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Introduction: Salt stress represents a critical abiotic constraint that severely
impedes plant growth and agricultural productivity. While plant growth-
promoting rhizobacteria (PGPR) demonstrate potential in enhancing plant salt
tolerance, their precise mechanisms remain incompletely elucidated. This study
systematically investigates the mechanistic basis by which PGPR inoculation
ameliorates salt stress in rice seedlings through modulation of rhizosphere
microbiota and root exudate profiles.

Methods: We inoculated rice seedlings with five monocultures (Bacillus sp.,
Providencia sp., etc.) and a synthetic consortium (T6) under salt stress conditions.
Growth parameters, rhizobacterial communities (via 16S rRNA sequencing), and
root exudates (untargeted metabolomics) were comparatively analyzed against
uninoculated controls (CK).

Results: PGPR inoculation significantly promoted rice seedling growth under salt
stress. Treatments T2-T6 exhibited substantial increases in key biomass
parameters—including root length, plant height, and dry weight—relative to the
CK control. Concurrently, elevated chlorophyll content and enhanced
photosynthetic efficiency were observed. Inoculated plants also displayed
significantly higher activities of antioxidant enzymes (Superoxide dismutase,
Peroxidase, Catalase activity) (SOD, POD, CAT) and proline (Pro) accumulation
in both leaves and roots, coupled with a marked reduction in Malondialdehyde,
indicating effective mitigation of oxidative damage. PGPR inoculation altered
rhizosphere bacterial community composition, reducing overall alpha-diversity.
Notably, the relative abundance of dominant bacterial phyla (e.g., Proteobacteria,
Acidobacteriota) and beneficial genera (e.g., Subgroup_7, Lysobacter) increased
significantly. These microbial shifts showed positive correlations with improved
plant physiological status, suggesting a synergistic role in promoting seedling
growth under salt stress. Root exudate metabolomics revealed a substantial
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number of differentially abundant metabolites in inoculated plants compared to
CK, encompassing lipids, hormones, and signaling molecules. Crucially, the
production of these specific exudates correlated with the enrichment of
dominant bacterial taxa in the rice rhizosphere. Metabolic pathway analysis
indicated significant enrichment primarily within Nucleotide metabolism and
Purine metabolism pathways (belonging to the Metabolism superclass) and ABC
transporter pathways (within Environmental Information Processing). The T6
consortium treatment induced enrichment across a significantly greater
number of key metabolic pathways compared to single-strain inoculations.

Discussion: PGPR inoculation enhances rice seedling growth and salt tolerance
by: (1) optimizing rhizosphere microbiota (enriching dominant phyla and
beneficial genera); (2) recruiting stress-mitigating microbial consortia; and (3)
stimulating root exudates enriched in nucleotide/purine metabolism and ABC
transporters. The superior efficacy of the T6 consortium underscores the
advantage of synergistic microbial interactions. Collectively, these findings
reveal plant-microbe-metabolite mechanisms underlying PGPR-mediated salt
tolerance, providing a foundation for developing salinized soil

remediation strategies.
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1 Introduction

Statistics from the Food and Agriculture Organization (FAO) of
the United Nations show that the global area of salinized land has
reached 1.381 billion hectares (representing approximately 10.7% of
the global land area) (Yu, 2025). As an important existing and
potential arable resource, saline-alkali soil has significant potential
for development and utilization. Traditional saline-alkali land
management mainly relies on physical methods (such as
irrigation for salt leaching) and chemical improvement, yet these
are constrained by methodological limitations, high costs, and high
recurrence risk. Contemporary research has shifted toward bio-
agronomic synergistic strategies, establishing sustainable ecological
reclamation systems through revegetation (e.g., halophyte
cultivation) integrated with microbial remediation (e.g., PGPR
inoculation) (Yang et al., 2016; Luo et al., 2021; Wang et al., 2024;
Wang, 2024).

PGPR are widely distributed and diverse, encompassing groups
such as bacteria, fungi, and actinomycetes, with Pseudomonas,
Bacillus, and Rhizobium as dominant groups (Lugtenberg and
Kamilova, 2009; Luo et al.,, 2021). Due to their dual functions of
promoting plant growth and controlling pests/diseases, as well as
advantages such as ecological environmental protection and strong
environmental compatibility, PGPR have been widely applied and
attracted significant attention in soil remediation (Arora and
Kumar, 2019; Luo et al, 2021). As core components of plant-
microbe interaction systems, PGPR participate in stress resistance
regulation of host plants through multiple mechanisms such as
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metabolic interaction and signal transduction. For example,
nutrient deficiency in saline-affected soils constitutes a major
constraint limiting plant growth and yield enhancement.
Rhizosphere microorganisms play a pivotal role in enhancing
plant nutrient acquisition through multifaceted mechanisms,
Bacillus aquimaris can increase nitrogen content in wheat leaves
under salt stress (Upadhyay and Singh, 2015); Azospirillum
brasilense and Pseudomonas fluorescens synergistically promote
soil nitrogen mineralization and significantly enhance rice
biomass. Inoculation with salt-tolerant PGPR elevates
phytohormone levels in plant roots, consequently mitigating
stress-imposed impairments under saline conditions. B. cereus
regulates the plant cytokinin (CTK) signal transduction system
under drought stress, coordinating CTK transport in root-shoot
communication (Liu et al.,, 2015); Bacillus licheniformis increases
the relative biomass of chrysanthemums by 35-42% and reduces
root Na+ accumulation by 28-33% under 200 mM NaCl stress by
synthesizing ABA (Cheng et al., 2017). Additionally, PGPR can
enhance plant salt-alkali resistance by synthesizing osmolytes.
Studies have shown that Bacillus subtilis improved proline
synthesis capacity through overexpression of proB and proA
genes, simultaneously enhancing its own salt tolerance and plant
osmotic tolerance (Wu et al., 2018). These studies have revealed the
multiple action mechanisms of PGPR in plant stress resistance
regulation and their important application value in
agricultural ecology.

Recent breakthroughs in functional research on Plant Growth-
Promoting Rhizobacteria (PGPR) have revealed their significant

frontiersin.org


https://doi.org/10.3389/fpls.2025.1661074
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

biocontrol potential in crop cultivation and soil remediation. PGPR
orchestrate host plant responses to abiotic stresses through
multifaceted metabolic pathways, demonstrating versatile roles in
plant-microbe interactions. Substantial evidence confirms that
diverse PGPR taxa—including Bacillus, Chryseobacterium,
Pseudomonas, Azospirillum, Achromobacter, Aeromonas, and
Acetobacter (Etesami and Maheshwari, 2018)—enhance plant
salinity tolerance via synergistic mechanisms. Under saline soil
conditions, PGPR inoculation improves stress resilience metrics,
promotes biomass accumulation, optimizes nutrient cycling
efficiency, and stabilizes agricultural ecosystems. Metabolomic
profiling by Ali et al (Ali et al., 2022). demonstrated that
Enterobacter cloacae PM23 upregulates the proline synthesis gene
ProDH, triggering osmolyte accumulation (e.g., proline, glycine
betaine) in maize seedlings. This process maintains cellular turgor
under moderate salt stress (100 mM NaCl). Complementary
transcriptomic analysis (Girma et al., 2022) revealed that
Klebsiella sp. KBG6.2 mitigates sodium chloride-induced
oxidative damage (150 mM) in rice by activating indole-3-acetic
acid (IAA) signaling while suppressing reactive oxygen species
(ROS) burst in root apices.

This study integrates metagenomic sequencing and plant
untargeted metabolomics technologies to systematically clarify the
mechanism by which salt-tolerant PGPR inoculation promotes rice
growth in salinized soils by regulating rhizospheric microbial
community structure and root exudates. On the one hand, it
enhances our theoretical understanding of PGPR enhancing crop
salt tolerance; on the other hand, it provides experimental evidence
for developing salinized soil improvement technologies based on
salt-tolerant rice-microbe synergistic systems.

2 Materials and methods

2.1 Pot experiments and preparation of
inoculants

The pot experiments with rice were conducted in a rooftop
experimental facility at Yangzhou University (Yangzhou, China).
Air-dried and sieved soil was filled into plastic pots (15 cm height x
15 cm diameter) at 2 kg per pot. Seven treatments were set up: CK
(non-inoculated control), T1 (Bacillus sp.), T2 (Providencia sp.), T3
(Planococcus sp.), T4 (Pseudoclavibacter sp.), T5 (Dietzia sp.), and
T6 (a mixture of the above five strains), with three replicates per
treatment (21 pots in total). Rice seedlings with uniform growth
were selected and transplanted into the pots (two hills per pot, four
plants per hill). Seven days later, bacterial suspensions were evenly
irrigated around the rice roots at an inoculation concentration of
10* CFU/g soil, while CK was watered with an equal volume of
sterile water. A water layer depth of 2-3 cm was maintained by daily
observation and replenishment with deionized water (Li et al,
2025). Physiological and biochemical indices of rice were
measured after four weeks.

Typical single colonies were selected and inoculated into 5 mL
of LB liquid medium, then cultured in a 28°C shaking incubator at
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180 rpm for 12 h to prepare primary seed solutions. Subsequently,
the primary culture was transferred to 100 mL of LB medium at a
volume ratio of 1:100 and continuously cultured at 30°C with the
same rotation speed for 12 h. After cultivation, bacterial pellets were
collected by centrifugation (4°C, 8000xg, 10 min), and the
supernatant was discarded. The pellets were resuspended in sterile
water to an appropriate concentration.

2.2 Determination of physiological and
biochemical indices

After four weeks of growth, intact rice plants were harvested,
and root soils were rinsed with tap water. Residual water was blotted
dry with filter paper, and the plant height and main root length were
measured and recorded. Roots and shoots were separated, blanched
in a constant-temperature drying oven at 115°C for 30 min, and
then dried at 80°C to constant weight. Dry weights of roots and
shoots were weighed using an electronic balance.

Chlorophyll content in rice leaves was determined by ethanol
extraction colorimetry (Li, 2000). For antioxidant enzyme activity
assays (Wang and Huang, 2015), SOD activity was measured by the
nitroblue tetrazolium method, CAT activity by the guaiacol method,
and POD activity by the UV absorption method in rice tissues
(roots and leaves). MDA content was determined by the
thiobarbituric acid colorimetry, and free proline content was
measured by sulfosalicylic acid extraction-acid ninhydrin
colorimetry (Wang and Huang, 2015) in roots and leaves.

2.3 Collection and analysis of root
exudates

Root exudates of each treatment were collected in the fourth
week of the experiment. Roots were first rinsed with sterile water,
transferred to a 1 L beaker wrapped with tin foil, and immersed in
sterile water. After continuous culture for 24 h, the solution was
filtered through a sterile 0.45 um microporous membrane. The
collected solution was lyophilized by a freeze dryer to obtain dry
powder of root exudates, which was stored in a sterile airtight
container at -20°C. Subsequent LC-MS untargeted metabolomics
analysis was commissioned to Majorbio Bio-Pharm (Shanghai,
China), and the obtained data were further processed.

Metabolites that passed quality control were functionally
annotated using the KEGG database, categorizing them based on
their involvement in biological pathways or molecular functions.
Orthogonal partial least squares-discriminant analysis (OPLS-DA)
was conducted to statistically compare metabolic profiles among six
inoculation treatments (T1-T6) and the control group (CK),
systematically elucidating the regulatory effects of plant growth-
promoting rhizobacteria (PGPR) on the rice root exudome.
Significantly differential metabolites (top 30 ranked by variable
importance in projection (VIP) scores with VIP > 1) were
selected for hierarchical clustering analysis using Euclidean
distance and complete linkage algorithms. A composite
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visualization integrating a heatmap with VIP bar plots was
generated to display metabolite distribution patterns, expression
profiles, and statistical parameters (VIP values and P-values) across
experimental groups.

Comparative metabolomic profiling between inoculated and
non-inoculated groups identified differentially abundant
metabolites exhibiting significant up- and down-regulation. Core
metabolites were structurally classified using the Human
Metabolome Database (HMDB), and KEGG pathway enrichment
analysis was performed to identify significant pathways (false
discovery rate [FDR] < 0.05) containing >2 mapped metabolites.
Finally, Spearman’s rank correlation analysis was employed to
elucidate association networks between dominant microbial taxa
and root-secreted metabolites.

2.4 Processing and sequencing analysis of
rhizospheric soil samples

During plant harvest, rhizospheric soil samples were collected
using standardized methods. After intact root systems were
removed, large soil clumps were shaken off, and soils tightly
attached to root surfaces were collected and immediately stored
in a -80°C freezer.

After DNA extraction, PCR amplification was performed for
the V1-V9 variable regions of the bacterial 16S rRNA gene using the
forward primer 27F (5’-[Barcode]AGAGTTTGA
TCMTGGCTCAG-3") and reverse primer 1492R (5’-
ACCTTGTTACGACTT-3’). The PCR reaction system contained
15 uL of 2x Phanta Max Master Mix (Vazyme), 0.5 UM of each
primer, 10-30 ng of template DNA, and ddH,O up to 30 uL. The
thermal cycling parameters were: initial denaturation at 95°C for 5
min; 30 cycles of 94°C for 30s (denaturation), 56°C for 30 s
(annealing), and 72°C for 45s (extension); final extension at 72°C
for 10 min; and storage at 4°C. The amplified products were verified
by 2% agarose gel electrophoresis (120V, 40 min), and specific
bands (450-550 bp) were excised, purified using the AxyPrep DNA
Gel Extraction Kit (Axygen), and eluted with 30 uL of sterile EB
buffer (10 mM Tris-HCI, pH 8.5). Microbiome data analysis was
performed based on the QIIME2 platform (version 2022.11). In the
sequence processing stage, demultiplexing assigned paired-end
reads to sample-specific barcodes, and primer sequences were
excised using Cutadapt (v3.7). The DADA?2 pipeline performed
quality filtering (Q-score > 20), denoising with removal of non-
overlapping sequences, paired-end merging requiring a minimum
12-bp overlap, and chimera detection against the SILVA 138
reference database. High-quality sequences were clustered at
100% similarity to generate amplicon sequence variants (ASVs),
and a feature table (ASV-sample abundance matrix) was
constructed. For taxonomic annotation and filtering, ASVs were
classified via BLASTn alignment (E-value < le™) against the
Greengenes 13_8 database (99% identity threshold). Low-
abundance ASVs (relative abundance < 0.001%, equivalent to <
10 reads per million) were removed to generate a filtered feature
table. In community profiling, taxonomic composition was
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visualized using stacked bar plots (phylum/class levels) generated
with ggplot2 (v3.4.2) in R. Rarefaction curves confirmed adequate
sequencing depth (Good’s coverage > 99%). Features were
subsampled to 8,500 sequences per sample (5th percentile of
minimum sequencing depth) to standardize library sizes.

For diversity analysis: Alpha diversity indices (Chaol for
richness; Shannon for evenness) were computed in QIIME2;
intergroup differences were visualized via boxplots;Beta diversity
analysis used weighted UniFrac distances for principal coordinate
analysis (PCoA). Intergroup dissimilarities were assessed by Bray-
Curtis-based PERMANOVA (999 permutations; P < 0.05). For
differential analysis and integration: LEfSe identified differentially
abundant taxa across groups. Spearman’s rank correlation revealed
associations between dominant microbiota and rice physiological
indices. Metabolic pathways with significant alterations (adj. P <
0.05, |log,FC| > 1) were characterized with key contributing taxa.

3 Results

3.1 Effects of PGPR inoculation on rice
growth under salt stress

As shown in Figures 1A, B, compared with CK, all inoculated
treatments promoted rice growth. Root length significantly
increased (p<0.05) in all T1-T6 treatments compared to CK, with
the largest increase (51.77%) observed in T6 (Figures 1B, C). Plant
height significantly increased (p<0.05) in T1-T4 and T6 treatments,
but not in T5 (10.76% increase, not significant). The T4 treatment
showed the greatest increase in plant height (23.43%) (Figure 1B).
In the T1 treatment, there were no significant changes in the dry
weight of roots and shoots. However, the dry weight of shoots
significantly increased in T2-T6 treatments, with the T3 treatment
showing the greatest increase (133.33%) (Figure 1D). The dry
weight of roots in the T4 treatment was 1.9 times that of
CK (Figure 1D).

Chlorophyll, a key catalyst for plant photosynthesis, is an
important indicator of photosynthetic efficiency and growth
status. The chlorophyll content in all T1-T6 treatments was
significantly higher than in CK (p < 0.05). The T6 treatment
showed the most significant effect, with an increase of 60.82%
compared to CK (Figure 1E), indicating that mixed inoculation with
PGPR has a clear advantage in improving total chlorophyll content
in rice leaves under salt stress.

To assess the effects of different treatments on rice defense
capacity, the activities of antioxidant enzymes (POD, SOD, CAT),
MDA content, and Pro content were measured in rice leaves and
roots. The antioxidant enzyme activities in both leaves and roots of
all treatment groups were higher than in CK (Figures 1F-]),
indicating that PGPR inoculation enhances the antioxidant
capacity of rice seedlings under salt stress. Overall, most
treatments showed significant increases compared to CK. The
largest increase in SOD activity in leaves was observed in T3
(62.40%), while in roots, T4 showed the greatest increase
(141.10%). For CAT activity, T3 had the greatest increase in both
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Effects of different treatment groups on (A, B) rice seedling growth, (C) root length and plant height,(D) above-ground and below-ground dry
weight, (E) total chlorophyll content, (F-H) SOD, CAT, and POD content in rice leaves and roots, (I, J) MDA and proline content in rice leaves

and roots.

leaves (245.66%) and roots (199.15%). For POD activity, T3 showed
the greatest increase in leaves (67.16%), and T4 in roots (73.26%).

MDA content, a key indicator of oxidative stress, increases
when plants are subjected to stress due to intensified lipid
peroxidation. The MDA content in both leaves and roots of T1-
T6 treatments was significantly reduced (p<0.05) compared to CK
(Figure 11), indicating that PGPR inoculation effectively alleviates
salt stress in rice. The inhibitory effects on MDA content varied
among treatments, with T3 showing the most prominent effect:
MDA content in leaves and roots decreased by 24.04% and 40.65%,
respectively. The reduction in MDA content in roots was
significantly greater than in leaves for all T1-T6 treatments
(p<0.05), indicating that PGPR inoculation provides more
significant protective effects on roots.

Free Pro is an important osmolyte in plant responses to abiotic
stress, and its accumulation is closely associated with stress
tolerance. The Pro content in both leaves and roots of T1-T6
treatments increased compared to CK, with significant increases
in T2-T6 (p<0.05) (Figure 1]), indicating that PGPR inoculation
enhances rice salt tolerance by promoting Pro accumulation. The
T3 and T6 treatments showed the most significant increases: leaf
Pro content increased by 302.10% and 344.31%, respectively, and
root Pro content by 456.03% and 445.24%, respectively. The T2, T4,
and T5 treatments also exhibited significant increases in Pro
content in both leaves and roots (p<0.05).
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3.2 Effects of PGPR inoculation on the
rhizosphere bacterial community of rice
under salt stress

Multi-omics analysis of the rhizosphere soil microbial
community of rice using 16S rRNA amplicon sequencing showed
that after rigorous quality control procedures, the total number of
raw sequencing data reached 522,660, with the number of raw
sequencing data per sample ranging from 73,120 to 75,989. After
chimera filtering and sequence optimization, the total number of
high-quality sequences was 492,998, with individual sample valid
sequence counts ranging from 68,807 to 71,759. Sequencing read
lengths, after quality assessment, ranged from 681 to 1,471 base
pairs, meeting the requirements for subsequent analysis. At the
same time, we uploaded the sequencing sequences to the NCBI
database with the accession number PRJNA1304747.

Principal Coordinates Analysis (PCoA) based on Bray-Curtis
dissimilarity (Figure 2A) revealed clear separation between
inoculated (T1-T6) and CK groups. PC1 (21.38%) and PC2
(12.86%) collectively explained 34.24% of community variance,
confirming significant PGPR-induced restructuring of the
rhizosphere microbiome under salt stress.

Alpha diversity analysis (Figure 2B) showed significantly
reduced Shannon indices in all inoculated treatments (T1-T6)
versus CK (p < 0.05), indicating decreased species diversity and
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evenness. The Chaol index showed no significant differences
among treatments (p > 0.05), demonstrating that PGPR
inoculation primarily affects community evenness rather than
species richness.

Community composition analysis identified dominant bacterial
phyla across all treatments (Figure 2C): Proteobacteria,
Acidobacteriota, Chloroflexi, Actinobacteriota, Bacteroidota, and
Gemmatimonadota. At genus level (Figure 2D), core taxa
included: Subgroup_7 (6.07-9.23%), Lysobacter (4.63-9.52%),
Ellin6067 (3.49-5.70%), S0134_terrestrial_group (2.06-3.65%), and
SBRI1031 (1.79-4.98%). PGPR inoculation consistently enriched
beneficial genera (Subgroup_7, Lysobacter, Ellin6067, Massilia,
Sphingomonas) while suppressing S0134_terrestrial_group,
SBR1031, Limnobacter, and A4b relative to CK.

Linear discriminant analysis ffect Size (LEfSe) (LDA > 3;
Figure 2E) identified treatment-specific biomarkers, with shared
enrichment of beneficial taxa (Subgroup_7, Lysobacter, Massilia,
Hydrogenophaga, Ellin6067, Sphingomonas) across multiple
inoculated treatments.

Finally, OTU abundance profiles derived from high-throughput
sequencing were mapped to the KEGG database to characterize
functional attributes of rhizobacterial communities across
treatment groups. At KEGG Pathway Level 3, PGPR inoculation
elevated the abundances of key bacterial metabolic pathways in
saline-stressed rhizosphere soils, including:Ansamitocin
biosynthesis (ko01051); Vancomycin antibiotic biosynthesis
(ko01055); C5-Branched dibasic acid metabolism (ko00660);
Valine, leucine and isoleucine biosynthesis (ko00290); Fatty acid
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biosynthesis (ko00061); Pantothenate and CoA biosynthesis
(ko00770); Synthesis and degradation of ketone bodies (ko00072);
Lipoic acid metabolism (ko00785).

(Table 1).

3.3 Differences in the composition of rice
root exudates

To investigate the effects of PGPR inoculation on rice root
exudates under salt stress and their association with rhizosphere
microbiome functional regulation, we analyzed exudates from six
treatments. We identified 2,029 metabolites, comprising 1,379
cationic and 650 anionic metabolites. Partial Least Squares
Discriminant Analysis (PLS-DA) revealed significant intergroup
differences in exudate composition (Figure 3A).

Volcano plots of differentially expressed metabolites (DEMs)
indicated a predominant downregulation trend in all treatments
relative to CK (Figure 3B). T1 exhibited the highest number of
downregulated metabolites (n=574). These results confirm that
PGPR inoculation significantly alters root exudate composition,
with downregulation being the dominant response.

Through Venn diagram analysis of common and unique
differential exudates among different comparison treatment groups,
the results were shown as follows: Six common upregulated DEMs,
with 37 and 177 unique to T1 and T6 (vs. CK), respectively;Twenty-
four common downregulated DEMs, with 229 and 181 unique to T1
and T6 (vs. CK), respectively. (Figure 3C). Functional annotation
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TABLE 1 Functional annotation of KEGG pathway 3 for rhizosphere soil bacterial communities of rice in different treatment groups.

Pathway level 3 CK T1 T2 T3 T4 T5 T6
ko01051 Biosynthesis of ansamycins 2.66 2.78 2.79 2.76 2.77 2.82 2.78
ko01055 Biosynthesis of vancomycin group
. 2.15 2.22 2.23 2.23 2.25 2.29 2.23
antibiotics
ko00290 Valine, leucine and isoleucine
. . 212 2.18 2.18 2.18 2.17 2.18 2.17
biosynthesis
ko00660 C5-Branched dibasic acid metabolism 1.87 1.93 1.92 1.91 1.92 1.93 191
ko00061 Fatty acid biosynthesis 1.83 1.90 1.89 1.88 1.90 1.9 1.88
ko00770 Pantothenate and CoA biosynthesis 1.65 1.68 1.68 1.67 1.66 1.67 1.66
ko00072 Synthesis and degradation of ketone
. 1.61 1.66 1.66 1.66 1.65 1.60 1.61
bodies
ko00785 Lipoic acid metabolism 1.56 1.61 1.60 1.61 1.60 1.61 1.61
ko00471 D-Glutamine and D-glutamate
. 1.63 1.61 1.61 1.60 1.58 1.61 1.59
metabolism
ko00550 Peptidoglycan biosynthesis 1.51 1.51 1.51 1.51 1.51 1.52 1.51
ko00521 Streptomycin biosynthesis 1.53 1.50 1.51 1.50 1.51 1.52 1.50
ko00473 D-Alanine metabolism 1.49 1.46 1.46 1.45 1.46 1.47 1.45
ko00970 Aminoacyl-tRNA biosynthesis 1.46 1.44 1.44 1.43 1.43 1.45 1.43
ko02030 Bacterial chemotaxis 1.36 1.38 1.41 1.36 1.37 1.38 1.39
ko04112 Cell cycle — Caulobacter 1.36 1.35 1.34 1.34 1.33 1.34 1.33
ko00670 One carbon pool by folate 1.35 1.34 1.34 1.33 1.33 1.34 1.33

classified these DEMs into lipids, hormones and transmitters, steroids,
vitamins and cofactors, and nucleic acids (Table 2). Downregulated
DEMs in T1-T6 (vs. CK) were predominantly lipids, hormones and
transmitters, and steroids, while upregulated DEMs were primarily
nucleic acids and peptides.

Pathway enrichment analysis indicated that key DEMs in T1-T6
were primarily enriched in nucleotide metabolism, purine
metabolism (Metabolism), and ABC transporters (Environmental
Information Processing) (Figure 4). Specifically:T1 exhibited
significant enrichment (p < 0.001) in linoleic acid metabolism
(Metabolism).T2 and T3 were enriched in glycerophospholipid
metabolism (Metabolism).The mixed inoculation (T6) showed
significantly more enriched pathways than single strains,
including tryptophan metabolism, phenylalanine/tyrosine/
tryptophan biosynthesis (Metabolism), and plant hormone signal
transduction (Environmental Information Processing).

3.4 Correlation analysis between rice
rhizosphere soil bacterial communities and
physiological indicators, root exudates

Correlation analysis revealed significant associations between
key soil bacterial groups and rice physiological indicators and root
exudates. We concluded that:

Beneficial taxa (Subgroup_7, Subgroup_17, Hydrogenophaga,
Haliangium, Leptolyngbyaceae) showed significant positive
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correlations (p < 0.05) with growth parameters (root length, plant
height, shoot/root biomass, chlorophyll) and stress markers (SOD,
CAT, POD, Proline), while exhibiting negative correlations with MDA
(Figure 3A).Conversely, SBR1031, A4b, Altererythrobacter, Arcicella,
and Rhodobacter displayed inverse correlation patterns (Figure 5A).

Subgroup_7, Subgroup_17, Hydrogenophaga, TRA3-20,
Haliangium, Leptolyngbyaceae, etc., showed significant positive
correlations with growth parameters (root length, plant height,
above- and below-ground dry weight, chlorophyll content) and stress
markers (SOD, CAT, POD, Pro), and significant. negative correlations
with MDA. In contrast, SBR1031, A4b, Altererythrobacter, Arcicella,
Rhodobacter, exhibited inverse correlations (Figure 5A).

Metabolite-specific relationships revealed three distinct
microbial functional groups:

Protective Taxa: Subgroup_7 and Haliangium exhibited
significant negative correlations with stress-associated metabolites
(octylamine, tryptophyl-alanyl-arginine, magnoshinin, 20-
hydroxyfusarin, burseran, austalide L, myxopyronin A,
dehydrocurdione) while showing positive correlations with
beneficial compounds (litseakolide A, azelaic acid, populin,
9,12,13-trihydroxy-10E-octadecenoic acid). Stress-Associated
Taxa: Longimicrobiaceae, AKAU4049, Luteolibacter, and
Nitrospira demonstrated inverse patterns - positively correlating
with the aforementioned stress metabolites but negatively
correlating with litseakolide A, azelaic acid, prolyl-isoleucine, and
pentamidine. Dual-Role Taxa: Lysobacter, Massilia, and
Flavisolibacter displayed selective associations: positive
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FIGURE 3

(A) PLS-DA of root exudates, (B) Total ion model differential metabolite volcano plot for each differential grouping, (C) Venn diagram of differentially

expressed exudates in rice under different treatment groups.

TABLE 2 Annotated table of classification of plant compounds of differential secretion.

Categorization

Lipids 4 14 2 3 4 2 0 2 2 3
Organic acids 1 0 0 0 0 0 0 0 0 1 0
Nucleic acids 1 5 1 0 1 0 0 1 0 1 6
Carbohydrates 0 2 0 0 0 0 0 0 0 0 3
Hormones an

tr:m:it::r: d 2 7 1 1 1 1 1 1 1 1 1
Steroids 2 6 1 3 1 2 1 1 2 1 2
Vitamins and cofactor 0 3 0 1 1 0 0 1 0 1 2
Peptides 1 0 1 0 1 0 0 0 0 4 0
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(A) Heat map of correlation between genus-level enriched taxa of rice rhizosphere bacteria and rice physiological indicators;(B) Heatmap of
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correlation analysis between rice root secretion and rhizosphere bacterial genus level enrichment taxa.

FIGURE 5

Frontiers in Plant Science


https://doi.org/10.3389/fpls.2025.1661074
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

10.3389/fpls.2025.1661074

FIGURE 6

Effect of Plant Growth-promoting Rhizobacteria on the Growth of Rice Seedlings under Salt Stress and Its Microbiological Mechanism. This
illustration demonstrates the effects of PGPR inoculation on rice cultivated in saline-stressed soil. The left panel depicts untreated rice plants and
their root systems, where the native microbial community remains unaffected by exogenous microorganisms under chronic salt stress, resulting in
significant growth inhibition. In contrast, the right panel shows PGPR-inoculated rice and associated roots. Inoculation stimulated the secretion of
specific rhizosphere metabolites, which effectively recruited beneficial microbiota and restructured the microbial community composition.
Consequently, soil microbial diversity was enhanced, concomitant with marked improvements in rice growth indices. These synergistic effects

collectively promoted plant development and stress adaptation.

correlations with magnoshinin and 3-(3-hydroxyphenyl)propanoic
acid, yet negative correlations with prolyl-isoleucine and
pentamidine (Figure 5B).

4 Discussion

Salt stress is an important environmental factor that severely
limits global crop productivity. The use of appropriate beneficial
PGPR represents a greener, cleaner approach to improving crop
production and environmental resilience under salt stress. This
study systematically investigated the effects of PGPR inoculation on
rice seedling growth, rhizosphere microbial communities, and root
exudate metabolism under salt stress. The results align with existing
research and provide multidimensional evidence for elucidating the
salt tolerance regulatory mechanisms of PGPR.

4.1 Effects of different treatments on rice
growth

We found that PGPR alleviated salt stress damage by enhancing
the antioxidant system and osmotic regulation function, consistent
with the theory proposed by Fiodor et al (Fiodor et al., 2021). that
“PGPR inoculation may increase nutrient absorption and
accumulation by promoting root development.” In the
experiment, different PGPR inoculation treatments significantly
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POD,SOD,CAT

MDA
Pro
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Beneficial bacteria:
Subgroup_7
Lysobacter

increased SOD, CAT, and POD activities in rice leaves and roots,
consistent with the results reported by Jha et al (Jha and
Subramanian, 2013) and Chen et al (Chen et al.,, 2024).
Meanwhile, MDA content was significantly reduced, alleviating
oxidative stress caused by salt stress, in line with the findings of
Han et al (Han et al., 2014). and Chauhan et al (Chauhan et al,
2019), indicating that PGPR activated the enzymatic defense
network to remove excess ROS. Notably, under mild salt stress
(e.g., soil salinity of 0.2-2.2%o), PGPR significantly enhanced
chlorophyll content more effectively than under severe stress,
possibly because the low-salt environment did not exceed the
metabolic regulatory threshold of PGPR. Overall, PGPR
inoculation improved chlorophyll content in rice leaves under salt
stress (Xin et al., 2011; Gao, 2014). In this experiment, proline
content in rice leaves and roots increased significantly across all
treatment groups, consistent with the findings of Jha et al (Jha and
Subramanian, 2013). As a core component of osmotic regulation,
proline accumulation was enhanced by PGPR through the
activation of the OsP5CS1/2 gene, aligning with the molecular
mechanisms observed in transgenic rice studies (Wang et al., 2021).

4.2 Differences in rhizosphere bacteria
under salt stress

Our study also observed that PGPR inoculation led to a decrease
in rhizosphere bacterial alpha diversity (Shannon index), consistent
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with the community clustering results from PCoA. Specifically,
under salt stress, PGPR preferentially promoted the colonization of
beneficial bacteria, leading to enhanced community structure
selectivity and a reduction in overall o-diversity (Tahir et al,
2015; Jing et al, 2018). The survival of exogenous bacteria
depends on environmental compatibility; when soil conditions
such as pH and temperature are suboptimal, even inoculants with
high viable cell counts may exhibit poor survival rates and
consequently fail to outcompete indigenous microbial
populations. In most cases, inoculation enhances plant nutrient
acquisition and promotes growth—both directly and indirectly—by
altering rhizosphere soil pH and modulating microbiome
composition and interactions (da Cunha et al,, 2024).

At the phylum level, Proteobacteria, Acidobacteriota,
Chloroflexi, and Actinobacteriota were the four dominant phyla
across all treatments, similar to the findings of Sarathambal et al
(Sarathambal et al,, 2022), confirming that PGPR inoculation does
not recruit dominant bacterial groups in a host plant-specific
manner. The enrichment of these dominant bacterial groups
carries clear functional implications. o~ and y-Proteobacteria—
exemplified by nitrogen-fixing genera such as Rhizobium (o
class) and Pseudomonas (y-class)—convert atmospheric nitrogen
into plant-available forms, significantly enhancing plant growth
through biological nitrogen fixation. In saline-alkaline soils, these
Proteobacteria facilitate rapid rhizospheric organic matter
degradation, exhibiting competitive dominance in carbon-rich
environments. Their abundance correlates positively with soil
organic matter content, and their metabolic plasticity contributes
to plant stress tolerance under adverse conditions (Rilling et al.,
2018; Das et al, 2020; Anzalone et al,, 2022). Acidobacteriota
abundance frequently exhibits negative correlations with soil
nitrogen/phosphorus availability. This phylum likely employs
oligotrophic strategies to outcompete copiotrophs under nutrient-
depleted conditions, contributing to carbon cycling through
decomposition of recalcitrant organic compounds (e.g., cellulose)
and thereby enhancing soil fertility sustainability (Zhang et al,
2023). Chloroflexi contributes to phytoremediation of contaminated
soils under heavy metal-polluted or hypersaline conditions through
sulfur cycling and anaerobic metabolic pathways. In contrast,
Actinobacteriota plays a role in enhancing soil nutrient content,
inhibiting the growth of pathogenic microorganisms, and
promoting plant growth (Bhattacharyya et al, 2018; Guarino
et al., 2020). Proteobacteria and Actinobacteriota dominate
nitrogen and phosphorus transformation, while Chloroflexi and
Acidobacteriota participate in carbon cycling, collectively
maintaining root zone nutrient balance and resisting
environmental fluctuations. This functional division confirms that
PGPR exhibits cross-host conservation in recruiting dominant
microbial communities.

At the genus level, genera such as Subgroup_7, Lysobacter,
Massilia, and Hydrogenophaga were significantly enriched in the
rice rhizosphere. This directed regulation formed a specific
microbial community architecture that was more conducive to
the adaptive growth of rice seedlings under salt stress. Among
these, Subgroup_7, as the core group of Acidobacteriota, prefers
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acidic environments, participates in the decomposition of
recalcitrant organic matter (such as cellulose), regulates soil
carbon cycling, and stabilizes soil aggregates by secreting
extracellular polysaccharides, thereby improving the rhizosphere
microenvironment (Yang et al., 2021). Lysobacter, Massilia, and
Hydrogenophaga (all belonging to Proteobacteria) construct the
defense and nutritional network of the rhizosphere microbiome
through functions such as decomposing recalcitrant carbon sources,
inhibiting pathogens, promoting nutrient cycling, and enhancing
plant resistance (Ruth et al, 2015). Additionally, the relative
abundance of these groups showed a significant positive
correlation with rice physiological and biochemical indicators,
promoting seedling growth under salt stress.

Functional gene analysis further revealed enrichment of the
pantothenate and CoA biosynthesis pathway (ko00770) at KEGG
Level 3, indicating PGPR may enhance microbial oxidative stress
adaptation by modulating redox cofactor metabolism (Ilangumaran
and Smith, 2017). The upregulation of ansamitocin (ko01051) and
vancomycin-type antibiotic biosynthesis (ko01055) genes suggests
PGPR inoculation induces antagonistic interactions. These
antibiotics not only suppress phytopathogens but also reinforce
the competitive dominance of beneficial taxa (e.g., Bacillus,
Pseudomonas) through rhizosphere microbiome restructuring
(Khanghahi et al., 2025). Notably, although salinity stress
typically reduces Actinobacteriota abundance, PGPR-secreted
antibiotics may preserve functional guild equilibrium—a
mechanism corroborated in rapeseed rhizospheres by éwie‘ttczak
et al (Swiatczak et al., 2023).

4.3 Differences in the composition of rice
root exudates under salt stress

Analysis using the OPLS-DA model indicated that PGPR
treatment significantly altered the composition of root exudates,
with the number of DEMs ranging from 418 to 707 across treatment
groups—primarily downregulated, suggesting that PGPR reshapes
the rhizosphere microenvironment by inhibiting specific metabolic
pathways. The chemical classification of differentially secreted
compounds showed that lipids and steroids were predominantly
downregulated, while peptides, vitamins, and cofactors were
predominantly upregulated. Nucleic acids were predominantly
downregulated in T1 and T6 but upregulated in T2-T5. Peptides
(Trp-Ala-Arg) play critical roles in plant root secretions as signal
regulators, growth promoters, stress resistance enhancers, and
influencers of rhizosphere microorganisms. For example,
brassinosteroids collaborate with other plant hormones (such as
auxins) to regulate growth and development, while steroid
components in root exudates act as signaling molecules,
influencing rhizosphere microbial composition and regulating
plant-microbe interactions.

Furthermore, heat map analysis showed that the secretion of
lipids (e.g., Austalide L, Myxopyronin A) reduced the enrichment of
bacterial colonies such as Subgroup_7 and Haliangium, while
Litseakolide A and 9,12,13-Todea enhanced their enrichment.
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Organic acids (e.g., Azelaic acid, 3-(3-hydroxyphenyl)propanoic
acid) exhibited the opposite effect. KEGG enrichment analysis
revealed significant enrichment of nucleotide metabolism, purine
metabolism, and the ABC transporter pathway (within
Environmental Information Processing) across treatment groups.
Rhizosphere microorganisms support proliferation through
nucleotide synthesis (e.g., adenosine and guanosine nucleotides)—
for instance, D-ribose transport, mediated by the RbsA enzyme,
represents a critical step in microbial reproduction (Abulfaraj et al.,
2024), while secreted ribose functions as a plant symbiosis signal
(Keren et al.,, 2024). Purine metabolism generates cAMP via the
cascade AMP — ADP — ATP, directly influencing microbial
energy metabolism efficiency (Kai Wang et al., 2016). ABC
transporters participate in nutrient transmembrane transport
(e.g., amino acids) and microbial toxin efflux—e.g., Aeromonas
hydrophila alters outer membrane phospholipid transport through
MlaF gene mutations to enhance antibiotic resistance (Powers and
Trent, 2018). Furthermore, ABC transporters are implicated in
plant hormone signaling (e.g., IAA). This association potentially
underpins a mutualistic relationship characterized by bidirectional
resource exchange: microbes secrete auxins, while plants provide
carbon sources. This establishes a cyclical “microbe-secreted auxin-
plant-provided carbon source” relationship (Wang, 2017).

The T6 treatment (mixed strains) enriched more pathways—
including nucleotide metabolism and glycerophospholipid
metabolism—than single strains. Nucleotide synthesis supports
rapid microbial proliferation, while adjustments in membrane
lipid composition (e.g., upregulated phosphatidylethanolamine)
enhance environmental adaptability (Zhao et al., 2021; Abulfaraj
et al,, 2024), providing metabolic evidence for why mixed bacterial
agents outperform single strains.

5 Conclusions

This study demonstrates that PGPR inoculation significantly
enhances root exudate production in rice, and these exudates
subsequently recruit beneficial microbiota (Subgroup_7,
Lysobacter, Massilia) that promote plant growth and development
(Figure 6).

These findings establish a PGPR-rice metabolic mutualism
model wherein PGPR recruit stress-protective microbiomes while
synchronously tailoring root exudates to optimize nutrient
acquisition and ROS scavenging. The enhanced performance of
the T6 consortium highlights the potential of synthetic microbial
communities for reclaiming saline soils. Future research should
validate these mechanisms in field trials and integrate
transcriptomics to elucidate underlying gene regulatory networks.
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