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Agricultural productivity needs to grow in a sustainable way to eradicate hunger and
malnutrition, as outlined in the 2030 Agenda for Sustainable Development (SDGs).
The demand for healthy, nutritious food is expected to rise by 50% between 2012
and 2050 as the world's population grows. Even today, more than 800 million
people face chronic hunger, while 2 billion suffer from micronutrient deficiencies.
These challenges are further intensified by climate change stressors. Around 90% of
the world's farmland is affected by climate-related stress, which in some areas can
cut crop production by as much as 70%. Countries near the equator, particularly arid
lands, are evenly affected, where food security and sustainability are increasingly
threatened by rising global food demand and worsening climatic conditions.
Relying only on traditional staple crops like rice, wheat, and maize is not enough,
and there is a need to explore alternative crops which are climate resilient and could
contribute to food security. This review focuses on pseudocereals—crops such as
amaranth, quinoa, and buckwheat. These are not true cereals but are rich in
nutrients and can survive in difficult environments such as during drought, in salty
soils, and at extreme temperatures. Pseudocereals such as amaranth, quinoa, and
buckwheat are non-grass crops with dense nutrients. The review covers how
pseudocereals can help with food security, improve health, and be used in
industry. Some studies have shown that the bioavailability of pseudocereals can
be increased by various processing techniques. However, these crops are mostly
grown in their native regions because seeds are hard to get and markets are limited.
Pseudocereal production must be expanded globally supported by strategies such
as conservation of its wild species, molecular advance techniques, policies, farming
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practices, and integration of indigenous knowledge. Particularly, in arid regions
where traditional crops face many challenges due to harsh climatic conditions and
limited water resources, integrating these pseudocereal crops into their agronomy
system and commodity markets could serve as a roadmap in achieving sustainable
development goals (SDGs). These crops could also help other vulnerable regions
around the world that face hunger and poor nutrition.

KEYWORDS

alternative crop, pseudocereals, nutritional value, food security, climate resilience, arid
regions, sustainable agriculture, GWAS
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Introduction

According to the Sustainable Development Goals (SDGs),
hunger and malnutrition must be eradicated by 2030 in a
sustainable way by enhancing agricultural productivity—without
harming the planet or future generations. Global food demand is
projected to rise by approximately 50% between 2012 and 2050,
requiring transformative changes in both production and
consumption systems (Smith and Gregory, 2013). Despite
advances in food systems, over 800 million people remain
undernourished, and nearly 2 billion suffer from micronutrient
deficiencies. These challenges are compounded by increasingly
erratic and extreme weather events, which disproportionately
affect marginalized and rural communities. Currently, nearly 90%
of global agricultural land is exposed to different abiotic stress such
as heat, salinity, nutrient deficiency, drought, pollution, and
mechanical stress—that collectively limit crop productivity by up
to 70%. The growing intensity of these climate-induced stresses
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exacerbates socioeconomic vulnerabilities and undermines agro-
ecosystem resilience, further threatening food and nutritional
security (Diramo Kofa et al., 2024; Begizew, 2021). In arid and
semi-arid regions, food insecurity is aggravated by water scarcity,
poor soil fertility, and inadequate agricultural practices. These areas
are particularly susceptible to climate variability and limited
resource availability, necessitating innovative and adaptive
agricultural strategies. Despite the identification of over 400,000
plant species globally—of which 30,000 are known to be edible, only
150 crops are cultivated on a significant scale. Alarmingly, just three
staple crops—maize, wheat, and rice—account for nearly 60% of
daily protein and carbohydrate intake worldwide (Brouns and
Shewry, 2022). It is reported that in the next 60 years, the world
population will reach up to 10.3 billion (Lam, 2025). To feed this
much population, we have to meet the proper food supply with
increased productivity and high quality standards. If we will not
include additional food varieties other than staple food, we will not
be able to combat the upcoming projected food crisis.
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Over the past century, approximately 75% of crop diversity has
been lost, representing an estimated 300,000 varieties. This erosion
of genetic diversity, driven by monocropping and the widespread
use of high-yield hybrid crops, has masked local crop varieties and
traditional cultivation knowledge, increasing vulnerability to pests,
diseases, and environmental stresses. In response, multidisciplinary
approaches are being explored to address the multifaceted
challenges facing global agriculture—for example, sandponics—a
technique that utilizes sand as a sustainable, water-efficient growth
medium—has shown promise for food production in arid
environments (Nair et al., 2024). Research studies are focusing on
genetic engineering and molecular breeding techniques which could
make crops grow better and withstand environmental stress factors
(Xing and Wang, 2024). Climate-resilient and neglected crops, on
the other hand, are proving to be a promising solution to these
environmental stresses which could improve nutrition and food
security especially in regions with limited resources (Otundo
Richard, 2024).

Climate change is growing more complex and causing uneven
effects on crop productivity around the world. It has led to a
significant loss in some regions such as 13.4% decline in oil palm
production—while in others, for example, with soybeans, yields
have seen slightly more of approximately 3.5% (Ray et al., 2019).
These losses in crop production vary greatly by region: Europe,
Southern Africa, and Australia have experienced mostly negative
outcomes, whereas Asia, North America, and Latin America show a

10.3389/fpls.2025.1662267

mix of positive and negative outcomes. Staple crops like rice, wheat,
and maize are especially vulnerable in equatorial areas, where rising
temperature and water shortage reduce the crop productivity
(Farooq et al., 2023). Managing these interconnected issues
requires strategies such as diversifying crops, improving water
management, and adopting climate-smart farming techniques
(Prajapati et al, 2024; Chen et al,, 2017). Figure 1 provides a
summary of the key drivers for integrating alternative crops
in agriculture.

Pseudocereals as alternative crops

Alternative crops, also called orphan or underutilized crops,
include many plant species. Despite their potential, they have
received little attention from scientists, breeders, and policymakers.
The production of these crops is way too less, i.e., approximately 400-
500 times, in comparison to staple crops such as rice, wheat, and
maize. Still their % compound annual growth rate is 1.5 to 2.1 times
than that of cereal crops (Nandan et al., 2024). These non-commodity
crops, both domesticated and wild, have immense potential for
agriculture. Though historically sidelined for agronomic, economic,
or cultural reasons, they are now gaining more attention for their
resilience amidst climate change and their ability to resist pests,
diseases, and other farming challenges. Researchers worldwide are
studying pseudocereals for their role in building sustainable and
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diverse food systems. The distribution of species in various categories
of alternative crops, where the majority proportion accounts for fruits
and nuts, is shown in Figure 2. The figure depicts that pseudocereals
contribute only 14%, indicating their significant role as alternative
crops in different food groups. Naturally gluten-free pseudocereals are
rich in amino acids, fatty acids, vitamins, and minerals, supporting
better nutrition (Sindhu and Khatkar, 2019; Rao and Poonia, 2023).
They can grow in poor soil, making them a sustainable food source in
arid regions. Currently, they are mainly grown in native areas,
highlighting the need to expand the cultivation worldwide to meet
the rising demand (Sindhu and Khatkar, 2019; Nandan et al., 2024).

Quinoa crop has been referred to as “superfood” as it has
historical background of over 5,000 years in the agriculture sector,
and it is believed to be originated in the Andean region, with highest
production in some South Asian countries such as Bolivia and Peru
(Fabio and Parraga, 2017). The consumption of quinoa has been
reported as maximum in North America, having the highest market
share, i.e., 30%. Asia Pacific and Europe are the second and third in
terms of the number of consumers and market share, which are 25%
and 20%, respectively. It is reported that quinoa consumption has
increased exponentially after 2013 (Hunt et al., 2018). The market
size of quinoa is expected to increase up to $124.27 at the end of
2025 at a compound annual growth rate (CAGR) of 10.2% (The
Business Research Company, 2025). They contain a variety of
phytochemicals, which can help in managing obesity, heart
diseases, cancers, and diabetes (Singh and Singh, 2016). Quinoa
pseudocereal is the preferred diet for celiac patients as it does not
contain gluten (Martinez-Villaluenga et al., 2020). Some of the
quinoa accessions showed significant performance in terms of grain

W Fruits and Nuts
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yield, quality, protein, and dry matter content (Rao and
Shahid, 2012).

One of the important essential amino acids, lysine, lacking in
other grains, is found abundantly in amaranth pseudocereal
(Jagadeeswaran et al., 2022), which makes it an excellent choice
in addressing the challenges of global malnutrition and food
insecurity (Weerasekara and Waisundara, 2020). Amaranth can
be used for cultivation in arid and semi-arid regions (Jagadeeswaran
et al,, 2022). Recently, amaranth has gained popularity because it
can be integrated with modern health-conscious diets (Sharma,
2017). They are cultivated and originated mostly in the various
parts of Africa, Central and South America, South-East Asia, and
North America (Fabio and Parraga, 2017). A recent report shows
that North America has increased consumer demand for amaranth.
Apart from this, some parts of Europe such as Germany, Italy, and
France and Asia Pacific regions like India, China, and Japan also
have high market growth and consumption for amaranth due to
increased awareness about its potential benefits (Fortune Business
Insights, 2024). According to Maximize Market Research, 2022-29,
the CAGR for amaranth is 11.51% (Nandan et al., 2024). In the case
of buckwheat, Central Asia and Siberian steppe regions are
considered the native place. It is prominently used as staple food
in some countries of Western Asia and Eastern Europe (Fabio and
Parraga, 2017). It is reported that right now China is the largest
producer of buckwheat, with a total production of more than 55%,
and its consumption is increasing day by day because of its health
benefits. Some European countries such as Russia, Poland, France,
and Ukraine are also big names in the buckwheat market as leading
producers (Vidaurre-Ruiz et al., 2023). It is reported that the annual

m Vegetables
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FIGURE 2

Pseudocereals’ contribution in alternative food groups. Source: Indian Food Composition Tables, NIN (Longvah, 2017).
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cultivation of buckwheat in 2019 was 1,673,478 ha worldwide, along
with the production of almost 2,042,401 tons (Graziano et al., 2022).
It contains almost all essential amino acids with no gluten and has
many nutritional and medicinal properties along with the ability to
grow in less fertile soil (Fortune Business Insights, 2024). The
anticipated increase in the market of buckwheat industry is
expected to reach or grow up to US$33.14 billion by 2034 from
US$19.15 billion in 2025, with expected CAGR of approximately
6.3% for the next 10 years (Market Research Future, 2025). These
characteristics of pseudocereals contribute to their role in
promoting sustainable agriculture.

While quinoa, amaranth, and buckwheat are the most well-
known pseudocereals (Bender and Schoenlechner, 2021), other less
common varieties exist. These include fonio (Digitaria exilis and D.
iburia), intermediate wheatgrass (Thinopyrum intermedium), and
wild rice (Zizania palustris) (Williams, 1995). The unique chemical,
physical, and processing properties of pseudocereals, such as smaller
seed kernel size and specific starch structure, distinguish them from
traditional cereals. Canihua is mentioned as another important
pseudocereal alongside the more common varieties (Bender and
Schoenlechner, 2021). Intermediate wheatgrass (Thinopyrum
intermedium) shows strong potential as a sustainable bread
ingredient, with 15% flour substitution yielding optimal loaf
volume, texture, and antioxidant properties while enhancing the
pigment and color (Williams, 1995). Studies on the germination
(24-72 h at 28°C) of Digitaria exilis and Digitaria iburua significantly
enhanced its protein, dietary fiber, amino acids, minerals, resistant
starch, phenolics, and antioxidant activity while reducing
antinutritional factors. It improved water and oil absorption
capacity and slightly altered pasting and thermal properties, with a
decrease in bulk density. Germination time, rather than variety, was
the main factor influencing these changes, highlighting its potential to
produce nutritionally enhanced fonio for novel food applications
(Bassey et al,, 2023). Studies on genomic analysis of 265 accessions
revealed that white (Digitaria exilis) and black (D. iburua) fonio
underwent independent domestications without gene flow, with
cultivation expanding in the early Common Era and later declining
due to social and agricultural shifts, including the slave trade and crop
introductions, providing valuable resources for conserving these
climate-resilient cereals (Kaczmarek et al., 2025). Another study on
cultivated northern wild rice (Zizania palustris) showed that it is a
high-value crop primarily grown in Minnesota and California, with
domestication starting ~60 years ago to meet rising demands.
Breeding has focused on seed retention, yield, and size, but
progress is limited by its unique seed physiology and annual
growth cycle. Recent advances include a reference genome and
improved genotyping methods, enabling comparative genomics
with Oryza sativa to identify key domestication traits. Given its
ecological, cultural, and agricultural importance in the Great Lakes,
breeding programs emphasize the conservation of natural stands and
inclusion of diverse stakeholders (McGilp et al., 2023).
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Adaptability of pseudocereals

Research studies on pseudocereals have investigated
adaptability to marginal soils and varied climatic conditions for
improving food security, particularly in regions facing
environmental and agricultural challenges. Studies have shown
that quinoa and amaranth could thrive in high-altitude areas
exceeding 3,000 meters above sea level. When compared to
traditional crops, pseudocereals are remarkably resilient to
climate change stress factors. Quinoa is an extremophile, able to
survive in salty and dry environments (Pizzio, 2022), while
amaranth tolerates heat thanks to special heat shock proteins
(Goel et al., 2023). These characteristics of pseudocereals make
then valuable assets toward more sustainable and climate-resilient
agriculture (Nagaraja et al., 2024; Hlasna Cepkova et al,, 2022). A
research study was conducted in the Arabian Peninsula region
where the soil fertility and water resources are limited. Buckwheat
can adapt to extreme conditions and has a shorter cultivation
period. Even though the crop has been underutilized, in some
regions it remains an important source as a functional ingredient in
health-conscious and native foods (Potkule et al., 2021; Mahata,
2018; Zamaratskaia et al., 2023; Noreen et al., 2020). One of the
research studies on quinoa variety that has been investigated for its
effect on different salinity levels showed a significant increase in
protein levels, suggesting that the crop may possess genetic traits
related to salinity stress tolerance (Derbali et al.,, 2021). Another
study showed that growing quinoa with pomegranate in an
agroforestry system could help manage soil salinity and improve
land use efficiency (Abidi et al., 2024).

Furthermore, quinoa and amaranth are widely recognized as
climate-resilient crops that can withstand drought and extreme
temperature conditions due to less leaf surface area, wax-coated
leaves, and deep root system. Studies on pathogen resistance in
pseudocereals using a model plant Eutrema salsugineum showed
enhanced pathogen resistance against Pseudomonas syringae. This
resistance is due to the activation of PRI, a defense-related gene
(Yeoetal, 2015). These antimicrobial properties could be a valuable
tool for breeding pseudocereals in developing climate-resilient
cultivars (Banoth et al., 2024; Madhu et al., 2023). In Tartary
buckwheat, research studies have highlighted its resistance to
abiotic stresses such as aluminum toxicity, cold temperatures, and
drought because of the production of rutin. Recent research has
identified a new gene, FtbZIP5, from Tartary buckwheat showing a
significant role in drought and salinity tolerance when the gene was
introduced into transgenic Arabidopsis plants. FtbZIP5 gene
triggers ABA-related signaling pathways specifically causing a
strong expression of several key stress-responsive genes such as
RD29A, RD29B, RABI8, RD26, RD20, and CORI5 (Li et al.,, 2020).
The various mechanisms by which pseudocereals respond to
stressors—such as drought, salinity, pathogens, and pests—are
illustrated in Figure 3.
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Bioavailability and health benefits of
pseudocereals

The demand for health-focused products is rising due to
growing consumer awareness of their dietary benefits. The
current research emphasizes the development of innovative
gluten-free products using pseudocereals, alongside efforts to
enhance their functionality through processing aids like starches,
hydrocolloids, and techniques such as extrusion (Woomer and
Adedeji, 2020; Martinez-Villaluenga et al.,, 2020). The global
gluten-free market is expanding rapidly, with sales reaching $6.47
billion in 2023. Moreover, health-conscious consumers are actively
seeking foods that help lower the risk of illnesses like cancer,
diabetes, and heart diseases. Rich in nutrients and bioactive
compounds as mentioned in Table 1, pseudocereals align well
with these preferences (Martinez-Villaluenga et al., 2020; Kaur,
2023; Thakur et al,, 2021). Rising cases of celiac disease and gluten
sensitivity have boosted the demand for gluten-free options. As
naturally gluten-free grains, pseudocereals are ideal for these diets
(Rollan et al.,, 2019; Wanniarachchi et al., 2023; Szlcs, 2023).
However, their commercialization is still limited due to
processing challenges and low consumer acceptance (Xu et al,
2020; Alvarez-Jubete et al., 2010; Woomer and Adedeji, 2021). To
make pseudocereals healthier and easier to digest, a variety of
processing methods—like soaking, cooking, fermentation, and
even microwave or irradiation techniques—are commonly used.
Heat treatments are widely used for things like sterilization and
enhancing flavor. Overall, both traditional methods like baking and
milling and more advanced ones like enzyme-based processing play
an important role in shaping the nutritional value of pseudocereals
(Langyan et al., 2024).

Pseudocereals are rich in antioxidants and soluble fiber which help
regulate blood sugar, improve digestion, and lower blood cholesterol
levels, supporting heart health. The fiber content is very similar to that
in fruits and vegetables. This fiber, along with other beneficial
compounds, has been associated with antioxidant and anticancer
effects, boosting the immune system. These superior health-
promoting properties make pseudocereals a promising choice in
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developing functional foods (Zhu, 2020). Researchers have identified
six bioactive peptides in amaranth that may strongly inhibit
angiotensin-converting enzyme (ACE) activity, suggesting a role in
controlling blood pressure and supporting cardiovascular health
(Toimbayeva et al., 2025). Pseudocereals such as Tartary buckwheat,
amaranth, and quinoa offer a wide range of health benefits due to their
rich bioactive compounds. Tartary buckwheat has been shown to
lower plasma cholesterol, reduce inflammation, inhibit cell
proliferation, and induce apoptosis, primarily through its proteins
and polysaccharides. Amaranth contributes to reducing blood
cholesterol levels and exhibits antioxidant, antimicrobial, anti-
inflammatory, and hepatoprotective properties, with its protein
hydrolysates and peptides playing a key role. It also shows promise
in osteoporosis treatment. Quinoa offers antioxidant effects, promotes
gut health, and reduces inflammation in gut cells due to components
such as chenopodin protein (Kaur, 2023). Studies on lactic acid
fermentation of protein-rich amaranth flour with probiotic LAB
strains Lacticaseibacillus rhamnosus MIUG BL38 and
Lactiplantibacillus pentosus MIUG BL24 showed enhanced
antioxidant activity and increased phenolic content—particularly
epigallocatechin—and demonstrated potential for developing gluten-
free, tribiotic-enriched functional foods (Souare et al.,, 2025).

Quinoa saponins have been suggested to possess immunoadjuvant
activity, as shown in studies with mice immunized with ovalbumin,
where both humoral and cellular immune responses were enhanced
(Verza et al, 2012). In another study, oat- and Tartary buckwheat-
based diets were fed to hypercholesterolemic hamsters. The results
indicated that these foods could lower serum lipid levels by reducing
cholesterol absorption in the liver and significantly promoting lipid
excretion in feces. They also boosted short-chain fatty acid production,
which helped regulate the gut microbiota and contributed to the
effective management of hypercholesterolemia (Sun et al, 2019).
Amaranth oil has been linked to improved cardiovascular health,
with participants reporting fewer symptoms such as headaches,
weakness, and exercise-induced exhaustion. Remarkably, the cardiac
rhythms in 40%-50% of participants returned to normal during the
study (Thakur et al,, 2021). In overweight women, consuming 25 g of
quinoa flakes daily for 4 weeks significantly reduced blood
triglycerides, total cholesterol, and low-density lipoprotein (LDL)
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TABLE 1 Bioavailability of pseudocereals.

g‘:rgmg?;ls Quinoa (Chenopodium quinoa) Amaranth (Amaranth spp.) Buckwheat (Fagopyrum esculentum)
Proximate composition

. 13.11 14.59 13.25
Crude protein
Total fat 5.50 574 340
Dietary fiber

14.66 7.02 10.00

Total 1021 576 -
Insoluble 126 126 )
Soluble
Carbohydrate 5365 59.98 71.50
Mineral composition
(mg/100 g) 198 181 18
Copper (Cu) 0.48 0.81 1.10
Calcium (Ca) 7.51 9.33 2.20
Magnesium (Mg) 119 325 231
Iron (Fe) 1.77 5.29 1.30
Manganese (Mn) 212 374 347
Potassium (K) 474 433 460
Phosphorus (P) 4.50 2.70 1.00
Zinc (Zn) 3.31 2.66 2.40
Sodium (Na)
Vitamins
a-Ergocalciferol
(vitamin D) (pg)
o-Tocopherol (vitamin
E) (mg)
Phylloquinones - 0.04 -
(vitamin K1) (ug) 2.08 1.92 0.32
Thiamine (vitamin By, 2.00 - 7.00
(mg) 0.83 0.04 0.42
Riboflavin (vitamin B,) = 0.22 0.04 0.19
(mg) 1.70 045 6.15
Niacin (vitamin Bj) 0.62 0.24 0.44
(mg) 0.21 0.50 0.58
Pantothenic acid 0.62 1.92 -
(vitamin Bs) (mg) 1.73 27.44 54.00
Vitamin Bs (mg)
Biotin (vitamin B;)
(ug)
Folates (vitamin Bg)
(ug)
Amino acids (g/100 g
protein) 4.35 4.26 4.50
Arginine (ARG) 7.85 7.77 9.70
Alanine (ALA) 8.40 12.57 11.30
Glutamic acid (GLU) 13.75 16.12 18.60
Aspartic acid (ASP) 4.80 8.50 6.30
Glycine (GLY) 5.67 3.76 3.80
Proline (PRO) 4.56 7.79 4.70
Serine (SER) 1.98 2.85 2.10
Tyrosine (TYR) 2.98 1.86 2.70
Histidine (HIS) 3.75 2.82 3.80
Isoleucine (ILE) 6.08 4.83 6.40
Leucine (LEU) 5.55 5.45 6.10
Lysine (LYS) 224 1.86 2.50
Methionine (MET) 1.85 1.60 1.60
Cystine (CYS) 4.35 398 4.80
Phenylalanine (PHE) 3.01 3.02 3.90
Threonine (THR) 1.25 1.05 2.00
Tryptophan (TRP) 4.55 4.34 4.70
Valine (VAL)

Hyphens (-) indicate values that were either below the limit of detection or unreported. The data were compiled from multiple sources, including Dayakar et al. (2017); Gopalan et al. (1989);
Johnson and Croissant (1985); Longvah (2017); Pomeranz and Robbins (1972); Tkeda and Kishida (1993), and the USDA National Nutrient Database for Standard Reference (accessed October
28, 2019).
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cholesterol in both prospective and double-blind intervention trials
(De Carvalho et al,, 2014). Some species of amaranth also show anti-
cancer potential. Compounds in Amaranthus tricolor have been found
to inhibit tumor cell proliferation, while proteins from Amaranthus
hypochondriacus seeds contain peptides linked to cancer-preventive
effects. An amaranth lunasin-like peptide was shown to inhibit H3 and
H4 histone acetylation in HeLa cells, with the effect being dose-
dependent. This epigenetic mechanism, similar to that found in
soybean and barley, may explain lunasin’s ability to help prevent
cancer (Huerta-Ocampo and de la Rosa, 2011). Quinoa also
demonstrates antioxidant properties. In animals fed a high-fructose
diet to induce oxidative metabolic stress, quinoa consumption
increased the activity of key antioxidant enzymes and reduced lipid
peroxidation in plasma, red blood cells, and multiple organs, including
the heart, kidney, liver, and brain (Pasko et al, 2010). In terms of
cancer-related effects, buckwheat polysaccharides did not directly
inhibit the growth of human PC-3 prostate cancer cells but instead
reduced their proliferation by stimulating the release of anti-
inflammatory biomarkers (Lin and Lin, 2016). Similarly, in rats with
induced tumors, buckwheat protein was found to protect against
colon cancer by inhibiting cell proliferation (Tomotake et al., 2006).
Buckwheat has also been shown to support gut health. In experimental
rat models, buckwheat-based diets increased the populations of
aerobic mesophilic and lactic acid bacteria, particularly Lactobacillus
plantarum and Bifidobacterium spp (Prestamo et al., 2003). Quinoa
has even been used to create a symbiotic beverage that extended the
fermentation period and enhanced the survival of Lactobacillus casei
LC-1 (Bianchi et al,, 2015). For individuals with diabetes, buckwheat
administration—both in chronic and acute cases—has been shown to
improve metabolic and cardiovascular markers (Stringer et al., 2013).
Amaranth protein likewise improved glucose tolerance and plasma
insulin levels in a streptozotocin (STZ)-induced diabetes model. In
diabetic rats, amaranth oil and grain supplementation prevented
increases in total cholesterol, triglycerides, and VLDL while also
reducing hyperglycemia caused by STZ by 77% and 81%,
respectively (Martinez-Villaluenga et al., 2020). These findings
underscore the potential of pseudocereals as functional foods for
preventing and managing various health conditions.

Pseudocereals in food security

In today’s market-driven food systems, pseudocereals are
gaining attention as valuable ingredients. Processing methods like
lactic acid fermentation can improve their nutritional and
functional qualities. After processing, pseudocereals are used in
baked goods, fermented drinks, and extruded snacks (Alencar and
de Carvalho Oliveira, 2023; Graziano et al., 2022; Martinez-
Villaluenga et al., 2020). Traditional cereal-based foods can be
blended with pseudocereals which will be an effective way to
enhance their nutritional value. One study tested adding 50%
refined or whole-meal quinoa, amaranth, and buckwheat flours
into water biscuits (WB) to evaluate the antioxidant capacity and
heat resistance. Buckwheat had the highest tocol content
(86.2 mg/kg), einkorn had the highest carotenoids (5.6 mg/kg),
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and buckwheat and quinoa had the most conjugated phenolics
(230.2 and 218.6 mg/kg, respectively). The WB with pseudocereals
showed better antioxidant profiles and less heat damage compared
to 100% einkorn or bread wheat WB, although lysine loss was
higher. They also had a more balanced amino acid profile (Estivi
et al, 2022). Processing techniques like sprouting, cooking, and
fermentation ofter more opportunities for health-focused products.
A study on quinoa (var. Tunkahuan) and amaranth (var. Alegria)
found that germination and 24-h fermentation increased
polyphenols and flavonoids, while fermentation with Lactobacillus
plantarum greatly boosted antioxidant activity.

Germinated seeds exhibited higher macro- and microelement
content compared to raw seeds. Tests using the S. cerevisiae D7
strain confirmed that seed and germinated seed extracts had no
genotoxic effects and protect cells from damage by reactive oxygen
species (ROS). These findings suggest that germinated seeds and
fermented products from these varieties are highly suitable for
inclusion in diets and dietary supplements (Vento et al., 2024).
Table 2 summarizes the different products made using
pseudocereals and their applications. Dehulled buckwheat seeds
are rich in essential nutrients and bioactive compounds. Studies
showed that buckwheat flour (30%) used to make bread had good
sensory and baking qualities. Similarly, pasta can be enriched with
proteins, minerals, and rutin by using buckwheat flour without
affecting its cooking and sensory characteristics (Marti et al., 2011).
Amaranth is high in protein, while starch, fat, fiber, and mineral
contents are similar in quinoa and amaranth. Buckwheat has more
starch, moderate protein, and fewer fats, fibers, and minerals, but
with the highest phenolic content. All three pseudocereals are rich
in phosphorus, potassium, and magnesium. Polysaccharides in
pseudocereal cell walls were examined for their structural and
functional traits, which is comparable to those typically found in
fruits and vegetables, suggesting that pseudocereals might offer
comparable or even more health benefits when used in the
formulation of food products (De Bock et al, 2022). Quinoa,
amaranth, and buckwheat are valued for their proteins, fiber,
bioactive compounds, and folic acid (Gorinstein et al., 2002; Das
and Das, 2016; Schoenlechner et al., 2010). Their strong nutritional
profiles make them important for food and nutrition security, with
quinoa and amaranth—often called “nutri-cereals”—showing great
potential in production, consumption, and trade.

Recent molecular advances in
pseudocereals

In recent years, molecular studies have been accelerated due to
advancements in next-generation and transcriptome sequencing
analysis. This has made the study of molecular markers and the
application of molecular breeding very easy. Genetic improvements
can be further pursued based on available knowledge about
amaranth (A. hypochondriacus), with 466-Mb genome and 24,829
protein-coding genes (Sunil et al, 2014); quinoa, with a 1.5-Gb
genome size and 54,438 annotated genes (Zou et al, 2017); and
buckwheat (F. esculentum), with a 1.12-Gb size and 35,186 protein-
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TABLE 2 Industrial applications of pseudocereals.

Products

Gluten-free bakery products

Noodles and pasta

Applications

Amaranth improves the nutritional quality of food that lacks gluten

References

Gambus et al., 2010

Bread made from buckwheat had significantly higher mineral composition than wheat breads

Islam et al.,, 2016

10% of amaranth flour with cheese bread could score 6.8 out of 9 in hedonic scale showed enhanced iron and dietary fiber content

Lemos et al., 2012

Gluten-free bread with 60:40 ratio of popped and raw amaranth flour was found to increase in volume and produced consistent crumb

Buckwheat does not contain gluten ingredient for improving texture of noodles, as it enhanced firmness and reduced cooking loss

For quinoa pasta, emulsifiers are added to enhance its quality

Corn flour and quinoa flour (5%-15%) were investigated in making gluten-free spaghetti. Quinoa and rice flour, gluten-free blends have been used to make tasty
macaroni and pasta

de la Barca et al., 2010

Borges et al,, 2003

Beverages

Animal fodder

Beers brewed with buckwheat malt showed similar physicochemical properties to traditional wheat-based beers, including pH, amino acid content, fermentability, and
alcohol content. Also delivered satisfying sensory qualities, with a pleasant aroma, balanced taste, and appropriate bitterness

Gluten-free, bottom-fermented beers made from buckwheat and quinoa malts have been successfully brewed, showing viscosity and pH levels much like those found in
traditional barley beers

Buckwheat’s bioactive components are suitable for tea production

Buckwheat plant residues can be used as animal feed
Quinoa plant is rich in minerals and plant residues can be utilized as animal feed
Amaranth can be used to reduce cholesterol level in animals

Phiarais et al., 2010
Qin et al,, 2013

Leiber, 2016
Zulkadir and idikut, 2021
Peiretti, 2018

Granolas and breakfast cereals

Granolas made with quinoa, amaranth, or linseed were well received for their taste and offered strong nutritional and physico-chemical benefits. Had low water activity,
which helped extend shelf life, while still providing high nutritional value and appealing flavor and texture

Quinoa and amaranth can serve as a substitute for rice and breakfast porridge or as a base in infant food formulation

Quinoa and cranberry extract as breakfast cereal showed highest anthocyanin and phenolic content

Schoenlechner, 2017
Jancurova et al., 2009
Srujana et al., 2019
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coding genes (BGDB; http://buckwheat.kazusa.orjp) (Yasui et al,
2016). Three different research groups (Yasui et al., 2016; Jarvis
et al,, 2017, and Zou et al., 2017) have performed next-generation
sequencing for the sequencing of the quinoa genome. In quinoa,
molecular markers like SSR and SNP and insertion/deletion
markers have been identified for 11 accessions (Zhang et al,
2017). Drought tolerance genes have been found in two genotypes
(Raney, 2012) and drought-induced genes and pathways in the
Chilean genotype R49 (Morales et al, 2017). Quinoa also has a
higher level of lysine and more vitamins E and B than many cereals
(Zou et al,, 2017). Research on the drought-tolerant quinoa
genotype “Dianli 129” found 38,670 genes and 142 pathways.
Changes in specific genes and metabolites helped maintain
flavonoid, starch, and sucrose metabolism—key to drought stress
resistance (Huan et al., 2022).

A study of quinoa germplasm from eight countries used the
iPBS-retrotransposon marker system with 11 highly polymorphic
primers to assess genetic diversity. It provided data on
polymorphism percentage, mean PIC, effective alleles, Shannon’s
index, and gene diversity (Barut et al., 2020). A recent study by
Rahman et al. (2024) analyzed quinoa accessions for agronomic and
biochemical traits using next-generation sequencing. They found
nine marker-trait associations for saponin content across eight
chromosomes, offering tools for marker-assisted selection to
develop sweeter, higher-yield quinoa. Xiao-Lin et al. (2022)
identified 13 SnRK2 genes, which play key roles in ABA signaling
and stress responses. Tariq et al. (2022) confirmed that the
CqKCS2B.1 gene helps quinoa tolerate salt stress by regulating
suberin biosynthesis, opening possibilities for breeding salt-
tolerant varieties.

Two cultivars of quinoa, named Dianli-3101 and Dianli-3051,
have been studied extensively by Xie et al. (2023) under very high
temperature conditions. They found some photosynthetic genes
that were downregulated and a large change in differential
accumulation for lipids and flavonoids (Xie et al., 2023).
Transcriptomics has been key in identifying stress-protective
genes in amaranth. Singh et al. (2024) compared the genomes of
five amaranth species—A. hypochondriacus, A. cruentus, A. palmeri,
A. hybridus, and A. tuberculatus—identifying 170,477 protein-
coding genes, with most repeats being LTRs. They found species-
specific SNPs linked to a variation in commercially important
genes. Translational and post-translational studies, such as
microRNA-guided silencing, along with transcription factors like
bHLH, NAC, bZIP, C2H2, Dof, AP2/ERF, WRKY, and MYB, play
major roles in stress response.

In buckwheat, Zhang et al. (2021) conducted whole-genome
resequencing of 510 germplasms and created a genomic variation
databank for Tartary buckwheat. They identified candidate genes,
such as FtUFGT3 and FtAP2YT1, linked to flavonoid accumulation
and grain weight. Based on these findings, two varieties with
different traits were developed through separate domestication
events. Zhao et al. (2023) showed that domestication can
influence metabolite accumulation. Using mGWAS with EMMAx
and FaST-LMM on 567 metabolites, they found 1,253 lead SNPs
linked to 398 metabolites—291 related to flavonoids and 171 to
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phenolic acids. One SNP alone was associated with 128 metabolites,
including isovitexin and catechin. Chemical modifications and
metabolic pathways can improve metabolite stability and
availability, supporting the development of superior varieties.

Wang et al. (2025a) studied mineral and trace element variation
in 199 Tartary buckwheat accessions. They found that changes in
the promoter region of the FtACA13 gene (an auto-inhibited Ca**-
ATPase) are linked to salt tolerance and Na concentration. The
GWAS analysis identified 52 genetic loci associated with 10
elements. The FtYPQI gene, a vacuolar amino acid transporter,
was linked to improved Zn tolerance, while the FtNHX2 protein (a
Na*/H" exchanger) may play a role in arsenic tolerance, supported
by a significant signal locus on chromosome 6. A more complete
characterization combining phenotypic, nutritional, biochemical,
physiological, and molecular data is needed to develop superior
genotypes to combat hunger and ensure food security.

Some latest collections of pseudocereal crops in both national
and international gene banks have been characterized based on key
morpho-agronomic traits as shown in Table 3.

Pseudocereals: challenges and
strategies

Climate change in arid regions causes unpredictable weather
affecting ecosystems, lowering agricultural productivity, and giving
immense stress on traditional crops that have no tolerance to
extremes. As a result, valuable plant biodiversity and traditional
knowledge about resilient, indigenous crops have been lost. Soil
erosion, desertification, and habitat loss are increasing along with
pollution exacerbating the condition (Abebaw, 2025). Pseudocereals
show promising solutions for these stress factors as the need to find
sustainable, drought-resistant, and climate-smart crops increases.
These underutilized crops are unique to grow in adverse conditions,
but their potential remains untapped. Key challenges are the
changing climate and outdated farming practices which are not
suitable for arid environments (Bekkering and Tian, 2019). Over-
dependence on high water demanding crops, combined with the use
of excessive fertilizers, has severely degraded the soil (Wang et al.,
2025b). Pseudocereals, with their ability to thrive in diverse soil
types and dry climates, offer a sustainable alternative. However,
progress should be made on optimizing cultivation methods and
crop management technologies based on plant species. Even though
alternatives like quinoa or amaranth could offer better yields and
nutrition in many arid regions, farmers are still hesitant to try these
crops. On the other hand, the growing interest in healthy and
sustainable diets presents an opportunity for the wider adoption of
pseudocereals—but only if more people become aware of their
nutritional benefits and culinary versatility. Nevertheless, their
broader consumption is hindered by factors such as the presence
of anti-nutritional compounds and a naturally bitter taste, which
often necessitate additional processing and, in turn, raise
production costs. Furthermore, pseudocereals are unlikely to fully
replace true cereals because of certain organoleptic and
technological limitations (Graziano et al.,, 2022). Their cultivation
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TABLE 3 Molecular advances in pseudocereals.

Studies on genetic Gene Quantitative trait loci
Marker - q ; : q
Pseudocereals development variation and population expression (QTL) analysis and gene ~ Whole-genome sequencing References
analysis profiling discovery
Genetic analysis revealed that A. Identified 8,260
hypochondriacus and A. caudatus homologous sequences
P o 0gous sed Identified ANDODA-1, AKDODA-2,
are closely related, as 313 with A. tuberculatus
K i . AhcDOPA5-GT, and AhB5-GT . .
accessions with 0.75% genomic and 1,971 stress- . . The transcriptome of A. hypochondriacus
. . genes for betanin biosynthesis. X . X
. . overlap, and were grouped into two | responsive genes. . . revealed independent C4 evolution. The grain
Plant material from six . L A i AhNF-YC: Linked with stress
. distinct genetic lineages Revealed differentially . amaranth genome (377 Mb, 3,518 scaffolds) .
Amaranthus species were . . . resistance and growth. . . . . Wu and Blair, 2017;
. Gene-specific primers for SSSI and  expressed proteins and . included 23,059 protein-coding genes, with 48% .
gathered from eight . K Ah24: A newly identified stress- . Casique-Arroyo et al,,
. . GBSSI genes were employed to transcripts involved in . consisting of repeat sequences. A chromosome- o
geographic regions of L responsive gene from Amaranthus . . 2014; Palmeros-Suarez
i i distinguish A. caudatus and A. stress defense and X scale assembly (403.9 Mb) constructed with Hi-C
Indo-Gangetic plains, and . L cruentus roots has been associated ) . et al, 2015,
. hypochondriacus; 22 detected alleles  signaling pathways. . . chromatin contact maps and PacBio long reads . N
Amaranth unique SCAR markers with reactions to salt stress, X Julio et al., 2015, 2016;
showed an average of 0.657 Upregulated . scaffolded 98% of the genome into 16 .
were developed (A. L. X . herbivore attack, and exposure to 0 L i Sunil et al., 2014; Clouse
polymorphism information transcription factors . . chromosomes Domestication studies identified a .
caudatus, A. cruentus, A. i i i i methyl jasmonate. In addition, ERF K . R et al., 2016; Lightfoot
X content, reflecting diversity. like DOF1 and MIF1 . i MYB-like transcription factor as a potential o
gangeticus, A. . . . and Dof transcription factors linked . et al., 2017; Stetter et al.,
. A. powellii and A. retroflexus were associated with . regulator of seed coat color variation. Three
hypochondriacus, A. . . . R to stress were found to play rolesin | L . 2020
i . exhibited the highest SNPs, while stress adaptation and A independent domestication events from a single
paniculatus, and A. viridis) L K the plant’s response to salt, drought, R R i
A. quitensis and A. caudatus growth regulation. L . wild ancestor were observed, with the conversion
. . and signaling molecules like . . )
displayed very close genetic Downregulated genes . L o of dark to white seed coats linked to this process
K : o . . jasmonic acid, salicylic acid, and
relationships. Genetic diversity was were linked to cell abscisic acid (ABA)
observed between edible and wild differentiation and
amaranth species secondary metabolism
RNA-seq of fillin;
Identified high levels of genetic 4 & Two dominant genes are identified .
e e R stage seeds. Key genes A X K Hou et al., 2016; Shi
variation within cultivars and X i for seed shattering. QTLs identified i
R . in storage proteins, . . . et al., 2017; Mizuno and
AFLP and pooled DNA populations along with 3 RAPD oL . for photoperiod sensitivity. High . .
X . X flavonoid biosynthesis, X g Yasui, 2019; Gao et al.,
mapping approaches markers. 19 Japanese varieties using L. expression of genes for flavonoid .
. . . . . . transcription factors . . . Produced a draft assembly with 387,594 scaffolds ~ 2017; Yao et al, 2017;
identified genetic markers 5 microsatellite loci. Reported X ) and rutin biosynthesis identified. X R ) ) ~
R R X L. identified. RNA-seq . using next-generation sequencing. Combined Zhu et al., 2015; Wu
associated with ShtI allelic = 86.5% polymorphism in 79 Tartary X FtGBSSI gene in Tartary buckwheat, > K " i L .
. . . revealed aluminum- . R multiple sequencing approaches, including et al., 2019; Thiyagarajan
site in a cross between buckwheat accessions using AFLP . crucial for amylose synthesis . > o
. . responsive genes X . . Illumina short reads, SMRT long reads, Hi-C et al., 2016; Wang et al,,
Buckwheat non-brittle and brittle markers. Analyzed 179 common X X isolated and characterized. Identified i i
i X X involved in cell wall i L sequencing, and BioNano genome maps. 2014; Yokosho et al.,
buckwheat lines. buckwheat accessions with SSR . Al-responsive genes, abiotic stress . . . .
. . e . defense and oxidative Lo Annotated 33,366 protein-coding genes, offeringa = 2014; He et al., 2019; Liu
Microsatellite variability in | markers. GBS in buckwheat stress. Identified genes, auxin-signaling genes. comprehensive resource for functional genomics et al., 2018; Fang et al.
common buckwheat. SSR | revealed more nucleotide diversity numerous drought Isolated FaesAP3, a MADS-box and Il;ree ding programs g 2014’ L )t | ‘2019 ’
uw u: ught- ; Liu et al,, s
marker development in (0.0065). RAPD and AFLP markers X 8 gene, identified 65 MADS-box & Prog i
i K . responsive genes K i Takeshima et al., 2019;
Tartary buckwheat explored genetic relationships genes, Identified FePGI associated . .
b R through i X Yasui et al,, 2016; Zhang
among wild and domesticated . . with heteromorphic self-
L transcriptomic data . o et al., 2017
varieties . incompatibility
analysis
A linkage map was Studied 19 accessions of Identified 20,337 Characterized homologous loci in Published a draft genome sequence of quinoa, Devi and Chrungoo,
constructed for a Chenopodium using 33 RAPD unique transcripts and | salt tolerance and found differential consisting of 25k scaffolds, totaling 1 Gbp 2017; Maughan et al.,
recombinant inbred line primers, characterized Chilean and 462 putative drought- | expression of genes in shoots and genomic size N50 contig length of 86 kbp. 2012; Zhang et al., 2017;
Quinoa (RIL) using 216 South American quinoa accessions and abiotic-stress- roots under salt stress. Identified 90 = Superior quality genome draft was generated, Winkel et al,, 2018;
polymorphic SSR markers. | with SSR markers, developed 511 related gene products. | NAC transcription factors. Provided = comprising 64.5% repeated sequences including Saad-Allah and Youssef,
Morphological SNP assays and InDels, racked Used RNA-Seq to two 11§ genes with cDNA and 54,438 genes for protein-coding and 192 2018; Raney et al,, 2014;
characteristic variations quinoa diversity over 18 centuries study Groundnut genomic sequences. Isolated Ty3- microRNA genes Chou et al,, 2017; Wu
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Pseudocereals

TABLE 3 Continued

Frontiers in Plant Science

Plant databases provide open access to genomic resources for breeders and researchers. The availability of extensive data from genetic markers, complete genetic sequences, GWAS studies, different types of ionome, metabolomics, and transcriptomics studies of millets

and other crops like pseudocereals could serve as a valuable insight to researchers that can greatly support efforts to improve medicinal properties, disease resistance, climatic resilience, food innovations, precision breeding, and agriculture sustainability.

10.3389/fpls.2025.1662267

remains largely confined to native regions, which raises concerns
about resource exploitation and the socio-economic wellbeing of
smallholder farmers (Graziano et al., 2022; Nandan et al.,, 2024).
Processing techniques such as fermentation and germination have
shown promise in improving nutritional value and nutrient
bioavailability (Henrion et al., 2020), positioning pseudocereals as
valuable alternatives to enhance dietary diversity and support better
health outcomes.

Migration of farmers to urban areas has further complicated the
issue causing lack of manpower in the agriculture sector (Kalantaryan
etal, 2021). In arid regions, the overuse of natural resources continues
to threaten the long-term sustainability of agriculture. Main crops
such as maize, wheat, and corn have been given more importance, and
pseudocereals struggle to compete with those crops economically.
Moreover, farmers are skeptical to cultivate pseudocereal crops as it is
unfamiliar for them due to lack of awareness about its nutritional
value and cultivation methods. There is a lack of policy and supportive
frameworks for the cultivation and marketing of pseudocereals
(Vidaurre-Ruiz et al., 2023). Pseudocereals remain vulnerable due to
limited conservation efforts and funding and poor integration between
preservation and sustainable use. Access to diverse germplasms and
stronger research are essential to breed varieties suited to arid zones
(Bekkering and Tian, 2019). Unlocking the potential of pseudocereals
will require coordinated efforts to address environmental, agronomic,
social, economic, and political challenges.

Developing eco-geographic databases for targeted pseudocereal
species can help in identifying its ideal growing areas and conditions.
Furthermore, building comprehensive databases that track both the
nutritional value and social impact of these pseudocereal crops will give
policymakers the solid, evidence-based insights they need to make
informed decisions (Hoehnel et al., 2022). Mapping suitable ecological
zones can reduce competition with major crops while maximizing
benefits for people in dry regions. Strengthening local seed systems
through collaborative breeding will give farmers access to high-quality
seeds. Combining scientific research with traditional knowledge can
improve adoption (Shrestha and Gauchan, 2020). Research outcomes,
success stories, and lessons learned from farmers, researchers, and
community members can be shared to help spread innovation (Zoundj
et al, 2024). Another key step in increasing the value chains for
pseudocereals is that once they are harvested directly, it should be
linked to the consumers (Figure 4). This will reduce costs and open up
markets for pseudocereals crops. Policymakers can offer incentives and
subsidies for pseudocereal crops that encourage crop diversification
and support sustainable farming practices (Nandi et al, 2024).
Introducing pseudocereals into school feeding programs can build
awareness and acceptance among younger generations (Kristjansson
et al,, 2022). With the right strategies, pseudocereals could play a key
role in ensuring food and nutrition security in arid areas.

Pseudocereal breeding: current trends
and future directions

Research and breeding programs on pseudocereal crops remain
limited, with amaranth possessing significant genetic diversity. One
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FIGURE 4
Schematic representation of pseudocereals’ supply chain.

of the studies on amaranth and quinoa showed that these can
respond well to nitrogen fertilization, showing increased grain
yields with higher nitrogen input, whereas buckwheat showed
minimum to no response (Kaul et al., 2005). In Mexico,
traditional farming systems like Milpa and Mogote are used for
pseudocereal cultivation. These intercropping systems combine
crops like corn, beans, squash, and pseudocereals, offering
multiple benefits such as higher yield and protein content and
thus contributing to food security and boosting the farmers’ income
(Torres et al., 2007). Few studies focus on breeding high-yield,
stress-tolerant pseudocereals, and modern tools like CRISPR/Cas
and RNA interference are rarely applied (Anuradha et al., 2023;
Vats et al., 2023). The conservation of crop wild relatives (CWRs) of
pseudocereals is also lacking in gene banks. Expanding molecular
research by applying genomic tools, whole-genome sequencing, and
modern breeding techniques through an interdisciplinary approach
is essential to unlock pseudocereals’ potential for food and nutrition
security (Arya et al,, 2021; Thakur et al,, 2021; Curti et al., 2017;
Bekkering and Tian, 2019).

Despite their nutritional and functional benefits, pseudocereals
often face consumer acceptance barriers due to limited awareness of
their health-promoting properties, misconceptions about taste and
cooking methods, perceived complexity in preparation, and higher
prices compared to staple cereals (Bender and Schoenlechner, 2021;
Vidaurre-Ruiz et al., 2023). In some markets, the relatively low
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availability of processed or ready-to-use pseudocereal products
further limits adoption. To address these challenges, several
government agencies, research institutions, and public health
bodies have implemented strategies to increase their popularity.
The International Center for Biosaline Agriculture (ICBA) has
undertaken extensive research on quinoa and other pseudocereals
for saline and marginal environments, supporting farmer adoption in
the Middle East, North Africa, and Central Asia. In Mexico, the
traditional milpa intercropping system, which integrates quinoa and
amaranth with maize and beans, demonstrates a sustainable,
culturally embedded approach to promoting pseudocereal
consumption. In India, the Indian Council of Agricultural Research
(ICAR) has conducted breeding and agronomic trials on amaranth,
buckwheat, and quinoa to improve yield, stress tolerance, and market
potential. Alongside these efforts, policy measures include targeted
awareness campaigns on nutritional value, integration into school
meal and community nutrition programs, provision of subsidies or
incentives for farmers, inclusion in national dietary guidelines, and
endorsement through functional food labeling (FAO, IFAD,
UNICEF, WEP and WHO, 2021; Fortune Business Insights, 2024;
Coherent Market Insights, 2025). Collectively, these initiatives aim to
bridge the gap between production and consumer demand,
facilitating the wider acceptance of pseudocereals as mainstream
dietary staples. Figure 5 illustrates the SWOT analysis of
pseudocereals in sustainable food systems.
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FIGURE 5
SWOT analysis of pseudocereals.

Conclusion

Globally, crops resilient to climate change stress factors are
crucial, especially in resource-scarce and arid regions, to address
challenges of food and nutritional security. Climate change is
becoming challenging worldwide, particularly in arid regions
where water and fertile land resources are limited. These climate
change stress factors worsen the situation, threatening food security
and sustainability. Currently, over 2 billion people around the world
depend on staple crops such as maize, wheat, and rice. These crops
do not completely fulfill the nutritional requirements, and this
causes nutrient deficiencies referred to as “hidden hunger”.
Moreover, the global population is expected to reach 10 billion by
2050, increasing the demand for food and nutrition. Only
depending on staple crops is not enough to combat climate
change and global population increase; there is a need to explore
alternatives for these staple crops. Pseudocereals can be an
alternative option, being nutrient-dense, packed with vitamins,
minerals, and proteins, and with numerous health benefits.
Currently, these crops share almost 15 bn market of the grain
industry worldwide, which is expected to have CAGR of 7% in the
next 8 years. Additionally, consumer demand has also increased
because of increased awareness for nutrient-specific foods, usage
and consciousness for ethically grown foods, need for plant-based
proteins, and frequency of food delivery systems. This will point to a
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unfamiliar crops

need to have more innovative and new products such as gluten-free
items, pet food, beverages, and high-protein, high-fiber, and high-
micronutrient food items made up of different pseudocereals. Major
stakeholders in the super-grain industry have recently committed
substantial investments toward expanding the portfolio of
pseudocereal-based products, indicating the anticipated
significance and growing demand for these crops in the near
future (https://www.marketreportanalytics.com/reports/
supergrains-260443#summary). These crops can withstand
climate change stress factors, making them suitable for cultivation
in arid regions. Research studies have shown that even small
amounts of pseudocereals in our daily meals can enhance their
nutritional value. Many varieties of pseudocereals have shown
promising results in extreme conditions. Advanced molecular
techniques such as high-throughput phenotyping, genome
sequencing, nutritional profiling, gene editing, transcriptomics,
marker-assisted breeding, and functional genomics will be pivotal
in improving yield, quality, and stress tolerance. Researchers better
understand the key characteristics in developing nutrient-rich and
climate-resilient pseudocereals. Furthermore, initiatives to make
pseudocereals familiar through awareness programs, policies to
promote it, and sustainable farming practices can help in
integrating pseudocereals into modern agriculture. Ultimately,
pseudocereals are hidden treasures of arid regions, offering a
sustainable, climate-resilient solution to food and nutritional
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insecurity. Their integration into modern agriculture could diversify
food systems, reduce dependence on vulnerable staple crops, and
empower smallholder farmers in resource-scarce areas.
Incorporating pseudocereals into school meal programs,
community nutrition initiatives, and local value chains could
directly combat hidden hunger while fostering rural livelihoods.
Future research should focus on region-specific breeding strategies,
consumer acceptance, and sustainable agronomic practices to
ensure large-scale adoption. By acting now—through coordinated
policy, awareness, and innovation—pseudocereals can shift from
being an underutilized resource to a cornerstone of global food
security in a changing climate.
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