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Aims: The landscape of sand-covered hilly areas has been reshaped by

afforestation in these areas. Dynamic changes in soil moisture and nutrients in

forests after afforestation have become evident. However, clear studies have not

focused on whether rainfall interception in these plantations affects soil

concentration or concentration.

Methods: This largely limits the development of effective management

techniques for plantations and hinders the optimal utilization and management

of water resources. In this study, an investigation was conducted on the plant

community structure, rainfall interception characteristics, and soil organic

carbon (SOC) and total nitrogen (N) concentrations or concentrations of three

different plantations in the sand-covered hilly area of the Kuye River Basin.

Grassland (Gl) was taken as the control.

Results: The critical throughfall values forC. korshinskii (Ck), S. Cheilophila (Sc) and P.

sylvestris (Ps) were 0.28, 1.78 and 2.04 mm, respectively. Corresponding stemflow

critical values measured were 2.93, 1.08, and 3.30 mm, respectively. Ps exhibited the

highest interception capacity, which was attributable to its dense canopy and layered

branch architecture. Sc ranked second due to its larger leaf area, while Ck showed the

lowest interception because of wide branch angles and smaller leaf area. Post-rainfall

ground-level soil moisture and litter deposition are regulated by vegetation canopy

structure in a direct way. SOC and N concentrations are subsequently controlled by

these ground-level parameters. SOC concentration under Ps was 1.54 compared to

that under Gl, while N concentration was 1.50 times higher, respectively.

Conclusions: Thus, Ps demonstrates optimal effectiveness for improving soil

quality in sandy hill restoration areas and merits continued implementation in

this region.
KEYWORDS

sand fixed vegetation, community structure, rainfall redistribution, soil organic carbon,
total nitrogen
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1 Introduction

Sand-covered hilly areas are classified into arid and semi-arid

regions. The precipitation level in such areas is low, and the

frequency of extreme precipitation events has seen an increase

owing to the impact of global climate change (Pei et al., 2023). Sand-

covered hilly areas are the most typical and unique landscape in the

dryland ecosystem. In these areas, sand-fixing vegetation plays a

buffering role in breaking the wind, sand fixation and land

degradation. Therefore, such vegetation is considered as an

ecological barrier in this area (Liu and Du, 2022). In the past few

decades, forest rehabilitation projects have been implemented as a

part of slope agriculture in China, and numerous drought-tolerant

trees and shrubs have been planted to reduce soil erosion (Bryan

et al., 2018). These measures have significantly improved the

vegetation coverage in this area and exerted a remarkable effect

on soil and water conservation (Zhang et al., 2019a). Meanwhile,

they have also resulted in changes to vegetation, soil properties and

microbial community characteristics (Zhang et al., 2018).

Nevertheless, the relationship between rainfall redistribution and

soil organic carbon (SOC) and total nitrogen (N) during the

construction of sand-fixing vegetation is unclear. Vegetation is an

important factor affecting the SOC cycle. It participates in SOC

cycling through root absorption and decomposition, as well as the

reduction of litter and dead roots. Furthermore, different vegetation

communities can form differing microtopographies, which causes

differences in litter and decomposition rates (Tiessen et al., 1994).

The community structure of plants exerts an influence on the

rainfall interception process (Castro et al., 2006; Zhu et al., 2021).

The change in soil nutrients is affected by vegetation (Li et al., 2021).

To evaluate the effect of vegetation restoration and explore the

resulting changes in soil composition, hence, it is necessary to

comprehensively study and quantitatively characterize the process

of rainfall interception (Lan et al., 2021).

The increased rainfall frequency with total unchanged rainfall

amount increased SOC concentration, which mainly originated

from increases in non-labile SOC concentration (Chen et al.,

2020). The frequent occurrence of extreme rainfall events may

greatly affect SOC fractions and carbon pool in the wet meadow of

the Qinghai-Tibet Plateau (Wang et al., 2023). These studies have

focused on the direct effects of rainfall on SOC, but the role of

vegetation-mediated rainfall redistribution in regulating SOC and N

remains underexplored. In forest ecosystems, the layers of canopy,

herbaceous plants and litter intercept rainfall, divide it into

interception, throughfall and stemflow, and influence soil

moisture and nutrient dynamics (Gordon et al., 2020; de Queiroz

et al., 2020). As a result, vegetation characteristics are key indicators

for determining the amount of rainfall reaching soil (He et al., 2017;

Wang et al., 2020). The characteristics of interception, stemflow,

throughfall and litter interception have been described in extant

studies (Ma et al., 2022). However, the effects of interception,

stemflow, throughfall and litter interception of different sand-

fixing vegetation types on SOC and N in forests need to be

elucidated in more detail. In the process of artificial vegetation

construction, the presence of different types of vegetation leads to
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differences in the composition of plant community and stand

structure (Deng et al., 2018). Inevitably, this influences rainfall

redistribution to varying degrees. The infiltration, storage and

distribution of water in soil are deeply influenced by throughfall

(Mei and Ma, 2022). This thus affects vegetation productivity and

plant nutrient return (Yang et al., 2020), and furthermore soil

nutrient characteristics (Liu et al., 2020). The effect of rainfall on

SOC and N concentration characteristics is modulated by plant

community and soil microbial decomposition (Fortier and Wright,

2021). Litter decomposition is a major factor that affects SOC and N

concentration accumulation and cycling (Zhang et al., 2019b). The

level of moisture entering different soil layers is different.

Consequently, the nutrient concentration of each layer is different

as well (Spyroglou et al., 2021; Simon et al., 2017). The effects of

interception, stemflow, throughfall and litter interception on soil

nutrient concentration and distribution after rainfall redistribution

remain unclear despite their significance for elucidating the

relationship between moisture and nutrient concentration during

vegetation restoration.

Based on the above basic research, the association between

rainfall redistribution and the dynamic changes in SOC and N for

three kinds of sand-fixing vegetation in sand-covered hilly areas was

examined in the present study. To address this gap, rainfall

interception and the dynamic changes in SOC and N for three

kinds of sand-fixing vegetation in sand-covered hilly areas were

examined. The objective was to reveal the effects of rainfall

redistribution on soil nutrient concentration, investigate the

changes in nutrient levels under different sand-fixing vegetation

types and clarify the coupling relationship between water and

nutrients during vegetation restoration. The following research

hypotheses were proposed: (1) Changes in vegetation structure

lead to differences in the process of rainfall redistribution among

sand-fixing vegetation types, and rainfall exerts a significant

influence on throughfall, stemflow and canopy interception. (2)

The cultivation of sand-fixing vegetation is beneficial to increasing

SOC and N concentrations, with the most pronounced effects on

the surface layer of soil. (3) The canopy characteristics of sand-

fixing vegetation induce differences in the biomass and

decomposition of the litter layer, which thereby substantially

influences the concentrations of SOC and N in soil.
2 Materials and methods

2.1 Experimental site

A typical artificial forest sample plot near the soil and water

conservation monitoring station in the Inner Mongolia section of

the Kuye River Basin was selected as the study area (Figure 1). It is

located on the right bank of the upper reaches of the four-level

tributary of the Yellow River Basin (109° 31′ 30.97′′ E, 39° 39′ 2.89′
′ N). The landform types of the area encompass Pisha sandstone,

chestnut soil, aeolian sandy soil, as well as sand-covered hilly and

gully areas. The Miaochuan Basin located within the study area,

has an arid and semi-arid temperate continental climate. The
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annual rainfall in the region averages 358.2 mm and ranges from

100.8 to 642.7 mm, with 2,900 sunshine hours annually. The

effective accumulated temperature ≥10°C is 2,751.3°C and the

mean annual evaporation is 2,563 mm. The prevailing wind in

this area is northwesterly. Wind force varies from 5 to 8, with an

annual wind speed of 3.6 m/s and a maximum instantaneous speed

of 24 m/s.
2.2 Experimental design

The study area is situated in the Hetongchuanmiao section of

the middle reaches of the Kuye River Basin. In June 2023, three
Frontiers in Plant Science 03
common artificial sand-fixing vegetation types, namely Ck, Sc and

Ps, were chosen as research objects. Sample plots of 20 m × 20 m

and 15 m × 15 m were established for arboreal and shrub

vegetations, respectively. Grassland (Gl) was used as a control.

The characteristics of each stand were investigated and recorded

(Table 1). Measurements were conducted for the average tree

height, crown width, basal diameter, branch number, litter layer

and biomass of trees and shrubs. The basal diameter of C.

korshinskii (Ck) and S. cheilophila (Sc) is the total basal diameter

obtained by adding the basal diameter of all branches on the ground

(Luo et al., 2017). A field experiment was performed From July to

October 2023. Nine standard trees were selected in each plot for the

measurement of throughfall and stemflow.
TABLE 1 Characteristics of different types of vegetation in the study area.

Class Vegetation Height (m)

Average
breast

diameter
(cm)

Average
base

diameter
(cm)

Age
(a)

CD (%) HB (t·hm-2) LB (t·hm-2) LT (cm)

Shrub
C.korshinskii 2.9 ± 0.08b – 20.7 ± 0.78 13 0.51 ± 0.03b 12.83 ± 0.53c 23.46 ± 1.61b 12.83 ± 0.02b

S. cheilophila 3.02 ± 0.27b – 28.66 ± 2.08 11 0.53 ± 0.03b 16.19 ± 0.61b 31.43 ± 3.74b 16.19 ± 0.57a

Arbor P. sylvestris 4.17 ± 0.4a 38 ± 2.05 – 9 0.61 ± 0.01a 18.39 ± 1.18a 39.89 ± 3.80a 18.39 ± 0.12a
CD, Canopy density; HB, Herb biomass; LB, Litter biomass; LT, Litter thickness. Different lowercase letters in the same column indicate significant differences among different plantations, p <
0.05 level.
FIGURE 1

Map of the research region. **significant effects at p < 0.01 ,***significant effects at p < 0.001.
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2.3 Investigation of vegetation
characteristics

In June 2023, typical Ck, Sc and Ps forests near the contract

temple soil and water conservation monitoring station in the contract

temple basin of the Inner Mongolia section of the Kuye River Basin

were selected for measurements. Later, sample sections of 20 m × 20

m and 15 m × 15 m were set up in each forest for the sampling of

trees and shrubs, respectively. The space outside the field was used as

a control. A measuring tape and a vernier caliper were utilized to

measure the average height, diameter at breast height/basal diameter

and biomass of trees and shrubs. Canopy density was determined on

the basis of crown projection. The diameter at breast height of the tree

refers to the diameter of the tree at a height of 1.1 meters from the

ground. For Ck and Sc, the base diameter was used as the total base

diameter obtained by adding the base diameter of all branches on the

ground. The features of each stand were investigated and recorded

(Table 1). The average value of each index was calculated. Standard

plants were selected according to the average value. Nine standard

plant vegetation types were chosen from each stand. Canopy density

was the ratio of canopy projection area to forest area. Six 50 cm × 50

cm boxes were set up in each plot to collect litter. The thickness and

weight of the litter layer were measured.
2.4 Investigation of soil characteristics

In the tree plot of 20 m × 20 m and the shrub plot of 15 m × 15

m, nine sampling points were selected. A soil sample from a depth

of 0–150 cm was collected with a ring knife of 5 cm in diameter.

Subsequently, soil samples from depths of 0-10, 10-20, 20-40, 40-60,

60-80, 80–100 and 100–150 cm were taken once. The collected soil

was shade-dried, and its physical and chemical properties were

determined. Soil samples were gathered in aluminum boxes to

determine soil bulk density and soil mass water concentration

(SMC, %). The method for determining SMC involved drying the

sample in an oven at 105°C for 24 hours until it reached a constant

weight. SOC (g·kg-1) was monitored by the dichromate titration-

external heating method (Zhang et al., 2025). Soil N was determined

by the Kjeldahl method (Cao et al., 2023).

The calculation formula for SOC density (SOCD) was as

follows:

SOCDi = SOCi� Bi� di� (1�Gi) (1)

SOCD =on
i� 1SOCi� Bi� di� ð1�GiÞ (2)

The formula for the calculation of soil N density (SND) was as

follows:

SNDi = Ni� Bi� di� (1�GiÞ (3)

SND =on
i=1SNDi = Ni� Bi� di� (1�GiÞ (4)

In the formula, SOCDi represents the SOCD (kg·m-2) of a certain

soil layer; SNDi stands for the SND of a certain soil layer (kg·m-2);
Frontiers in Plant Science 04
SOCD denotes SOCD (kg·m-2); SND refers to SND (kg·m-2); SOCi

means SOC concentration (g·kg-1) in a certain soil layer; Ni is the N

concentration of a soil layer (g·kg-1); Bi indicates the soil bulk density

(g·cm-3) of a certain soil layer; di denotes the thickness of the soil layer

(cm); Gi represents the percentage of the volume of gravel with a

particle size greater than 2 mm. The soil particle size in this study is

below 2 mm. As a result, Gi was ignored.
2.5 Observation of rainfall interception

Rainfall data were automatically collected by the long-term

weather station. Rainwater was gathered in accordance with rainfall

events, and six hours of rainfall were regarded as a rainfall event (Su

et al., 2022). Rainfall was measured within 30 minutes after the end

of the event (Zhang et al., 2021b). Ck, Sc and Ps plots were selected

using a self-made rainfall collection device for forest throughfall

observations (TF, mm). Nine standard plants were sampled from

each plot. Within the projection areas of the selected standard

plants, 12 self-made rain gauges were placed under each standard

plant from the base to the four radiation directions. TF was

calculated as follows:

TF =
1
no

n
i=1

TFi
Ai

(5)

where TF represents throughfall, mm; TFi stands for the volume

of throughfall in the ith throughfall collector, mm3; Ai refers to the

rain area of the ith throughfall collector, mm2; n means the number

of throughfall collectors.

A polyethylene hose was spirally wound on the trunk. The hose

was fixed with iron nails. The gap between the hose and trunk was

sealed with glass glue. The stemflow of a single tree was converted into

stemflow at the plot scale using the following formula (Tu et al., 2021):

SF =
N� Sa
A� 103

(6)

where SF represents stemflow, mm; N stands for the total tree in

the sample plot; Sa refers to the mean stemflow of several standard

trees, mL; A denotes plots (20 m × 20 m and 15 m × 15 m), m2.

The interception was calculated with the water balance formula

as follows:

Ic = P�TF� SF (7)

where Ic represents interception, mm; P stands for rainfall, mm;

TF is the amount of throughfall, mm; SF denotes stemflow, mm.
2.6 Statistical analysis

A normality test and a test for homogeneity of variance were

carried out using IBM SPSS Statistics to ensure data validity. IBM

SPSS Statistics 26.0 was applied to test the significance of the mean

difference. Redundancy analysis was performed using CANOCO 5

software, followed by the implementation of partial least squares

path modeling with the “plspm” package in R (v4.0.2).
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3 Results and analysis

3.1 Rainfall redistribution characteristics of
different forest stands

3.1.1 Characteristics of throughfall
In light of the rainfall redistribution data collected during the

experiment in 2023, the total amount of throughfall for Ck, Sc and Ps

was 140.02, 138.73 and 131.55 mm, respectively (Table 2). The total

amount of throughfall (Equation 5) for each vegetation type accounted

for 74.65%, 72.52%, and 69.96% of the total rainfall, respectively. A

significant positive linear relationship was found between rainfall and

throughfall for each vegetation type (R2 > 0.8, p < 0.01) (Figure 2). The

throughfall for each vegetation type increased with the increase in

rainfall. It can be seen from the equation that the threshold of

throughfall produced by Ck, Sc and Ps were 0.28, 1.78 and 2.04

mm, respectively. A logarithmic relationship was detected between

rainfall and throughfall rate for each vegetation type. When the rainfall

was low, the throughfall rate increased rapidly, and the increase in

throughfall rate gradually slowed down with the increase in rainfall.

3.1.2 Characteristics of stemflow
During the experiment, the total stemflow of Ck, Sc and Ps was 3.5,

2.91 and 3.8 mm, respectively. The total stem runoff for each vegetation

type occupied 1.88%, 1.56% and 2.04% of the total rainfall, respectively.

A significant positive linear relationship was observed between the

rainfall for each vegetation (Equation 6) type and stemflow (R2 > 0.9, p

< 0.05) (Figure 3). The stemflow for each vegetation type showed an

increasing trend with the increase in rainfall, as indicated by the

equation. The threshold for Ck, Sc and Ps to produce stemflow was

2.93, 1.08 and 3.30mm, respectively. A logarithmic relationship existed

between rainfall and stemflow rate for each vegetation type. When the

rainfall was low, the stemflow rate increased rapidly, and the increase of

stemflow rate gradually slowed down with the increase in rainfall.

3.1.3 Characteristics of interception
During the experiment, the total interception of Ck, Sc and Ps

was 42.68, 44.56 and 49.85 mm, respectively (Equation 7). The total

interception for each vegetation type took up 22.92%, 23.93% and

26.77% of the total rainfall, respectively (Figure 4). A significant

positive exponential relationship was noticed between the rainfall

for each vegetation type and the total interception (R2 > 0.70, p <

0.05). The interception of each vegetation type rose with the

increase in rainfall. A logarithmic relationship was noted between

the rainfall and interception rate of each vegetation type. At the

early stage of rainfall, the canopy was not saturated and the

interception rate was high. With the increase in rainfall, a

significant decrease occurred in the interception rate.
3.2 Changes in root biomass and soil bulk
density in different vegetation types

Root biomass tends to rise before dropping with the increase of

soil depth across different vegetation types. For all vegetation types,
Frontiers in Plant Science 05
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root biomass in the soil layer of 0–40 cm was significantly higher

than that below 40 cm. The root biomass of Sc in the soil layer of 0–

80 cm was greatly higher than that of other vegetation types. The

soil bulk density of arbor and shrub forests, and Gl showed

significant changes in different soil layers (Figure 5). In the 0–40

cm soil layer, the soil bulk density of Ck was higher than that of Sc,

Ps and Gl, and ranged from 1.41 to 1.81 g·cm-3. In the 40–80 cm soil

layer, the variation range of each vegetation type was 1.44 to 1.82

g·cm-3. The soil bulk density of Ck was the highest, and that for each

vegetation type was not significant in the range of 40–60 cm. In the

range of 80–150 cm, a remarkable change took place in soil bulk

density for each vegetation type. The soil bulk density of Ck was

higher than that of Sc, Ps and Gl, and the variation range was 1.12 to

1.71 g·cm-3.
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3.3 Soil organic carbon and nitrogen
distribution

3.3.1 Distribution of soil organic carbon and total
nitrogen

Two-way analysis of variance (ANOVA) showed that SOC and

N were strongly affected by soil depth and vegetation type (Table 3).

In general, the trend in the variation of SOC and N concentrations

decreased with the increase in soil depth (Figure 6). The trend in the

variation of SOC and N concentrations for each vegetation type was

Ps > Sc > Ck > Gl. The SOC concentrations of Sc, Ps and Ck were

1.37, 1.54 and 1.23 times higher than that of Gl, respectively. The N

concentration was 1.34, 1.50 and 1.04 times higher, respectively (p <
FIGURE 3

Characteristics of stemflow and its relationship with rainfall. (A) shows the stemflow characteristics of different sand-fixing vegetation types.
(B) shows the stemflow percentage characteristics of different sand-fixing vegetation types.
FIGURE 2

Characteristics of throughfall and its relationship with rainfall. (A) shows the throughfall characteristics of different sand-fixing vegetation types.
(B) shows the throughfall percentage characteristics of different sand-fixing vegetation types.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1662481
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xin et al. 10.3389/fpls.2025.1662481
0.05). In the soil layer of 0–80 cm, the SOC concentration of Ps was

significantly higher than that of Gl (p < 0.05). In the soil layer of 80–

150 cm, the SOC concentrations of Sc and Ps were substantially

higher than that of Gl (p < 0.05). Across all soil layers, the N

concentrations of both Sc and Ps were largely higher than that of Gl

(p < 0.05). In the soil layer of 0–40 cm, the SOC concentration of Ps

was far above that of Gl. In the soil layer of 40–80 cm, the range of

difference in SOC and N for Gl was not obvious, but a large

fluctuation took place for Sc, Ps and Ck. The concentrations of

SOC and N in Gl were significantly lower than those in sand-

fixing vegetation.
Frontiers in Plant Science 07
3.3.2 Distribution characteristics of soil organic
carbon and nitrogen density in different
vegetation types

As shown in Figure 7, the SOCD (Equations 1, 2) of different

vegetation types in the 0–150 cm soil layer fluctuated in the range of

137.76 to 101.73 kg·m-2. The SOCD and SND (Equations 3, 4) of Sc,

Ps and Ck were significantly higher than that of Gl. The SOCD of

Sc, Ps and Ck was 26.84%, 62.29% and 19.84% higher than that of

Gl, respectively. The SND at a depth of 0–150 cm for different

vegetation types fluctuated in the range of 13.57-10.30 kg·m-2. The

SND of Sc, Ps and Ck was 22.41%, 55.72% and 18.22% higher than
FIGURE 5

Root biomass and soil bulk density of each vegetation type. Gl, grassland; Sc, S. cheilophila; Ps, P. sylvestris; Ck, C. korshinskii. In Figure 5A, the
capitalized letters stand for the significance of difference between different vegetation types on the same soil horizons, while small letters stand for
the significance of difference between different soil horizons with the same plants. (A) shows the root biomass characteristics of different soil layers
under different sand-fixing vegetation types. (B) shows the soil bulk density characteristics of different soil layers under different sand-fixing
vegetation types.
FIGURE 4

Characteristics of interception and its relationship with rainfall. (A) shows the canopy interception characteristics of different sand-fixing vegetation
types. (B) shows the canopy interception percentage characteristics of different sand-fixing vegetation types.
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that of Gl, respectively. Compared with Gl, the establishment of

sand-fixing vegetation significantly increased SOC and N density,

especially in Ps.
3.4 Relationship between vegetation, soil
and rainfall interception

The redundancy analysis of vegetation and SOC and N revealed

that the contribution rates of RDA1 and RDA2 were 90.58% and

9.37%, respectively (Figure 8). Evidently, height, RB, LT, LB, Ic and

HB were correlated with SOC and N, while the correlation between

SOCD and SND was relatively low. The RDA results showed that

LB significantly influenced SOC, N, SOCD and SND (p < 0.01).

Pearson’s correlation analysis indicated significant positive

influences of height, LT, LB, HB and RB on SOC and N (p <

0.05) (Figure 9). Both Q and BD had a significant negative influence

on SOC and N (p<0.05).

A structural equation model was developed, which

demonstrated a good fit to the data (good of fitness (GoF) =

0.71). Based on the structural equation model, the direct or

indirect effects of different sand-fixing vegetation types on SOC

and N and their concentration or concentration through vegetation,

interception and the litter layer, and SOC and N distribution were

determined (Figure 10).

Finally, the results showed that the composition and structure

of the litter layer were closely related to vegetation characteristics.

LB was in turn a significant factor affecting SOC, SOCD, N and

SND of vegetation areas (Table 4).
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4 Discussion

4.1 Response of rainfall redistribution to
different vegetation types

Due to the influence of canopy characteristics, different

vegetation types use rainfall after rainfall in different ways. When

rainfall was redistributed by the vegetation canopy, the largest

proportion was throughfall, followed by interception and

stemflow in succession (Zheng et al., 2020; Guo et al., 2023). In

this study area, the throughfall rate of the shrub forest was higher

than that of the arbor forest, and the stemflow and interception

rates of the shrub forest were lower than those of the arbor forest.

More than 65% of the rainfall in the three stands fell in the form of

throughfall. The total interception occupied 22.92%-26.77% of the

total rainfall (Levia and Herwitz, 2005). The connection between

throughfall and rainfall may be affected by vegetation types and

canopy morphological characteristics. Vegetation characteristics

such as stand density, canopy density, branch roughness and

branch length also have a bearing on rainfall redistribution (Liu

et al., 2017). The throughfall and throughfall rate of Ps were

substantially lower than those of other stands. Because the

branches grew in layers and canopy density was high, the canopy

had strong rainfall interception ability, which resulted in

less throughfall (Guo et al., 2023). In this study, it was shown

that the stemflow and stemflow rate of the Ps forest were the

highest at 1.85%. This conclusion was basically consistent with the

findings of Fan et al. (2019) that the stemflow of the Ps forest

accounted for 2.54% of rainfall. This study found that Ps had

the highest interception capacity, which was ascribed to its

layered branch structure and high density. With its larger leaf

area, Sc ranked second. Ck had the lowest interception on

account of its wide branch angles and smaller leaf area. In

summary, rainfall redistribution characteristics vary considerably

among different forest types and are primarily influenced by leaf

area, branch angle, branch roughness, crown width and other

vegetation characteristics.
FIGURE 6

Distribution of soil organic carbon and total nitrogen in different vegetation types in different soil layers. (A) shows the soil organic carbon
characteristics of different soil layers under different sand-fixing vegetation types. (B) shows the soil organic nitrogen characteristics of different soil
layers under different sand-fixing vegetation types.
TABLE 3 F values of two-way ANOVA.

Parameter
Soil

depth
Vegetation

Soil
depth×vegetation

SOC 22.64*** 15.67*** 7.25***

N 52.02*** 15.72*** 2.93***
****, significant effects at p<0.001.
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4.2 Response of soil characteristics to
different vegetation types

4.2.1 Response of root biomass and soil bulk
density to different vegetation types

Soil bulk density, a basic physical property of soil, is affected by

soil parent material, climate and biological disturbances, which

significantly affects soil nutrients (Yu et al., 2019). Soil bulk density

varied with soil depth across different artificial sand-fixing vegetation

plots. It was found that bulk density increased gradually with

increasing depth in Gl and Ps, whereas it increased initially and

then decreased with depth in Sc and Ck. This variation was likely put

down to the considerable differences in vegetation root distribution

among these sand-fixing vegetation types (Wang et al., 2008). In the

current study, soil bulk density was lower in the surface layer (0–20

cm), which was likely due to the higher density of plant roots in this
Frontiers in Plant Science 09
zone (Wu et al., 2024). The root characterized by high plasticity can

perceive and adapt to complex soil environmental factors (Zhang

et al., 2021a). For example, roots were primarily distributed within

the 0–40 cm soil layer in the Gl plot (Xiao et al., 2023), which

resulted in the lowest bulk density at these depths. In contrast, Sc, Ck

and Ps plots exhibited a greater concentration of primary roots in the

upper soil layer. Land use types can have a significant influence on

soil bulk density. In particular, shrubs have been shown to effectively

reduce bulk density (Han et al., 2010). This is a finding aligned with

the results of this study. Therefore, shrubs can be effective in

improving the soil texture of sandy land (Han et al., 2010).

Among the three artificial sand-fixing vegetation types studied, Sc

demonstrated the lowest soil bulk density. This is primarily

attributable to its extensive root system and dense branching

structure, which promote litter accumulation. The subsequent

microbial decomposition and synthesis of this litter generate
FIGURE 8

Redundancy analysis diagram. HB, Herbaceous biomass; LB, Litter biomass; LT, Litter thickness; CD, Canopy density; DBH, Diameter at breast height;
Q, Vegetation Quantity; SMC, Soil mass water concentration; BD, Bulk Density; RB, Root biomass; Ic, Interception; SF, Stemflow; TF, Throughfall;
SOC, Soil organic carbon; SOCD, Soil organic carbon density; SND, Soil nitrogen density; N, Soil total nitrogen.
FIGURE 7

Carbon and nitrogen density distribution map of different vegetation types in different soil layers.
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substantial humus, and foster a loose, porous soil structure. This

process reduces bulk density and consequently enhances the soil

structure of sandy land.

4.2.2 Response of soil organic carbon and
nitrogen distribution to different vegetation types

ANOVA revealed that soil depth, vegetation type and their

interaction (depth × vegetation) exerted significant effects on SOC

and N concentrations. These findings are in line with those reported

by Sun (2018). Vegetation is a major factor influencing the

distribution and fixation of SOC. Chen et al. (1998) suggested that

different types of plants have differential efficiency in forming plant

residues and litter. Moreover, the spatial pattern of vegetation and the

soil microenvironment created also differ. This will also affect the

concentration and distribution of SOC (Liu, 2017), which thus affects

SOC accumulation and distribution (Batzal et al., 2015). In this study,

it was discovered that the concentrations of SOC and N in different

soil layers of different sand-fixing vegetation forests were in the

following order: Ps > Sc > Ck > Gl. Trees have complex litter,

which can sustainably input SOC to soil. In the meantime, Gl litter is

easy to decompose, and the input of SOC is not as good as that of

trees, followed by shrubs. Thus, the SOC concentration of Gl was

significantly lower than that of the other three vegetation types

(Samuel et al., 2024). Chen (2020) pointed out that the standing

biomass of Ps plantations is directly proportional to their carbon

fixation capacity in northern China. In the present study, it was found

that these plantations have remarkably higher biomass than other
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vegetation types and, consequently, the highest levels of SOC. The N

concentration of tree and shrub soil was substantially higher than that

of Gl soil. This may be because the presence of sand-fixing plant litter

can effectively retain N in soil (Wang, 2017). The biomass of Gl was

lower than that of the other three kinds of sand-fixing vegetation.

Sand-fixing vegetation is rich in species, particularly litter species, and

high in species diversity. As a result, the microbial biomass in soil is

high and microbial activity is strong. This is conducive to

decomposing organic matter on the soil surface (Singh et al., 2022).

The vertical distribution of SOC is influenced by multiple factors,

including litter input, soil leaching, microbial characteristics and

plant root distribution (Zhang et al., 2023). Zhang (2023) stated

that litter on the forest floor is the primary source of SOC. The

contributions of litter and root systems to SOC vary with soil depth

because of differences in SOC formation mechanisms (like leaching

and microbial activities) and the vertical distribution of litter and

roots. The results are in consistency with those of the present study.

SOC concentration typically decreases with increasing soil depth.

However, the specific vertical distribution patterns vary among

different vegetation types (Wang et al., 2014). The mass fraction of

carbon and N in the soil is therefore increased. Chen (2020) studied

the Mu Us Sandy Land and noted that the carbon fixation capacity of

0-0.4 m soil was higher for Ps than for Gl. This was consistent with

the conclusions of this study. In this study, SOC and N

concentrations in different artificial sand-fixing vegetation plots

decreased with the increase in soil depth. This indicates that SOC

was positively affected by the accumulation and decomposition of
FIGURE 9

Pearson’s rank correlation coefficients. HB, Herbaceous biomass; LB, Litter biomass; LT, Litter thickness; CD, Canopy density; DBH, Diameter at
breast height; Q, Vegetation Quantity; BD, Bulk Density; RB, Root Biomass; SOC, Soil organic carbon; SOCD, Soil organic carbon density; SND, Soil
nitrogen density; N, Soil total nitrogen.
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litter in the surface layer of soil. This resulted in the obvious surface

accumulation of SOC in different artificial sand-fixing vegetation

plots, which was aligned with previous research findings (Wang et al.,

2002). SOC is a vital factor affecting N level, and N concentration

mainly depends on the accumulation of SOC (Gao et al., 2017).

Therefore, the variation in N concentration for sand-fixing vegetation

is basically in line with that of SOC concentration. The same results

were obtained in this study.
4.3 Effects of rainfall interception by
vegetation on soil organic carbon and
nitrogen

Rainfall influences the concentration of active SOC in soil

(Rasmussen et al., 1998; Kelleway et al., 2016; Franzluebbers et al.,

2001). Litter is also a key factor of soil carbon sequestration (Liu et al.,
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2023). In addition, rainfall can change its chemical properties to a

large extent (Ma et al., 2023). The concentration of compounds in

litter, like lignin, tends to vary with rainfall, which can affect the

degradability of SOC in soil (Yu et al., 2024). A drastic increase in

rainfall influences the decomposition rate of litter to a great degree.

Hence, the rainfall redistribution attributed to vegetation restoration

can affect the distribution of carbon and N in soil (Victor et al, 2020).

Wang et al. (2025) argued out that the increase in rainfall input can

alleviate aridity and boost the growth and carbon input of plants. The

present study showed that vegetation structure and rainfall

redistribution directly influence litter. Litter is decomposed into

organic and inorganic compounds—sources of SOC and N of soil

(Zhang et al., 2018). LB promoted the increase of biomass in an

indirect way (de Queiroz et al., 2020). The decomposition of plants

increased N concentration, which thereby increased SOC, SOCD and

SND concentrations. Wang (2023) studied Mediterranean

ecosystems and noticed that long-term increased precipitation

induced SOC loss via changes in microbial community

composition, functional traits, root production and soil moisture.

This study revealed that Ps exhibited the highest SOC concentration

in spite of intercepting the most rainfall (resulting in the least

reaching soil). This contrast demonstrates that SOC concentration

is not solely determined by rainfall volume. Other critical factors

include functional traits, root production, litter decomposition,

microbial community composition and vegetation-specific
FIGURE 10

Structural equation model. **significant effects at p < 0.01 ,***significant effects at p < 0.001.
TABLE 4 F values of two-way ANOVA.

Parameter
Soil

depth
Vegetation

Soil
depth×vegetation

SOCD 403.92*** 248.71*** 7.96***

SND 345.26*** 17.92*** 2.93***
****, significant effects at p<0.001.
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redistribution patterns. Thus, future research should prioritize

investigating these complex interactions. In this study, the impact

of sand-fixing vegetation on soil nutrient concentration was explored

by analyzing rainfall, canopy interception, and litter and soil layers.

The findings offer valuable insights for vegetation restoration and

plant species selection. The results also provide constructive advice on

assessing the restoration of sand-fixing vegetation. Notably, the study

highlights the significant role of litter in enhancing soil nutrients.

Nevertheless, it does not include experiments on microbial activity or

litter decomposition-key processes for the understanding of the

mechanisms behind nutrient improvement. Thus, it is

recommended that further research address these aspects.
5 Conclusions

This study elucidates how rainfall redistribution influences soil

nutrient dynamics based on the distinct characteristics of different

sand-fixing vegetation species. These findings provide critical

guidance for selecting optimal vegetation species to restore

ecosystems in sandy hills. Additionally, they clarify the essential

coupling relationship between water redistribution and nutrient

cycling during vegetation restoration.
Fron
1. Calculation shows that Ps, with the layered structure of its

branches and large canopy cover, has the highest canopy

interception. It is followed by Sc with broad leaves. Ck has

the lowest canopy interception owing to its widely

separated branches and small leaves.

2. The present study shows that the SOC and N

concentrations in the understory soil of different sand-

fixing vegetations drop with the increase of depth. In the

depth between 0 and 150 cm, the concentrations of SOC

and N in the soil of Gl, willow sand Ps and Ck decrease with

the increase of depth. Various types of vegetation

considered exhibit higher concentrations of SOC and N

compared with Gl. Ps has the best performance in

improving SOC and N in sand-covered hilly areas.

3. Redundancy and correlation analyses, and structural

equation modeling indicate that the canopy structure of

sand-fixing plants directly affects factors such as Ic, LB and

LT. Furthermore, increases in LB and LT significantly

enhance SOC, SOCD, N and SND.
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