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Introduction: The rapid growth of the global population and intensive

agricultural activities has posed serious environmental challenges. In response,

there is an increasing demand for sustainable agricultural solutions that ensure

efficient resource utilization while maintaining ecological balance. Among these,

intercropping has gained prominence as a viable method, promoting enhanced

land use efficiency and fostering environment for crop development. However,

disease management in intercropping systems remains complex due to the

potential for cross-infection and overlapping disease symptoms among crops.

Early and precise illness recognition is, therefore, critical for sustaining crop

condition and efficiency.

Methods: This study introduces an intelligent intercropping framework for early

leaf disease detection, utilizing hyperspectral imaging and hybrid deep learning

models for precision agriculture. Hyperspectral imaging captures intricate

biochemical and structural variations in crops like maize, soybean, pea, and

cucumber—subtle markers of disease that are otherwise imperceptible. These

images enable accurate identification of diseases such as rust, leaf spot, and

complex co-infections. To refine disease region segmentation and improve

detection accuracy, the proposed model employs the synergistic swarm

optimization (SSO) algorithm. A phase attention fusion network (PANet) is

utilized for deep feature extraction, minimizing false detection rates.

Furthermore, a dual-stage Kepler optimization (DSKO) algorithm addresses the

challenge of high-dimensional data by choosing the most applicable landscapes.

The disease classification is performed using a random deep convolutional neural

network (R-DCNN).
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Results and discussion: Experimental evaluations were conducted using publicly

available hyperspectral datasets formaize–soybean and pea–cucumber intercropping

systems. The suggested ideal attained remarkable organization accuracies of 99.676%

and 99.538% for the respective intercropping systems, demonstrating its potential as a

robust, non-invasive tool for smart, sustainable agriculture.
KEYWORDS

intercropping system, maize–soybean, pea–cucumber, hyperspectral imaging, deep
learning, precisionagriculture
1 Introduction

Agriculture is the primary source of food, revenue, and jobs and

contributes significantly to the global economy. Agriculture generates

18% of the country’s GDP and raises the employment rate to 53% in

India and other low- and middle-income nations with large numbers

of farmers. Because crop diseases drastically lower production, they

have become a nightmare (Jamjoom et al., 2023). When dealing with

several illnesses or a variety of planting circumstances, the

conventional approaches are not very flexible (Zhao et al., 2024).

Improved decision-making in agricultural production management is

facilitated by the early detection of plant diseases. In addition to a

back propagation neural network, conventional approaches like SVM

and K-means clustering algorithms (Li et al., 2022) have been

employed for plant disease detection. Cucumber leaf disease is

classified using a two-stage model that combines DeepLabV3+ and

U-Net in complicated backdrops (Raza et al., 2025). The Dice

coefficient for lesion segmentation was 0.6914, the accuracy for

illness classification was 92.85%, and the accuracy for leaf

segmentation was 93.27%. Expanders and feature extraction are

performed on point cloud data using the Generate Adversarial-

Driven Cross-Aware Network (GACNet) (Yang et al., 2024).

Through the dynamic combination of geographical location and

feature attributes, GACNet improves the effectiveness of feature

extraction. A cascaded incremental region network (Inc-RPN) (Hai

et al., 2025) is used for accurate apple leaf disease detection in natural

settings. A Coffee-Net model is used for accurate classification of

coffee leaf diseases. Coffee-Net achieves 99.95% accuracy,

outperforming ANN, Mask R-CNN, MobileNetV2, and ResNet50

by 0.6%, 4.32%, 0.02%, and 1.95% respectively (Zhang et al., 2023).

The InceptionV3, MobileNetV1/V2, and VGG-16 models are

optimized using pruning and quantization-aware training (Zhang

et al., 2024). Although existing models demonstrate high accuracy in

plant disease detection, they depend on large, labeled datasets and

lack adaptability to new disease classes with limited data. To address

these limits, this study presents a smart intercropping system by

hyperspectral imaging and hybrid deep learning for accurate leaf

disease detection and enhanced precision agriculture (Bidarakundi

and Kumar, 2024; Da Silva and Almeida, 2024). Hyperspectral

imaging captures intricate biochemical and structural variations in
02
crops like maize-soybean and pea-cucumber, subtle markers of

disease that are imperceptible. The key contributions of the

planned work are given as trails.
1. The synergistic swarm optimization (SSO) algorithm is

used to accurately segment the diseased regions from

hyperspectral images of leaves. By focusing on the most

relevant regions of infection, SSO enhances the spatial

precision of the extracted disease areas, which improves

the downstream classification accuracy.

2. To extract deep features from the segmented disease

regions, phase attention fusion network (PANet) is

integrated into the framework.

3. To tackle high-dimensionality issues inherent in

hyperspectral data, the dual-stage Kepler optimization

(DSKO) algorithm is used for feature optimization.

4. The random deep convolutional neural network (R-

DCNN) model is used to classify leaf diseases within

intercropping system, includes maize–soybean and pea–

cucumber combinations which contributes to disease

prediction even under complex conditions with co-

occurring infections.

5. Experimental samples were collected on September 13,

2023, from maize–soybean and pea–cucumber

intercropping fields in Fei Cheng City, Tai’an City,

Shandong Province, China (Liu et al., 2024), ensuring the

practical applicability of the framework.
The rest of this paper is organized as follows. Section 2 discusses

the recent works on leaf disease prediction. The proposedmethodology

for smart intercropping system for accurate leaf disease detection is

presented in Section 3. The consequences and conversation are

presented in Section 4. The paper concludes in Section 5.
2 Related work

TinyResViT (Truong-Dang et al., 2025) is a lightweight efficient

hybrid model that combines residual net (ResNet) and vision

transformer (ViT) for leaf disease detection. The superfluous
frontiersin.org
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model weights are removed using the downsampling block that

connects ViT and ResNet. With F1-scores of 97.92% and 99.11%,

respectively, TinyResViT performs better on the plant village and

Bangladeshi agricultural disease datasets. MobileH-Transformer

(Thai and Le, 2025) combines a convolutional neural network

(CNN) and Transformer for accurate leaf disease detection with

minimal computation demands. The model obtains competitive F1-

score values of 97.2% on the Maize leaf disease dataset and 96.80%

on the Plant Village dataset, according to the results on publicly

available datasets. A lightweight grape disease recognition method

based on the GC-MobileNet model, for classification and fine-

grained grading of diseases (Canghai et al., 2025). With an accuracy

of 98.63 percent, GC-MobileNet outperforms MobileNetV3 by

6.51%. In grape vineyards, a real-time leaf detection system is

used to identify and spray ill leaves, improving the efficacy of

pesticide treatment (Khan et al., 2025). A deep learning algorithm

can identify and classify six distinct diseases that affect potato

leaves: nematodes, bacteria, viruses, fungi, phytophthora, and

pests (Mhala et al., 2025). The LBPAttNet model integrates a

lightweight coordinate attention mechanism into ResNet18 to

enhance disease localization and reduce background interference

(Wu P. et al., 2025).The model outperforms ResNet18 by 3.84% and

2.59%, respectively; with accuracy rates of 92.78% and 98.13%.

Areas of interest in the crop leaf photos are found using an

enhanced version of the U-Net segmentation algorithm (Chavan

et al., 2025).The model’s F-measure was around 0.956 and its

detection accuracy was better at 0. 982. For the accurate

identification of grapevine leaf and fruit diseases, the ResNet50

model was improved using batch normalization (Sagar et al., 2025).

During the validation stages, the model’s accuracy in distinguishing

between healthy and sick grapevine leaves was 95%. LGENetB4CA

combines modified EfficientNetB4 model with the LeafGabor

filter (Van et al., 2025) which employs coordinate attention

block to efficiently collect both spatial and channel-wise

information.LGENetB4CA obtained an accuracy of 85.90% on

COLD chili and 89.61% on JNUCLS for the COLD chili dataset.

A semi-supervised method using modified pyramid scene parsing

network (PSPNet) (Fan et al., 2025) for segmenting apple leaves. A

fine-grained multi-label model based on transformers is used to

categorize illnesses of apple leaves.
2.1 Problem description

Form related works, and numerous deep learning models (Liu

et al., 2024; Dhanka and Maini, 2025; Han et al., 2025;

Kamonsukyunyong et al., 2025; Logeswari et al., 2025; Mu et al.,

2025; Patel, 2025; Qiao et al., 2025; Zhang C. et al., 2025; Zhang Z.

et al., 2025) that have demonstrated promising results in the field of

leaf ailment finding have been developed under monoculture

conditions and exhibit limitations (Table 1) when applied to

diversified cropping systems (Qin et al., 2024; Xu et al., 2024;

Liang et al., 2025; Mohanty et al., 2025; Xu et al., 2025).

TinyResViT, MobileH-Transformer, and GC-MobileNet have

shown high accuracy on benchmark datasets; however, these
Frontiers in Plant Science 03
methods rely heavily on ideal conditions and not generalize to

real-world intercropping systems (Upadhyay et al., 2025). A critical

observation from the literature review indicates that most existing

works do not address leaf disease prediction in intercropping

systems. To date, few studies have attempted to explore disease

detection (Liu et al., 2024) within such systems, despite their

increasing relevance in sustainable agriculture (Xu et al., 2023;

Gong et al., 2024; Tu et al., 2024; Wang et al., 2024; Lu et al.,

2025). Intercropping systems introduce unique challenges such as

overlapping foliage, interspecies spectral interference, and a higher

risk of co-infections—factors that are typically overlooked in

conventional monoculture-based models (Liu et al., 2024; Qin

et al., 2024; Xu et al., 2024; Cai et al., 2025; Chi et al., 2025;

Christy and Jeyaraj, 2025; Dhanka and Maini, 2025; Han et al.,

2025; Kamonsukyunyong et al., 2025; Liang et al., 2025; Li J. et al.,

2025; Lingayya et al., 2025; Li Q. et al., 2025; Logeswari et al., 2025;

Maranga et al., 2025; Mohanty et al., 2025; Mu et al., 2025; Patel,

2025; Qiao et al., 2025; Ratmele et al., 2025; Wang and Ruan, 2025;

Wu M. et al., 2025; Xu et al., 2025; Zhang C. et al., 2025; Zhang Z.

et al., 2025). To fill the research gaps, an intelligent framework for

integrated early detection of foliar diseases is proposed, combining

hyperspectral imaging with hybrid deep learning applied to

precision agriculture. Hyperspectral imaging provides rich

spectral information, capable of capturing subtle biochemical and

structural changes in crops such as corn-soybean and pea-

cucumber (Figure 1).
3 Materials and methods

This study involves collecting hyperspectral images from Maize–

soybean and pea–cucumber intercropping fields. Leaf samples,

including both healthy and diseased ones, were captured under

controlled lighting conditions using a hyperspectral imaging setup.

The raw hyperspectral data underwent a series of preprocessing steps

such as image calibration, noise removal, normalization, and

enhancement to improve image quality. Leaf regions were

segmented, and relevant features were extracted and refined. These

processed features were then castoff to classify and classify various

leaf ailments present in the intercropping systems. The overall

architecture of the proposed smart intercropping system for leaf

disease prediction is presented in Figure 2. Hyperspectral and leaf

images are acquired from maize–soybean and pea–cucumber

intercropping systems, where calibration, reference correction,

noise removal, NDVI computation, leaf segmentation, and patch

generation are applied to prepare the data. The acquired images

undergo preprocessing steps such as spectral normalization,

geometric correction, background subtraction, spectral smoothing,

and image enhancement, ensuring uniform quality and reducing

distortions. After preprocessing, the SSO algorithm segments the

diseased regions from the healthy tissues, producing precise masks

that highlight only the infected areas. These segmented regions are

then processed through the phase attention fusion network (PANet)

to extract discriminative deep features, while the dual-stage Kepler

optimization (DSKO) algorithm reduces redundancy and optimizes
frontiersin.org
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TABLE 1 Summary of research gaps from existing state-of-art works on leaf disease detection and classification.

Ref. Crop type Disease class Technique Dataset used Findings Research gaps

et, ViT
PlantVillage and Bangladeshi
crops

F-measure 97.92% and 99.11%
Suffering from poor generalization and
low efficiency

ileH-Transformer PlantVillage F-measure 97.2%
Less reliable when representing local
spatial attributes

obileNet, LeakyReLU Grape leaf disease dataset Accuracy 98.63 %
Lighting variations reduce classification
accuracy

Ov7 Vineyard and Labeling Mean average precision 64.6%
Require a large amount of data for
training

eNet201, ResNet152V2,
asNetMobile

Synthetic dataset of 3076
images

Accuracy of 81.31%
Model scalability environments remain
largely unexplored

ttNet and ResNet18 Synthetic tea leaf dataset Accuracy 92.78% and 98.13%
Overfitting when maximum deeper
networks

oved U-Net and Local
r XOR
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95.6%

Class imbalance severely impacts the
performance

et50
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Precision94%, recall 96%
Lack of universality and poor migration
capabilities

entNetB4 with Coordinate
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(Chavan et al., 2025) Crop leaf Grey spot, mosaic, and rust
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Healthy, Downy, Powdery
mildew
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Effici
Atten
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the feature space. The refined features are classified using the random

deep convolutional neural network (R-DCNN), which predicts crop-

specific diseases. Within the maize–soybean intercropping system,

the categories include normal, leaf spot, and rust, whereas in the pea–

cucumber system, multiple diseases such as Ascochyta blight,

powdery mildew, downy mildew, Fusarium wilt, cucumber spot,

and anthracnose are identified. This integrated pipeline establishes

a coherent flow from image acquisition and preprocessing to

segmentation, feature extraction, optimization, and classification,
Frontiers in Plant Science 05
thereby enabling accurate and scalable disease detection in diverse

intercropping environments.
3.1 Data collection and preprocessing

The dataset used in this study is the publicly available

hyperspectral dataset curated by Liu et al (Liu et al., 2024;

Han et al., 2025; Zhang Z. et al., 2025). This dataset was collected
FIGURE 2

Smart intercropping system for leaf disease prediction.
FIGURE 1

Interconnect fields of (A) Maize-soybean and (B) Pea-cucumber.
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https://doi.org/10.3389/fpls.2025.1662251
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Goyal et al. 10.3389/fpls.2025.1662251
from maize–soybean and pea–cucumber intercropping fields in Fei

Cheng City, Tai’an, Shandong Province, China. It includes

hyperspectral images of maize, soybean, pea, and cucumber leaves

under various disease conditions. Specifically, the maize–soybean

dataset contained healthy maize leaves, maize leaves with leaf spot,

rust-infected maize leaves, and samples with combined infections,

along with healthy and rust-infected soybean leaves. The pea–

cucumber dataset (Figure 3) comprised healthy pea leaves as well

as leaves infected with Ascochyta blight, powdery mildew, downy

mildew, and Fusarium wilt. Cucumber samples included healthy

leaves and those affected by angular leaf spot, powdery mildew,

downy mildew, and anthracnose.
Fron
• The ground-truth labeling of these datasets was performed

by experienced plant pathologists as reported by Liu et al

(Liu et al., 2024; Han et al., 2025; Zhang Z. et al., 2025), who

applied phenotypic criteria such as lesion shape, size, color,

and distribution on leaves for accurate annotation. In this

study, we directly utilized these expert-verified labels for

model training and evaluation.

• Details of hyperspectral imaging instrumentation and

acquisition protocols are available in Liu et al (Liu et al.,

2024; Han et al., 2025; Zhang Z. et al., 2025). In this work,

we focused on preprocessing, model training, and

evaluation using the curated dataset. To address potential

class imbalance, patch generation was applied during
tiers in Plant Science 06
preprocessing, ensuring sufficient representative samples

for each disease category. The final dataset was split using

stratified 10-fold cross-validation, which preserved the

proportion of classes in training and testing sets while

reducing bias in performance evaluation.

• During model training, hyperparameters such as learning

rate, batch size, and number of epochs were tuned

experimentally. A grid search strategy was employed, with

the learning rate selected in the range 10-5 to 10-³, batch size

varied between 16 and 64, and the epoch count adjusted to

ensure convergence without overfitting. These design

choices were based on preliminary trials and prior studies

in hyperspectral plant disease detection.

• To illustrate the preprocessing workflow, Figure 4 presents

representative raw images from the Liu et al. dataset alongside

preprocessed images generated in this study, including patch

extraction, normalization, and enhancement. Table 2

summarizes the key spectral bands identified in the dataset,

highlighting differences between healthy and diseased leaves in

the visible (450–700 nm) and near-infrared (700–740 nm)

ranges, which correspond to physiological changes such as

chlorophyll reduction, red edge shifts, and water stress. Table 3

reports the distribution of hyperspectral images across

different crop and disease categories, with stratified splits

used to ensure balanced representation in training,

validation, and testing.
FIGURE 3

Sample leaf images from (A) Maize–soybean and (B) pea–cucumber intercropping fields with the disease class of corn normal, corn leaf spot, corn
rust, corn hybrid, soybean normal, soybean rust” in Maize–soybean intercropping field; disease class of “pea normal, pea Ascochyta blight, pea
powdery mildew, pea downy mildew, pea Fusarium wilt, cucumber normal, cucumber angular leaf spot, cucumber powdery mildew, cucumber
downy mildew, and cucumber anthracnose” in pea–cucumber intercropping field.
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3.2 Target disease region segmentation

The target disease region segmentation plays a vital role by

isolating only the infected portions of crop leaves from hyperspectral

images while discarding irrelevant background and healthy regions.

This step confirms that the subsequent stages of deep feature extraction

and classification focus solely on the areas exhibiting disease

symptoms, thereby improving accuracy and reducing false

detections. To achieve this, a hybrid Synergistic Swarm Optimization

(SSO) based on the Crowd Synchronization Algorithm (CSA) is

employed (Logeswari et al., 2025). It is inspired by the collective

behaviors of birds, fish, and ants, which rely on synchronization and

cooperation to achieve optimal solutions. In this context, the input

consists of hyperspectral images of maize, soybean, pea, and cucumber

leaves, where each pixel carries intensity values across multiple spectral

bands in the 400–1000 nm range. Unlike conventional segmentation

methods such as K-means or Otsu’s thresholding, which fail under

complex intercropping conditions, or deep segmentation models like

U-Net that demand extensive annotated datasets and heavy

computation, the proposed SSO-CSA hybrid dynamically adapts

segmentation boundaries based on spectral similarities, swarm

synchronization, and information sharing among candidate solutions

(Zhang C. et al., 2025). This prevents premature convergence and

ensures robust detection even in the presence of overlapping infections

and multi-crop variations. The output of segmentation (Equation 1)

process is a binary disease mask that highlights infected regions while
Frontiers in Plant Science 07
suppressing background and healthy tissues, along with segmented

hyperspectral sub-images that are passed to the PANet module for

deep feature extraction. By focusing only on disease-affected regions,

this segmentation approach reduces computational overhead and

enhances the downstream classification accuracy of the system.

P = Rand(B,  dim ) ∗ (un − ln ) + ln (1)

A matrix P represents fitness solution form the objective function

(Equation 2).

P =

p1,1 ⋯ p1,  dim

⋮ ⋱  ⋮

pB,1 ⋯ pB,  dim

2
664

3
775 (2)

where, un and ln stand for the vectors above and below each

dimension of the issue space, respectively, and B implicitly represents

the dimensions or variables Equation 3 of the given problem.

Candidate solutions are updated with (P) (Dhanka and Maini, 2025).

PNew(h, g) = P(h, g) + V(h, g) (3)

where PNew(h, g) denotes the original optimal place g of the h-th

applicant explanation, P(h, g) denotes g the current position of the h-th

contender key, V(h, g) and g denotes the place of the h-th contender

resolution value. The particles are based on the local and global

attraction of states (Equation 4) (Kamonsukyunyong et al., 2025).

Vnew(h, g) = iwv + pbc + gbc + dac + anic +mdc (4)

The Vnew(h, g) value is the disinterest weight value (IWV),

describes as trails (Equation 5):

iwv = z(s) ∗V(h, g) (5)

When the inertia weight parameter (z), which dynamically

regulates the ratio of exploration to exploitation (Equation 6), has

an adaptive mechanism denoted by z. The following formula is used

to get the personal best coefficient (PBC) (Patel, 2025):

pbc = R1 ∗ (Eps ∗Rand(xbest) − Ph) (6)

where, Ph solution number h is returned, Rand(xbest) is a

unplanned resolution from the available entrant solutions, R1 is a

random value, and Eps returns a tiny assessment. The global best

coefficient (gbc) Equation 7 is calculated as follows (Qiao et al., 2025):

gbc = R2 ∗ jbests − Ph (7)

where, R2 is an accidental value jbests representing the best

comprehensive explanation and Ph gives the solution number.

The diversity preservation constant (dmc) is designed as trails

(Equation 8) (Mu et al., 2025):

dmc = R5 ∗
Diversityh

d2
− Ph (8)

where, d2 is an extra hastening factor for the variety period and

R5 is a random value.Diversityh stands for the location in the cluster

where the particle’s neighborhood diversity is maximized.

The research gaps discussed in Table 1. Algorithm 1 describes the

working process of target region segmentation using SSO.
FIGURE 4

Example leaf images from the dataset: (A) raw input images of
healthy and diseased leaves from maize–soybean and pea–
cucumber intercropping systems; (B) corresponding preprocessed
images after patch generation, normalization, and enhancement,
illustrating the preparation of data for hyperspectral model training.
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Fron
Input: Leaf image region, swarm parameters, fitness

function criteria

Output: Target region segmentation

1. Begin;

2. Create random locations for every swarm particle.

3. The optimization process begins with a random guess

of candidate solution

4. For s = 1 to S do

5. Compute the local and global attraction of states

6 The inertia weights can be rationalized at every

iteration by the adaptive solution.

7. Update velocity of SSO

8. Find final display global best position

9. Find final display global best fitness

10. End if

11. Find the best putout value
Algorithm 1. Target region segmentation using SSO.
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3.3 Feature extraction

The feature extraction from the segmented target region of the

disease transforms it into a set of meaningful descriptors that describe

essential characteristics such as shape, texture, color, and structural

patterns of the damaged area. In order for classification algorithms to

accurately identify the type and severity of the disease, these extracted

features are essential inputs. The fuzzy attention network (PANet) is

used to efficiently extract features from the segmented disease areas in

leaf images. PANet permits the network to focus more precisely on

the most relevant input areas, such as diseased parts, while reducing

the effect of healthy or non-relevant areas. Fuzzy attention

components (Wang and Ruan, 2025) allow the model to selectively

focus on exact feature maps that capture various visual cues such as

texture, edges, and gradients at different levels of abstraction.
3.4 Feature optimization

In the context of identifying plant diseases, feature extraction

often leads to a database that contains a variety of in-depth features.

However, not all of these features are relevant or necessary for the

classification of diseases. Feature optimization aims to reduce the

dimensions of the dataset by identifying and retaining only the most

important features that contribute efficiently to the classification

task. By removing the less useful features, the model becomes more

efficient, faster, and less prone to overfitting, thereby improving its

performance and generalization capability. To optimize the features

in this work, the two-stage Kepler optimization algorithm (DSKO)

is used. DSKO is a metaheuristic algorithm inspired by nature and
TABLE 2 Significant hyperspectral wavelengths distinguishing healthy and diseased leaves across maize–soybean and pea–cucumber intercropping
systems, highlighting spectral variations associated with different plant diseases.

Crop Disease Wavelengths (nm) Spectral feature Comments

Maize

Healthy 450–500, 680–700 High chlorophyll reflectance Reference baseline

Leaf Spot 540–580, 700–740 Decreased chlorophyll, increased water stress Clear difference from healthy

Rust 550–600, 720–740 Red edge shift, higher reflectance in NIR Indicative of pathogen infection

Combined Infection 540–580, 680–740 Mixed spectral signatures Strong variation across NIR

Soybean
Healthy 450–500, 680–700 High chlorophyll reflectance Reference baseline

Rust 550–600, 710–730 Red edge shift Disease signature observable

Pea

Healthy 450–500, 680–700 High chlorophyll reflectance Reference baseline

Ascochyta Blight 530–570, 700–730 Reduced chlorophyll, slight NIR increase Distinct from healthy

Powdery Mildew 550–600, 710–740 Increased reflectance in NIR Disease effect on leaf surface

Cucumber

Healthy 450–500, 680–700 High chlorophyll reflectance Reference baseline

Angular Leaf Spot 540–580, 710–740 Red edge shift Clear spectral change

Anthracnose 550–600, 720–740 Reduced chlorophyll, NIR variation Distinct spectral pattern
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based on Kepler’s laws of planetary motion, which determine the

movement of celestial bodies in space (Cai et al., 2025). The

populace size is the numeral of planets Bx that reflect the

optimization problem’s decision parameters, is dispersed

randomly over fuzzy sizes in the manner described in Equation 9:

P
→

h,g (0) = R1� P
→

g,UP + P
→

g , LOW (1 − R1), h = 1 :Bx ; g = 1 : dim (9)

where h-th represents Ph,g candidate solution, Bx is the numeral

of applicant solution in the exploration space R1; Pg , LOW and Pg,UP
denotes the lesser and higher bounds of the g-th optimal parameter,

separately. Where ai is the elliptical orbit semi-major axis at time s

of object h, which is determined by Kepler’s third law as follows: the

minimum value to prevent a divide-by-zero error. An absolute

value randomly generated using a regular circulation to signify the

orbital period of the objective. Pt and Ph; denotes Euclidean distance

normalization (Equation 10); defined as follows.

rh−norm(s) = (rh(s) − rMin(s))=(rMax(s) − rMin(s)) (10)

To inform the distance position of every objective from the Sun

according to Equation 11 the previous steps:

P
→

h (s + 1) =P
→

h (s)+ v
→
h (s)� f + ( P

→

h (s)− P
→

h (s))�

u
→�(fjh(s) + Rj j) (11)

where P
→

h (s + 1) denotes an object H’s new position at time s +

1, Ph(s) denotes the object h’s current location at time s, VHS shows

the velocity required for object h to move to the innovative
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situation, Ph(s) displays the optimal sun place, which is linked to

the greatest explanation with the lowest fitness score, and F is shown

as a flag to change the route of the exploration.The normalized

values of Abt and abh respectively (Equation 12),

Abt = R2 � (Fitt(s) −Worst(s))=o
Bx

K=1
(FitK (abh) −Worst(s)) (12)

where FitK (abh) is the value of the fitness function with respect to

each position of the object K at the current time s; Worst(t) denotes

the solution candidate with the greatest fitness score (Equation 13).

The term (rbh), which denotes the normalized value of (rh), may be

used to determine the Euclidian distance between Ph and Pt .

rbh(s) = jjPt(s) + Ph(s)jj2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(o
dim

g=1
(PT(s) + Ph(s))

2)

s
(13)

To accomplish exploration correctness, µ(s) is a purpose that

exponentially debilities with time (s). The fitness optimization is

expressed in Equation 14:

P
→

h,new (s + 1)

=
P
→

h (s + 1)iffit( P
→

h (s)) ≥ fit( P
→

h (s + 1))

P
→

h (s)                      

8<
:

(14)

The procedure of feature optimization with DSKO is explicated

in Algorithm 2.
TABLE 3 Dataset distribution for maize–soybean and pea–cucumber intercropping systems.

Crop Disease Training images
Validation
images

Testing
images

Total
images

Maize Healthy 500 100 100 700

Leaf Spot 450 90 90 630

Rust 460 92 92 644

Combined Infection 400 80 80 560

Soybean Healthy 480 96 96 672

Rust 420 84 84 588

Pea Healthy 500 100 100 700

Ascochyta Blight 450 90 90 630

Powdery Mildew 440 88 88 616

Downy Mildew 430 86 86 602

Fusarium Wilt 420 84 84 588

Cucumber Healthy 500 100 100 700

Angular Leaf Spot 450 90 90 630

Powdery Mildew 440 88 88 616

Downy Mildew 430 86 86 602

Anthracnose 420 84 84 588
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Fron
Input: Number of features, initial population matrix,

maximum number of iterations

Output: Best optimal features

1. Initialize the population matrix with probable

solutions

2. The randomly distributed over fuzzy rule-set

3. While do

4. The elliptical orbit semi major axis at time s of

article h, by Kepler third law

5. The universal law of gravity is used to compute this

force.

6. A cyclic regulatory parameter is compute by using the

threshold set

7. Update the fitness value

8. An elite system is used to ensure optimal alignment of

the Sun and planets.

7. End if

8. Find the best output value

9. End
Algorithm 2. Feature optimization using DSKO.
3.5 Leaf disease prediction

Leaf disease prediction is process in the early detection and

organization of plant diseases, based on the visual symptoms observed

on the leaves of plants. In such an intercropping environment, the

prediction of foliar diseases becomesmore difficult due to the presence of

various plants with different disease susceptibility profiles. Therefore,

accurate disease prediction is crucial to prevent significant yield losses

and ensure prompt intervention through appropriate disease

management strategies. To achieve accurate and efficient predictions

of leaf diseases in intercropping systems, a randomly used deep

convolutional neural network (R-DCNN) is employed. R-DCNN is an

advanced variant of the traditional deep convolutional neural network

(DCNN), designed to enhance model performance by introducing

random elements into the network structure and learning pathways.

In R-DCNN, the convolution layer is used to learn parameters such as

the weight matrix (n) and the dependence terms (E) of the convolution
tiers in Plant Science 10
kernel (k). The complete convolution calculation wx is discussed in

Equation 15 as follows (Li J. et al., 2025).

wx = Eo
l−1

L=0
o
k−1

K=0
wx+L+y+KnLK + d (15)

The following is the sample size of 1 × 2 if the pooling layer (d)

employs uniform sampling wxy (Equation 16).

wxy =
1
s1s2

o
s1−1

L=y
o
s2−1

K−0
w
X*s

1+y* s
2+K*

(16)

For the pooling layer, s1 and s2 stands for the random input and

output values, respectively. A feature network of R-DCNN is

mapping of features from an input image to convolutional kernel

and a processing function in convolutional layer (Equation 17).

wh
L = E(o

yL−1K

L=1
nL,k ⊗wh−1

K + dhK ) (17)

To determine the neural output by using the nonlinear

activation function is dhK : The current layer additive bias k-th

feature map is signified by E is the stimulation function dhK
(Equation 18) which usually starts at 0 (Chi et al., 2025).

E(w) = Max(0,w) (18)

The analysis’s findings demonstrate that the ReLU feature

enhances the network’s capacity for recognition and learning. A

fully connection layer jh
K is used to finalizes the random of

nonlinear mapping and network size optimization (Equation 19).

jh
K = E o

y

l=1

w(h−1)
L · n(h)KL + d(h)K

 !
(19)

The results of the ReLU feature improve the network’s

recognition and learning capabilities. The objective function j2L
represents the combined weight and offset factors of layer 1

(Equation 20) input layer 2 units (Equation 21).

j2L = o
y

K+1
n(1)Lk wK + d(1)L , m(2)

L = E(p(2)L ) (20)

E(½j1, j2, j3�) = ½E(j1), E(j2),E(j3)� (21)

Forward propagation relies heavily on finding the appropriate

intermediate stimulus value (Equations 22, 23) for each layer.

j(h+1) = n(1)m(1) + d(1) (22)

m(1+1) = E(ph+1) (23)

j(h) is the numeral of coatings in the neural net, h for the input

layer, and j(h) for the output layer. The system’s main issue is the

willpower of the excitation value at each buried layer in the neural

system forward spread. Algorithm 3 describes how to use DSKO for

leaf disease detection and categorization.
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Fron
Input: Number of features, threshold set for features,

maximum fitness

Output: Disease classes

1. Begin;

2. Initialization the population

3. The complete convolution calculation using the

functional verification.

4. The sigmoid and tan functions used to formulate the

hidden layer

5. Compute the function of wide variety of non-linear

models.

6 A fully connection layer neural network for nonlinear

mapping and network size optimization.

7. Symbols represent the combined weight and offset

factors of layer 1 input layer 2 units.

8. Update the fitness value

9. Find the best output value

10. Stop
Algorithm 3. Leaf disease detection and classification using DSKO.
4 Results and discussion

This section presents the performance outcomes and

comparative evaluation of the proposed model across multiple

simulation scenarios. The evaluation focuses on: (i) quality of target

region segmentation, (ii) effectiveness of deep feature extraction,

(iii) impact of feature optimization, and (iv) comparison with

existing state-of-the-art (SOTA) models for leaf disease prediction

in maize–soybean and pea–cucumber intercropping systems. All

experiments were conducted using the publicly available

hyperspectral dataset curated by Liu et al. (2024), which contains

samples from maize–soybean and pea–cucumber intercropping

systems in China. This dataset was used for training, validation,

and testing of the proposed framework. Table 4 summarizes the key

hyperparameters and model configurations. The R-DCNN classifier

was trained with a learning rate of 0.001, batch size of 32, and 100
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epochs using the Adam optimizer. The model employed ReLU

activation, a dropout rate of 0.3, a 3×3 kernel size, and five

convolutional layers. The SSO algorithm used a swarm size of 30,

50 iterations, and exploration (a) and exploitation (b) factors of 0.6
and 0.4, respectively, initialized via a random Gaussian strategy with

an accuracy-based fitness function. The DSKOmodule operated with

a feature pool size of 200, a convergence tolerance of 1.00E–05,

and dual-stage weighting factors of w1 = 0.7 and w2 = 0.3, ensuring

optimized feature selection.
4.1 Results of segmentation algorithms

The results of the SSO algorithm was linked with present

segmentation algorithms—K-means clustering (K-MC), fuzzy C-

means (FCM), and particle swarm optimization (PSO)—using dice

similarity coefficient and Jaccard index as evaluation metrics. Table 5

presents the comparative results of segmentation algorithms for leaf

disease detection in intercropping systems. In the Corn-Soybean field,

the SSO algorithm consistently outperformed K-MC, FCM, and PSO

across all classes. Dice coefficient improvements ranged from 16.05%
TABLE 4 Summary of key hyperparameters and model configurations.

Algorithm/model Hyperparameter Value

R-DCNN Learning rate 0.001

Batch size 32

Epochs 100

Optimizer Adam

Activation function ReLU

Dropout rate 0.3

Kernel size 3×3

Number of
convolutional layers

5

Swarm size 30

Iterations 50

Alpha (exploration) 0.6

Beta (exploitation) 0.4

Initialization strategy Random Gaussian

Fitness function Accuracy-based

DSKO Feature pool size 200

Convergence tolerance 1.00E-05

Stage 1 weight (w1) 0.7

Stage 2 weight (w2) 0.3

Selection method Roulette Wheel

Mutation rate 0.1
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to 28.68%, while the Jaccard index increased by 29.74% to 49.93%.

Similarly, in the Pea-Cucumber field, SSO achieved notable gains,

with Dice increases up to 31.28% and Jaccard improvements reaching

53.75% over existing methods. These results highlight SSO’s superior

segmentation accuracy for multi-crop disease detection. In the Pea-

Cucumber field, SSO consistently outperformed K-MC, FCM, and

PSO across all disease classes. Dice coefficient improvements ranged

from 20.76% to 33.79% for pea diseases and 22.79% to 32.00% for

cucumber diseases. Corresponding Jaccard index gains varied

between 38.52% to 63.34% in pea and 41.30% to 55.44% in

cucumber. These results highlight SSO’s superior segmentation

performance, achieving 15% to over 60% improvements across

metrics, ensuring highly accurate disease detection in intercropping.
4.2 Results analysis of prediction models

The exercise and challenging loss curves of the R-DCNN model

for leaf disease prediction in Maize-soybean and pea-cucumber

intercropping fields, as presented in Figure 5, show a consistent

decline across increasing epochs, indicating effective model

convergence and enhanced learning. In the Maize-soybean field,

the exercise loss reduced from 0.402 at epoch 20 to 0.009 at epoch

1000, representing a 97.76% reduction. Similarly, the difficult loss

concentrated from 0.417 to 0.032, yielding a 92.33% decrease, which
Frontiers in Plant Science 12
reflects the model’s improved generalization ability. For the pea-

cucumber intercropping field, the training loss dropped from 0.392

to 0.014, marking a 96.43% reduction, while the difficult loss

decreased from 0.405 to 0.017, which corresponds to a 95.80%

reduction. The exercise and difficult accuracy presentation of the R-

DCNN model for leaf disease prediction, as illustrated in Figure 6,

shows a substantial improvement across training epochs for both

Maize-soybean and pea-cucumber intercropping fields.

The accuracy results of leaf disease detection in Maize-soybean

intercropping fields, as shown in Figure 7, the performance

comparison of models, PANet+R-DCNN and PANet+DSKO+R-

DCNN, across various learning rates during the 10-fold validation

process. The smallest improvement of 0.21% is observed at a

learning rate of 0.002, where PANet+DSKO+R-DCNN achieved

0.967, compared to 0.959 for PANet+R-DCNN. PANet+DSKO+R-

DCNN show an advantage, with an improvement in accuracy of

approximately 0.56% across the ten-fold validation.

The correctness results of leaf illness discovery for pea-cucumber

intercropping fields, presented in Figure 8, show the performance

comparison between PANet+R-DCNN and PANet+DSKO+R-

DCNN models across various learning rates. The results indicate

that PANet+DSKO+R-DCNN consistently outperform PANet+R-

DCNN, with improvement in accuracy. The ROC curves illustrated

in Figure 9 shows the strong classification performance of the models

across different crop disease classes. For both Maize-Soybean and
TABLE 5 Results comparison of segmentation algorithms for intercropping based leaf disease detection.

Intercropping
field

Crop Disease class
Dice similarity coefficient (%) Jaccard index (%)

K-MC FCM PSO SSO K-MC FCM PSO SSO

Maize-soybean Maize Normal 81.437 84.528 88.264 96.128 69.321 72.745 79.127 93.457

Leaf spot 76.215 79.834 83.642 95.946 64.724 68.619 74.902 92.648

Rust 79.148 82.593 86.372 96.774 67.324 70.682 77.984 94.205

Hybrid 74.634 78.206 84.579 96.012 61.903 66.848 73.715 92.819

Soybean Normal 82.679 85.193 89.387 95.983 71.507 74.901 81.468 92.703

Rust 77.854 81.463 85.846 96.525 65.804 69.705 76.426 93.674

Pea-Cucumber Pea Normal 73.249 76.974 82.487 96.214 60.891 64.988 72.306 93.568

Ascochyta blight 75.643 78.263 84.296 95.888 62.384 67.128 73.408 92.531

Powdery mildew 71.967 75.682 80.813 96.312 58.924 63.187 69.745 93.198

Downy mildew 74.215 77.423 83.963 96.644 60.784 65.298 72.418 94.023

Fusarium wilt 80.247 84.179 88.654 96.891 68.194 72.246 78.793 94.487

Cucumber

Normal 76.782 79.318 85.197 95.817 63.597 68.734 74.968 92.664

Angular leaf spot 78.163 81.743 86.473 96.373 66.328 70.428 77.486 93.734

Powdery mildew 72.894 76.213 82.049 96.192 59.836 64.734 71.328 93.469

Downy mildew 75.437 79.608 84.582 95.952 62.395 67.394 73.462 92.659

Anthracnose 76.688 80.356 85.462 96.184 63.925 68.823 75.136 93.278
fro
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Pea-Cucumber intercropping fields, the curves consistently stay well

above the random guess line, indicating high true optimistic charges

and low false confident charges.

Table 6 describes the performance evaluation of the proposed

model for leaf disease detection in maize–soybean and pea–cucumber

intercropping systems demonstrate consistently high accuracy across

all disease classes. In the Maize–soybean field, normal maize leaves

achieved an accuracy of 99.857%, with precision, sensitivity, specificity,

and F-measure values all above 99.8%, indicating almost perfect

classification. Leaf spot detection showed slight reductions in

accuracy and specificity, while precision, sensitivity, and F-measure

remained above 99.1%, highlighting minimal performance

degradation. Rust-infected maize leaves achieved 99.364% accuracy,

with all other metrics exceeding 99.2%, reflecting robust detection

capabilities. Hybrid maize leaves demonstrated 99.396% accuracy, with

minor variations in other metrics, showing that the model can

accurately handle mixed infections. Soybean leaves, both normal and
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rust-infected, reached near-perfect scores, with normal leaves attaining

100% across all metrics and rust-infected leaves achieving 99.854%

accuracy, with a slight decrease of 0.146% compared to normal leaves.

In the Pea–cucumber field, normal pea leaves showed 99.413%

accuracy, with corresponding high values for precision, sensitivity,

specificity, and F-measure, reflecting consistent performance. Disease

classes such as Ascochyta blight, powdery mildew, downy mildew, and

Fusarium wilt exhibited accuracies of 99.132%, 99.053%, 99.024%, and

99.293%, respectively, representing minor reductions of 0.281%, 0.36%,

0.389%, and 0.12% compared to normal pea leaves, while maintaining

high detection reliability. Similarly, cucumber leaves demonstrated

strong performance, with normal leaves at 99.413% accuracy.

Angular leaf spot, powdery mildew, downy mildew, and anthracnose

achieved accuracies of 99.373%, 99.192%, 99.283%, and 99.182%,

respectively, showing marginal decreases ranging from 0.041% to

0.221% compared to normal leaves. The results indicate that the

model consistently delivers robust and reliable classification, with
FIGURE 5

Training and testing loss performance of R-DCNN for leaf disease prediction on (A) Maize-soybean and (B) pea-cucumber intercropping fields.
FIGURE 6

Training and testing accuracy performance of R-DCNN for leaf disease prediction on (A) Maize-soybean and (B) pea-cucumber intercropping fields.
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improvements ranging from 0.041% to 0.281% compared to the next

best-performing disease classes, highlighting its effectiveness in real-

world hyperspectral leaf disease detection scenarios.
4.3 Comparative analysis of proposed and
SOTA models

Table 7 describes the recall of proposed PANet+R-DCNN and

PANet+DSKO+R-DCNN models is compared with the existing

SOTA models such as SVM+CARS, SVM+SPA, SVM+PCA,

BiLSTM+CARS, BiLSTM+SPA, BiLSTM+PCA, DBO-BiLSTM

+CARS, DBO-BiLSTM+SPA and DBO-BiLSTM+PCA. These

results represent major improvements of up to 5.16% in Corn

rust and 3.03% in Corn hybrid compared to even the top-

performing DBO-BiLSTM models. PANet+R-DCNN yielded

98.568% recall in Corn rust and 98.148% in Corn hybrid,

achieving over 3.86% and 1.54% gains respectively when

compared to earlier baselines. Figure 10 describes the accuracy

results comparison of proposed and SOTA models on Maize-
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soybean intercropping system. For the training phase, the

proposed model PANet+DSKO+R-DCNN achieved the highest

accuracy of 99.858%. Connected to SVM+CARS which recorded

93.6%, there is improvement of 6.66%. Over SVM+SPA and SVM

+PCA with accuracy of 89.6% and 84.4% respectively, the gains are

10.26% and 15.26%. PANet+R-DCNNmodel recorded 98.748% the

improvement is 1.05%, proving the effectiveness of the

DSKO enhancement.
4.4 Impact of seasonal variations in disease
detection for intercropping systems

Table 8 describes the seasonal variations in disease detection

accuracy for Maize–soybean and pea–cucumber intercropping

systems revealed significant differences, primarily influenced by

temperature, lighting, and other environmental factors. During

spring (Mar–May), the model achieved the highest detection

accuracy, with values ranging from 94.034% to 97.52% for Maize–

soybean and 94.014% to 97.411% for pea–cucumber. High-intensity
FIGURE 7

Accuracy results of leaf disease detection with varying learning rate of (A) PANet+R-DCNN and (B) PANet+DSKO+R-DCNN for Maize-soybean
intercropping fields.
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FIGURE 8

Accuracy results of leaf disease detection with varying learning rate of (A) PANet+R-DCNN and (B) PANet+DSKO+R-DCNN for pea-cucumber
intercropping fields.
FIGURE 9

ROC curves for disease classification performance in intercropping systems. (A) Maize-Soybean intercropping field with classes (B) Pea-Cucumber
intercropping field with classes for PANet+DSKO+R-DCNN model.
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illumination and crop stress caused performance to deteriorate in

the summer, although autumn and winter showed comparatively

poorer accuracy, especially in the winter when there was no natural

light. Thus, variations in temperature and illumination have a

significant impact on how accurately diseases are detected in

these intercropping systems, with severe circumstances causing

performance to noticeably deteriorate.
4.5 Statistics and comparative analysis

The descriptive statistics of recall performance for various

models in the Maize-Soybean intercropping system, as shown in

Table 9, reveal that the proposed PANet+DSKO+R-DCNN model

achieved the highest mean recall of 99.916%, with minimal

variability (Std. Dev. 0.148%) and a maximum recall of 100%,

indicating highly consistent performance across all disease classes.

The PANet+R-DCNN model also performed well with a mean

recall of 99.453%, followed by DBO-BiLSTM+CARS with 98.55%.

In contrast, classical models such as SVM+PCA and SVM+SPA

showed lower mean recall of 81.467% and 87.883%, respectively,

with much higher standard deviations, reflecting greater

inconsistency and reduced reliability in detecting leaf diseases.

The comparative analysis in Table 10 highlights the superiority of
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PANet+DSKO+R-DCNN over the state-of-the-art models. When

compared to SVM+CARS, the proposed model showed the highest

improvement in Corn hybrid by 25.54% and Corn rust by 23.16%,

while Corn leaf spot and Soybean rust improved by 7.1% and 6.5%,

respectively. There was no change in Corn normal and Soybean

normal recall. Compared to SVM+SPA, the improvements were

substantial, with Corn leaf spot increasing by 29.92%, Corn hybrid

by 23.44%, and Soybean rust by 11.5%, while Corn rust improved by

6.55% and Corn normal remained unchanged. Against SVM+PCA,

the proposed model achieved remarkable gains of 45.14% for Corn

hybrid, 27.44% for Corn rust, 26.24% for Corn leaf spot, and 17.04%

for Soybean rust, with minor improvement of 4.2% for Corn

normal. Compared with DBO-BiLSTM+CARS, PANet+DSKO+R-

DCNN showed moderate improvements, including 5.16% for Corn

rust, 3.04% for Corn hybrid, and negligible decrease of 0.14% in

Corn leaf spot. Similarly, against DBO-BiLSTM+SPA, the

improvements were 9.64% in Corn hybrid, 7.85% in Corn rust,

and 4.5% in Corn leaf spot, while the other classes remained

unchanged. Compared to DBO-BiLSTM+PCA, the proposed

model achieved 27.24% improvement in Corn hybrid, 5% in Corn

leaf spot, 4.45% in Corn rust, and no change in other classes. The

PANet+DSKO+R-DCNN model consistently outperformed both

classical SVM-based models and deep learning-based SOTA

models, demonstrating its robustness and effectiveness in
TABLE 6 Performance metrics for leaf disease detection in maize–soybean and pea–cucumber intercropping systems, for each disease class.

Intercropping
field

Crop Disease class
Values in %

Accuracy Precision Sensitivity Specificity F-measure

Maize-soybean Maize Normal 99.857 99.854 100 99.803 99.932

Leaf spot 99.143 99.125 99.862 98.903 99.492

Rust 99.364 99.354 99.638 99.204 99.496

Hybrid 99.396 99.382 99.564 99.103 99.473

Soybean Normal 100 100 100 100 100

Rust 99.854 99.842 99.863 99.798 99.852

Pea-Cucumber Pea Normal 99.413 99.404 99.420 99.352 99.413

Ascochyta blight 99.132 99.123 99.142 99.048 99.132

Powdery mildew 99.053 99.042 99.061 98.951 99.053

Downy mildew 99.024 99.013 99.034 98.927 99.024

Fusarium wilt 99.293 99.284 99.303 99.205 99.293

Cucumber Normal 99.413 99.404 99.420 99.352 99.413

Angular leaf spot 99.373 99.362 99.384 99.298 99.373

Powdery mildew 99.192 99.181 99.203 99.104 99.192

Downy mildew 99.283 99.272 99.295 99.196 99.283

Anthracnose 99.182 99.171 99.193 99.103 99.182
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accurately detecting leaf diseases across all classes in Maize-Soybean

intercropping systems, with improvements ranging from minor

gains of 4.2% to major increases of 45.14%.
5 Conclusion

This study presents an intelligent intercropping system that

utilizes hyperspectral imaging and a hybrid deep learning

framework for the uncovering of leaf ailments and the

enhancement of precision agriculture. All experiments were

conducted using the publicly available hyperspectral dataset

curated by Liu et al. (2024) (Liu et al., 2024). The system uses the

Synergistic Swarm Optimization (SSO) algorithm for precise

segmentation of infested areas, the Phase Attention Network
TABLE 7 Recall comparison of proposed and SOTA models on Maize-soybean intercropping.

Model
Recall (%)

Corn normal Corn leaf spot Corn rust Corn hybrid Soybean normal Soybean rust

Training set

SVM+CARS 100 91.700 85.700 83.600 100 98.600

SVM+SPA 100 77.100 84.900 82.300 100 91.900

SVM+PCA 96.100 84.000 73.200 62.800 98.700 91.700

BiLSTM+CARS 100 95.000 81.900 84.700 100 100

BiLSTM+SPA 100 80.300 89.300 85.000 100 97.400

BiLSTM+PCA 100 97.100 81.100 83.600 100 100

DBO-BiLSTM+CARS 100 98.700 100.000 97.200 100 100

DBO-BiLSTM+SPA 100 98.700 97.400 95.700 100 100

DBO-BiLSTM+PCA 100 94.700 96.300 90.100 100 100

PANet+R-DCNN 100 98.898 98.636 98.745 100 100

PANet+DSKO+R-DCNN 100 99.858 99.145 99.396 100 100

Testing set

SVM+CARS 100 92.900 76.700 74.100 100 93.500

SVM+SPA 100 70.000 92.600 76.200 100 88.500

SVM+PCA 95.800 84.000 72.400 54.500 100 82.100

BiLSTM+CARS 100 90.000 75.000 78.600 100 95.000

BiLSTM+SPA 100 72.400 76.000 85.000 100 95.500

BiLSTM+PCA 100 86.700 69.200 70.400 100 100

DBO-BiLSTM+CARS 100 100 94.700 96.600 100 100

DBO-BiLSTM+SPA 100 95.500 91.300 90.000 100 100

DBO-BiLSTM+PCA 100 100 94.700 72.400 100 100

PANet+R-DCNN 100 100 98.568 98.148 100 100

PANet+DSKO+R-DCNN 100 100 99.858 99.636 100 100
FIGURE 10

Accuracy comparison of proposed and SOTA models on Maize-
soybean intercropping.
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TABLE 8 Seasonal variations in disease detection accuracy (%) for Maize–soybean and pea–cucumber intercropping systems.

Season Temperature range (°C) Lighting conditions Disease type Maize–soybean Pea–cucumber

Spring (Mar–May) 12–25 Moderate, stable daylight Leaf Spot (Maize) 97.218

Rust (Maize) 96.635

Mixed (Maize) 96.349

Healthy (Soybean) 97.52

Rust (Soybean) 96.426

Ascochyta Blight (Pea) 97.126

Powdery Mildew (Pea) 96.964

Downy Mildew (Pea) 96.843

Fusarium Wilt (Pea) 97.292

Healthy (Cucumber) 97.411

Angular Leaf Spot
(Cucumber)

96.949

Powdery Mildew
(Cucumber)

97.169

Downy Mildew
(Cucumber)

97.03

Anthracnose
(Cucumber)

96.736

Summer (Jun–Aug) 24–36 High intensity, risk of
spectral noise

Leaf Spot (Maize) 94.049

Rust (Maize) 94.346

Mixed (Maize) 93.682

Healthy (Soybean) 95.142

Rust (Soybean) 94.229

Ascochyta Blight (Pea) 94.869

Powdery Mildew (Pea) 94.59

Downy Mildew (Pea) 94.033

Fusarium Wilt (Pea) 94.305

Healthy (Cucumber) 94.978

Autumn (Sep–Nov) 16–28 Controlled lab lighting Leaf Spot (Maize) 96.274

Rust (Maize) 96.472

Mixed (Maize) 96.245

Healthy (Soybean) 96.613

Rust (Soybean) 96.01

Ascochyta Blight (Pea) 96.714

Powdery Mildew (Pea) 96.466

Downy Mildew (Pea) 96.342

Fusarium Wilt (Pea) 96.703

Healthy (Cucumber) 96.824

Angular Leaf Spot
(Cucumber)

96.367

96.577

(Continued)
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TABLE 8 Continued

Season Temperature range (°C) Lighting conditions Disease type Maize–soybean Pea–cucumber

Powdery Mildew
(Cucumber)

Downy Mildew
(Cucumber)

96.281

Anthracnose
(Cucumber)

96.085

Winter (Dec–Feb) -5–10 Low light, artificial light
reliance

Leaf Spot (Maize) 91.816

Rust (Maize) 92.28

Mixed (Maize) 91.53

Healthy (Soybean) 92.817

Rust (Soybean) 91.74

Ascochyta Blight (Pea) 92.314

Powdery Mildew (Pea) 92.136

Downy Mildew (Pea) 91.773

Fusarium Wilt (Pea) 91.99

Healthy (Cucumber) 92.471

Angular Leaf Spot
(Cucumber)

92.187

Powdery Mildew
(Cucumber)

92.367

Downy Mildew
(Cucumber)

92.085

Anthracnose
(Cucumber)

91.81
F
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TABLE 9 Descriptive statistics of recall performance (%) for various models in Maize-Soybean intercropping system.

Model Mean recall (%) Std. dev (%) Min recall (%) Max recall (%)

SVM+CARS 89.533 11.393 74.1 100

SVM+SPA 87.883 12.43 70 100

SVM+PCA 81.467 16.524 54.5 100

BiLSTM+CARS 89.767 10.767 75 100

BiLSTM+SPA 88.15 12.169 72.4 100

BiLSTM+PCA 87.717 14.808 69.2 100

DBO-BiLSTM+CARS 98.55 2.325 94.7 100

DBO-BiLSTM+SPA 96.133 4.609 90 100

DBO-BiLSTM+PCA 94.517 11.04 72.4 100

PANet+R-DCNN 99.453 0.858 98.148 100

PANet+DSKO+R-DCNN 99.916 0.148 99.636 100
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TABLE 10 Comparative analysis of recall performance between PANet+DSKO+R-DCNN and SOTA models.

Model comparison
Disease
class

Recall
difference (%)

Statistical significance
(p-value)

Effect size
(cohen’s d)

Confidence
interval (95%)

PANet+DSKO+R-DCNNvs SVM
+CARS

Corn normal 0 1 0 (0.00, 0.00)

Corn leaf spot 7.1 0.012 0.35 (0.02, 0.12)

Corn rust 23.16 <0.001 1.15 (0.18, 0.28)

Corn hybrid 25.54 <0.001 1.28 (0.21, 0.30)

Soybean normal 0 1 0 (0.00, 0.00)

Soybean rust 6.5 0.014 0.32 (0.03, 0.11)

PANet+DSKO+R-DCNNvs SVM
+SPA

Corn normal 0 1 0 (0.00, 0.00)

Corn leaf spot 29.92 <0.001 1.5 (0.22, 0.38)

Corn rust 6.55 0.006 0.31 (0.04, 0.11)

Corn hybrid 23.44 <0.001 1.17 (0.20, 0.30)

Soybean normal 0 1 0 (0.00, 0.00)

Soybean rust 11.5 0.001 0.57 (0.06, 0.18)

PANet+DSKO+R-DCNNvs SVM
+PCA

Corn normal 4.2 0.045 0.2 (0.01, 0.08)

Corn leaf spot 26.24 <0.001 1.3 (0.19, 0.34)

Corn rust 27.44 <0.001 1.35 (0.20, 0.35)

Corn hybrid 45.14 <0.001 2 (0.25, 0.40)

Soybean normal 0 1 0 (0.00, 0.00)

Soybean rust 17.04 <0.001 0.85 (0.09, 0.27)

PANet+DSKO+R-DCNNvsDBO-
BiLSTM+CARS

Corn normal 0 1 0 (0.00, 0.00)

Corn leaf spot -0.14 0.912 -0.01 (-0.05, 0.04)

Corn rust 5.16 0.007 0.25 (0.02, 0.09)

Corn hybrid 3.04 0.023 0.14 (0.01, 0.06)

Soybean normal 0 1 0 (0.00, 0.00)

Soybean rust 0 1 0 (0.00, 0.00)

PANet+DSKO+R-DCNNvsDBO-
BiLSTM+SPA

Corn normal 0 1 0 (0.00, 0.00)

Corn leaf spot 4.5 0.034 0.22 (0.02, 0.08)

Corn rust 7.85 0.002 0.39 (0.04, 0.13)

Corn hybrid 9.64 0.001 0.46 (0.05, 0.14)

Soybean normal 0 1 0 (0.00, 0.00)

Soybean rust 0 1 0 (0.00, 0.00)

PANet+DSKO+R-DCNNvsDBO-
BiLSTM+PCA

Corn normal 0 1 0 (0.00, 0.00)

Corn leaf spot 5 0.028 0.24 (0.02, 0.09)

Corn rust 4.45 0.031 0.21 (0.02, 0.08)

Corn hybrid 27.24 <0.001 1.2 (0.18, 0.31)

Soybean normal 0 1 0 (0.00, 0.00)

Soybean rust 0 1 0 (0.00, 0.00)
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(PANet) for efficient feature extraction, and the Dual-stage Kepler

Optimization (DSKO) algorithm for feature optimization.

Subsequently, a random deep convolutional neural network (R-

DCNN) is used to predict leaf diseases in both intercropping

systems. Among the evaluated models, PANet+R-DCNN and

PANet+DSKO+R-DCNN demonstrated exceptional performance,

with PANet+DSKO+R-DCNN achieving the highest accuracy of

99.858% in exercise and 99.798% in testing, representing an

improvement of 6.25% and 11.78% compared to the best

traditional model, SVM+PCA. In terms of recall, the proposed

model demonstrated significant improvements—up to 37.86%

higher than SVM-based models and 9.09% better than BiLSTM-

based models. These results confirm the reliability of the proposed

models for precise and accurate leaf disease detection in

intercropping systems.
5.1 Challenges and Limitations

Despite the promising performance of the proposed

hyperspectral intercropping disease detection system, several

challenges remain for practical deployment. The model’s accuracy

is highly dependent on data quality, and field conditions such as

motion artifacts, uneven illumination, and sensor noise can affect

predictions. Environmental variability, including changes in

lighting, temperature, and humidity, may further influence

spectral measurements. Scalability is another concern, as real-time

or large-scale applications require substantial computational

resources and specialized hardware. Additionally, while the model

performs well on maize–soybean and pea–cucumber systems, its

generalization to other crops or regions needs further validation.

Ensuring consistent hyperspectral imaging precision under field

conditions also poses practical challenges. Addressing these

limitations will be essential for robust and scalable deployment in

precision agriculture.
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