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Agriculture faces mounting challenges from climate change, soil degradation,

and unsustainable agrochemical use, highlighting the need for eco-friendly

solutions. Azolla, a fast-growing aquatic fern, has emerged as a multifunctional

resource for sustainable farming and climate resilience. Through its symbiosis

with Anabaena azollae, it fixes atmospheric nitrogen, reducing dependence on

synthetic fertilizers and improving soil health. Azolla also serves as a protein-rich

feed for livestock and aquaculture, suppresses weeds and pests in rice systems,

and supports water conservation. Beyond agriculture, it contributes to carbon

sequestration, mitigates methane emissions, and shows promise in wastewater

treatment, bioremediation, and as a feedstock for biofuels and bioplastics.

However, large-scale adoption is limited by challenges such as short shelf life,

ecological risks, and preservation constraints. This review synthesizes current

knowledge on Azolla, emphasizing its biological and ecological functions,

highlights practical applications across agriculture, livestock, aquaculture, and

environmental management, and outlines key research priorities needed to

overcome limitations and enable its integration into climate-smart agricultural

and environmental systems.
KEYWORDS

Azolla, sustainable agriculture, biofertilizer, carbon sequestration, methane mitigation,
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1 Introduction

Rapid population growth, climate change, and natural resource depletion create an

urgent global challenge for agricultural sustainability (Maja and Ayano, 2021; Ramesh and

Rajendran, 2022). Sustainable farming practices aim to balance food production with

environmental conservation through strategies that include minimizing chemical use,

managing water effectively, and restoring ecosystems while reducing greenhouse gas

emissions (Muhie, 2022). Conventional farming practices heavily reliant on synthetic

fertilizers and intensive irrigation have led to soil degradation, biodiversity loss, and

increased greenhouse gas emissions. The goal is to meet current needs without jeopardizing
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1661720/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1661720/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1661720/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1661720/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1661720&domain=pdf&date_stamp=2025-10-14
mailto:xion063@outlook.com
https://doi.org/10.3389/fpls.2025.1661720
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1661720
https://www.frontiersin.org/journals/plant-science


Yang et al. 10.3389/fpls.2025.1661720
future generations. Industrial development and agriculture are

major contributors to environmental imbalance, necessitating

eco-friendly strategies to mitigate climate change impacts. The

existing agricultural challenges have escalated the urgency in

finding sustainable and regenerative farming methods (Ramesh

and Rajendran, 2023; Xu et al., 2024).

Among various alternatives, Azolla, a fast-growing aquatic fern,

has gained significant attention for its unique biological properties

and potential role in sustainable agriculture and climate resilience

(Kour et al., 2024). Agricultural systems benefit from Azolla

integration because it effectively lowers emissions while

improving environmental sustainability (Kollah et al., 2016). This

aquatic fern forms a symbiotic relationship with Anabaena azollae

to fix atmospheric nitrogen, enabling it to function as a biofertilizer

that reduces synthetic fertilizer use while preventing soil

acidification and nitrous oxide emissions (Marzouk et al., 2023).

Previous research demonstrates that Azolla performs better than

inorganic fertilizers (Sood et al., 2012). In addition, Azolla

contributes to rapid biomass generation, carbon sequestration,

and methane reduction (Malyan et al., 2020; Korsa et al., 2024).

Azolla also purifies water by absorbing heavy metals and pollutants,

while serving as a high-protein livestock and aquaculture feedstock

(25–33% crude protein), making it both a sustainable and

economical supplement. Beyond agriculture, this nutrient-dense

resource has uses in industry and healthcare and has even been

featured in space diets (Ahluwalia et al., 2002; Prabakaran et al.,

2022; Yohana et al., 2023).

The current review highlights Azolla’s role in sustainable

agriculture and climate resilience by examining its biological

properties, nitrogen fixation capacity, carbon sequestration

potential, animal feed applications, phytoremediation functions,

and industrial uses. The primary focus is on Azolla’s role in rice

and crop-based systems, while livestock and aquaculture are

discussed as complementary but integral components of

agricultural systems. In addition, the review identifies key

research gaps and proposes future directions to advance Azolla-

based solutions for climate-smart agriculture.
2 Biological and ecological
characteristics of Azolla

2.1 Taxonomy and species diversity

Though its precise classification is still under discussion, Jean-

Baptiste Lamarck initially identified the genus Azolla in 1783 (Bujak

and Bujak, 2024). Initially grouped with Salviniaceae, phylogenetic

studies later confirmed its distinct evolutionary lineage (Saunders

and Fowler, 1993).

The classification of Azolla proves difficult because the genus

shows significant morphological variability, vegetative

reproduction, and environmental adaptability, which make

species identification challenging (Lydia et al., 2023). Azolla is

divided into two subgenera: EuAzolla (A. filiculoides, A. rubra, A.

microphylla, A. mexicana, A. caroliniana) and Rhizosperma (A.
Frontiers in Plant Science 02
pinnata, A. nilotica), differentiated by morphology and

reproduction. There are seven extinct and twenty-five fossil

species of Azolla. The distribution, characteristic features, and

uses of different Azolla species have been discussed in detail by

Kour et al (Kour et al., 2024). Native to America, Africa, Asia, and

Australia, Azolla has expanded globally due to its invasive nature,

though no species are native to Europe. While fossil evidence shows

that Azolla existed in Europe at one time, it was reintroduced to the

continent in 1880 (Korsa et al., 2024; Kour et al., 2024).

Several species have become invasive outside their native

ranges, forming dense mats that disrupt ecosystems and

economic activities. Examples include Azolla cristata (syn. A.

caroliniana) originated from North and Central America and is

now growing in Africa, Asia, and Europe (Korsa et al., 2024; Kour

et al., 2024). The native South and Central American A. microphylla

has been introduced throughout the world (Kour et al., 2024). In

contrast, A. mexicana remains primarily confined to North and

Central America (Kour et al., 2024). Azolla pinnata, native to Asia,

Africa, and Australia, has been introduced to the USA and South

America. Azolla filiculoides, tolerant of cold climates, was

introduced to China from East Germany in 1977 (Madeira et al.,

2019; Kour et al., 2024). Through the introduction, Egypt received

A. caroliniana, A. filiculoides, and A. pinnata (Serag et al., 2000b).

Azolla caroliniana developed into an invasive species in the Danube

Delta of Ukraine by 1978 (Prokopuk, 2016). Reflecting evolutionary

adaptations, phylogenetic studies utilizing rbcL gene sequences

confirm the split of Azolla into Euazolla and Rhizosperma

(Mahmood et al., 2020). Species like A. pinnata and A. filiculoides

are widely used in agriculture, while others remain underexplored

for potential applications (Kour et al., 2024).
2.2 Growth and reproduction

The aquatic fern Azolla doubles its biomass roughly every 2 to 5

days, producing 3–9 tons of dry matter per hectare annually

(Lumpkin and Plucknett, 1980; Wagner, 1997). Critical factors

affecting Azolla growth and nutrient composition have been

discussed in detail previously (Marzouk et al., 2023). Briefly,

growth depends on temperature, light, nutrients, and water pH,

with an optimum of 18–28°C; growth slows below 15°C and stops

above 35°C (Sadeghi et al., 2013). Its symbiosis with Anabaena

azollae enables survival in low-nitrogen conditions, though it

thrives in nutrient-rich waters (Lechno-Yossef and Nierzwicki-

Bauer, 2002).

Reproduction occurs mainly through vegetative propagation,

via detachment of rhizome branches, which allows rapid spread.

Sexual reproduction is less common, involving heterosporous

sporocarps containing microspores and megaspores (Sebastian

et al., 2021; Schluepmann et al., 2022). The life cycle of Azolla

varies by species. The process of sexual reproduction starts when

paired sporocarps develop from shoot apical meristems, including

both a megasporocarp with one megasporangium and a

microsporocarp with several microsporangia (Dijkhuizen et al.,

2021; Schluepmann et al., 2022). During sporocarp formation, A.
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azollae is recruited into the indusium cap near root-forming

branches. While microsporocarps discharge massulae, including

microspores, megasporocarps develop into megagametophytes,

creating archegonia (Figure 1). Fertilization occurs when flagellate

gametes reach the archegonia, leading to diploid growth, though the

timing of microgametophyte and gamete development remains

unclear (Schluepmann et al., 2022).

Sporocarps in A. filiculoides can remain viable for up to four

years at 4°C or indefinitely if dried and cryopreserved at -80°C,

whereas fragile, water-rich sporophytes cannot be stored (Li et al.,

2018). The shift to the haploid phase happens during the start of

sporangial development, which depends on light conditions,

temperature, and nutrient levels (White, 1971). Unlike seed

plants, Azolla exhibits high plasticity in sporangial meristem

formation, occurring in both sporophytes and gametophytes.

Different Azolla species demonstrate variable sporangial responses

when exposed to distinct environmental stimuli. For example, A.

filiculoides produces sporocarps when exposed to far-red light, but

this formation stops under open-field red light conditions

(Dijkhuizen et al., 2021). Sporocarp formation is likely controlled

by a conserved phase transition network involving regulatory

elements known from seed plants, such as MIKCC, AP2, and

GAMYB-microRNA319 interactions (Ambrose and Vasco, 2016).

The processes controlling spore germination and gametophyte

growth are probably controlled by the sporocarp itself, given the
Frontiers in Plant Science 03
protected nature of Azolla gametophytes. During periods of

environmental stress, sporocarps descend to the depths of aquatic

environments and stay dormant until the conditions improve (Sood

and Ahluwalia, 2009). Different Azolla species thrive in diverse

habitats. Azolla pinnata, for instance, likes higher temperatures; A.

filiculoides may survive in colder temperatures (Metzgar et al.,

2007). However, other factors, such as high salinity, UV radiation,

and heavy metals, can affect their growth (Korsa et al., 2024). Azolla

plants in cold regions submerge during the winter and then emerge

when the temperature increases. It can change their color from grey

green to red-purple when exposed to intense sunlight. Azolla thrives

in freshwater bodies like ditches, swamps, lakes, and rivers and is

also called duckweed, mosquito, or water fern (Kour et al., 2024).

While modern species are free-floating, fossils suggest that extinct

species had suberect growth (Watanabe and Berja, 1983). Molecular

research highlights genetic traits that enhance stress resistance,

offering potential for selective breeding. Its sporophyte phase

features a floating rhizome with leaf-l ike fronds and

submerged roots.
2.3 Symbiotic nitrogen fixation

The nitrogen-fixing cyanobacterium A. azollae resides in

specialized cavities of Azolla leaves, forming a mutualistic
FIGURE 1

An example of the general life cycle of Azolla species showing various developmental stages. The sporophyte had a rhizome, leaves, and roots.
Rhizome develops dense leaves containing cyanophycean algae on the upper surface. Adapted from (Sebastian et al., 2021), with permission from
John Wiley & Sons.
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symbiosis first observed by Strasburger in 1873 and later described

by De Bary (Carrapiço, 2010; Kour et al., 2024). This relationship

enables Azolla to thrive in nitrogen-poor waters and function as an

effective organic fertilizer (Figure 2) (Peters and Meeks, 1989).

Molecular studies confirm the long-term coevolution of Azolla

and its cyanobiont (Qiu and Yu, 2003; Papaefthimiou et al., 2008;

Pereira and Vasconcelos, 2014). Phylogenetic analyses indicate a

single evolutionary origin of the symbiosis, which has remained

stable for over 100 million years (Bujak and Bujak, 2024). Vertical

transmission through megasporocarps ensures that each new

generation inherits its cyanobiont without external inoculation,

maintaining high nitrogen-fixation efficiency (Ran et al., 2010).

The system functions without requiring external inoculation

while preserving strong nitrogen-fixing efficiency (Carrapiço, 2010).

The propagation of A. azollae within Azolla ferns depends on its

apical colony in the shoot apex and the movement of its motile

filaments (hormogonia) to organ initials like leaf cavities and

sporocarps. The regulation of hormogonia movement and cell

differentiation in Azolla is mostly unknown. Some evidence

suggests that secretory trichomes and deoxyanthocyanins might

affect this process (Cohen et al., 2002). The leaf cavity functions as a

microhabitat that controls oxygen levels to protect nitrogenase from

deactivation, thereby enabling nitrogen fixation. Azolla’s leaf

cavities and sporocarps host a diverse microbial (Rai et al., 2002).

Some studies suggested that some bacteria synthesize plant

hormones like indole-3-acetic acid, which can improve the

growth of Azolla (Kumar et al., 2022). Therefore, the Azolla-

Anabaena relationship forms a complex microbial network that

functions as a superorganism beyond its initial binary symbiosis

(Carrapiço, 2017). Azolla maintains association with one

cyanobacterial species, which contrasts with legumes hosting

multiple symbiotic partners and prompts further investigation

into its coevolution and metabolic interactions. Genetic research
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has identified regulatory differences in nitrogen fixation, which may

lead to agricultural improvements (Pabby et al., 2003; Devaprakash

et al., 2024).
3 Role of Azolla in sustainable
agriculture

Azolla has long been used in agriculture mostly for water

conservation, weed control, and soil fertility enhancement. Its use

as a biofertilizer in rice systems dates back to China’s Tang Dynasty

(618–907 AD), when farmers applied it as green manure to boost

rice yields (Lumpkin and Plucknett, 1980). By the Ming Dynasty

(17th century), its use had become widespread (Tarif, 2021; Kour

et al., 2024). Cultivation began in Fujian and Guangdong, later

spreading south of the Yangtze; after the establishment of the

People’s Republic, its use expanded northward as both manure

and animal feed. In central and southern China, it is still grown

before early rice planting. In Vietnam, the use of A. pinnata as green

manure dates back to the 11th century, predating its spread to

China, India, and the Philippines (Tarif, 2021). Oral traditions

suggest its domestication in La Van village, Thai Binh province,

where villagers reared Azolla starter cultures from April to

November and sold them to farmers at premium prices before

the Vietnamese revolution (Watanabe, 1982; Tarif, 2021).

The symbiotic relationship between Azolla and A. azollae

enables Azolla to function as a natural source of nitrogen through

direct atmospheric nitrogen fixation into the plant. In flooded rice

systems, fixation rates of 2–4 kg N per hectare per day have been

reported, substantially reducing the need for synthetic fertilizers

and positioning Azolla as an important component of sustainable

agriculture (Pabby et al., 2003). This biologically sourced nitrogen

not only lowers production costs but also minimizes environmental
FIGURE 2

Example of Azolla-Anabaena symbiosis process (Peters and Meeks, 1989).
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contamination compared to chemical fertilizers (Wagner, 1997). In

rice paddies, the dense floating mat of Azolla suppresses weeds by

blocking sunlight and reduces water loss through evaporation,

thereby decreasing reliance on herbicides and manual weeding

(Pabby et al., 2003). Its water-retention capacity also helps

maintain soil moisture in drought-prone areas (Peters and Meeks,

1989). Beyond soil fertility, Azolla has long been used as livestock

and aquaculture feed due to its protein-rich composition and

balanced amino acid profile. More recently, it has been adopted

in Iran, Africa, and parts of Europe for rice cultivation and aquatic

farming (Madeira et al., 2016). Research in the 20th century further

revealed its potential in carbon sequestration, organic farming, and

phytoremediation. Its ability to absorb heavy metals and pollutants

highlights its value in environmental remediation (Figure 3),

reinforcing its role in modern sustainable agricultural systems

(Yao et al., 2018).
3.1 Sustainable biofertilizer for soil health

Through its symbiosis with A. azollae, Azolla contributes 30–60

kg N ha-¹ per season via biological nitrogen fixation, improving soil

fertility and raising nitrogen-use efficiency by up to 70% compared

with synthetic fertilizers (Kollah et al., 2016; Kour et al., 2024)

(Table 1). With a rapid growth rate that doubles biomass in 3–5

days, Azolla fixes 1.1–3.5 kg N ha-¹ day-¹, exceeding many legumes

(Pillai, 2001; Vijayan et al., 2024). When used as a dual crop in rice
Frontiers in Plant Science 05
paddies, it supplies 40–60 kg N ha-¹ per cycle (Adhikari et al., 2020).

Azolla inoculation with 16.5–17.5 t fresh weight ha-¹ fixes 52.5–55.1

kg N ha-¹, while 12.2 t dry matter ha-¹ provides 33.8 kg N ha-¹ (Raja

et al., 2012). The efficiency of nitrogen fixation varies depending on

climatic conditions, floodwater nutrient levels, Azolla species, and

rice growth stages (Kour et al., 2024).

Beyond nitrogen, after incorporation, Azolla enhances soil

organic matter, microbial activity, and physical structure. Its

decomposition increases aggregate stability, porosity, water

retention, and permeability while reducing bulk density (Marzouk

et al., 2023; Sun et al., 2024; Ansabayeva et al., 2025). These changes

support higher crop yields. Humus derived from Azolla improves

cation exchange capacity and nutrient availability (Ca²+, Mg²+, K+,

P) (Kour et al., 2024). The breakdown of Azolla in soil helps various

nitrogen-fixing bacteria and fungi to flourish, which in turn

enhances nutrient cycling and crop nutrition (Samarajeewa et al.,

2005; Adhikari et al., 2020).

Compared to synthetic nitrogen sources, Azolla-derived

nitrogen is more efficient in terms of plant uptake and fertilizer

use efficiency (Seleiman et al., 2022; Marzouk et al., 2023).

Integrating organic and inorganic fertilizers sustains crop

productivity and enhances soil health (Pushpanathan et al., 2004).

Several studies demonstrate that mixing Azolla into soil helps

improve nitrogen mineralization and its usage. The efficiency of

fertilizers is enhanced when Azolla is added to the soil

(Bhuvaneshwari and Singh, 2015; Adhikari et al., 2020). A

previous study reported that the application of 86 kg N ha-¹+1000
FIGURE 3

Examples of Azolla’s multifunctional benefits in agriculture and environmental sustainability.
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kg Azolla ha-¹ increased rice growth by 15.54%, yield by 25.49%,

and nitrogen-use efficiency (Safriyani et al., 2020).

Beyond nitrogen, Azolla increases phosphorous availability by

20–30%, hence very helpful for soils lacking phosphorus (Raja et al.,

2012). With 3–5% nitrogen and 3–6% potassium in its biomass, it

exceeds traditional green manures in nutrient value (Kour et al.,

2024). Azolla breakdown increases urease and phosphatase activity,

encouraging mineralization of nutrients (Herath et al., 2023).

Moreover, Azolla is essential for the control of soil pH since it

reduces acidification in acidic soils and increases phosphorus

solubility in alkaline soils, thus boosting the availability of

nutrients in several agroecosystems (Herath et al., 2023; Marzouk

et al., 2024).

Azolla reduces runoff, prevents erosion, and improves

aggregation, particularly when cultivated along contour lines or

irrigation channels (Adhikari et al., 2020; Herath et al., 2023).

Floating mats in rice paddies protect against sediment loss, while

fine rootlets deposit silt in wetlands and channels, limiting nutrient

depletion (Raja et al., 2012; Kollah et al., 2016). These processes
Frontiers in Plant Science 06
enhance root development and water-use efficiency in rice fields

(Razavipour et al., 2018).

Azolla contributes to abiotic stress management. It tolerates

moderate salinity, removing excess salts from soil and water

(Sadeghi et al., 2014). Its mats limit evaporation and salt buildup,

reducing crop salinity stress (Serag et al., 2000a). Compost from

Azolla enhances rice growth on saline soils by releasing organic

acids that improve nutrient availability while aiding salt removal

(Razavipour et al., 2018). Collectively, these properties

establish Azolla as a cost-effective alternative to conventional

soil amendments.

3.1.1 Azolla application in rice cultivation
Azolla significantly enhances rice grain yield, straw yield,

caryopsis formation, and dry matter production when

incorporated into paddy fields (Pabby et al., 2003). It is applied

either as green manure before transplanting or as a dual crop after

transplanting, with the latter being more widely adopted due to its

greater agronomic benefits (Kimani et al., 2022). In the green
TABLE 1 Examples of some studies that report the use of Azolla for soil improvement.

Application rate Application method Observations References

10–90 g/kg soil Incorporated into soil, incubated at
25°C for 60 days

Increased soil pH, organic matter, and nutrient availability (N, P, K, Ca,
Mg)

(Bhuvaneshwari
and Kumar, 2013)

1 t/ha Applied to rice fields 7–10 days
after transplanting

Increased N fixation (up to 600 kg N/ha), improved water retention,
porosity, and cation exchange

(Nayak et al.,
2004)

300 kg/ha Incorporated into rice fields Enhanced nitrogen availability in soil (Kandel et al.,
2020)

5 t/ha (dry matter) Applied as compost with/without
synthetic fertilizers

40% NPK+60% Azolla compost improved yield, nutrient uptake, and
growth

(Seleiman et al.,
2022)

12.5 kg fresh A. imbricata
per tree

Incorporated into mandarin orange
garden soil at 10 cm depth

Increased soil pH, organic carbon, available nitrogen, phosphorus, NH4
+-N,

and NO3
--N; enhanced nitrogen functional bacterial diversity

(Lu et al., 2017)

10 t/ha K-enriched Azolla incorporated
into soil (60% & 100% moisture)

Increased organic carbon, N, P, K; better results at 60% moisture (Muruganayaki
et al., 2019)

500 kg/ha Used as dual crop in rice fields Increased soil nitrogen by 50 kg/ha, reducing nitrogen fertilizer needs by
20–30 kg N/ha

(Verma et al.,
2022)

Not specified Used as green manure with rice Improved N, P, K, organic C, and microbial activity (Marzouk et al.,
2023)

20 t/ha Incorporated before rice
transplanting

Enhanced organic C, N, P, cation exchange, porosity, and water retention (Awodun, 2008)

3 t/ha (fresh weight) Combined with 300 kg urea-N/ha Increased nitrogen recovery by 59%, reduced NH3 loss by 12%, and
enhanced rice yield by 14%

(Yao et al., 2018)

10, 20, 30 t/ha Applied with phosphate-
solubilizing bacteria

Increased available P, plant P uptake, and productive rice tillers (Pujawati et al.,
2023)

Not specified Intercropping of Azolla and rice Increased the organic carbon, available phosphorus and total nitrogen of
soil

(Singh and Singh,
1990)

6% Azolla extract+20 t/ha
biochar

Biochar was incorporated; Azolla
was foliar-sprayed.

Improvement in soil organic matter, water retention, CEC, microbial
biomass

(Al-Sayed et al.,
2022)

Not specified Used as green manure in rice fields Improved organic matter, N, and fertility, leading to higher yields (Singh and Singh,
1987)

NP+½ K through Azolla GM
+½ K through mulching

Azolla incorporated as green
manure+mulched application

Increased water-soluble K, available K, and exchangeable K (Jha et al., 2023)
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manure system, Azolla is collected from nurseries, ponds, or ditches

and applied 2–3 weeks before rice transplanting. Healthy, fresh

Azolla inoculum is essential for efficient production, with inoculum

density playing a crucial role (Adhikari et al., 2020). Singh

recommends 2 t ha-¹, while in Vietnam, 5 t ha-¹ or more is

preferred (Singh, 1981; Marzouk et al., 2023). Insufficient density

can lead to overgrowth by algae and weeds. Various Azolla

cultivation methods are used globally, with Vietnam favoring the

half-saturation method. Azolla pinnata reaches a saturated density

of 10–20 t ha-¹. The process begins by spreading inoculum at 0.5 kg

m-². After one week, when the surface is fully covered, half of the

Azolla is transferred to a new area of equal size. Within another

week, both areas will reach full coverage. This cycle is repeated,

doubling the covered area each time, leading to exponential

expansion (Watanabe, 1982).

Azolla forms a thick mat that decomposes into the soil,

supplying 20–40 kg N/ha and enhancing soil fertility and crop

yields (Kulasooriya and De Silva, 1977; Watanabe et al., 1977). In

dual cropping systems, introducing 0.5–1 t/ha of fresh Azolla after

transplanting allows a dense mat to form within 15–20 days.

Decomposing in 8–10 days, it releases nitrogen to support rice

growth throughout the crop cycle, providing approximately 30 kg

N/ha per cycle. To optimize nitrogen fixation, superphosphate (20

kg/ha) is applied in split doses (Watanabe et al., 1977; Yadav

et al., 2014).

Yield impacts are well-documented. Azolla compost at 5% soil

weight raised grain yield by 13.8% (Razavipour et al., 2018). A 1975

review of 1,500 trials in southern China reported yield increases of

600–750 kg ha-¹ (FAO-Rome, 1979; Liu, 1979). In Chekiang

Province, 90% of 422 trials reported an average yield gain of 700

kg ha-¹ (18.6%) (Liu, 1979). Vietnamese studies found 1 t fresh

Azolla increased yield by 28 kg, with 20 t ha-¹ raising yields by 0.5 t

ha-¹ (Ventura et al., 1992; Nyoni, 2011). Dual cropping improved

yields by 36–38% (Barthakur and Talukdar, 1983), while A. pinnata

specifically increased grain yield by 6–29% (Moore, 1969).

Integrating Azolla with neem cake-coated urea further maximized

yield (Sukumar et al., 1988). Several other studies have

demonstrated substantial yield improvements associated with

Azolla application. Peters found that using Azolla as a monocrop

biofertilizer increased rice yield by 112% compared to unfertilized

controls, while intercropping with rice resulted in a 23% yield

increase (Peters, 1978). When applied as both a monocrop and an

intercrop, the yield increase reached 216%. Singh observed that the

application of 30–40 kg N/ha from ammonium sulphate or 8–10 t/

ha of fresh Azolla led to a 47% increase in grain yield (Singh, 1977).

A review of multiple studies indicated that Azolla-based cropping

systems increased grain yields by 14–40%, while monocropping

during the fallow season resulted in a 15–20% yield increase (Samal

et al., 2020).

Studies also indicate that incorporating Azolla enhances

nitrogen recovery by 49–64% while reducing nitrogen loss by 26–

48% (Yao et al., 2018). The nitrogen fixation capacity of Azolla

varies across species, with A. filiculoides fixing 128 kg N/ha in 50

days, A. pinnata fixing 0.3–0.6 kg N/ha/day, and A. africana fixing

0.6–1.8 kg N/ha/day (Kumarasinghe and Eskew, 1993). Basal
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applications of 10–12 t ha-¹ increased soil N by 50–60 kg ha-¹,

reducing fertilizer needs by 30–35 kg ha-¹ (Roy et al., 2016).

Similarly, adding 500 kg/ha of green Azolla has been reported to

raise soil nitrogen by 50 kg/ha, further reducing the need for

nitrogenous fertilizers by 20–30 kg/ha (Roy et al., 2016).

Additionally, Azolla application reduces NH3 volatilization by 12–

42%, minimizing nitrogen loss in flooded rice systems (Yao

et al., 2018).

Azolla’s effectiveness in rice production extends to its role in

nitrogen management strategies. Studies indicate that applying

Azolla with reduced nitrogen levels achieves yields comparable to

full nitrogen applications, making it a viable alternative to synthetic

fertilizers. For instance, applying 60 kg N/ha from Azolla along with

30 kg N/ha from urea resulted in yields equivalent to those obtained

with a full 60 kg N/ha urea application (Setiawati et al., 2020).

Additionally, Azolla lowers flooded water pH and temperature,

contributing to reduced NH3 volatilization and improved nitrogen

use efficiency (Yao et al., 2018). Beyond its contribution to nitrogen

supply, as discussed in section 3.1, Azolla improves soil structure,

enhances organic matter accumulation, and increases the

availability of essential micronutrients such as Zn, Fe, and Mn

(Subedi and Shrestha, 2015). Moreover, it releases plant growth

regulators and vitamins that further promote rice growth and yield

(Thapa and Poudel, 2021).

Integrated systems further boost sustainability. Azolla,

integrated with rice, fish, and ducks, enhances nutrient cycling,

soil fertility, and pest control while reducing chemical inputs. This

sustainable system improves productivity and biodiversity while

minimizing environmental impact (Sanginga and Van Hove, 1989;

Van Hove, 1989). In the rice-fish-Azolla system, Azolla acts as a

biofertilizer and fish feed, improving rice and fish production

(Shanmugasundaram and Ravi, 1992). Azolla application at 2 t/ha

increased yields and the benefit-cost ratio (1.88) (Sivakumar and

Solaimalai, 2003). Fish stocked at 6,000/ha with Azolla feed

generated a net income of $258/ha, surpassing rice monoculture

by $51 (Van Hove, 1989; Cagauan and Pullin, 1994).

The rice-fish-Azolla-duck system (Figure 4) builds upon this

approach by introducing ducks, which help control weeds and pests

while enriching soil with their droppings (Sow and Ranjan, 2020).

Ducks introduced 15–20 days after rice transplantation reduce

reliance on pesticides, while Azolla supports soil health and serves

as feed for both fish and ducks (Lumpkin and Plucknett, 1980). Fish

benefit from organic matter derived from duck manure and

decomposed Azolla, improving growth and productivity (Sow and

Ranjan, 2020). Studies report up to a 58% increase in rice yield

compared to monoculture due to improved nutrient cycling and

pest control (Cagauan et al., 2000).

These systems significantly enhance pest control efficiency,

reducing populations of rice pests such as green leafhoppers,

brown planthoppers, stem borers, leaf folders, whorl maggots, and

gall midges (Cagauan et al., 2000; Sapcota and Begum, 2022).

Combined use of Azolla, fish, ducks, liquid biofertilizer, and

nano-urea extends nutrient availability and boosts physiological

traits, delivering high productivity with reduced chemical inputs

(Sow and Ranjan, 2020).
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Finally, Azolla benefits extend to non-rice crops. In taro

(Colocasia esculenta), its use as green manure significantly raised

yields (Tekle-Haimanot and Doku, 1995). In rice–wheat systems, it

enhanced wheat yields, particularly when combined with Sesbania

(Mahapatra and Sharma, 1989). It is also harvested from water

bodies for use in wheat and vegetables (Pabby et al., 2003). In

banana plantations, it serves as nutrient rich-mulch (Van Hove,

1989; Wijeysingha and Amarasinghe, 2023).
3.2 Azolla in water conservation, weed, and
pest control

Azolla forms a dense floating mat on the water surface, reducing

evaporation by up to 60% and conserving soil moisture (Kour et al.,

2024). By covering the water surface, Azolla limits sunlight

penetration, thereby lowering water temperature and evaporation

rates, which is particularly beneficial in regions with water scarcity

or irregular rainfall (Marzouk et al., 2023). Additionally, In non-

flooded cropping systems, Azolla can also be applied as a living

mulch, improving soil water retention and reducing moisture loss

(Raja et al., 2012).

The thick Azolla mat prevents sunlight from reaching

submerged weed seeds, inhibiting germination and growth. This

eco-friendly method provides an alternative to herbicides (Adhikari

et al., 2020). Previous studies show that Azolla can reduce weed

biomass by up to 50% (Herath et al., 2023). Since weeds compete

with rice for nutrients, light, and water, infestations can cause yield

losses of 16–100% depending on severity (Geetha et al., 2022).

Unlike herbicides such as 2,4-D, glyphosate, and propanil, which

harm non-target organisms and degrade soil and water quality

(Shekhawat et al., 2022), Azolla offers a safer alternative. Its

potential in smallholder systems, first recognized in 1927, remains

underexploited (Herath et al., 2023).

Azolla effectively suppresses multiple weeds, including

Echinochloa crus-galli, Cyperus serotinus, Monochoria vaginalis,
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Eclipta prostrata, Fimbristylis miliacea, and Cyperus rotundus

(Herath et al., 2023). By blocking light, altering microclimate

(reducing evaporation and soil temperature), and improving soil

structure when incorporated as green manure, Azolla reduces weed

competition and enhances rice growth (Marzouk et al., 2023).

Azolla also exhibits allelopathic properties that inhibit weed

germination and growth. It releases secondary metabolites such as

phenolic compounds, flavonoids, and tannins, which suppress

invasive weed species (Bahadur et al., 2015; Ameena et al., 2024).

Some studies have demonstrated that Azolla extracts negatively

affect root elongation in weeds, further reinforcing its potential as a

natural weed management tool (Herath et al., 2023).

The floating Azollamat also disrupts pest life cycles. It prevents

mosquitoes from laying eggs on water surfaces, lowering mosquito

populations and reducing vector-borne disease risk (Kour et al.,

2024). It interferes with the breeding of rice stem borers and

leafhoppers, which require open water for egg-laying (Marzouk

et al., 2023). Furthermore, Azolla supports beneficial organisms

such as predatory insects, frogs, and fish, which feed on pest larvae,

thereby enhancing natural pest control mechanisms and reducing

the need for chemical pesticides (Raja et al., 2012). In integrated

rice–fish systems, Azolla not only acts as biofertilizer and fish feed

but also suppresses weeds and pests, reducing chemical inputs and

maintaining ecological balance (Pabby et al., 2003). Azolla extracts

possess antifungal and antibacterial properties, helping to mitigate

plant diseases such as rice blast and sheath blight (Phukon et al.,

2017). Azolla bioactive compounds have also demonstrated

effectiveness against fungal infections in other crops, highlighting

its potential in sustainable disease management (Pereira

et al., 2015).
3.3 Azolla as animal feed

Azolla is a nutrient-rich, high-protein feed supplement for

livestock, poultry, and fish. It provides an excellent amino acid
FIGURE 4

Schematic representation of rice–Azolla–duck–fish Interrelationships in an integrated farming system.
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profile, high digestibility, and essential micronutrients, serving as

a sustainable alternative to conventional protein feeds such

as soybean meal and fish meal, which are costly and

environmentally intensive (Kour et al., 2024).

The nutrient composition of Azolla varies by species,

geography, production methods, and soil conditions (Shaltout

et al., 2012; Bhavyasree, 2015). Several studies have reported

different compositions of different species of Azolla (Katole et al.,

2017; Khursheed et al., 2019). Azolla microphylla and A. filiculoides,

which are most commonly used, contain 91.77%–92.25% moisture,

3.9%–5.2% crude protein, 0.6%–1.8% crude fat, and 2% ash

(Bhaskaran and Kannapan, 2015). On a dry matter basis, Azolla

has 25–35% crude protein, 10–15% minerals, and up to 10% amino

acids, making it comparable to commercial protein feeds (Marzouk

et al., 2023). Despite its high nutritional value, inclusion in animal

diets is generally limited to 25% due to anti-nutritional compounds.

Among species, A. pinnata, native to warm regions, has higher

polyphenolic tannins, reducing digestibility, while A. filiculoides,

found in the Americas and Europe, contains lower polyphenols and

higher protein, making it a better protein source (Brouwer et al.,

2018)). Azolla is also rich in lysine, methionine, and arginine,

essential for muscle growth, as well as key minerals like calcium,

phosphorus, magnesium, iron, and potassium, which support bone

health and metabolism (Herath et al., 2023; Yohana et al., 2023).

High beta-carotene and vitamin A levels enhance vision, immunity,

and reproduction (Adhikari et al., 2020). Its low lignin content

(<5%) ensures high digestibility for both ruminants and non-

ruminants (Raja et al., 2012), while bioactive compounds such as

flavonoids and phenolics improve gut health, feed efficiency, and

disease resistance (Kour et al., 2024).

3.3.1 Azolla in dairy and meat production
Azolla supplementation in dairy cattle diets improves milk

yield, enhances milk quality, and reduces feed costs. Replacing

15–25% of commercial feed with Azolla in crossbred cows increased

milk and fat percentage and yield by 7–13%, while reducing feed

costs by 20–25% (Katole et al., 2017; Bujak and Bujak, 2022; Nasir

et al., 2022; Alebachew Chekol et al., 2024). A 10–15% replacement

of conventional cattle feed increased milk yield by 15–20%, with

improved fat and protein content (Herath et al., 2023). Fresh

supplementation of up to 1 kg/day increased yield by 7–13%,

with extended feeding (28–63 days) further enhancing production

(Roy et al., 2018). In buffaloes, daily feeding of 1.5 kg Azolla

increased milk yield by 15–20% (Meena et al., 2017), while

supplementation with cottonseed cake raised output from 8.0 to

9.3 L/day (Chatterjee et al., 2013).

In beef cattle and meat production, feeding Azolla to cattle and

goats for two months increased milk production by 10–15% and

meat yield by 8–10% (Alebachew Chekol et al., 2024). Feeding 5%

dried Azolla improved feed conversion efficiency by 20% and daily

gain by ~16% in heifers (Roy et al., 2016). In Sahiwal calves (Bos

indicus), substituting 15–30% of concentrate protein with Azolla

pinnata significantly enhanced growth, particularly in winter (Bhatt

et al., 2021). The substitution of groundnut cake nitrogen with

Azolla in buffalo calves improved daily weight gain, while 25%
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protein replacement in Murrah bulls’ concentrate had no

negative effect.

Studies on small ruminants confirm that Azolla can partially

replace protein sources in their diets. In Black Bengal goat, replacing

50% of concentrate with sun-dried Azolla caused severe diarrhea,

but up to 20% inclusion was tolerated without adverse effects

(Tamang and Samanta, 1995). In Jalauni lambs, Azolla replaced

25% of mustard cake protein without impacting nutrient

digestibility (Das et al., 2017). Similarly, in Mecheri lambs, 10%

Azolla in concentrate feed had no effect on dry matter intake,

average daily gain, or feed efficiency (Sankar et al., 2020). For

Corriedale sheep, diets replacing 25% of linseed cake with 6% Azolla

showed no negative impact on performance (Ahmed et al., 2016). In

goats, up to 15% sun-dried Azolla could be included in concentrate

feed without adverse effects (Sajjan Sihag et al., 2018). Goats

supplemented with 15% Azolla maintained digestible crude

protein and nutrient intake (Sajjan Sihag et al., 2018; El Naggar

and El-Mesery, 2022).

In pigs, A. filiculoides partially replaced soybean protein at 15–

30%, leading to reduced growth in the early phase but improved

compensatory growth during finishing (Becerra et al., 1990).

Optimal Azolla replacement rates were 10% in the growing phase

and 20% in the finishing phase, with higher inclusion levels

negatively affecting weight gain and feed conversion efficiency

(Durán, 1994). Azolla pinnata inclusion up to 20% in pig diets

reduced feed costs while maintaining weight gain (Cherryl

et al., 2013).

In other monogastric animals, the beneficial effects of Azolla

have been studied in horses and rabbits. In Marwari stallions,

replacing 10% of concentrate protein with A. pinnata had no

effect on body weight or nutrient digestibility, supporting its

suitability as a protein supplement (Songara et al., 2018).

Similarly, supplementing rabbit feed with 1.5–3% A. pinnata in

place of wheat bran and lucerne meal maintained normal growth

performance (Sireesha et al., 2017).

3.3.2 Azolla as poultry feed
Azolla is a sustainable poultry feed rich in protein, essential

amino acids, vitamins, and bioactive compounds, enhancing growth

performance and feed efficiency. A 5% Azolla inclusion enhanced

broiler weight gain and feed efficiency (Parthasarathy et al., 2001),

while 10% increased weight gain and reduced feed intake (Alalade

and Iyayi, 2006). A 7.5% inclusion improved body weight by 2.6%

(Prabina and Kumar, 2010), with optimal growth at 5–10%. Azolla

supports digestion and gut microbiota in poultry, enhancing

digestibility at 10–15% inclusion (Samad et al., 2020). Broilers fed

10% Azolla gained 1810 g versus 1270 g on conventional feed (Rai

et al., 2012), with improved digestibility linked to increased

duodenal thickness (Rana et al., 2017). A 5–7% Azolla diet with

multivitamins and acidifiers lowered feed conversion ratio,

mortality, and costs while boosting profit (Bolka, 2011; Islam and

Nishibori, 2016). Previous studies reported that the Azolla fiber was

more digestible than rice bran (Joysowal et al., 2018) and supported

metabolism, immunity, and gut health in chickens and safety was

confirmed up to 7% inclusion (Mishra et al., 2016). Broilers fed 10%
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Azolla showed higher Newcastle Disease antibody titers (Prabina

and Kumar, 2010), while a 5.5% diet enhanced immune markers in

turkeys (Bhattacharyya et al., 2016). Azolla supplementation (5–

10%) boosted immunity, likely due to its carotenoids, minerals, and

nitrogen-fixing Anabaena (Chichilichi et al., 2015; Mishra

et al., 2016).

Previous studies confirmed that Azolla enhances egg

production and quality without adverse effects up to 20%

inclusion (Rathod et al., 2013; Chisembe et al., 2020; Alagawany

et al., 2024). Layers fed 100 g/day produced more eggs at lower costs

(Kannaiyan and Kumar, 2005). Ducks on a 10–20% Azolla diet

showed increased egg weight and better feed conversion (Swain

et al., 2022). A 5% inclusion improved egg production (53.2 vs. 49.9

on concentrate, 47 on forage) and body weight (Alebachew Chekol

et al., 2024). Fresh Azolla supported growth in backyard poultry,

while its carotenoids enhanced yolk pigmentation and egg yield (Ali

and Leeson, 1995). Additionally, Azolla enhances meat quality and

overall health outcomes in poultry. For example, a 5% Azolla diet

significantly increased dressing percentage (Basak et al., 2002),

while a 4.5% diet improved giblet yield and reduced serum

cholesterol (Balaji et al., 2009). Broilers fed 5–10% Azolla

exhibited better meat color and reduced cooking loss (Abdelatty

et al., 2020). However, excessive supplementation may cause a

greenish tint in meat.

3.3.3 Azolla in aquaculture and fish farming
Azolla has been extensively investigated as a potential feed

supplement in aquaculture due to its high protein content,

balanced amino acid profile, and natural pigments, which

contribute to improved growth rates and enhanced coloration in

fish species such as tilapia and carp (Marzouk et al., 2023) (Table 2).

Additionally, the incorporation of Azolla in fish diets has been

shown to enhance water quality by absorbing excess nutrients and

mitigating algal blooms, thereby creating a more balanced aquatic

environment (Kollah et al., 2016). Various freshwater fish species,

including tilapia (Oreochromis niloticus), redbelly tilapia (Coptodon

zillii), catfish, fringed-lipped carp (Labeo fimbriatus), calbasu

(Labeo calbasu), and Thai silver barb, have been successfully fed

Azolla-based diets in controlled experimental settings (Das et al.,

2018; Yohana et al., 2023). Examples of previous studies assessing

the impact of Azolla supplementation on fish growth and survival

are provided in Table 2.Previous studies reported that Tilapia can

tolerate up to 20% Azolla in their diet without growth impairment

(Magouz et al., 2020; Alebachew Chekol et al., 2024), with a

recommended daily intake of 100 g for juveniles and 200 g for

adults (El-Sayed and Garling, 1988). Inclusion levels vary by species,

with rohu tolerating up to 50%, Thai silver barb 25%, fringed-lipped

carp 40%, and calbasu 30%. A 25% A. pinnata diet in Thai silver

barb showed no significant differences in growth or survival

compared to controls (Das et al., 2018; Yohana et al., 2023).

Moderate Azolla inclusion enhances feed conversion ratio,

protein efficiency, and energy utilization, while excessive levels

may impair digestion due to antinutritional factors like

phytates and fibers (Yohana et al., 2023). Its bioactive

compounds, including phenols and flavonoids, support
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antioxidant and immunostimulatory functions (Lumsangkul et al.,

2022). Azolla supplementation also boosts goblet cell production,

strengthening the mucosal barrier and enhancing disease resistance

in fish (Lumsangkul et al., 2022). In biofloc systems, Nile tilapia fed

100 g/kg Azolla exhibited improved immune responses and growth

performance. While Azolla is promising as an aquaculture feed, but

its amino acid balance still needs improvement, and the negative

effects of its anti-nutritional compounds need to be reduced

(Lumsangkul et al., 2022; Yohana et al., 2023).
4 Azolla’s contribution to climate
resilience

4.1 CO2 absorption potential

Azolla is an efficient natural sink for atmospheric CO2 due to its

rapid growth, high biomass accumulation, and symbiosis with A.

azollae, which enables continuous nitrogen fixation without

external inputs ( (Vroom et al., 2024) (Kour et al., 2024). Its

integration into wetlands and rice paddies enhances carbon

cycling, soil carbon storage, and long-term ecosystem stability

(Sadeghi et al., 2014).

Evidence shows that Azolla can sequester CO2 at rates

comparable to, or greater than, terrestrial plants. The Eocene

“Azolla bloom” contributed significantly to global cooling,

highlighting its historic efficiency as a CO2 sink (Yuan et al.,

2024). Modern studies estimate that a 1-ha Azolla Pond captures

21,266 kg CO2 annually, and that 1,018,023 km² (one-fifth the

Amazon) could offset current global CO2 increases. Compared to

terrestrial ecosystems, which absorb 20–30% of anthropogenic

emissions, Azolla ponds remove CO2 18 times more efficiently

than an equivalent Amazon forest area (Hamdan and Houri, 2022).

Practical applications extend beyond sequestration. As a

biofertilizer, Azolla improves soil quality and reduces the need for

inorganic fertilizers that contribute to GHG emissions (Hamdan

and Houri, 2022). In poultry farming, replacing 50% of feed with

Azolla reduced CO2 by 35%, N2O by 22.3%, and CH4 by 4.7%,

corresponding to a 28.5% reduction in global warming potential per

1,000 birds (Espino and Bellotindos, 2020). Similarly, cultivation

trials reported annual fixation of 1.86 t CO2 and 0.33 t N ha-¹,

providing dual climate and agronomic benefits (Brinkhuis and Bijl,

2014). In Sri Lanka, expanded Azolla use in paddy fields could

mitigate 509,422 t of CO2 annually (Surenthiran and Loganathan,

2012), while A. filiculoides sequesters 32.54 metric tons CO2 ha-¹

year-¹, surpassing grassland, forest, and algae (Dawson and

Smith, 2007).

CO2 enrichment experiments (380–680 ppm) further

demonstrated enhanced Azolla biomass, confirming its scalability

as a mitigation strategy (Cheng et al., 2010). During the Azolla

interval, mean sea surface temperatures dropped from 13°C to 10°C,

demonstrating its historical role in climate regulation (Brinkhuis

et al., 2006). Sensitivity analyses indicate that optimal Azolla

cultivation could require sequestration areas between 763,518 and

1,527,036 km² to significantly counteract atmospheric CO2 rise.
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TABLE 2 Examples of previous studies showing the impact of Azolla diet on fish.

Azolla species Fish Method Findings Citation

A. microphylla Oreochromis niloticus
Tilapia were fed diets with
varying levels of Azolla meal
for 90 days.

Fish growth declined when
Azolla meal exceeded 20% in
diet. However, fatty acid
content improved.

(Abou et al., 2013)

A. pinnata Tilapia zillii
Fish of different sizes were fed
fresh and dried Azolla meal for
8 weeks.

Fish growth declined when
Azolla meal exceeded 25% in
diet.

(Abdel‐Tawwab, 2008)

A. filiculoides Labeo rohita

Examined six Azolla species’
growth potential and their
efficacy as a feed ingredient in
a 150-day trial.

Azolla mixture at 25%
inclusion showed highest fish
weight gain and best specific
growth rate.

(Datta, 2011)

A. pinnata Oreochromis niloticus
Fresh green Azolla replaced 0-
40% of commercial feed in Nile
tilapia diets for 70 days.

20% replacement resulted in
the best growth, enzyme
activity, and protein efficiency
ratio.

(Refaey et al., 2023)

A. filiculoides Tilapia nilotica

Tilapia were fed diets
containing different
proportions of Azolla over 3
weeks.

Fish growth was reduced at
higher Azolla inclusion levels,
but fatty acid composition
improved.

(Shiomi and Kitoh, 2001)

A. filiculoides Oreochromis niloticus

Nutritional composition and
fatty acid profile of tilapia fed
Azolla diets were analyzed over
90 days.

High Azolla inclusion led to
reduced growth but improved
omega-3 fatty acid
composition.

(Abou et al., 2010)

A. pinnata Oreochromis niloticus
Fish meal was substituted with
Azolla at varying levels for
fingerling and adult tilapia.

Azolla inclusion reduced fish
growth and feed utilization,
with body protein and lipid
content negatively correlated to
its level in the diet.

(El‐Sayed, 1992)

A. filiculoides Oreochromis niloticus
Tilapia were fed diets
containing 0-50% Azolla meal
over 90 days in earthen ponds.

Growth reduced above 20%
Azolla, but fatty acid profile
improved

(Youssouf et al., 2011)

A. pinnata Various finfish species
Reviewed literature on Azolla
meal inclusion in finfish diets
(tilapia, catfish, cyprinids).

Azolla meal inclusion of 10-
45% had positive effects, but
species-specific responses
varied.

(Mosha, 2018)

A. filiculoides Oreochromis niloticus
Tilapia were fed diets with
different levels of Azolla meal
in earthen ponds.

Higher Azolla inclusion
reduced growth but improved
fish fatty acid profile and
reduced

(Youssouf et al., 2012)

A. microphylla Oreochromis niloticus
Compared fish growth with
diets containing 15-45% Azolla
meal in a recirculating system.

Azolla addition up to 45% in
the diet supported growth and
it was least expensive diet
among tested diets

(Fiogbé et al., 2004)

A. pinnata Nile tilapia
Investigated fish performance
on Azolla-based diets with
fishmeal substitution.

Optimal Azolla inclusion
improved fish health but
excessive levels hindered
growth.

(Leonard et al., 1998)

A. pinnata Nile tilapia
Fish was fed on fresh and dried
Azolla as partial or full
replacement of diet

Fish fed only fresh Azolla
showed poor growth with
reduced lipid and protein
content, but a 50% inclusion in
the control diet maintained
normal growth

(Tharwat, 1999)

A. africana Oreochromis niloticus
Sun-dried Azolla africana was
incorporated into practical
diets for Nile tilapia fingerlings.

Growth was improved up to
20% inclusion but declined at
higher levels.

(Fasakin et al., 2001)

(Continued)
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Given its historical impact on climate stabilization and its efficiency

in CO2 capture, Azolla-based strategies could contribute

significantly to mitigating global warming and enhancing carbon

management in agroecosystems (Hamdan and Houri, 2022).
4.2 Impact on methane emissions in rice
cultivation

Agriculture is a major contributor to greenhouse gas (GHG)

emissions, particularly CO2, CH4, and N2O (Chataut et al., 2023).

CO2 results from microbial decay and organic matter oxidation,

while CH4, a potent GHG with 20–60 times the global warming

potential of CO2, is produced under anaerobic conditions in flooded

rice paddies, livestock digestion, and manure storage (Smith et al.,

2008). N2O arises from nitrogen transformations in soil,

particularly under excessive fertilization (Xiao et al., 2024). Rice

paddies contribute ~20% of global CH4 emissions, necessitating

mitigation strategies. Azolla offers a natural means of reducing CH4

emissions in rice systems. By releasing oxygen, absorbing excess

nutrients, and altering soil redox potential, Azolla suppresses

methanogenesis while maintaining or improving rice yields

(Razavipour et al., 2018). Field studies consistently report 30–60%

reductions in CH4 emissions when Azolla is used as green manure

or a floating cover (Serag et al., 2000a). In a three-year double rice
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cropping study, Azolla integration lowered CH4 emissions, reduced

nitrogen fertilizer requirements, and maintained yields, largely due

to improved soil oxygenation (Xu et al., 2017).

Synergistic practices further enhance these benefits. In Japan,

combining Azolla with poultry-litter biochar increased rice yields by

27–75% while cutting CH4 by ~25% and N2O by up to 98% (Kimani

et al., 2020). In India, dual cropping with Azolla reduced CH4 flux by

40% compared to urea fertilization alone, confirming the role of

oxygen release in lowering emissions (Bharati et al., 2000). Laboratory

studies also show that soils treated with Azolla and urea exhibit

higher CH4 oxidation than urea alone, due to oxygen supplied by

cyanobacteria (Adhya et al., 2000; Sood et al., 2012). Comparisons

with other organic amendments reveal that CH4 efflux per grain yield

is lowest in Azolla+urea systems, outperforming Sesbania, farmyard

manure, and urea alone (Adhya et al., 2000). Although some Chinese

studies reported higher CH4 emissions under Azolla dual cropping

(Ying et al., 2000), soil type and nutrient status strongly influence

outcomes. For example, Indian soils tend to produce lower CH4 flux

under similar management (Gollany et al., 2015). Alternative

integrated models, such as rice–fish culture, also reduce CH4 by

improving soil aeration, lowering emissions by ~35% compared to

conventional paddies (Kollah et al., 2016). Combining Azolla with

such climate-smart practices could provide scalable, site-specific

solutions for mitigating CH4 emissions while enhancing rice

productivity and sustainability.
TABLE 2 Continued

Azolla species Fish Method Findings Citation

A. filiculoides Oreochromis niloticus
Nile tilapia were reared under
varying Azolla cover (0-90%) in
earthen ponds for 90 days.

Fish survival remained high,
and indirect effects of Azolla on
phytoplankton and
zooplankton influenced growth.

(Abou et al., 2012)

A. pinnata Catfish

Azolla was grown in catfish
wastewater to assess nutritional
value and phytoremediation
potential.

Azolla exhibited high growth
and nutrient absorption,
reducing Total Nitrogen and
Total Phosphate levels.

(Said et al., 2012)

A. pinnata Labeo fimbriatus
Azolla was incorporated at 10-
40% in fish diets over 75 days.

Up to 40% Azolla inclusion
reduced feed costs without
affecting fish growth or
survival.

(Gangadhar et al., 2015)

Azolla spp Various fish species

Reviewed Azolla’s role in
aquaculture, focusing on its
protein content and feed
potential.

Azolla is a rich protein source
but has digestibility issues for
some fish species.

(Yohana et al., 2023)

A. pinnata Oreochromis niloticus
Fermented Azolla was used in
tilapia fry diets at varying
inclusion levels.

20% fermented Azolla inclusion
showed the best growth and
feed efficiency.

(Hundare et al., 2018)

Azolla spp Tilapia nilotica
Investigated Azolla’s impact on
aquaculture sustainability and
economic feasibility.

Positive growth effects were
observed in fish, showing
potential as a protein source.

(Shernazarov et al., 2024)

A. filiculoides Oreochromis niloticus
Nile tilapia were stocked at
different densities and fed
Azolla diets.

Nile tilapia could be raised at a
density of
3 fish/m2 with 30-40% Azolla
inclusion to improve
production

(Abou et al., 2007)
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4.3 Bioremediation and pollution control

Azolla is an efficient phytoremediator with the ability to absorb

and accumulate heavy metals from contaminated water. Both living

and dead biomass are effective in removing pollutants, owing to

mechanisms that include passive adsorption onto cell walls and

active metabolic uptake (Sood et al., 2012). Its rapid growth and

high bioaccumulation potential enable the uptake of Pb, Cd, As, Cr,

and Hg from industrial and agricultural effluents, with removal

efficiencies reported up to 80% (Vroom et al., 2024). The

mechanism of heavy metal uptake involves passive adsorption

onto cell walls as well as active metabolic absorption, making

Azolla a suitable candidate for the remediation of polluted

wetlands, rivers, and agricultural runoff areas (Sadeghi et al., 2014).

Field studies show that A. pinnata removes 70–94% of heavy

metals from effluents, with tissue concentrations up to 740 mg/kg

(Rai, 2008). Azolla filiculoides efficiently absorbs Cr, Pb, Zn, Hg, Cu,

Cd, Ag, and Ti from wetland environments, demonstrating its

potential for metal removal in natural water bodies (Hassanzadeh

et al., 2021). Hydroponic studies indicate species-specific

differences: A. caroliniana accumulated up to 284 mg/kg of As,

while A. filiculoides accumulated only 54 mg/kg (Zhang et al., 2008).

Another study reported that A. caroliniana also bioaccumulates Hg

and Cr (III and VI), with tissue concentrations between 71 and 964

mg/kg dry weight (Bennicelli et al., 2004).

The tolerance of Azolla to heavy metals varies among species.

For example, A. filiculoides demonstrated the highest tolerance to

Cr exposure, retaining 72% of its control biomass under

contamination (Arora et al., 2006). Nonetheless, heavy metals

reduce growth, chlorophyll, and protein content, with Cd and Pb

showing the greatest toxicity (Sarkar and Jana, 1986; Guo-Xin et al.,

2003; Sood et al., 2012). Stress responses include reduced

photosynthesis, O2 evolution, and enzyme activity, while

detoxification is supported by increased phenolics and PAL

activity (Dai et al., 2006). Similarly, Hg toxicity in A. pinnata

reduces chlorophyll a, protein, RNA, DNA, and nutrient uptake,

further compromising growth and metabolic functions (Rai and

Tripathi, 2009). Copper particularly affects photosystem II

efficiency (Sanchez-Viveros et al., 2010).

Heavy metal exposure also induces ultrastructural damage in

Azolla, affecting organelles at the cellular level. Structural

disruptions include chloroplast swelling, mitochondrial

deformation, chromatin condensation, and nuclear membrane

disintegration (Sela et al., 1988, 1990; Sood et al., 2012). Copper

accumulates preferentially in roots, whereas Cd is evenly distributed

in plant tissues, forming detoxification aggregates with PO4 and Ca

(Sela et al., 1988). Cadmium localizes in the epidermis, cortex, and

bundle cell walls within 77 hours, leading to the formation of

electron-dense granules (Sela et al., 1990). Lead precipitation in A.

filiculoides was primarily localized in vacuoles, with higher

accumulation in mature leaves (Benaroya et al., 2004). In A.

pinnata, Pb exposure caused frond compactness, stomatal closure,

and epicuticular wax deposition, though these effects were mitigated

by Fe supplementation (Gaumat et al., 2008).
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Beyond metal accumulation, Azolla has demonstrated potential

for biosorption. Studies show that dead or pretreated Azolla

biomass effectively removes Cs, Sr, Pb, Zn, Ni, Cu, Au, Cd, and

Cr from contaminated water sources (Sood et al., 2012). The

bioaccumulation capacity of Azolla is influenced by metal

concentration and environmental conditions (Dai et al., 2006;

Sood et al., 2012). Hydroponic experiments have shown that A.

filiculoides can remove Cr6+ with a maximum adsorption capacity

of 20.2 mg/g at pH 2 and 32°C, while Ni uptake reached 27.9 mg/g

at 60% saturation (Zhao and Duncan, 1998). Pb removal efficiency

by A. filiculoides remained at approximately 90% between 10 and

50°C, with minimal influence from biomass concentration

(Sanyahumbi et al., 1998). Furthermore, A. filiculoides has

demonstrated a 99.9% efficiency in gold biosorption at pH 2

(Sood et al., 2012).

Apart from heavy metal removal, Azolla effectively removes

excess nutrients from wastewater, reducing eutrophication risks.

Azolla filiculoides has been reported to extract up to 122 kg of

phosphorus per hectare annually (Vroom et al., 2024). Sequential

treatment using Landoltia punctata followed by A. filiculoides

achieved complete NH4 and NO3 removal and a 93% reduction

in PO4, significantly lowering wastewater toxicity (Miranda et al.,

2020). In addition, Azolla plays a crucial role in domestic

wastewater treatment by removing nitrogen and phosphorus,

thereby improving water quality for irrigation (Muradov et al.,

2014). Laboratory studies further indicate that A. filiculoides

effectively removes textile dyes such as Congo Red, Acid Red 88,

Acid Green 3, Acid Orange 7, and Basic Orange from industrial

effluents (Tan et al., 2010; Sood et al., 2012). The biosorption

potential of Azolla is enhanced by its rapid growth and high

surface area, making it an eco-friendly alternative to conventional

wastewater treatment methods (Sood et al., 2012).
5 Other uses of Azolla

Azolla is a promising and sustainable biofuel feedstock due to its

rapid growth, high lipid content, and adaptability to various

conversion processes (Arora et al., 2022; Ramesh and Rajendran,

2022). Pyrolysis of Azolla yields hydrocarbons, including straight-

chain alkanes, making it a potential diesel substitute. However, its

high moisture content requires drying, and heavy metal emissions

must be managed. Activated carbon catalysts improve both bio-oil

yield and quality.

Transesterification is another widely studied method for

biodiesel production. Crude oil extracted from dried Azolla

biomass can be processed through acid transesterification to

produce fatty acid methyl esters with properties like conventional

diesel. Efficiency depends on maintaining optimal reaction

temperatures (47–60°C) and reactant ratios, which require further

study (Arora et al., 2022; Prabakaran et al., 2022). Hydrothermal

liquefaction and torrefaction convert Azolla into bio-crude oil

under high temperature and pressure. Torrefaction reduces

moisture content and enhances fuel stability. Ethanol production
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involves hydrolysis, yeast isolation, and fermentation: acid

treatment breaks down the biomass, sugars are released, and

microbial fermentation produces ethanol. Additionally, microbial

fuel cells using Azolla biomass and pyrolyzed biochar as anodes

have shown potential for bioelectricity generation while reducing

chemical oxygen demand (Miranda et al., 2016; Arora et al., 2022;

Prabakaran et al., 2022).

Azolla is also a promising feedstock for bioplastics due to its rapid

growth, high biomass yield, and diverse biochemical composition

(Kouchakinejad et al., 2024). Unlike corn and sugarcane, Azolla does

not compete with food production, making it a more sustainable

alternative. Its cellulose and hemicellulose support bioplastic synthesis

through chemical and enzymatic hydrolysis, while protein and lipid

fractions can produce protein-based and lipid-derived bioplastics,

including polyhydroxyalkanoates (PHA).

Blending Azolla biomass with poly (lactic acid) or starch can

improve biodegradability and mechanical performance. Microbial

fermentation also enables PHA production, providing a renewable

alternative to petroleum-based plastics. A biorefinery approach,

integrating bioplastic production with biofuels and biofertilizers,

maximizes resource efficiency. Given its rapid biomass doubling

and adaptability to pond and bioreactor cultivation, Azolla offers a

scalable and efficient pathway for sustainable bioplastic production

(Supriya et al., 2023; Kouchakinejad et al., 2024).
6 Challenges and limitations in Azolla
utilization

Despite its numerous benefits, large-scale cultivation of Azolla

faces several constraints related to environmental requirements,

ecological risks, preservation, and economic feasibility.

Environmental and agronomic constraints: Azolla thrives under

specific conditions—temperatures of 20–30°C, high humidity,

adequate sunlight, and still or slow-moving water (Watanabe et al.,

1989). Fluctuations in climate, seasonal variations, and poor water

quality reduce productivity in open systems (Sadeghi et al., 2013).

Continuous nutrient uptake can deplete nitrogen and phosphorus,

requiring supplementation to sustain biomass yields (Razavipour et al.,

2018). Growth is also inhibited under highly acidic or alkaline pH

(Madeira et al., 2013). Competition from algae and aquatic weeds,

coupled with risks of stagnation, oxygen depletion, and biomass decay,

further limit performance (Vroom et al., 2024).

Ecological risks and invasiveness: Certain species, such as A.

filiculoides and A. pinnata, can proliferate rapidly, doubling

biomass every 3–5 days under optimal conditions (Vroom et al.,

2024). Unchecked growth forms dense mats that block light, lower

dissolved oxygen, and disrupt aquatic ecosystems (Sadeghi et al.,

2014). Invasive infestations in wetlands, irrigation canals, and lakes

have displaced native vegetation and altered water chemistry

(Madeira et al., 2013). Mitigation requires controlled cultivation,

floating containment systems, routine harvesting, and ecological

risk assessments before introduction into new environments.

Preservation and shelf-life limitations: Fresh Azolla decomposes

within days, making storage and transport difficult for feed and
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biofertilizer use (Razavipour et al., 2018). Various preservation

techniques, including sun-drying, freeze-drying, and ensiling,

have been explored; however, these methods often result in

nutrient degradation and reduced digestibility for livestock

consumption (Sadeghi et al., 2014). Long-term storage demands

airtight facilities to prevent fungal contamination. Cost-effective

preservation strategies—such as optimized dehydration or

fermentation-based methods—are still under development.

Safety and consistency concerns: Azolla’s ability to accumulate

heavy metals, while valuable for phytoremediation, poses risks

when biomass from polluted environments is used for feed or

fertilizer (Madeira et al., 2013) Furthermore, nutrient composition

varies with species, climate, and soil conditions, making it difficult

to ensure consistent feed quality. Standardized cultivation protocols

are required to deliver predictable nutritional value (Vroom

et al., 2024).

Logistical and regulatory barriers: High water content makes

transport of fresh biomass costly and inefficient, requiring drying or

processing facilities for distribution. In some regions, Azolla is

classified as an invasive species, restricting its cultivation and use

(Razavipour et al., 2018). Clear regulatory frameworks and risk

assessments are therefore essential to balance utilization with

ecological safeguards.

Adoption and economic limitations: Despite proven agronomic

benefits, adoption among farmers remains low due to limited

awareness, technical expertise, and uncertainties about labor

requirements (Watanabe et al., 1989). Initial investment in ponds,

harvesting, and processing infrastructure also discourages small-

scale farmers, even though long-term savings on fertilizers and feed

are possible (Razavipour et al., 2018). High water content, short

shelf life, and the need for preservation or processing facilities

further increase production and transport costs, limiting economic

feasibility. To overcome these barriers, farmer training, cost-sharing

schemes, and targeted incentive programs—such as subsidies,

integration into carbon credit markets, and inclusion in climate-

smart agriculture policies—are needed to promote wider adoption

and improve sustainability.”.
7 Future prospects and research
directions

Azolla is a promising resource for sustainable agriculture, but

realizing its large-scale potential requires advances in genetics,

cultivation technologies, and commercial integration.

Genetic and biotechnological improvement: Selective breeding,

molecular breeding, and gene editing hold potential to enhance

biomass yield, nitrogen fixation efficiency, and tolerance to abiotic

stresses such as drought, salinity, and temperature fluctuations

(Madeira et al., 2013; Vroom et al., 2024). Future work should

also explore microbial symbiosis optimization and metabolic

engineering to develop high-yielding, stress-resilient strains with

consistent nutrient composition for diverse environments.

Precision agriculture and digital tools: Integrating Azolla

cultivation with remote sensing, drone-based monitoring, and
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modelling based analytics could improve nutrient management,

predict biomass productivity, and optimize harvesting schedules.

Automated water-quality sensors and modeling can further

minimize risks of uncontrolled growth and invasiveness, enabling

more efficient and scalable production systems.

Commercial applications and sustainability pathways: Beyond

biofertilizers, Azolla offers opportunities in livestock feed,

aquaculture, wastewater treatment, and carbon markets. Its high

protein content supports poultry, cattle, swine, and fish diets,

reducing dependence on conventional feeds. As a biofertilizer, it

aligns with organic and regenerative farming systems, while its CO2

sequestration capacity creates potential for participation in carbon

credit schemes. In parallel, its ability to absorb heavy metals makes

it a valuable tool in industrial wastewater treatment and

pollution control.
8 Conclusion

Azolla is a multifunctional resource that supports sustainable

agriculture and climate resilience. Its symbiosis with A. azollae

enables efficient nitrogen fixation, reducing dependence on

synthetic fertilizers while enhancing soil health, conserving water,

and suppressing weeds and pests. As a high-protein feed, Azolla

improves livestock, poultry, and aquaculture performance, though

anti-nutritional factors and compositional variability remain

challenges. Beyond agriculture, Azolla contributes to climate

change mitigation through rapid carbon sequestration and

reduced methane emissions in rice systems, while also offering

bioremediation potential for polluted waters. Its emerging

applications as a feedstock for biofuels and bioplastics further

highlight its industrial value. However, large-scale use faces

barriers such as short shelf life, high water content, and ecological

risks from invasiveness.

Overall, Azolla represents a low-cost, eco-friendly tool with

wide-ranging benefits across food production, climate mitigation,

and environmental management. Addressing preservation,

standardization, and ecological safeguards, along with advances in

genetics and precision cultivation, will be critical to unlocking its

full potential as a cornerstone of climate-smart agriculture.
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