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Agricultural productivity needs to grow in a sustainable way to eradicate hunger and

malnutrition, as outlined in the 2030 Agenda for Sustainable Development (SDGs).

The demand for healthy, nutritious food is expected to rise by 50% between 2012

and 2050 as the world’s population grows. Even today, more than 800 million

people face chronic hunger, while 2 billion suffer from micronutrient deficiencies.

These challenges are further intensified by climate change stressors. Around 90% of

the world’s farmland is affected by climate-related stress, which in some areas can

cut crop production by asmuch as 70%. Countries near the equator, particularly arid

lands, are evenly affected, where food security and sustainability are increasingly

threatened by rising global food demand and worsening climatic conditions.

Relying only on traditional staple crops like rice, wheat, and maize is not enough,

and there is a need to explore alternative crops which are climate resilient and could

contribute to food security. This review focuses on pseudocereals—crops such as

amaranth, quinoa, and buckwheat. These are not true cereals but are rich in

nutrients and can survive in difficult environments such as during drought, in salty

soils, and at extreme temperatures. Pseudocereals such as amaranth, quinoa, and

buckwheat are non-grass crops with dense nutrients. The review covers how

pseudocereals can help with food security, improve health, and be used in

industry. Some studies have shown that the bioavailability of pseudocereals can

be increased by various processing techniques. However, these crops are mostly

grown in their native regions because seeds are hard to get andmarkets are limited.

Pseudocereal production must be expanded globally supported by strategies such

as conservation of its wild species, molecular advance techniques, policies, farming
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practices, and integration of indigenous knowledge. Particularly, in arid regions

where traditional crops face many challenges due to harsh climatic conditions and

limited water resources, integrating these pseudocereal crops into their agronomy

system and commodity markets could serve as a roadmap in achieving sustainable

development goals (SDGs). These crops could also help other vulnerable regions

around the world that face hunger and poor nutrition.
KEYWORDS

alternative crop, pseudocereals, nutritional value, food security, climate resilience, arid
regions, sustainable agriculture, GWAS
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Introduction

According to the Sustainable Development Goals (SDGs),

hunger and malnutrition must be eradicated by 2030 in a

sustainable way by enhancing agricultural productivity—without

harming the planet or future generations. Global food demand is

projected to rise by approximately 50% between 2012 and 2050,

requiring transformative changes in both production and

consumption systems (Smith and Gregory, 2013). Despite

advances in food systems, over 800 million people remain

undernourished, and nearly 2 billion suffer from micronutrient

deficiencies. These challenges are compounded by increasingly

erratic and extreme weather events, which disproportionately

affect marginalized and rural communities. Currently, nearly 90%

of global agricultural land is exposed to different abiotic stress such

as heat, salinity, nutrient deficiency, drought, pollution, and

mechanical stress—that collectively limit crop productivity by up

to 70%. The growing intensity of these climate-induced stresses
02
exacerbates socioeconomic vulnerabilities and undermines agro-

ecosystem resilience, further threatening food and nutritional

security (Diramo Kofa et al., 2024; Begizew, 2021). In arid and

semi-arid regions, food insecurity is aggravated by water scarcity,

poor soil fertility, and inadequate agricultural practices. These areas

are particularly susceptible to climate variability and limited

resource availability, necessitating innovative and adaptive

agricultural strategies. Despite the identification of over 400,000

plant species globally—of which 30,000 are known to be edible, only

150 crops are cultivated on a significant scale. Alarmingly, just three

staple crops—maize, wheat, and rice—account for nearly 60% of

daily protein and carbohydrate intake worldwide (Brouns and

Shewry, 2022). It is reported that in the next 60 years, the world

population will reach up to 10.3 billion (Lam, 2025). To feed this

much population, we have to meet the proper food supply with

increased productivity and high quality standards. If we will not

include additional food varieties other than staple food, we will not

be able to combat the upcoming projected food crisis.
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Over the past century, approximately 75% of crop diversity has

been lost, representing an estimated 300,000 varieties. This erosion

of genetic diversity, driven by monocropping and the widespread

use of high-yield hybrid crops, has masked local crop varieties and

traditional cultivation knowledge, increasing vulnerability to pests,

diseases, and environmental stresses. In response, multidisciplinary

approaches are being explored to address the multifaceted

challenges facing global agriculture—for example, sandponics—a

technique that utilizes sand as a sustainable, water-efficient growth

medium—has shown promise for food production in arid

environments (Nair et al., 2024). Research studies are focusing on

genetic engineering and molecular breeding techniques which could

make crops grow better and withstand environmental stress factors

(Xing and Wang, 2024). Climate-resilient and neglected crops, on

the other hand, are proving to be a promising solution to these

environmental stresses which could improve nutrition and food

security especially in regions with limited resources (Otundo

Richard, 2024).

Climate change is growing more complex and causing uneven

effects on crop productivity around the world. It has led to a

significant loss in some regions such as 13.4% decline in oil palm

production—while in others, for example, with soybeans, yields

have seen slightly more of approximately 3.5% (Ray et al., 2019).

These losses in crop production vary greatly by region: Europe,

Southern Africa, and Australia have experienced mostly negative

outcomes, whereas Asia, North America, and Latin America show a
Frontiers in Plant Science 03
mix of positive and negative outcomes. Staple crops like rice, wheat,

and maize are especially vulnerable in equatorial areas, where rising

temperature and water shortage reduce the crop productivity

(Farooq et al., 2023). Managing these interconnected issues

requires strategies such as diversifying crops, improving water

management, and adopting climate-smart farming techniques

(Prajapati et al., 2024; Chen et al., 2017). Figure 1 provides a

summary of the key drivers for integrating alternative crops

in agriculture.
Pseudocereals as alternative crops

Alternative crops, also called orphan or underutilized crops,

include many plant species. Despite their potential, they have

received little attention from scientists, breeders, and policymakers.

The production of these crops is way too less, i.e., approximately 400–

500 times, in comparison to staple crops such as rice, wheat, and

maize. Still their % compound annual growth rate is 1.5 to 2.1 times

than that of cereal crops (Nandan et al., 2024). These non-commodity

crops, both domesticated and wild, have immense potential for

agriculture. Though historically sidelined for agronomic, economic,

or cultural reasons, they are now gaining more attention for their

resilience amidst climate change and their ability to resist pests,

diseases, and other farming challenges. Researchers worldwide are

studying pseudocereals for their role in building sustainable and
FIGURE 1

An overview of promoting and expanding alternative crops.
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diverse food systems. The distribution of species in various categories

of alternative crops, where the majority proportion accounts for fruits

and nuts, is shown in Figure 2. The figure depicts that pseudocereals

contribute only 14%, indicating their significant role as alternative

crops in different food groups. Naturally gluten-free pseudocereals are

rich in amino acids, fatty acids, vitamins, and minerals, supporting

better nutrition (Sindhu and Khatkar, 2019; Rao and Poonia, 2023).

They can grow in poor soil, making them a sustainable food source in

arid regions. Currently, they are mainly grown in native areas,

highlighting the need to expand the cultivation worldwide to meet

the rising demand (Sindhu and Khatkar, 2019; Nandan et al., 2024).

Quinoa crop has been referred to as “superfood” as it has

historical background of over 5,000 years in the agriculture sector,

and it is believed to be originated in the Andean region, with highest

production in some South Asian countries such as Bolivia and Peru

(Fabio and Parraga, 2017). The consumption of quinoa has been

reported as maximum in North America, having the highest market

share, i.e., 30%. Asia Pacific and Europe are the second and third in

terms of the number of consumers and market share, which are 25%

and 20%, respectively. It is reported that quinoa consumption has

increased exponentially after 2013 (Hunt et al., 2018). The market

size of quinoa is expected to increase up to $124.27 at the end of

2025 at a compound annual growth rate (CAGR) of 10.2% (The

Business Research Company, 2025). They contain a variety of

phytochemicals, which can help in managing obesity, heart

diseases, cancers, and diabetes (Singh and Singh, 2016). Quinoa

pseudocereal is the preferred diet for celiac patients as it does not

contain gluten (Martıńez-Villaluenga et al., 2020). Some of the

quinoa accessions showed significant performance in terms of grain
Frontiers in Plant Science 04
yield, quality, protein, and dry matter content (Rao and

Shahid, 2012).

One of the important essential amino acids, lysine, lacking in

other grains, is found abundantly in amaranth pseudocereal

(Jagadeeswaran et al., 2022), which makes it an excellent choice

in addressing the challenges of global malnutrition and food

insecurity (Weerasekara and Waisundara, 2020). Amaranth can

be used for cultivation in arid and semi-arid regions (Jagadeeswaran

et al., 2022). Recently, amaranth has gained popularity because it

can be integrated with modern health-conscious diets (Sharma,

2017). They are cultivated and originated mostly in the various

parts of Africa, Central and South America, South-East Asia, and

North America (Fabio and Parraga, 2017). A recent report shows

that North America has increased consumer demand for amaranth.

Apart from this, some parts of Europe such as Germany, Italy, and

France and Asia Pacific regions like India, China, and Japan also

have high market growth and consumption for amaranth due to

increased awareness about its potential benefits (Fortune Business

Insights, 2024). According to Maximize Market Research, 2022–29,

the CAGR for amaranth is 11.51% (Nandan et al., 2024). In the case

of buckwheat, Central Asia and Siberian steppe regions are

considered the native place. It is prominently used as staple food

in some countries of Western Asia and Eastern Europe (Fabio and

Parraga, 2017). It is reported that right now China is the largest

producer of buckwheat, with a total production of more than 55%,

and its consumption is increasing day by day because of its health

benefits. Some European countries such as Russia, Poland, France,

and Ukraine are also big names in the buckwheat market as leading

producers (Vidaurre-Ruiz et al., 2023). It is reported that the annual
FIGURE 2

Pseudocereals’ contribution in alternative food groups. Source: Indian Food Composition Tables, NIN (Longvah, 2017).
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cultivation of buckwheat in 2019 was 1,673,478 ha worldwide, along

with the production of almost 2,042,401 tons (Graziano et al., 2022).

It contains almost all essential amino acids with no gluten and has

many nutritional and medicinal properties along with the ability to

grow in less fertile soil (Fortune Business Insights, 2024). The

anticipated increase in the market of buckwheat industry is

expected to reach or grow up to US$33.14 billion by 2034 from

US$19.15 billion in 2025, with expected CAGR of approximately

6.3% for the next 10 years (Market Research Future, 2025). These

characteristics of pseudocereals contribute to their role in

promoting sustainable agriculture.

While quinoa, amaranth, and buckwheat are the most well-

known pseudocereals (Bender and Schoenlechner, 2021), other less

common varieties exist. These include fonio (Digitaria exilis and D.

iburia), intermediate wheatgrass (Thinopyrum intermedium), and

wild rice (Zizania palustris) (Williams, 1995). The unique chemical,

physical, and processing properties of pseudocereals, such as smaller

seed kernel size and specific starch structure, distinguish them from

traditional cereals. Canihua is mentioned as another important

pseudocereal alongside the more common varieties (Bender and

Schoenlechner, 2021). Intermediate wheatgrass (Thinopyrum

intermedium) shows strong potential as a sustainable bread

ingredient, with 15% flour substitution yielding optimal loaf

volume, texture, and antioxidant properties while enhancing the

pigment and color (Williams, 1995). Studies on the germination

(24–72 h at 28°C) ofDigitaria exilis and Digitaria iburua significantly

enhanced its protein, dietary fiber, amino acids, minerals, resistant

starch, phenolics, and antioxidant activity while reducing

antinutritional factors. It improved water and oil absorption

capacity and slightly altered pasting and thermal properties, with a

decrease in bulk density. Germination time, rather than variety, was

the main factor influencing these changes, highlighting its potential to

produce nutritionally enhanced fonio for novel food applications

(Bassey et al., 2023). Studies on genomic analysis of 265 accessions

revealed that white (Digitaria exilis) and black (D. iburua) fonio

underwent independent domestications without gene flow, with

cultivation expanding in the early Common Era and later declining

due to social and agricultural shifts, including the slave trade and crop

introductions, providing valuable resources for conserving these

climate-resilient cereals (Kaczmarek et al., 2025). Another study on

cultivated northern wild rice (Zizania palustris) showed that it is a

high-value crop primarily grown in Minnesota and California, with

domestication starting ~60 years ago to meet rising demands.

Breeding has focused on seed retention, yield, and size, but

progress is limited by its unique seed physiology and annual

growth cycle. Recent advances include a reference genome and

improved genotyping methods, enabling comparative genomics

with Oryza sativa to identify key domestication traits. Given its

ecological, cultural, and agricultural importance in the Great Lakes,

breeding programs emphasize the conservation of natural stands and

inclusion of diverse stakeholders (McGilp et al., 2023).
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Adaptability of pseudocereals

Research studies on pseudocereals have investigated

adaptability to marginal soils and varied climatic conditions for

improving food security, particularly in regions facing

environmental and agricultural challenges. Studies have shown

that quinoa and amaranth could thrive in high-altitude areas

exceeding 3,000 meters above sea level. When compared to

traditional crops, pseudocereals are remarkably resilient to

climate change stress factors. Quinoa is an extremophile, able to

survive in salty and dry environments (Pizzio, 2022), while

amaranth tolerates heat thanks to special heat shock proteins

(Goel et al., 2023). These characteristics of pseudocereals make

then valuable assets toward more sustainable and climate-resilient

agriculture (Nagaraja et al., 2024; Hlásná Cepková et al., 2022). A

research study was conducted in the Arabian Peninsula region

where the soil fertility and water resources are limited. Buckwheat

can adapt to extreme conditions and has a shorter cultivation

period. Even though the crop has been underutilized, in some

regions it remains an important source as a functional ingredient in

health-conscious and native foods (Potkule et al., 2021; Mahata,

2018; Zamaratskaia et al., 2023; Noreen et al., 2020). One of the

research studies on quinoa variety that has been investigated for its

effect on different salinity levels showed a significant increase in

protein levels, suggesting that the crop may possess genetic traits

related to salinity stress tolerance (Derbali et al., 2021). Another

study showed that growing quinoa with pomegranate in an

agroforestry system could help manage soil salinity and improve

land use efficiency (Abidi et al., 2024).

Furthermore, quinoa and amaranth are widely recognized as

climate-resilient crops that can withstand drought and extreme

temperature conditions due to less leaf surface area, wax-coated

leaves, and deep root system. Studies on pathogen resistance in

pseudocereals using a model plant Eutrema salsugineum showed

enhanced pathogen resistance against Pseudomonas syringae. This

resistance is due to the activation of PR1, a defense-related gene

(Yeo et al., 2015). These antimicrobial properties could be a valuable

tool for breeding pseudocereals in developing climate-resilient

cultivars (Banoth et al., 2024; Madhu et al., 2023). In Tartary

buckwheat, research studies have highlighted its resistance to

abiotic stresses such as aluminum toxicity, cold temperatures, and

drought because of the production of rutin. Recent research has

identified a new gene, FtbZIP5, from Tartary buckwheat showing a

significant role in drought and salinity tolerance when the gene was

introduced into transgenic Arabidopsis plants. FtbZIP5 gene

triggers ABA-related signaling pathways specifically causing a

strong expression of several key stress-responsive genes such as

RD29A, RD29B, RAB18, RD26, RD20, and COR15 (Li et al., 2020).

The various mechanisms by which pseudocereals respond to

stressors—such as drought, salinity, pathogens, and pests—are

illustrated in Figure 3.
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Bioavailability and health benefits of
pseudocereals
The demand for health-focused products is rising due to

growing consumer awareness of their dietary benefits. The

current research emphasizes the development of innovative

gluten-free products using pseudocereals, alongside efforts to

enhance their functionality through processing aids like starches,

hydrocolloids, and techniques such as extrusion (Woomer and

Adedeji, 2020; Martıńez-Villaluenga et al., 2020). The global

gluten-free market is expanding rapidly, with sales reaching $6.47

billion in 2023. Moreover, health-conscious consumers are actively

seeking foods that help lower the risk of illnesses like cancer,

diabetes, and heart diseases. Rich in nutrients and bioactive

compounds as mentioned in Table 1, pseudocereals align well

with these preferences (Martıńez-Villaluenga et al., 2020; Kaur,

2023; Thakur et al., 2021). Rising cases of celiac disease and gluten

sensitivity have boosted the demand for gluten-free options. As

naturally gluten-free grains, pseudocereals are ideal for these diets

(Rollán et al., 2019; Wanniarachchi et al., 2023; Szűcs, 2023).

However, their commercialization is still limited due to

processing challenges and low consumer acceptance (Xu et al.,

2020; Alvarez-Jubete et al., 2010; Woomer and Adedeji, 2021). To

make pseudocereals healthier and easier to digest, a variety of

processing methods—like soaking, cooking, fermentation, and

even microwave or irradiation techniques—are commonly used.

Heat treatments are widely used for things like sterilization and

enhancing flavor. Overall, both traditional methods like baking and

milling and more advanced ones like enzyme-based processing play

an important role in shaping the nutritional value of pseudocereals

(Langyan et al., 2024).

Pseudocereals are rich in antioxidants and soluble fiber which help

regulate blood sugar, improve digestion, and lower blood cholesterol

levels, supporting heart health. The fiber content is very similar to that

in fruits and vegetables. This fiber, along with other beneficial

compounds, has been associated with antioxidant and anticancer

effects, boosting the immune system. These superior health-

promoting properties make pseudocereals a promising choice in
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developing functional foods (Zhu, 2020). Researchers have identified

six bioactive peptides in amaranth that may strongly inhibit

angiotensin-converting enzyme (ACE) activity, suggesting a role in

controlling blood pressure and supporting cardiovascular health

(Toimbayeva et al., 2025). Pseudocereals such as Tartary buckwheat,

amaranth, and quinoa offer a wide range of health benefits due to their

rich bioactive compounds. Tartary buckwheat has been shown to

lower plasma cholesterol, reduce inflammation, inhibit cell

proliferation, and induce apoptosis, primarily through its proteins

and polysaccharides. Amaranth contributes to reducing blood

cholesterol levels and exhibits antioxidant, antimicrobial, anti-

inflammatory, and hepatoprotective properties, with its protein

hydrolysates and peptides playing a key role. It also shows promise

in osteoporosis treatment. Quinoa offers antioxidant effects, promotes

gut health, and reduces inflammation in gut cells due to components

such as chenopodin protein (Kaur, 2023). Studies on lactic acid

fermentation of protein-rich amaranth flour with probiotic LAB

strains Lacticaseibacil lus rhamnosus MIUG BL38 and

Lactiplantibacillus pentosus MIUG BL24 showed enhanced

antioxidant activity and increased phenolic content—particularly

epigallocatechin—and demonstrated potential for developing gluten-

free, tribiotic-enriched functional foods (Souare et al., 2025).

Quinoa saponins have been suggested to possess immunoadjuvant

activity, as shown in studies with mice immunized with ovalbumin,

where both humoral and cellular immune responses were enhanced

(Verza et al., 2012). In another study, oat- and Tartary buckwheat-

based diets were fed to hypercholesterolemic hamsters. The results

indicated that these foods could lower serum lipid levels by reducing

cholesterol absorption in the liver and significantly promoting lipid

excretion in feces. They also boosted short-chain fatty acid production,

which helped regulate the gut microbiota and contributed to the

effective management of hypercholesterolemia (Sun et al., 2019).

Amaranth oil has been linked to improved cardiovascular health,

with participants reporting fewer symptoms such as headaches,

weakness, and exercise-induced exhaustion. Remarkably, the cardiac

rhythms in 40%–50% of participants returned to normal during the

study (Thakur et al., 2021). In overweight women, consuming 25 g of

quinoa flakes daily for 4 weeks significantly reduced blood

triglycerides, total cholesterol, and low-density lipoprotein (LDL)
FIGURE 3

Pseudocereals’ stress resistance/tolerance mechanisms to abiotic and biotic stress factors.
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TABLE 1 Bioavailability of pseudocereals.

Nutritional
parameters

Quinoa (Chenopodium quinoa) Amaranth (Amaranth spp.) Buckwheat (Fagopyrum esculentum)

Proximate composition
Crude protein

13.11 14.59 13.25

Total fat
Dietary fiber
Total
Insoluble
Soluble
Carbohydrate

5.50
14.66
10.21
4.26
53.65

5.74
7.02
5.76
1.26
59.98

3.40
10.00
-
-
71.50

Mineral composition
(mg/100 g)
Copper (Cu)
Calcium (Ca)
Magnesium (Mg)
Iron (Fe)
Manganese (Mn)
Potassium (K)
Phosphorus (P)
Zinc (Zn)
Sodium (Na)

198
0.48
7.51
119
1.77
212
474
4.50
3.31

181
0.81
9.33
325
5.29
374
433
2.70
2.66

18
1.10
2.20
231
1.30
347
460
1.00
2.40

Vitamins
a-Ergocalciferol
(vitamin D) (μg)
a-Tocopherol (vitamin
E) (mg)
Phylloquinones
(vitamin K1) (μg)
Thiamine (vitamin B1)
(mg)
Riboflavin (vitamin B2)
(mg)
Niacin (vitamin B3)
(mg)
Pantothenic acid
(vitamin B5) (mg)
Vitamin B6 (mg)
Biotin (vitamin B7)
(μg)
Folates (vitamin B9)
(μg)

-
2.08
2.00
0.83
0.22
1.70
0.62
0.21
0.62
1.73

0.04
1.92
-
0.04
0.04
0.45
0.24
0.50
1.92
27.44

-
0.32
7.00
0.42
0.19
6.15
0.44
0.58
-
54.00

Amino acids (g/100 g
protein)
Arginine (ARG)
Alanine (ALA)
Glutamic acid (GLU)
Aspartic acid (ASP)
Glycine (GLY)
Proline (PRO)
Serine (SER)
Tyrosine (TYR)
Histidine (HIS)
Isoleucine (ILE)
Leucine (LEU)
Lysine (LYS)
Methionine (MET)
Cystine (CYS)
Phenylalanine (PHE)
Threonine (THR)
Tryptophan (TRP)
Valine (VAL)

4.35
7.85
8.40
13.75
4.80
5.67
4.56
1.98
2.98
3.75
6.08
5.55
2.24
1.85
4.35
3.01
1.25
4.55

4.26
7.77
12.57
16.12
8.50
3.76
7.79
2.85
1.86
2.82
4.83
5.45
1.86
1.60
3.98
3.02
1.05
4.34

4.50
9.70
11.30
18.60
6.30
3.80
4.70
2.10
2.70
3.80
6.40
6.10
2.50
1.60
4.80
3.90
2.00
4.70
F
rontiers in Plant Science
 07
Hyphens (-) indicate values that were either below the limit of detection or unreported. The data were compiled from multiple sources, including Dayakar et al. (2017); Gopalan et al. (1989);
Johnson and Croissant (1985); Longvah (2017); Pomeranz and Robbins (1972); Ikeda and Kishida (1993), and the USDA National Nutrient Database for Standard Reference (accessed October
28, 2019).
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cholesterol in both prospective and double-blind intervention trials

(De Carvalho et al., 2014). Some species of amaranth also show anti-

cancer potential. Compounds inAmaranthus tricolor have been found

to inhibit tumor cell proliferation, while proteins from Amaranthus

hypochondriacus seeds contain peptides linked to cancer-preventive

effects. An amaranth lunasin-like peptide was shown to inhibit H3 and

H4 histone acetylation in HeLa cells, with the effect being dose-

dependent. This epigenetic mechanism, similar to that found in

soybean and barley, may explain lunasin’s ability to help prevent

cancer (Huerta-Ocampo and de la Rosa, 2011). Quinoa also

demonstrates antioxidant properties. In animals fed a high-fructose

diet to induce oxidative metabolic stress, quinoa consumption

increased the activity of key antioxidant enzymes and reduced lipid

peroxidation in plasma, red blood cells, andmultiple organs, including

the heart, kidney, liver, and brain (Pasko et al., 2010). In terms of

cancer-related effects, buckwheat polysaccharides did not directly

inhibit the growth of human PC-3 prostate cancer cells but instead

reduced their proliferation by stimulating the release of anti-

inflammatory biomarkers (Lin and Lin, 2016). Similarly, in rats with

induced tumors, buckwheat protein was found to protect against

colon cancer by inhibiting cell proliferation (Tomotake et al., 2006).

Buckwheat has also been shown to support gut health. In experimental

rat models, buckwheat-based diets increased the populations of

aerobic mesophilic and lactic acid bacteria, particularly Lactobacillus

plantarum and Bifidobacterium spp (Préstamo et al., 2003). Quinoa

has even been used to create a symbiotic beverage that extended the

fermentation period and enhanced the survival of Lactobacillus casei

LC-1 (Bianchi et al., 2015). For individuals with diabetes, buckwheat

administration—both in chronic and acute cases—has been shown to

improve metabolic and cardiovascular markers (Stringer et al., 2013).

Amaranth protein likewise improved glucose tolerance and plasma

insulin levels in a streptozotocin (STZ)-induced diabetes model. In

diabetic rats, amaranth oil and grain supplementation prevented

increases in total cholesterol, triglycerides, and VLDL while also

reducing hyperglycemia caused by STZ by 77% and 81%,

respectively (Martıńez-Villaluenga et al., 2020). These findings

underscore the potential of pseudocereals as functional foods for

preventing and managing various health conditions.
Pseudocereals in food security

In today’s market-driven food systems, pseudocereals are

gaining attention as valuable ingredients. Processing methods like

lactic acid fermentation can improve their nutritional and

functional qualities. After processing, pseudocereals are used in

baked goods, fermented drinks, and extruded snacks (Alencar and

de Carvalho Oliveira, 2023; Graziano et al., 2022; Martıńez-

Villaluenga et al., 2020). Traditional cereal-based foods can be

blended with pseudocereals which will be an effective way to

enhance their nutritional value. One study tested adding 50%

refined or whole-meal quinoa, amaranth, and buckwheat flours

into water biscuits (WB) to evaluate the antioxidant capacity and

heat resistance. Buckwheat had the highest tocol content

(86.2 mg/kg), einkorn had the highest carotenoids (5.6 mg/kg),
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and buckwheat and quinoa had the most conjugated phenolics

(230.2 and 218.6 mg/kg, respectively). The WB with pseudocereals

showed better antioxidant profiles and less heat damage compared

to 100% einkorn or bread wheat WB, although lysine loss was

higher. They also had a more balanced amino acid profile (Estivi

et al., 2022). Processing techniques like sprouting, cooking, and

fermentation offer more opportunities for health-focused products.

A study on quinoa (var. Tunkahuan) and amaranth (var. Alegrıá)

found that germination and 24-h fermentation increased

polyphenols and flavonoids, while fermentation with Lactobacillus

plantarum greatly boosted antioxidant activity.

Germinated seeds exhibited higher macro- and microelement

content compared to raw seeds. Tests using the S. cerevisiae D7

strain confirmed that seed and germinated seed extracts had no

genotoxic effects and protect cells from damage by reactive oxygen

species (ROS). These findings suggest that germinated seeds and

fermented products from these varieties are highly suitable for

inclusion in diets and dietary supplements (Vento et al., 2024).

Table 2 summarizes the different products made using

pseudocereals and their applications. Dehulled buckwheat seeds

are rich in essential nutrients and bioactive compounds. Studies

showed that buckwheat flour (30%) used to make bread had good

sensory and baking qualities. Similarly, pasta can be enriched with

proteins, minerals, and rutin by using buckwheat flour without

affecting its cooking and sensory characteristics (Marti et al., 2011).

Amaranth is high in protein, while starch, fat, fiber, and mineral

contents are similar in quinoa and amaranth. Buckwheat has more

starch, moderate protein, and fewer fats, fibers, and minerals, but

with the highest phenolic content. All three pseudocereals are rich

in phosphorus, potassium, and magnesium. Polysaccharides in

pseudocereal cell walls were examined for their structural and

functional traits, which is comparable to those typically found in

fruits and vegetables, suggesting that pseudocereals might offer

comparable or even more health benefits when used in the

formulation of food products (De Bock et al., 2022). Quinoa,

amaranth, and buckwheat are valued for their proteins, fiber,

bioactive compounds, and folic acid (Gorinstein et al., 2002; Das

and Das, 2016; Schoenlechner et al., 2010). Their strong nutritional

profiles make them important for food and nutrition security, with

quinoa and amaranth—often called “nutri-cereals”—showing great

potential in production, consumption, and trade.
Recent molecular advances in
pseudocereals

In recent years, molecular studies have been accelerated due to

advancements in next-generation and transcriptome sequencing

analysis. This has made the study of molecular markers and the

application of molecular breeding very easy. Genetic improvements

can be further pursued based on available knowledge about

amaranth (A. hypochondriacus), with 466-Mb genome and 24,829

protein-coding genes (Sunil et al., 2014); quinoa, with a 1.5-Gb

genome size and 54,438 annotated genes (Zou et al., 2017); and

buckwheat (F. esculentum), with a 1.12-Gb size and 35,186 protein-
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TABLE 2 Industrial applications of pseudocereals.

Products Applications References

lacks gluten Gambus et al., 2010

ineral composition than wheat breads Islam et al., 2016

8 out of 9 in hedonic scale showed enhanced iron and dietary fiber content Lemos et al., 2012

maranth flour was found to increase in volume and produced consistent crumb de la Barca et al., 2010

ving texture of noodles, as it enhanced firmness and reduced cooking loss
uality
d in making gluten-free spaghetti. Quinoa and rice flour, gluten-free blends have been used to make tasty

Borges et al., 2003

icochemical properties to traditional wheat-based beers, including pH, amino acid content, fermentability, and
es, with a pleasant aroma, balanced taste, and appropriate bitterness
heat and quinoa malts have been successfully brewed, showing viscosity and pH levels much like those found in

roduction

Phiarais et al., 2010
Qin et al., 2013

be utilized as animal feed
mals

Leiber, 2016
Zulkadir and Iḋikut, 2021
Peiretti, 2018

well received for their taste and offered strong nutritional and physico-chemical benefits. Had low water activity,
nutritional value and appealing flavor and texture
and breakfast porridge or as a base in infant food formulation
highest anthocyanin and phenolic content

Schoenlechner, 2017
Jancurová et al., 2009
Srujana et al., 2019
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Gluten-free bakery products

Amaranth improves the nutritional quality of food that

Bread made from buckwheat had significantly higher m

10% of amaranth flour with cheese bread could score 6.

Gluten-free bread with 60:40 ratio of popped and raw a

Noodles and pasta

Buckwheat does not contain gluten ingredient for impro
For quinoa pasta, emulsifiers are added to enhance its q
Corn flour and quinoa flour (5%–15%) were investigate
macaroni and pasta

Beverages

Beers brewed with buckwheat malt showed similar phys
alcohol content. Also delivered satisfying sensory qualiti
Gluten-free, bottom-fermented beers made from buckw
traditional barley beers
Buckwheat’s bioactive components are suitable for tea p

Animal fodder
Buckwheat plant residues can be used as animal feed
Quinoa plant is rich in minerals and plant residues can
Amaranth can be used to reduce cholesterol level in ani

Granolas and breakfast cereals

Granolas made with quinoa, amaranth, or linseed were
which helped extend shelf life, while still providing high
Quinoa and amaranth can serve as a substitute for rice
Quinoa and cranberry extract as breakfast cereal showed
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coding genes (BGDB; http://buckwheat.kazusa.or.jp) (Yasui et al.,

2016). Three different research groups (Yasui et al., 2016; Jarvis

et al., 2017, and Zou et al., 2017) have performed next-generation

sequencing for the sequencing of the quinoa genome. In quinoa,

molecular markers like SSR and SNP and insertion/deletion

markers have been identified for 11 accessions (Zhang et al.,

2017). Drought tolerance genes have been found in two genotypes

(Raney, 2012) and drought-induced genes and pathways in the

Chilean genotype R49 (Morales et al., 2017). Quinoa also has a

higher level of lysine and more vitamins E and B than many cereals

(Zou et al., 2017). Research on the drought-tolerant quinoa

genotype “Dianli 129” found 38,670 genes and 142 pathways.

Changes in specific genes and metabolites helped maintain

flavonoid, starch, and sucrose metabolism—key to drought stress

resistance (Huan et al., 2022).

A study of quinoa germplasm from eight countries used the

iPBS-retrotransposon marker system with 11 highly polymorphic

primers to assess genetic diversity. It provided data on

polymorphism percentage, mean PIC, effective alleles, Shannon’s

index, and gene diversity (Barut et al., 2020). A recent study by

Rahman et al. (2024) analyzed quinoa accessions for agronomic and

biochemical traits using next-generation sequencing. They found

nine marker–trait associations for saponin content across eight

chromosomes, offering tools for marker-assisted selection to

develop sweeter, higher-yield quinoa. Xiao-Lin et al. (2022)

identified 13 SnRK2 genes, which play key roles in ABA signaling

and stress responses. Tariq et al. (2022) confirmed that the

CqKCS2B.1 gene helps quinoa tolerate salt stress by regulating

suberin biosynthesis, opening possibilities for breeding salt-

tolerant varieties.

Two cultivars of quinoa, named Dianli-3101 and Dianli-3051,

have been studied extensively by Xie et al. (2023) under very high

temperature conditions. They found some photosynthetic genes

that were downregulated and a large change in differential

accumulation for lipids and flavonoids (Xie et al., 2023).

Transcriptomics has been key in identifying stress-protective

genes in amaranth. Singh et al. (2024) compared the genomes of

five amaranth species—A. hypochondriacus, A. cruentus, A. palmeri,

A. hybridus, and A. tuberculatus—identifying 170,477 protein-

coding genes, with most repeats being LTRs. They found species-

specific SNPs linked to a variation in commercially important

genes. Translational and post-translational studies, such as

microRNA-guided silencing, along with transcription factors like

bHLH, NAC, bZIP, C2H2, Dof, AP2/ERF, WRKY, and MYB, play

major roles in stress response.

In buckwheat, Zhang et al. (2021) conducted whole-genome

resequencing of 510 germplasms and created a genomic variation

databank for Tartary buckwheat. They identified candidate genes,

such as FtUFGT3 and FtAP2YT1, linked to flavonoid accumulation

and grain weight. Based on these findings, two varieties with

different traits were developed through separate domestication

events. Zhao et al. (2023) showed that domestication can

influence metabolite accumulation. Using mGWAS with EMMAx

and FaST-LMM on 567 metabolites, they found 1,253 lead SNPs

linked to 398 metabolites—291 related to flavonoids and 171 to
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phenolic acids. One SNP alone was associated with 128 metabolites,

including isovitexin and catechin. Chemical modifications and

metabolic pathways can improve metabolite stability and

availability, supporting the development of superior varieties.

Wang et al. (2025a) studied mineral and trace element variation

in 199 Tartary buckwheat accessions. They found that changes in

the promoter region of the FtACA13 gene (an auto-inhibited Ca²+-

ATPase) are linked to salt tolerance and Na concentration. The

GWAS analysis identified 52 genetic loci associated with 10

elements. The FtYPQ1 gene, a vacuolar amino acid transporter,

was linked to improved Zn tolerance, while the FtNHX2 protein (a

Na+/H+ exchanger) may play a role in arsenic tolerance, supported

by a significant signal locus on chromosome 6. A more complete

characterization combining phenotypic, nutritional, biochemical,

physiological, and molecular data is needed to develop superior

genotypes to combat hunger and ensure food security.

Some latest collections of pseudocereal crops in both national

and international gene banks have been characterized based on key

morpho-agronomic traits as shown in Table 3.
Pseudocereals: challenges and
strategies

Climate change in arid regions causes unpredictable weather

affecting ecosystems, lowering agricultural productivity, and giving

immense stress on traditional crops that have no tolerance to

extremes. As a result, valuable plant biodiversity and traditional

knowledge about resilient, indigenous crops have been lost. Soil

erosion, desertification, and habitat loss are increasing along with

pollution exacerbating the condition (Abebaw, 2025). Pseudocereals

show promising solutions for these stress factors as the need to find

sustainable, drought-resistant, and climate-smart crops increases.

These underutilized crops are unique to grow in adverse conditions,

but their potential remains untapped. Key challenges are the

changing climate and outdated farming practices which are not

suitable for arid environments (Bekkering and Tian, 2019). Over-

dependence on high water demanding crops, combined with the use

of excessive fertilizers, has severely degraded the soil (Wang et al.,

2025b). Pseudocereals, with their ability to thrive in diverse soil

types and dry climates, offer a sustainable alternative. However,

progress should be made on optimizing cultivation methods and

crop management technologies based on plant species. Even though

alternatives like quinoa or amaranth could offer better yields and

nutrition in many arid regions, farmers are still hesitant to try these

crops. On the other hand, the growing interest in healthy and

sustainable diets presents an opportunity for the wider adoption of

pseudocereals—but only if more people become aware of their

nutritional benefits and culinary versatility. Nevertheless, their

broader consumption is hindered by factors such as the presence

of anti-nutritional compounds and a naturally bitter taste, which

often necessitate additional processing and, in turn, raise

production costs. Furthermore, pseudocereals are unlikely to fully

replace true cereals because of certain organoleptic and

technological limitations (Graziano et al., 2022). Their cultivation
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TABLE 3 Molecular advances in pseudocereals.

Studies on genetic Gene Quantitative trait loci
le-genome sequencing References

anscriptome of A. hypochondriacus
d independent C4 evolution. The grain
nth genome (377 Mb, 3,518 scaffolds)
ed 23,059 protein-coding genes, with 48%
ting of repeat sequences. A chromosome-
ssembly (403.9 Mb) constructed with Hi-C
atin contact maps and PacBio long reads
ded 98% of the genome into 16
osomes Domestication studies identified a
like transcription factor as a potential
tor of seed coat color variation. Three
ndent domestication events from a single
ncestor were observed, with the conversion
k to white seed coats linked to this process

Wu and Blair, 2017;
Casique-Arroyo et al.,
2014; Palmeros-Suárez
et al., 2015,
Julio et al., 2015, 2016;
Sunil et al., 2014; Clouse
et al., 2016; Lightfoot
et al., 2017; Stetter et al.,
2020

ced a draft assembly with 387,594 scaffolds
next-generation sequencing. Combined
le sequencing approaches, including
na short reads, SMRT long reads, Hi-C
cing, and BioNano genome maps.
ated 33,366 protein-coding genes, offering a
ehensive resource for functional genomics
eeding programs

Hou et al., 2016; Shi
et al., 2017; Mizuno and
Yasui, 2019; Gao et al.,
2017; Yao et al., 2017;
Zhu et al., 2015; Wu
et al., 2019; Thiyagarajan
et al., 2016; Wang et al.,
2014; Yokosho et al.,
2014; He et al., 2019; Liu
et al., 2018; Fang et al.,
2014; Liu et al., 2019;
Takeshima et al., 2019;
Yasui et al., 2016; Zhang
et al., 2017

hed a draft genome sequence of quinoa,
ting of 25k scaffolds, totaling 1 Gbp
ic size N50 contig length of 86 kbp.
or quality genome draft was generated,
ising 64.5% repeated sequences including
genes for protein-coding and 192
NA genes

Devi and Chrungoo,
2017; Maughan et al.,
2012; Zhang et al., 2017;
Winkel et al., 2018;
Saad-Allah and Youssef,
2018; Raney et al., 2014;
Chou et al., 2017; Wu
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Pseudocereals
Marker
development

variation and population
analysis

expression
profiling

(QTL) analysis and gene
discovery

Who

Amaranth

Plant material from six
Amaranthus species were
gathered from eight
geographic regions of
Indo-Gangetic plains, and
unique SCAR markers
were developed (A.
caudatus, A. cruentus, A.
gangeticus, A.
hypochondriacus, A.
paniculatus, and A. viridis)

Genetic analysis revealed that A.
hypochondriacus and A. caudatus
are closely related, as 313
accessions with 0.75% genomic
overlap, and were grouped into two
distinct genetic lineages
Gene-specific primers for SSSI and
GBSSI genes were employed to
distinguish A. caudatus and A.
hypochondriacus; 22 detected alleles
showed an average of 0.657
polymorphism information
content, reflecting diversity.
A. powellii and A. retroflexus
exhibited the highest SNPs, while
A. quitensis and A. caudatus
displayed very close genetic
relationships. Genetic diversity was
observed between edible and wild
amaranth species

Identified 8,260
homologous sequences
with A. tuberculatus
and 1,971 stress-
responsive genes.
Revealed differentially
expressed proteins and
transcripts involved in
stress defense and
signaling pathways.
Upregulated
transcription factors
like DOF1 and MIF1
were associated with
stress adaptation and
growth regulation.
Downregulated genes
were linked to cell
differentiation and
secondary metabolism

Identified AhDODA-1, AhDODA-2,
AhcDOPA5-GT, and AhB5-GT
genes for betanin biosynthesis.
AhNF-YC: Linked with stress
resistance and growth.
Ah24: A newly identified stress-
responsive gene from Amaranthus
cruentus roots has been associated
with reactions to salt stress,
herbivore attack, and exposure to
methyl jasmonate. In addition, ERF
and Dof transcription factors linked
to stress were found to play roles in
the plant’s response to salt, drought,
and signaling molecules like
jasmonic acid, salicylic acid, and
abscisic acid (ABA)

The t
reveal
amara
includ
consis
scale
chrom
scaffo
chrom
MYB-
regula
indep
wild a
of dar

Buckwheat

AFLP and pooled DNA
mapping approaches
identified genetic markers
associated with Sht1 allelic
site in a cross between
non-brittle and brittle
buckwheat lines.
Microsatellite variability in
common buckwheat. SSR
marker development in
Tartary buckwheat

Identified high levels of genetic
variation within cultivars and
populations along with 3 RAPD
markers. 19 Japanese varieties using
5 microsatellite loci. Reported
86.5% polymorphism in 79 Tartary
buckwheat accessions using AFLP
markers. Analyzed 179 common
buckwheat accessions with SSR
markers. GBS in buckwheat
revealed more nucleotide diversity
(0.0065). RAPD and AFLP markers
explored genetic relationships
among wild and domesticated
varieties

RNA-seq of filling
stage seeds. Key genes
in storage proteins,
flavonoid biosynthesis,
transcription factors
identified. RNA-seq
revealed aluminum-
responsive genes
involved in cell wall
defense and oxidative
stress. Identified
numerous drought-
responsive genes
through
transcriptomic data
analysis

Two dominant genes are identified
for seed shattering. QTLs identified
for photoperiod sensitivity. High
expression of genes for flavonoid
and rutin biosynthesis identified.
FtGBSSI gene in Tartary buckwheat,
crucial for amylose synthesis
isolated and characterized. Identified
AI-responsive genes, abiotic stress
genes, auxin-signaling genes.
Isolated FaesAP3, a MADS-box
gene, identified 65 MADS-box
genes, Identified FePG1 associated
with heteromorphic self-
incompatibility

Produ
using
multi
Illum
seque
Anno
comp
and b

Quinoa

A linkage map was
constructed for a
recombinant inbred line
(RIL) using 216
polymorphic SSR markers.
Morphological
characteristic variations

Studied 19 accessions of
Chenopodium using 33 RAPD
primers, characterized Chilean and
South American quinoa accessions
with SSR markers, developed 511
SNP assays and InDels, racked
quinoa diversity over 18 centuries

Identified 20,337
unique transcripts and
462 putative drought-
and abiotic-stress-
related gene products.
Used RNA-Seq to
study Groundnut

Characterized homologous loci in
salt tolerance and found differential
expression of genes in shoots and
roots under salt stress. Identified 90
NAC transcription factors. Provided
two 11S genes with cDNA and
genomic sequences. Isolated Ty3-
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remains largely confined to native regions, which raises concerns

about resource exploitation and the socio-economic wellbeing of

smallholder farmers (Graziano et al., 2022; Nandan et al., 2024).

Processing techniques such as fermentation and germination have

shown promise in improving nutritional value and nutrient

bioavailability (Henrion et al., 2020), positioning pseudocereals as

valuable alternatives to enhance dietary diversity and support better

health outcomes.

Migration of farmers to urban areas has further complicated the

issue causing lack of manpower in the agriculture sector (Kalantaryan

et al., 2021). In arid regions, the overuse of natural resources continues

to threaten the long-term sustainability of agriculture. Main crops

such as maize, wheat, and corn have been given more importance, and

pseudocereals struggle to compete with those crops economically.

Moreover, farmers are skeptical to cultivate pseudocereal crops as it is

unfamiliar for them due to lack of awareness about its nutritional

value and cultivation methods. There is a lack of policy and supportive

frameworks for the cultivation and marketing of pseudocereals

(Vidaurre-Ruiz et al., 2023). Pseudocereals remain vulnerable due to

limited conservation efforts and funding and poor integration between

preservation and sustainable use. Access to diverse germplasms and

stronger research are essential to breed varieties suited to arid zones

(Bekkering and Tian, 2019). Unlocking the potential of pseudocereals

will require coordinated efforts to address environmental, agronomic,

social, economic, and political challenges.

Developing eco-geographic databases for targeted pseudocereal

species can help in identifying its ideal growing areas and conditions.

Furthermore, building comprehensive databases that track both the

nutritional value and social impact of these pseudocereal crops will give

policymakers the solid, evidence-based insights they need to make

informed decisions (Hoehnel et al., 2022). Mapping suitable ecological

zones can reduce competition with major crops while maximizing

benefits for people in dry regions. Strengthening local seed systems

through collaborative breeding will give farmers access to high-quality

seeds. Combining scientific research with traditional knowledge can

improve adoption (Shrestha and Gauchan, 2020). Research outcomes,

success stories, and lessons learned from farmers, researchers, and

community members can be shared to help spread innovation (Zoundj

et al., 2024). Another key step in increasing the value chains for

pseudocereals is that once they are harvested directly, it should be

linked to the consumers (Figure 4). This will reduce costs and open up

markets for pseudocereals crops. Policymakers can offer incentives and

subsidies for pseudocereal crops that encourage crop diversification

and support sustainable farming practices (Nandi et al., 2024).

Introducing pseudocereals into school feeding programs can build

awareness and acceptance among younger generations (Kristjansson

et al., 2022). With the right strategies, pseudocereals could play a key

role in ensuring food and nutrition security in arid areas.
Pseudocereal breeding: current trends
and future directions

Research and breeding programs on pseudocereal crops remain

limited, with amaranth possessing significant genetic diversity. One
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of the studies on amaranth and quinoa showed that these can

respond well to nitrogen fertilization, showing increased grain

yields with higher nitrogen input, whereas buckwheat showed

minimum to no response (Kaul et al., 2005). In Mexico,

traditional farming systems like Milpa and Mogote are used for

pseudocereal cultivation. These intercropping systems combine

crops like corn, beans, squash, and pseudocereals, offering

multiple benefits such as higher yield and protein content and

thus contributing to food security and boosting the farmers’ income

(Torres et al., 2007). Few studies focus on breeding high-yield,

stress-tolerant pseudocereals, and modern tools like CRISPR/Cas

and RNA interference are rarely applied (Anuradha et al., 2023;

Vats et al., 2023). The conservation of crop wild relatives (CWRs) of

pseudocereals is also lacking in gene banks. Expanding molecular

research by applying genomic tools, whole-genome sequencing, and

modern breeding techniques through an interdisciplinary approach

is essential to unlock pseudocereals’ potential for food and nutrition

security (Arya et al., 2021; Thakur et al., 2021; Curti et al., 2017;

Bekkering and Tian, 2019).

Despite their nutritional and functional benefits, pseudocereals

often face consumer acceptance barriers due to limited awareness of

their health-promoting properties, misconceptions about taste and

cooking methods, perceived complexity in preparation, and higher

prices compared to staple cereals (Bender and Schoenlechner, 2021;

Vidaurre-Ruiz et al., 2023). In some markets, the relatively low
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availability of processed or ready-to-use pseudocereal products

further limits adoption. To address these challenges, several

government agencies, research institutions, and public health

bodies have implemented strategies to increase their popularity.

The International Center for Biosaline Agriculture (ICBA) has

undertaken extensive research on quinoa and other pseudocereals

for saline and marginal environments, supporting farmer adoption in

the Middle East, North Africa, and Central Asia. In Mexico, the

traditional milpa intercropping system, which integrates quinoa and

amaranth with maize and beans, demonstrates a sustainable,

culturally embedded approach to promoting pseudocereal

consumption. In India, the Indian Council of Agricultural Research

(ICAR) has conducted breeding and agronomic trials on amaranth,

buckwheat, and quinoa to improve yield, stress tolerance, and market

potential. Alongside these efforts, policy measures include targeted

awareness campaigns on nutritional value, integration into school

meal and community nutrition programs, provision of subsidies or

incentives for farmers, inclusion in national dietary guidelines, and

endorsement through functional food labeling (FAO, IFAD,

UNICEF, WFP and WHO, 2021; Fortune Business Insights, 2024;

Coherent Market Insights, 2025). Collectively, these initiatives aim to

bridge the gap between production and consumer demand,

facilitating the wider acceptance of pseudocereals as mainstream

dietary staples. Figure 5 illustrates the SWOT analysis of

pseudocereals in sustainable food systems.
FIGURE 4

Schematic representation of pseudocereals’ supply chain.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1662267
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Manoharan et al. 10.3389/fpls.2025.1662267
Conclusion

Globally, crops resilient to climate change stress factors are

crucial, especially in resource-scarce and arid regions, to address

challenges of food and nutritional security. Climate change is

becoming challenging worldwide, particularly in arid regions

where water and fertile land resources are limited. These climate

change stress factors worsen the situation, threatening food security

and sustainability. Currently, over 2 billion people around the world

depend on staple crops such as maize, wheat, and rice. These crops

do not completely fulfill the nutritional requirements, and this

causes nutrient deficiencies referred to as “hidden hunger”.

Moreover, the global population is expected to reach 10 billion by

2050, increasing the demand for food and nutrition. Only

depending on staple crops is not enough to combat climate

change and global population increase; there is a need to explore

alternatives for these staple crops. Pseudocereals can be an

alternative option, being nutrient-dense, packed with vitamins,

minerals, and proteins, and with numerous health benefits.

Currently, these crops share almost 15 bn market of the grain

industry worldwide, which is expected to have CAGR of 7% in the

next 8 years. Additionally, consumer demand has also increased

because of increased awareness for nutrient-specific foods, usage

and consciousness for ethically grown foods, need for plant-based

proteins, and frequency of food delivery systems. This will point to a
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need to have more innovative and new products such as gluten-free

items, pet food, beverages, and high-protein, high-fiber, and high-

micronutrient food items made up of different pseudocereals. Major

stakeholders in the super-grain industry have recently committed

substantial investments toward expanding the portfolio of

pseudocereal-based products, indicating the anticipated

significance and growing demand for these crops in the near

future (https://www.marketreportanalytics.com/reports/

supergrains-260443#summary). These crops can withstand

climate change stress factors, making them suitable for cultivation

in arid regions. Research studies have shown that even small

amounts of pseudocereals in our daily meals can enhance their

nutritional value. Many varieties of pseudocereals have shown

promising results in extreme conditions. Advanced molecular

techniques such as high-throughput phenotyping, genome

sequencing, nutritional profiling, gene editing, transcriptomics,

marker-assisted breeding, and functional genomics will be pivotal

in improving yield, quality, and stress tolerance. Researchers better

understand the key characteristics in developing nutrient-rich and

climate-resilient pseudocereals. Furthermore, initiatives to make

pseudocereals familiar through awareness programs, policies to

promote it, and sustainable farming practices can help in

integrating pseudocereals into modern agriculture. Ultimately,

pseudocereals are hidden treasures of arid regions, offering a

sustainable, climate-resilient solution to food and nutritional
frontiersin.or
FIGURE 5

SWOT analysis of pseudocereals.
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insecurity. Their integration into modern agriculture could diversify

food systems, reduce dependence on vulnerable staple crops, and

empower smallholder farmers in resource-scarce areas.

Incorporating pseudocereals into school meal programs,

community nutrition initiatives, and local value chains could

directly combat hidden hunger while fostering rural livelihoods.

Future research should focus on region-specific breeding strategies,

consumer acceptance, and sustainable agronomic practices to

ensure large-scale adoption. By acting now—through coordinated

policy, awareness, and innovation—pseudocereals can shift from

being an underutilized resource to a cornerstone of global food

security in a changing climate.
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Jancurová, M., Minarovičová, L., and Dandar, A. (2009). Quinoa – a review. Czech J.
Food Sci. 27, 71–79.

Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J., et al.
(2017). The genome of Chenopodium quinoa. Nature 542, 307–312. doi: 10.1038/
nature21370

Johnson, D. L., and Croissant, R. (1985). Quinoa production in Colorado. Service in
Action, no. 112 (Fort Collins, Colorado, USA: Colorado State University, Cooperative
Extension).

Julio, A., Massange-Sanchez, L., Paola, A., Palmeros, S., Rangel, E. E., Valo, I. R., et al.
(2016). Overexpression of grain amaranth (Amaranthus hypochondriacus) AhERF or
AhDOF transcription factors in Arabidopsis thaliana increases water deficit- and salt-
stress tolerance, respectively, via contrasting stress-amelioration mechanisms. PLoS
One 11, 1–43. doi: 10.1371/journal.pone.0164280

Julio, A., Sanchez, M., Palmeros-Suarez, P. A., Martinez-Gallardo, N. A., Castrillon-
Arbelaez, P. A., Avilés-Arnaut, H., et al. (2015). The novel and taxonomically restricted
Ah24 gene from grain amaranth (Amaranthus hypochondriacus) has a dual role in
development and defense. Front. Plant Sci 6. doi: 10.3389/fpls.2015.00602

Kaczmarek, T., Cubry, P., Champion, L., Causse, S., Couderc, M., Orjuela, J., et al.
(2025). Independent domestication and cultivation histories of two West African
indigenous fonio millet crops. Nat. Commun. 16, 4067. doi: 10.1038/s41467-025-
59454-2
frontiersin.org

https://doi.org/10.1371/journal.pone.0099012
https://doi.org/10.1371/journal.pone.0099012
https://doi.org/10.1108/S1574-871520170000017006
https://doi.org/10.1108/S1574-871520170000017006
https://doi.org/10.1371/journal.pone.0182425
https://doi.org/10.3835/plantgenome2015.07.0062
https://www.coherentmarketinsights.com/market-insight/quinoa-grain-market-6180
https://www.coherentmarketinsights.com/market-insight/quinoa-grain-market-6180
https://doi.org/10.1016/j.biocon.2017.03.006
https://doi.org/10.1016/j.biocon.2017.03.006
https://doi.org/10.3390/plants11030265
https://doi.org/10.3390/plants11030265
https://doi.org/10.3109/09637486.2013.866637
https://doi.org/10.1007/s11130-010-0178-0
https://doi.org/10.1016/j.plaphy.2021.03.036
https://doi.org/10.1016/j.plaphy.2021.03.036
https://doi.org/10.1016/j.cj.2016.06.001
https://doi.org/10.1016/j.cj.2016.06.001
https://doi.org/10.36948/ijfmr.2024.v06i04.24523
https://doi.org/10.3390/molecules27217541
https://doi.org/10.1002/9781118938256.ch1
https://doi.org/10.1016/j.gene.2014.08.019
https://doi.org/10.1016/j.gene.2014.08.019
https://doi.org/10.4060/cb4474en
https://doi.org/10.3390/agronomy13010162
https://www.fortunebusinessinsights.com/buckwheat-market-109120
https://doi.org/10.1371/journal.pone.0189672
https://doi.org/10.3389/fpls.2023.1151057
https://doi.org/10.1007/s10142-019-00711-1
https://doi.org/10.1002/jsfa.1131
https://doi.org/10.1016/j.tifs.2022.04.007
https://doi.org/10.1515/biol-2019-0011
https://doi.org/10.1002/9781119470182.ch3
https://doi.org/10.3389/fsufs.2022.960159
https://doi.org/10.1016/j.tifs.2022.08.007
https://doi.org/10.1007/s11105-015-0935-1
https://doi.org/10.3389/fpls.2022.988861
https://doi.org/10.3389/fpls.2022.988861
https://doi.org/10.2174/157340111794941076
https://doi.org/10.2174/157340111794941076
https://doi.org/10.1007/s00334-017-0649-4
https://doi.org/10.1007/s00334-017-0649-4
https://doi.org/10.1111/pbi.13017
https://doi.org/10.4314/sajas.v46i1.12
https://doi.org/10.4314/sajas.v46i1.12
https://doi.org/10.1038/nature21370
https://doi.org/10.1038/nature21370
https://doi.org/10.1371/journal.pone.0164280
https://doi.org/10.3389/fpls.2015.00602
https://doi.org/10.1038/s41467-025-59454-2
https://doi.org/10.1038/s41467-025-59454-2
https://doi.org/10.3389/fpls.2025.1662267
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Manoharan et al. 10.3389/fpls.2025.1662267
Kalantaryan, S., Scipioni, M., Natale, F., and Alessandrini, A. (2021). Immigration
and integration in rural areas and the agricultural sector: An EU perspective. J. Rural
Stud. 88, 462–472. doi: 10.1016/j.jrurstud.2021.04.017

Kaul, H. P., Kruse, M., and Aufhammer, W. (2005). Yield and nitrogen utilization
efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing
nitrogen fertilization. Eur. J. Agron. 22, 95–100. doi: 10.1016/j.eja.2003.11.002

Kaur, H. (2023). Possible applications of certain pseudocereals within the food
manufacturing sector. Pharma Innovation 12, 1466–1469. doi: 10.22271/
tpi.2023.v12.i8ss.22405

Kolano, B., Bednara, E., and Weiss-Schneeweiss, H. (2013). Isolation and
characterization of reverse transcriptase fragments of LTR retrotransposons from the
genome of Chenopodium quinoa (Amaranthaceae). Plant Cell Rep. 32, 1575–1588.
doi: 10.1007/s00299-013-1478-1

Kristjansson, E., Osman, M., Dignam, M., Labelle, P. R., Magwood, O., Galicia, A. H.,
et al. (2022). School feeding programs for improving the physical and psychological
health of school children experiencing socioeconomic disadvantage. Cochrane
Database Syst. Rev. 2022, CD014794. doi: 10.1002/14651858.CD014794

Lam, D. (2025). The next 2 billion: Can the world support 10 billion people?
Population Dev. Rev. 51, 63–102. doi: 10.1111/padr.12685

Langyan, S., Khan, F. N., and Kumar, A. (2024). Advancement in nutritional value,
processing methods, and potential applications of Pseudocereals in dietary food: A
review. Food Bioprocess Technol. 17, 571–590. doi: 10.1007/s11947-023-03109-x

Leiber, F. (2016). “Buckwheat in the nutrition of livestock and poultry,” inMolecular
Breeding and Nutritional Aspects of Buckwheat (Amsterdam: Academic Press), pp.229–
pp.238.

Lemos, A. D. R., Capriles, V. D., Pinto e Silva, M. E. M., and Arêas, J. A. G. (2012).
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