AUTHOR=Zu Qiuyu , Liu Teng , Zhu Wenpeng , Pan Yan , Wang Jinxu , Song Xinru , Yu Jialin , Dang Shu , Yu Xiaoming , Zhang Zhenyu TITLE=Automated seed counting using image processing and deep learning JOURNAL=Frontiers in Plant Science VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1659781 DOI=10.3389/fpls.2025.1659781 ISSN=1664-462X ABSTRACT=IntroductionAccurate seed counting is an essential task in agricultural research and farming, supporting activities such as crop breeding, yield prediction, and weed management. Traditional manual seed counting, while accurate, is time-consuming, labor-intensive, and prone to human error, particularly for large quantities of micro-sized seeds.MethodsThis study developed two automated computer vision approaches integrated into a mobile application (app) for seed counting: one utilizing image processing (IP) and the other based on deep learning (DL). These methods aim to address the limitations of traditional manual counting by providing automated, efficient alternatives.ResultsThe IP-based method demonstrated high accuracy comparable to manual counting and offered substantial time savings. However, its reliance on controlled environmental conditions, such as uniform lighting, limits its versatility for field apps. The DL-based method excelled in speed and scalability, processing counts in as little as 0.33 seconds per image, but its accuracy was inconsistent for visually complex or densely clustered seeds.DiscussionBoth automated methods significantly enhance the efficiency of seed counting, providing a practical and accessible solution for various agricultural contexts. The integration of these methods into a mobile app streamlines seed counting for laboratory research, field studies, seed production, and breeding trials, offering a transformative approach to modernizing seed counting practices while reducing time and labor requirements.