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1 Introduction

The application of nanotechnology and biochar in agricultural systems has gained

significant attention in recent years due to their potential to enhance nutrient availability,

improve plant stress tolerance/resistance, increase plant productivity, and promote

sustainable farming practices (Bamdad et al., 2022; Hasnain et al., 2023; Ahmed et al.,

2024; Gill et al., 2024; Manzoor et al., 2024; Rana et al., 2024; Verma et al., 2024; Yasin et al.,

2024). However, there is growing concern within the scientific community about the

frequent lack of integration between fundamental plant physiology and soil science in

studies involving these materials (Chadha et al., 2024; Maaz et al., 2025). As highlighted by

Frank and Husted (2024) and Husted et al. (2024), numerous publications in this field

suffer from flawed experimental designs, unrealistic application regimes, and superficial

data interpretation, often leading to conclusions that lack depth and are difficult to translate

into practical and sustainable agronomic solutions. Other studies focus primarily on

material characterization or yield improvements without a comprehensive understanding

of how these amendments interact with plant physiological processes and soil dynamics

(Husted et al., 2024; Shani et al., 2024). To bridge this gap, we argue that future research

must prioritize a systematic and detailed understanding of how nanomaterials and biochar

influence plant nutrient uptake, stress responses, and photosynthetic efficiency, alongside

their impacts on soil physicochemical properties and microbial interactions. In this

Opinion article, we highlight key physiological and soil science analyses that researchers

should consider to enhance the robustness, relevance, and agronomic applicability of their

findings (Figure 1).
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2 Key physiological considerations

2.1 Nutrient uptake, assimilation and
biofortification

One of the primary motivations for applying nanomaterials and

biochar in agriculture is their potential to enhance nutrient

availability and uptake. In some specific cases, nanofertilizers

have been shown to improve the bioavailability and efficiency of

essential nutrients like nitrogen, phosphorus, and potassium,

leading to better nutrient uptake by plants and reduced

environmental losses (Alam et al., 2024; Arora et al., 2024;

Chadha et al., 2024; Saurabh et al., 2024; Zhang et al., 2024).
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Similarly, biochar applications have been found to improve soil

nutrient retention and availability, thereby enhancing nutrient

uptake and crop productivity (Hossain et al., 2020; Bekchanova

et al., 2024; Ullah et al., 2024; Upadhyay et al., 2024). However,

many studies fail to assess the fundamental processes by which

these materials influence root absorption, nutrient transport across

membranes, and systemic distribution within the plant.

Root absorption and in planta translocation of nutrients and

nanomaterials can be investigated using a range of complementary

analytical techniques. For example, laser ablation inductively

coupled plasma mass spectrometry (LA-ICP-MS) allows high-

resolution spatial mapping of isotopes within plant tissues,

providing detailed insights into elemental distribution (Cui et al.,
FIGURE 1

Essential physiological and soil-related assessments that researchers should incorporate to improve the scientific rigor, practical relevance, and
agricultural applicability of their results.
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2023). Confocal Raman microscopy offers a non-destructive

imaging approach to visualize particles and chemical compounds

in cells and tissues (Saletnik et al., 2021), while transmission

electron microscopy (TEM) can confirm the presence and

localization of nanoparticles at the cellular and subcellular levels

(Ďúranová et al., 2024). Radioactive tracers combined with ICP-MS

analyses provide quantitative data on nutrient uptake and

translocation over time (Di Tullo et al., 2015).

For understanding elemental speciation, oxidation states, and

coordination environments, synchrotron-based techniques such as

micro-X-ray fluorescence (m-XRF) and X-ray absorption

spectroscopy (XAS) are particularly powerful. m-XRF enables

high-resolution elemental mapping, whereas XAS provides

detailed chemical information including oxidation state,

interatomic distances, and elemental speciation (Vijayan et al.,

2015). When combined, these synchrotron methods deliver a

comprehensive picture of spatial distribution and chemical form

within plant tissues (Zhao et al., 2022). However, despite their

strengths, synchrotron techniques have limited accessibility due to

the need for specialized facilities and beamtime allocation (Ashe

et al., 2025). Furthermore, we recognize that in developing countries

or institutions with limited budgets, access to these techniques is

often restricted due to high costs and a lack of training and expertise

in data acquisition and interpretation. Therefore, we strongly

advocate for more collaborative scientific efforts worldwide to

help overcome these obstacles.

Complementing these imaging and spectroscopic approaches,

transcriptomic and proteomic analyses can elucidate molecular

responses by revealing changes in transporter gene and protein

expression, thereby providing mechanistic insights into nutrient

uptake and translocation pathways (Mostofa et al., 2022). Although

combining these techniques can make data analysis and

interpretation more complex and require careful consideration,

they can provide a more comprehensive understanding of plant

physiological responses to the types of nanomaterials applied

(Pinheiro et al., 2024).

Beyond improving general nutrient uptake, nanotechnology

and biochar hold promise for biofortifying edible plants with

essential microutrients. Several studies suggest that nanoparticles

loaded with these micronutrients can enhance their bioavailability

in soils and increase their accumulation in edible plant tissues

(Shafiq et al., 2023; Ahmad et al., 2024; Huang et al., 2024).

Likewise, biochar has been reported to improve soil retention and

slow-release properties for key micronutrients, potentially boosting

their uptake and accumulation in edible parts (Awad et al., 2017;

Ahmed et al., 2024; Bañuelos et al., 2025). Despite promising

increases in micronutrient content, rigorous absorption and

utilization studies are often lacking, making it difficult to confirm

that these technologies truly enhance micronutrient bioavailability

in ways that improve human nutritional outcomes (Bechoff and

Dhuique-Mayer, 2017; Altemimi et al., 2024). Future research

should incorporate biofortification-specific methodologies,

including nutrient speciation analysis using XAS technique

(described above), bioavailability studies using simulated in vitro

gastric and intestinal digestion assays (Hu et al., 2019), and human
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dietary impact assessments (Jackson et al., 2024). Additionally,

long-term field trials and multi-environmental evaluations are

essential to determine the consistency of these approaches in real

agricultural settings and their potential impact on human nutrition.
2.2 Stress response mechanisms

Nanomaterials and biochar have been proposed as tools to

improve plant tolerance to abiotic stresses such as drought (Rajhi

et al., 2024; Shirvani-Naghani et al., 2024), salinity (Gao et al., 2024;

Soni et al., 2024), and heavy metal toxicity (Ghorbani et al., 2024;

Shahzad et al., 2024). While many studies report improvements in

biomass and yield following nanomaterial or biochar applications

under abiotic stress, there is a notable lack of deeper physiological

and cellular assessments. A few studies, such as Waseem et al.

(2023), which emphasizes the need for integrated morphological,

physiological, biochemical, and molecular metrics, and Wang et al.

(2023), which combines biomass data with photosynthetic

performance and isotopic indicators, demonstrate the type of

mechanistic insight needed. Measuring oxidative stress markers

(e.g., reactive oxygen species, antioxidant enzyme activity,

membrane stability index, proline accumulation, and lipid

peroxidation/protein carbonylation levels) can provide deeper

insights into the protective or detrimental effects of these

materials (Khan et al., 2024; Zeeshan et al., 2024). Additionally,

hormonal profiling should be performed to determine whether they

influence phytohormones such as abscisic acid (ABA), jasmonic

acid (JA), and salicylic acid (SA), which play crucial roles in stress

signaling (Adhikari et al., 2023; Wang et al., 2024). Integrating

omics approaches, including transcriptomics, proteomics, and

metabolomics, into these studies is essential to uncover the

molecular mechanisms underlying the beneficial effects of

nanoparticles and biochar, ultimately improving their targeted

application in stress mitigation strategies.

Beyond abiotic stress tolerance, nanotechnology and biochar

have been explored for their potential to enhance plant resistance to

biotic stresses, including pathogen infections and herbivore attacks

(Waqas et al., 2018; Ruffatto et al., 2025). Some nanoparticles have

demonstrated antimicrobial properties, reducing disease incidence

in various crops (Islam et al., 2024; Ogunyemi et al., 2024), while

others have been shown to activate plant defense mechanisms

against herbivory, exhibiting strong insecticidal effect (Hemalatha

et al., 2024; Mawale and Giridhar, 2024). Biochar produced from

deciduous trees, dolomite, and molasses has been reported to

enhance plant resistance to herbivory by increasing JA levels

(Waqas et al., 2018). In another study, bamboo biochar improved

plant resistance to fungal infections by activating stress signaling

pathways and strengthening the immune system (Zhu et al., 2021).

However, many studies in this field fail to comprehensively assess

plant immune responses at the molecular level, highlighting the

need for deeper investigations into the underlying biochemical and

genetic mechanisms, as also emphasized by Singh et al. (2024), who

underscore that the detailed mechanisms of nanomaterial–plant

interactions remain underexplored. Future research should
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incorporate transcriptomic and metabolomic approaches to assess

changes in plant defense gene expression and secondary metabolite

production. Additionally, studies should investigate whether

biochar and nanoparticles can prime plants for induced

resistance, a mechanism by which plants develop a heightened

state of defense against subsequent pathogen attacks.
2.3 Photosynthetic performance and water
use efficiency

Improvements in photosynthetic efficiency and water use

efficiency (WUE) are frequently claimed as benefits of

nanomaterials and biochar application (Chattha et al., 2022; Wu

et al., 2024). However, photosynthesis is often evaluated solely

through chlorophyll content or net CO2 assimilation rate, missing

critical underlying processes. Detailed gas exchange measurements

should be coupled with chlorophyll fluorescence analysis (e.g., Fv/Fm,

NPQ) to dissect photochemical efficiency and non-photochemical

energy dissipation under stress conditions, as demonstrated in

Camellia sinensis tea cultivation studies (Chen et al., 2024).

Moreover, stomatal behavior, mesophyll conductance, and the

activity of key enzymes such as Rubisco should be investigated to

determine whether observed improvements are due to intrinsic

physiological changes rather than indirect effects (e.g., improved

soil water retention) (Sheng-Lan et al., 2022). Furthermore, long-

term studies under field conditions are essential to determine whether

these observed improvements in photosynthetic efficiency and WUE

translate into sustained benefits for plant growth, yield, and resilience,

considering that different environmental conditions can significantly

influence photosynthetic responses and overall plant performance.
3 Soil science considerations

3.1 Bioavailability and soil-nutrient
interactions

Nanoparticles and biochar can modify nutrient bioavailability

in complex ways (Jafari and McClements, 2017; Li and Li, 2022;

Rana et al., 2024), but many studies measure only total nutrient

content in soil and plants without considering bioavailable

fractions. It is already known that failing to account for different

chemical forms of nutrients can lead to misleading conclusions, as

total concentration does not necessarily reflect what is accessible for

plant uptake (Rahman and Schoenau, 2022). The interactions

between nanoparticles, biochar, and soil components can

influence nutrient solubility, mobility, and retention, affecting

how efficiently plants can absorb and utilize these elements

(Forján et al., 2024). For instance, nanoparticles may enhance

nutrient bioavailability by preventing fixation in the soil matrix or

acting as nutrient carriers, using controlled-release formulations

and biopolymeric encapsulation approaches that limit nutrient loss
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and facilitate targeted root uptake (Beig et al., 2022; Dutta et al.,

2022; Rana et al., 2024). Similarly, biochar can act as a reservoir,

gradually releasing nutrients over time (Chanda et al., 2025).

However, the extent of these effects depends on factors such as

soil pH, organic matter content, and the physicochemical properties

of the applied materials (Forján et al., 2024).

To accurately assess these impacts, sequential extraction

methods (Filgueiras et al., 2002) should be employed to

distinguish between readily available, exchangeable, and strongly

bound nutrients. These techniques provide a clearer picture of

nutrient dynamics, helping to determine whether observed

increases in total nutrient content translate into real agronomic

benefits. Additionally, speciation analysis using the XAS technique

can determine how elements change oxidation state and binding

forms in the presence of these materials (Dong et al., 2022). This is

particularly relevant for micronutrients that exist in multiple

oxidation states, as their bioavailability is directly influenced by

their chemical speciation. Moreover, long-term studies

incorporating soil incubation experiments and plant uptake trials

should be conducted to evaluate the persistence of these effects over

time and under varying environmental conditions (Rajput et al.,

2024). By integrating these advanced analytical approaches, future

research can move beyond simplistic assessments and develop a

more functional understanding of how nanoparticles and biochar

influence nutrient cycling in agricultural systems.
3.2 Microbial community dynamics

The effects of nanomaterials and biochar on soil microbial

communities are often overlooked, despite their critical role in

nutrient cycling and plant health (Bamdad et al., 2022; Bolan et al.,

2024; Cao et al., 2024). A better understanding of these interactions is

essential, as the lack of microbial data makes it difficult to predict the

long-term impacts on soil health. Therefore, further studies should

employ high-throughput sequencing and metagenomic approaches

to assess changes in microbial diversity, the functional expression of

genes related to soil nitrogen mineralization, nitrate reduction to

ammonium, and soil nitrogen assimilation, as well as the abundance

of beneficial microbes such as mycorrhizal fungi and nitrogen-fixing

bacteria (Ansari et al., 2024; Zhu et al., 2024; Reid et al., 2025).

Moreover, enzyme activity assays (e.g., dehydrogenase, phosphatase)

can provide additional insights into microbial metabolic activity in

treated soils (Das et al., 2025). Understanding these microbial

shifts will be crucial for optimizing nanomaterial and biochar

applications in agriculture, ensuring they promote beneficial

microbial interactions while minimizing potential disruptions to

soil ecosystems.

Furthermore, multiomics techniques can aid in understanding

complex processes related to plant-microbiota interactions, such as

nitrogen fixation, induction of systemic resistance, and mycorrhizal

association (Jain et al., 2024). Studies integrating multiomics and

bioinformatics techniques have revealed that the diversity of
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microbiota present in soil, even when contaminated, can increase

the content of antioxidants and phytohormones in plants, ensuring

the trade-off between defense and production (Sengupta and Pal,

2021). Furthermore, understanding the metabolites released during

plant-microorganism interactions may offer promising insights for

the development of next-generation inoculants capable of

improving plant growth and development (Mishra et al., 2022).
3.3 Soil physicochemical properties and
environmental safety

Changes in soil properties induced by nanomaterials and biochar,

such as water-holding capacity, porosity, cation exchange capacity

(CEC), and aggregate stability, significantly influence plant responses

(Nepal et al., 2023; Kumar et al., 2025). However, these properties are

often insufficiently characterized. Standard soil science

methodologies, including BET surface area analysis for porosity

(Blattmann and Plötze, 2024), laser diffraction for particle size

distribution (Gresina et al., 2025), and rheological measurements

for soil consistency (Javaheri et al., 2021), should be integrated into

future research. Incorporating these methodologies will provide a

more comprehensive understanding of how nanomaterials and

biochar alter soil structure and function, ultimately improving their

application for sustainable soil management and crop productivity.

Additionally, the environmental safety of nanomaterials and

biochar applications in soils remains an underexplored aspect.

While biochar is generally considered environmentally friendly

(Chueangchayaphan et al., 2025), the use of unsuitable biomass

feedstocks, suboptimal preparation conditions, or inappropriate

production methods can lead to the formation of harmful

compounds (Xiang et al., 2021). Some engineered nanomaterials

may accumulate in soils, posing potential risks to microbial

communities, water quality, and non-target organisms (Arora

et al., 2022). Future studies should assess the long-term

persistence, mobility, and potential toxicity of these materials,

ensuring that their application does not lead to unintended

ecological consequences (Godlewska et al., 2021; Tran et al.,

2024). A holistic risk assessment framework integrating

ecotoxicological studies, soil health indicators, and regulatory

guidelines will be essential to ensure the safe and sustainable use

of nanomaterials and biochar in agricultural systems (Iavicoli et al.,

2017; de Oliveira Pereira et al., 2020).

4 A call for holistic experimental
designs

A significant limitation in current research is the predominant

focus on evaluating nanomaterials and biochar under controlled

conditions, often overlooking agronomic variability. While

greenhouse and laboratory studies provide valuable insights, field

trials are essential for validating these findings under real-world
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conditions. However, these trials should extend beyond yield

measurements to include comprehensive physiological and soil

analyses, allowing for a deeper understanding of the mechanisms

driving plant responses. Furthermore, a critical yet often overlooked

aspect is the rigorous physicochemical characterization of the materials

used, including particle size, charge, surface structure, dissolution

behavior, and composition, as these properties strongly influence

their behavior and efficacy in agricultural environments. Adopting a

multidisciplinary approach, integrating expertise from plant

physiology, soil science, agronomy, and material science, will ensure

that research generates biologically relevant and agronomically

applicable data.

As the application of nanotechnology and biochar in agriculture

continues to grow, research must move beyond surface-level

evaluations of plant growth and yield. Incorporating physiological

and soil-based assessments will strengthen the scientific foundation

of these studies and enhance their practical relevance. A focus on

underlying processes and biological mechanisms, coupled with well-

designed experiments, will ensure that nanomaterials and biochar

contribute effectively to the development of resilient and productive

agricultural systems, bridging the gap between experimental findings

and field-scale implementation. Furthermore, the development of

additional public policies supporting research focused on the

application of nanotechnology and biochar in agriculture is necessary.
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