JA signaling pathway to enhance baicalin (Fang et al,,
Georgi SbWRKY41 biosynthesis 2023)

2023, 2024). Through this approach, disease resistance-related
genes can be efficiently delivered into medicinal plants, thereby
improving their resistance to pathogens.

It is noteworthy that current genetic transformation systems are
being continuously improved through RNA interference (RNAi)
and gene editing technologies. The integration of these technologies
with artificial intelligence applications can substantially improve the
precision and efficiency of gene editing.

5.2 Artificial intelligence breakthroughs in
medicinal plant immune networks

With the integration of gene editing and A, research on medicinal
plant breeding and immunity is entering a new phase of empirically
driven innovation. AI has shown significant value across multiple key
processes: from AlphaFold’s high-precision protein structure
prediction, which enables the analysis of immune-related factors and
the design of target sites (Ma et al, 2022), to novel tools such as
CRISOT and CCLMoff that advance sgRNA optimization and off-
target control. Collectively, these developments outline a promising
technological pathway for achieving precise immunoediting in
medicinal plants (Du et al., 2025; Chen et al., 2023; Lee, 2023).

In disease monitoring, AI-driven image recognition and
environmental modeling are advancing rapidly. Experimental evidence
shows that near-infrared and hyperspectral imaging provide high
sensitivity and accuracy for early disease detection (Upadhyay et al,
2025). In addition, models based on transfer learning, such as You Only
Look Once version 7 (YOLOV?) and version 8 (YOLOVS), can identify a
wide range of diseases including powdery mildew, leaf spot and grey
mold, and perform well on key metrics (mean accuracy mAP = 91%,
precision, recall, and F1 scores), underlining the potential of deep
learning for fast and accurate identification. (YOLOv7) and version 8
(YOLOVS) can identify multiple diseases including powdery mildew, leaf
spot, and grey mould, and perform well on key metrics (Mean Average
Precision, mAP ~ 91%; Precision; Recall; and F1-score), highlighting the
potential of deep learning for fast and accurate identification (Sambana
et al, 2025). These advances lay a foundation for dynamic monitoring
and precise intervention in the immune networks of medicinal plants,
and open possibilities for establishing a closed-loop system of
monitoring, intervention, and verification to enhance disease resistance
and ensure the stability of medicinal compounds.

Further, integrated prediction of genome and environment
(iGEP), combining multi-omics data with machine learning, can
optimize plant design at both macro and micro levels while
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capturing nonlinear features of high-dimensional data, thereby
enabling accurate prediction of disease resistance mechanisms
(Xu et al, 2022; Mohamedikbal et al., 2025). Although its
application is still in the early stages, it has already provided
important theoretical and technological support for Al-driven
immune networks and “on-demand editing”.

Overall, integrating AI with multi-omics is shifting medicinal plant
immunity research from passive resistance to proactive regulation, laying
the foundation for intelligent and efficient medicinal plant breeding.
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