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Thrips can damage over 200 species across 62 plant families, causing significant

economic losses worldwide. Their tiny size, rapid reproduction, and wide host

range make them prone to outbreaks, necessitating precise and efficient

population monitoring methods. Existing intelligent counting methods lack

effective solutions for tiny pests like thrips. In this work, we propose the Thrip

Counting and Detection Network (TCD-Net). TCD-Net is an fully convolutional

network consisting of a backbone network, a feature pyramid, and an output

head. First, we propose a lightweight backbone network, PartialNeXt, which

optimizes convolution layers through Partial Convolution (PConv), ensuring both

network performance and reduced complexity. Next, we design a lightweight

channel-spatial hybrid attention mechanism to further refine multi-scale

features, enhancing the model’s ability to extract global and local features with

minimal computational cost. Finally, we introduce the Adaptive Feature Mixer

Feature Pyramid Network (AFM-FPN), where the Adaptive Feature Mixer (AFM)

replaces the traditional element-wise addition at the P level, enhancing the

model’s ability to select and retain thrips features, improving detection

performance for extremely small objects. The model is trained with the Object

Counting Loss (OC Loss) specifically designed for the detection of tiny pests,

allowing the network to predict a small spot region for each thrips, enabling real-

time and precise counting and detection. We collected a dataset containing over

47K thrips annotations to evaluate the model’s performance. The results show

that TCD-Net achieves an F1 score of 85.67%, with a counting result correlation

of 75.50%. The model size is only 21.13M, with a computational cost of 114.36

GFLOPs. Compared to existing methods, TCD-Net achieves higher thrips

counting and detection accuracy with lower computational complexity. The

dataset is publicly available at github.com/ZZL0897/thrip_leaf_dataset.
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1 Introduction

Thrips belong to the order Thysanoptera and the family

Thripidae. These insects are small in size, reproduce rapidly, and

have a body length of less than 2mm. They are typically yellow,

brown, or black in color. The eggs vary in shape, including kidney-

shaped, round, and oval, with colors ranging from colorless to white

and yellow (Zhang, 2011; Wu et al., 2018). Thrips exhibit diverse

feeding habits, predominantly phytophagous. Thrips exhibit diverse

feeding habits, predominantly phytophagous. They can damage

over 200 crop species from 62 families, including Cucurbitaceae,

Fabaceae, Brassicaceae, and Solanaceae (Kirk et al., 2021). Thrips

inflict significant economic losses worldwide. Controlling thrips is

challenging for three main reasons: 1) Their small size and strong

concealment tendencies, as they prefer to hide in flowers, tender

tips, and the undersides of leaves, making detection difficult.

2) Their short life cycle and rapid reproduction, which contribute

to the rapid development of resistance to chemical pesticides,

leading to outbreaks. 3) Their broad host range, strong dispersal

ability, and excellent ecological adaptability, enabling severe

damage to various crops (Steenbergen et al., 2018). Therefore, It

is crucial to accurately detect and count thrips.

Traditional manual counting methods for pests are time-

consuming and labor-intensive, while computer vision and deep

learning-based intelligent detection technologies can significantly

improve monitoring efficiency (Zhang et al., 2020b, 2024, 2024; Liu

et al., 2025; Zhang et al., 2025). Current research on pest intelligent

detection and counting mainly focuses on improvements to object

detection algorithms. Key improvements include optimizing feature

extraction backbones, enhancing the Feature Pyramid Network

(FPN), improving the Region Proposal Network (RPN), and

optimizing anchor generation and selection mechanisms to better

suit pest counting and detection tasks (Jiao et al., 2020; Dong et al.,

2021; Liu et al., 2021a; Wang et al., 2021b; Jiao et al., 2022b; Wang

et al., 2023; Dong et al., 2024b). For instance, Wang et al. (2021a)

and Jiao et al. (2022a) both made improvements to R-CNN by

incorporating attention mechanisms into the network, enriching

the features extracted to enhance detection performance. Dong et al.

(2024a) made comprehensive improvements to the YOLO model,

effectively enhancing the model’s feature attention capabilities and

multi-scale feature extraction, increasing accuracy while reducing

model parameters. These studies demonstrated the strong

benchmark performance of object detection in pest counting and

detection tasks. They have made effective improvements to address

challenges such as small pest size and complex backgrounds,

promoting the application of object detection methods in

agricultural pest detection expert systems.

However, detecting and counting extremely small pests like thrips

and planthoppers still poses challenges. Small object detection has

consistently posed a challenge for object detectors, often resulting in

False Negatives (FNs) and False Positives (FPs). The limited features

and low signal-to-noise ratio of extremely small pests hinder object

detectors from extracting sufficient features or accurately locating the

anchors (Zhan et al., 2022; Dong et al., 2024b; Zhang et al., 2024a).

Some scholars have explored solutions to these challenges. He et al.
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(2020) and Lee et al. (2020) both used Faster R-CNN for intelligent

detection of brown planthoppers and tea thrips, respectively. Wang

et al. (2021a) andWang et al. (2021b) improved RPN and incorporated

feature attention mechanisms to enhance detection performance for

small pests. De Cesaro et al. (2022) utilized Mask R-CNN for counting

aphids and parasitic wasps, achieving approximately 80% result

correlation. Li et al. (2022) proposed a two-stage detection method

for whiteflies and thrips, initially locating pests using spectral features,

followed by recognition using Support Vector Machines (SVM). Wang

et al. (2023) developed an anchor-free framework and a dynamic

detection head, achieving competitive results on two multi-class small-

object pest datasets. Dong et al. (2024b) designed multi-scale feature

aggregation and dynamic perception modules, achieving optimal

detection performance. Yang et al. (2024) introduced a super-

resolution module and multi-level feature fusion in YOLOv8,

achieving a 57% mAP for detecting extremely small pests. Zhang

et al. (2024a) proposed an innovative rice planthopper detection

method based on a fully convolutional architecture and object

counting loss, achieving an F1 score of 92.36%. Banerjee et al. (2024)

and Wu et al. (2024) designed IoT-based thrips pest monitoring

systems, which effectively improved monitoring efficiency for thrips

populations in their experimental environments.

The aforementioned studies provide innovative research ideas

and improvement pathways for counting and detecting extremely

small pests. However, research on intelligent counting methods for

thrips remains limited. Existing methods for precise counting and

detection of thrips still have significant room for improvement in

detection accuracy and model runtime efficiency. Therefore, this

paper focuses on thrips as the research subject, collects thrips

infestation data from Spathiphyllum floribundum ‘Clevelandii’

cultivated in greenhouses, and proposes a new real-time counting

and detection algorithm for thrips, offering an efficient and reliable

intelligent method for monitoring small pests in greenhouses. The

main contributions of this paper are as follows:
1. Thrip Counting and Detection Network (TCD-Net). A fully

convolutional network based on a multi-level attention

mechanism and feature adaptive fusion is built. The Object

Counting Loss (OC Loss), designed for extremely small pests,

is used to train the network, enabling real-time and accurate

detection and counting of thrips in greenhouses.

2. Optimized backbone network and feature attention

mechanism. The PartialNeXt backbone network is

proposed, the convolution layers of ConvNeXtV2 are

optimized using Partial Convolution (PConv), improving

the network’s computational efficiency and feature reuse

capability. Then, a channel-spatial hybrid attention (HA)

mechanism that balances performance and efficiency is

designed to enhance detection stability.

3. Multi-scale feature adaptive fusion: The Adaptive Feature

Mixer Feature Pyramid Network (AFM-FPN) is proposed,

using Adaptive Feature Mixer (AFM) for adaptive fusion

of P-level multi-scale features, enhancing the model’s

ability to select and retain thrips features, thereby

improving detection accuracy for extremely small objects.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1663813
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2025.1663813

Fron
4. We collect a thrips dataset consisting of 5,618 images and

47,726 annotations. Extensive experiments and comparisons

are conducted on this dataset to verify the superiority of

TCD-Net in detection accuracy and computational efficiency.
2 Materials

2.1 Data acquisition

Our team collected the dataset from July to September 2024 in the

Plant Growth Chamber at Jingchu Sci-tech Park, Jingchu University of

Technology, using potted Spathiphyllum floribundum ‘Clevelandii’. The

temperature in the growth chamber was 25°C, with humidity levels

ranging from 50% to 70%, and light intensity was 10,000 lux. The

thrips species identified on the infected leaves was Megalurothrips

usitatus. Data collection was carried out by six plant protection

students. They randomly took 2–3 images of thrips on the leaves at

different time intervals using smartphones, keeping only the clearest

image at each location. The shooting environment is shown in Figure 1.
2.2 Dataset

After data collection was completed, a total of 5,618 images

were selected to form the dataset, and all images were resized to a
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resolution of 1280×1280. The thrips annotations were performed

collaboratively by six photographers, followed by a second round of

verification to ensure annotation accuracy. The annotation tool

used was Labelme, with the initial annotation results in json format.

Subsequently, we converted the annotation results to COCO and

YOLO formats for easy comparison with other methods. The

dataset contains a total of 47,726 thrips annotations. The dataset

was split into training, validation, and test sets in a 6:2:2 ratio, and

specific statistics are shown in Table 1. The dataset is publicly

available at github.com/ZZL0897/thrip_leaf_dataset.

It is worth noting that the average pixel area of the thrips

bounding boxes in the images is only 176px, with widths ranging

from 2px to 54px and heights ranging from 2px to 56px. The ratio

of the average pixel area of the bounding boxes to the image pixel

area is only 0.011%, which highlights the fact that thrips are

extremely small targets in the images, making accurate detection

a significant challenge.
3 Proposed method

3.1 Network construction

The overall structure of TCD-Net is shown in Figure 2. Its

modular design is similar to that of a typical object detection

network. The backbone network extracts rich multi-scale feature

information from the input image, with attention mechanisms

further enhancing the feature representation. These multi-scale

features are fed into the FPN to improve the network’s

performance in detecting small objects (Lin et al., 2017). Finally,

the output head generates the final predictions. Unlike traditional

object detection methods, this network is fully convolutional. The

output head consists of four 1×1 convolutions, which reduce the

output channel count of the FPN to 1, and interpolate it back to the

input size, ultimately combining the results into a single

prediction output.

A regular fully convolutional network cannot count and localize

tiny objects. We address this by using a specially designed loss

function during training, allowing the network to accept object

detection labels and enabling the counting and detection of small

pests in images. The implementation process will be detailed in

Sections 3.2 and 3.3.

3.1.1 Feature extraction backbone
The choice of feature extraction backbone plays a crucial role in

the performance of the model. We improve the ConvNeXtV2 and

propose the PartialNeXt, which offers higher computational

efficiency and better feature extraction performance. The
FIGURE 1

Plant greenhouse.
TABLE 1 Dataset information.

Train Validation Test Statistics

Images Annotations Images Annotations Images Annotations Avg. num Avg. bbox area

3370 28934 1124 9407 1124 9385 8.5 176px
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introduction of ConvNeXtV2 has elevated the convolutional neural

network model to new heights in both computational efficiency and

model performance (Woo et al., 2023). However, its key feature

extraction convolution layer uses a 7×7 Depthwise Convolution

(DWConv), which reduces the model’s parameter count and

computation load. But due to increased memory access frequency

and insufficient hardware optimization, the computational speed is

actually reduced. Therefore, we replace the DWConv in

ConvNeXtV2 with Partial Convolution (PConv) to enhance the

model’s computational speed. The core idea of PConv is that there

is significant redundancy in the massive feature maps of the model.

PConv performs traditional convolution operations only on a small

portion of the feature map, while the remaining majority of the
Frontiers in Plant Science 04
feature map is directly passed to the next layer. This achieves a

balance between model efficiency and performance (Chen et al.,

2023). The operation process of PConv is shown in Figure 3.

The structural parameters of the backbone network refer to the

Nano version of ConvNeXtV2, which offers good feature extraction

ability while maintaining low parameter and computation counts.

The overall structure of PartialNeXt is shown in Figure 4A.

The network structure of PartialNeXt adopts a hierarchical design,

divided into four stages. Each stage contains a downsampling layer,

with the number of blocks and channels in each stage consistent with

ConvNeXtV2 Nano. The stages, from shallow to deep, contain [2, 2, 8,

2] PartialNeXt Blocks with corresponding channel counts of [80, 160,

320, 640]. Multi-scale features are crucial for object detection tasks, and

these four stages can extract features at four different scales, C2 to C5,

for subsequent feature fusion. The structure of the Downsample layer is

shown in Figure 4B, responsible for reducing the resolution of feature

maps and expanding the channel count. At the beginning of each stage,

a convolution layer with a kernel size of 2 and a stride of 2 reduces the

resolution of the feature map by half while doubling the number of

channels. Layer Normalization is applied to ensure stable feature

distribution, enhancing model training efficiency. The structure of

the PartialNeXt Block is shown in Figure 4C. Each Block starts with

PConv, which is the most critical improvement, with a kernel size of 7.

We use the default parameters from the PConv paper, where the ratio

of the feature map for feature extraction to the feature map for direct

forward is 1:3. A 1×1 convolution is used for cross-channel information

fusion, while the other modules follow the ConvNeXtV2 design.

3.1.2 Hybrid attention
Although the model employs a fully convolutional architecture,

its objective is to achieve accurate counting and localization of tiny

thrips rather than pursuing precise contour segmentation.

Therefore, we introduce a lightweight hybrid channel-spatial

attention mechanism. This mechanism focuses on enhancing the

detection accuracy for small targets while introducing only minimal

additional computational overhead. After the backbone network

outputs four multi-scale features (C2–C5), all are fed into the HA

module for feature extraction.
FIGURE 2

The overall structure of TCD-Net. The network architecture consists
of four components. The backbone network extracts fundamental
image features and outputs four sets of multi-scale feature maps.
These four feature maps are then fed into the Hybrid Attention (HA)
for further refinement, followed by adaptive feature fusion through
the AFM-FPN. Finally, four 1×1 convolutional layers serve as the
output heads to generate the prediction results.
FIGURE 3

Partial convolution. PConv only performs traditional convolution operations on a small portion of the feature map, and the rest is directly passed to
the next layer. This reduces computational redundancy and memory access frequency, and with the use of traditional convolutions, it benefits from
better hardware support, improving computation speed.
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For the input feature f, we first compute its channel attention,

then calculate its spatial attention, and finally add its residual, as

shown in Equation 1. Below, we will detail the channel attention

and spatial attention mechanisms.

HA(f ) = SA(CA(f )) + f (1)

Most channel attention mechanisms apply global average pooling

to the feature map, which captures only single-channel information.

This offers limited improvements for detecting small objects, as global

pooling tends to weaken the features of tiny targets. In our channel

attention mechanism, we combine both local and global features to

enhance performance on small objects while keeping computational

overhead minimal (Wan et al., 2023). As shown in Figure 5, the input

feature map undergoes adaptive average pooling to produce a local

pooling result of size ls, followed by global average pooling applied to
Frontiers in Plant Science 05
the local result to obtain the global pooling result. Local pooling

emphasizes local region features, while global pooling captures the

distribution characteristics of the entire feature map. Both local and

global pooling results are passed through a 1D convolution to extract

features and compute attention. The global attention is interpolated to

the size of the local attention and fused by element-wise addition.

Finally, the fused result is interpolated to the input size and multiplied

with the input feature map to generate the final channel attention map.

The implementation of spatial attention is straightforward. We

adopt the spatial attention module from the Convolutional Block

Attention Module (CBAM) (Woo et al., 2018), which incurs

minimal computational overhead, as shown in Figure 6. First, we

extract distribution information of the spatial features by performing

average and max pooling along the channel dimension. Then, a 2D

convolution is applied to compute spatial attention.
FIGURE 4

(A) The overall structure of PartialNeXt, its layers and channels are designed according to ConvNeXt Nano; (B) The structure of the Downsample
layer; (C) The structure of the PartialNeXt Block, its key improvement is to use partial convolution to optimize feature extraction.
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3.1.3 Adaptive feature mixer feature pyramid
network

Feature Pyramid Networks (FPN) have become a standard

paradigm for small object detection tasks, as they enhance small

object feature information (Lin et al., 2017). Traditional FPNs fuse

features through sampling and element-wise addition. However, this

fusion method is not conducive to the flow of information between

multi-scale feature maps. The element-wise addition could lead to the

accumulation of abnormal feature information or cause the weakening

of important features (Dai et al., 2021). To address this issue, we

propose the Adaptive Feature Mixer Feature Pyramid Network (AFM-

FPN). AFM-FPN uses an Adaptive Feature Mixer (AFM) module to

perform adaptive weighted fusion of features, as shown in Figure 7.
Frontiers in Plant Science 06
The AFM module is divided into two branches: spatial feature

extraction and channel feature extraction. It assigns fusion weights

on a pixel-by-pixel basis for the two features to be fused, as shown in

Figure 8. The two features to be fused are then added element-wise.

Two 1×1 convolutions are used to obtain spatial feature weights

with size (h, w, d). Global average pooling is applied to compress the

spatial size of the feature map to 1×1, and a Feed Forward Network

(FFN) is used to encode the channel feature weights. The channel

feature weights are broadcasted and added element-wise with the

spatial feature weights, followed by activation with the Sigmoid

function to obtain the adaptive fusion weightW, with size (h, w, d).

The features f1 and f2 are then weighted and fused using W, as

shown in Equation 2.
FIGURE 5

Mixed local channel attention. Integrating local and global features by using average pooling of different sizes in channel attention.
FIGURE 6

Spatial attention.
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AFM(f1, f2) = f1 �W + f2 � (1 −W) (2)
3.2 Loss function

A pure fully convolutional network predicts the target’s mask

during training to enable precise segmentation of target pixels, but it

lacks the capability for counting and detecting targets. Zhang et al.

(2024a) observed that existing object detection methods struggle to

count tiny pests, as the model struggles to learn the precise location

and contours of the target due to missing features, leading to poor

performance. They proposed RPH-Counter, using Object Counting

Loss (OC Loss) to train the fully convolutional network and

incorporating a self-attention mechanism to enhance the model’s

feature extraction capability, achieving precise detection of field

planthoppers. Thrips are even smaller than planthoppers,

presenting a greater challenge to model performance. Therefore,

we further optimized the model and used OC Loss to train the fully

convolutional network to enhance the detection performance for

thrips. Our method uses object-level annotations similar to object

detection, and the training process of the network model is shown

in Figure 9.

The OC Loss optimizes the model’s prediction of object centers

by focusing on the center points, restricting the model’s prediction

range for each object according to the annotated bounding box, and

continuously constraining false positives during training, as shown

in Equation 3. The three sub-goals are optimized together during

training, extending the original semantic segmentation capability of

the fully convolutional network to include object detection and

counting.
Frontiers in Plant Science 07
LOC(P,TL,TB) = LL (P,TL)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Localization   loss

+ LB (P,TB)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Boundary   loss

+ LF (P,TL)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
False   positive   loss

(3)

After forward propagation, the model generates a prediction

matrix P, which has the same size as the input image. For each pixel

i, the raw output value is denoted as pi. To convert this into a

probability score, the Sigmoid activation function is applied to the

model’s output. Let Pi = 1=(1 + exp( − pi)) be the Sigmoid

probability of thrip at pixel i, the closer the value is to 1, the

higher the likelihood that the position corresponds to a thrip.

Two ground-truth matrices, TL and TB, are defined, both

matching the size of the input image. Matrix TL stores the center

locations of pests, assigning a value of 1 to the exact center of each

pest and 0 to all other pixels. This serves as a precise localization

target during training. On the other hand, TB represents the object

boundaries, assigning a value of 0 to pixels within the annotated

bounding boxes and 1 to all other regions. This matrix is designed

to guide the model in distinguishing pest boundaries from their

surrounding areas. In the following sections, we will provide a

comprehensive breakdown of the three sub-loss functions, each

tailored to address specific aspects of the training objective.

3.2.1 Localization loss
Bearman et al. (2016) proposed a point-supervised semantic

segmentation loss function that only requires point-level

annotations to achieve approximate object contour segmentation.

We applied and integrated this loss function into the Localization

loss component of the OC Loss, enabling the model to accurately

localize objects. The Localization loss optimizes the model to

predict a region around each object’s center, granting the model

localization capabilities, as shown in Equation 4.
FIGURE 7

Adaptive feature mixer feature pyramid network. Optimizing the traditional element wise addition method for P-level features to use AFM module
for feature adaptive fusion to enhance performance.
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LL(P,TL) = −oi∈ZTL
lLlog(PiTLi

) (4)

Based on the object bounding box annotations, we first compute

the coordinates of each object’s center point and generate the

ground truth matrix TL for the object center points. The target

center point label is 1, let ZTL
be the set of coordinates in TL where

the label is 1. For these coordinates with label value of 1, let the

predicted value of the corresponding position in the model

prediction result P be PiTLi
. We aim to ensure that the model’s
Frontiers in Plant Science 08
output value at these positions is close to 1. This optimization

objective ensures that the model can accurately localize each thrips.

To provide more comprehensive training, we introduce a dynamic

parameter lL = sum(TL), where the contribution to the loss

increases with the number of targets in the image.

3.2.2 Boundary loss
Localization loss only optimizes the model’s prediction of each

object’s center region but does not provide guidance or constraints
FIGURE 8

Adaptive feature mixer. By extracting the spatial and channel features of the input features, fusion weights are assigned pixel-wise for the two
features to be fused.
FIGURE 9

Training process of TCD-Net.
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on the predicted region’s boundaries, which can lead to model

“laziness”, resulting in a lack of constraint on the predicted region.

Boundary loss constrains the model’s predicted range using the

boundary information from the annotated bounding boxes,

ensuring that the model predicts a small region around each

thrips center. We pre-load a matrix TB containing the boundary

information for all targets in the Dataloader. In this matrix, the

value of the element corresponding to the target bounding box

position is 1, and only these positions hold a value of 1. TB can

indicate the boundary coordinates of each target.

Let ZTB
be the set of coordinates in TB where the label is 1. For

these boundary coordinates, let the predicted value of the

corresponding position in the model prediction result P be PiTBi
.

We aim to ensure that the model’s output at these positions is close

to 0. Boundary loss is formulated as in Equation 5.

LB(P,TB) = −oi∈ZTB
lBlog(1 − PiTBi

) (5)

This optimization objective constrains the model’s predicted

range, ensuring that the center of the predicted region for each

object is accurate. Similarly, we introduce a dynamic parameter lB
= sum(TL) − 1. When the image contains more targets, the targets

may be closer to each other. Therefore, we assign higher weight to

Boundary Loss to ensure tha t each targe t remains

independently detected.

3.2.3 False positive loss
Localization loss and Boundary loss contribute only to the

model’s prediction of positive samples, without encouraging the

model to learn the characteristics of negative samples. Therefore, we

also incorporate False Positive Loss to train the model’s ability to

detect negative samples. The procedure for this is as follows: during

training, we identify regions that the model incorrectly predicts as

positive samples and encourage the model to predict these regions

as background, as described in Equation 6.

LF(P,TL) = −oi∈ZF
log(1 − Pi0) (6)

The process for calculating erroneous prediction regions is as

follows: First, we use a connected component labeling algorithm to

assign unique labels to each independent region in the predicted

result P. Then, we element-wise multiply P with the ground truth

center point matrix TL to obtain the prediction regions that contain

ground truth target centers. Finally, the remaining regions are

identified as erroneous predictions. Let ZF be the set of

coordinates in P corresponding to these erroneous regions. We

aim for the model’s output at these positions to be close to 0.
3.3 Thrip counting and detection

3.3.1 Thrip counting
The counting of thrips is achieved by calculating the number of

independent regions in the model’s prediction P. This is done using

a connected component labeling algorithm (He et al., 2017),
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specifically implemented using the label method from the

Scipy library.

3.3.2 Thrip detection
Thrip localization and detection results are obtained by

calculating the centroid coordinates of each independent region.

First, we extract the set of non-zero labels from the labeled matrix,

excluding the background. Then, we construct a 2D coordinate

matrix with the same dimensions as the input, where each pixel’s

row and column indices are recorded. Both the labeled matrix and

coordinate matrix are flattened into 1D arrays for vectorized

computation. Histogram statistics are used to count the number

of pixels for each label, and weighted accumulation is performed on

the row and column coordinates to obtain the total vertical and

horizontal coordinates for the pixels in each connected region.

Finally, the centroid coordinates are computed for each label using

the centroid calculation formula.

4 Experimental results

4.1 Implementation details

The hardware used for model training and inference consists of

an Intel Core I9 12900K CPU with 64GB of memory and an

NVIDIA RTX 4090 GPU. The operating system is Ubuntu

22.04.1 LTS, with CUDA version 12.1. The model is built on

Python 3.9 and PyTorch 2.1.2.

4.1.1 Model details
In PartialNeXt, the ratio between feature maps processed by

PConv for feature extraction and those directly bypassed is 1:3, with

a kernel size of 7. The downsampling rates for C2–C5 feature maps

are 4×, 8×, 16×, and 32×, with channel counts of 80, 160, 320, and

640, respectively. When calculating the mixed attention for C2-C5,

the local size for each layer is 32, 16, 8, and 4, respectively. The

kernel size for the Conv1D in channel attention is 3, while the

kernel size for Conv2D in spatial attention is also 3. All feature maps

are adjusted to 256 channels in the FPN, outputting four multi-scale

features with 256 channels. Finally, four 1×1 convolutions reduce

the channel count of the four multi-scale features to 1, which is then

resampled back to the input size and merged, with the Sigmoid

activation function applied, resulting in the final prediction.

4.1.2 Details of the methods used for comparison
We compare TCD-Net with existing methods, including

one-stage detectors: YOLOv8 and YOLOv11 (Sharma et al.,

2024). Two-stage detectors include Faster R-CNN (Ren et al.,

2015), Cascade R-CNN (Cai and Vasconcelos, 2018) and

Dynamic R-CNN (Zhang et al., 2020a). DETR-based detectors

include Deformable DETR (Zhu et al., 2020) and DDQ-DETR

(Zhang et al., 2023). We also compare with the recently proposed

RPH-Counter (Zhang et al., 2024a). YOLO is implemented using

the official open-source code, with the Large version of the model.
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The two-stage detectors and DETR-based detectors are

implemented using the MMDetection framework, with the

backbone network using ResNet50 pre-trained on ImageNet 1K.

For anchor-based detectors, the anchor generation size is adapted to

the target size of the rice planthopper dataset.

4.1.3 Training details
During training, random flipping is used for data augmentation.

The batch size is set to 1, and the Adam optimizer is used with a

learning rate of 1e-5 and weight decay of 1e-4. All methods are

trained for 100 epochs.
4.2 Evaluation metrics

4.2.1 Detection accuracy
The model’s localization accuracy can be evaluated by checking

whether the predicted region’s centroid lies within the ground truth

bounding box. Object detection methods determine this by

calculating the center point of the predicted box. The criteria for

TP, FP, and FN are shown in Table 2.

The model’s detection accuracy is evaluated using Precision,

Recall, and F1 score, as shown in Equations 7-9. Our method uses a

confidence threshold of 0.5, while the confidence threshold for

object detection methods is determined by finding the value

corresponding to the highest F1 score on the Precision-Recall curve.

F1 =
2TP

2TP + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)
4.2.2 Counting error
The algorithm’s stability is evaluated using the Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE). Let CGT
i and

CPred
i represent the ground truth and predicted number of targets in

the i-th image, respectively. N be the number of images. The

calculations are shown in Equations 10 and 11.

MAE =
1
No

N
i=1 CGT

i − CPred
i

�� �� (10)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1 CGT

i − CPred
i

�� ��2r
(11)

R-squared (R²) evaluates the similarity between the algorithm’s

counting results and the actual results, as shown in Equation 12,

CGT = Avg(oCGT
i ). The R2 value ranges from 0 to 1, with higher

values indicating that the algorithmmore accurately reflects the pest

situation.

R2 = o
​(CPred

i − CGT )2

o​(CGT
i − CGT )2

(12)
4.3 Training results

We visualized the reduction in loss during training, as well as

the changes in counting error and accuracy on the validation set, as

shown in Figure 10. First, the model’s training loss steadily

decreased, with all sub-loss functions being well optimized.

Meanwhile, in each evaluation cycle, the counting error on the

validation set generally showed a decreasing trend, while the F1

score showed an increasing trend. This indicates that, after training,

the model successfully achieved the objective of detecting and

counting thrips in the images.

We further visualized the model’s prediction, presented in the

form of heatmaps, as shown in Figure 11. After sufficient training,

the model demonstrated the ability to detect thrips while being

insensitive to the background. For each thrip, the model predicts a

small spot area, and the predicted range is confined within the

thrip’s body size. Subsequently, the number of independent regions

can be calculated using a connected component labeling algorithm,

and by calculating the centroid of each region, precise detection and

counting of thrips can be achieved.
4.4 Quantitative analysis

We compared TCD-Net with some existing methods widely

used for pest counting. First, we compared the detection

performance of these models, and the results are shown in

Table 3. TCD-Net significantly outperforms the one-stage

detectors, with both higher Precision and Recall. YOLOv8l and

YOLOv11l show relatively weaker performance, with lower F1

scores and Recall rates compared to other methods, likely due to

their inadequate small object detection performance. The two-stage

detectors performed relatively better in the thrips detection task.

Compared to the one-stage detectors, the two-stage detectors

showed a significant improvement in Recall. However, their

drawback lies in lower Precision, which leads to more false

positives, resulting in suboptimal F1 scores. Deformable DETR

achieved higher detection performance, with a primary advantage

in Precision. However, due to the global attention mechanism of the

Transformer, small object sparse features are prone to being

overwhelmed by the background when calculated on high-

dimensional feature maps. Additionally, the one-to-one matching
TABLE 2 Criteria for determining TP, FP, and FN.

Flag Description

True positive (TP)
The centroid of the predicted region lies within the
ground truth bounding box

False positive (FP)
The centroid of the predicted region does not lie within
any ground truth bounding box

False negative (FN)
There is no centroid of the predicted region within the
ground truth bounding box
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FIGURE 10

Visualization results of the training process.
FIGURE 11

Visualization of model output.
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(O2O) of predicted boxes in DETR results in far fewer positive

samples than the one-to-many matching (O2M) in traditional

detectors, which may reduce performance in small object

detection tasks (Shihua et al., 2025). Therefore, current DETR-

based detectors still face significant limitations in detecting

extremely small objects, with lower Recall in thrips detection

leading to many missed detections. TCD-Net demonstrated the

best overall performance on both the validation and test sets, with

an F1 score significantly higher than other methods. Moreover, it

achieved a good balance between Precision and Recall.

We further compared the counting accuracy of these methods,

and the results are shown in Table 4. TCD-Net once again

demonstrates its advantage, with the lowest MAE and RMSE and

the highest R2 value, indicating that its counting results are the

closest to the actual values, with the best stability. Considering the

detection accuracy results, models with higher detection

performance also show higher counting accuracy, reflecting a

more accurate assessment of pest conditions.

Finally, we compared the computational complexity of these

methods. The comparison was based on four aspects: model

parameter count, computational load, training speed, and

inference speed, with the results shown in Table 5. When

comparing with the one-stage detection models, YOLOv8 and

YOLOv11, TCD-Net has lower theoretical parameter count and

computational load. It also has slightly faster training and inference

speeds than YOLO, while achieving significantly better detection

performance. For more complex models, such as Deformable DETR

and RPH-Counter, the detection performance of these models is

slightly lower than that of TCD-Net, but their computational

complexity is significantly higher, especially Deformable DETR,

which fails to meet real-time inference speeds. In comparison with

RPH-Counter, TCD-Net’s computational load is less than half, and

its inference speed is approximately 1.5 times faster. In summary,

TCD-Net not only achieves higher detection and counting accuracy

but also maintains a relatively low computational load, with its

inference speed surpassing the real-time detection requirement.
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4.5 Visualization

We visualized the detection and counting results of each

method for a more intuitive comparison, as shown in Figure 12.

Upon observing the detection results of Faster R-CNN and Cascade

R-CNN, it is evident that they suffer from insufficient detection

precision, with many FPs present. YOLOv11l’s detection results also

include noticeable FN and FP, leading to higher counting

discrepancies in some cases. The detection results of Deformable

DETR contain fewer FN and FP compared to one-stage and two-

stage detectors, but due to its lower recall rate, the counting results

are fewer than the actual number of targets. Compared to existing

methods, TCD-Net has fewer FN and FP, and its counting results

are closer to the actual numbers. However, in some cases, the target

detection method may exhibit significant missed detections and

false detections, as shown in Supplementary Figure S1. This is
TABLE 3 Comparison of detection accuracy with existing methods.

Method
Val Test

F1 Precision Recall F1 Precision Recall

TCD-Net 86.20% 85.30% 87.12% 85.67% 85.18% 86.17%

RPH-Counter 83.14% 83.35% 82.93% 82.98% 82.67% 83.29%

Faster R-CNN 80.68% 78.41% 83.10% 80.91% 79.31% 82.58%

Cascade R-CNN 81.05% 78.66% 83.59% 81.11% 79.80% 82.46%

Dynamic R-CNN 81.29% 81.69% 80.88% 81.23% 82.63% 79.89%

Deformable
DETR

82.67% 86.22% 79.40% 82.43% 86.09% 79.07%

DDQ-DETR 82.97% 85.02% 81.02% 82.28% 84.13% 80.52%

YOLOv8l 77.52% 76.35% 78.73% 77.04% 75.90% 78.22%

YOLOv11l 76.89% 75.83% 77.98% 76.48% 75.56% 77.43%
TABLE 4 Comparison of counting accuracy with existing methods.

Method
Val Test

MAE RMSE R2 MAE RMSE R2

TCD-Net 1.43 2.43 76.80% 1.49 2.48 75.50%

RPH-Counter 1.69 2.66 65.62% 1.73 2.75 65.41%

Faster R-CNN 2.12 3.14 62.57% 2.13 3.17 62.23%

Cascade R-CNN 2.09 3.08 64.59% 2.09 3.06 62.85%

Dynamic
R-CNN

1.96 2.99 63.54% 2.02 3.10 60.51%

Deformable
DETR

1.99 2.87 65.24% 2.01 2.99 64.78%

DDQ-DETR 1.88 2.85 66.13% 2.03 3.01 64.63%

YOLOv8l 2.14 3.22 60.67% 2.15 3.26 59.73%

YOLOv11l 2.19 3.29 59.92% 2.21 3.34 58.61%
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primarily due to the small proportion of thrips’ features, making

accurate identification difficult. The visualized results align with the

quantitative analysis, further confirming the comprehensive

advantage of TCD-Net in the thrips detection and counting task.

Finally, as shown in Figure 13, we present a set of detection and

counting results from TCD-Net. TCD-Net demonstrates high

stability, with only a small number of FN and FP in the detection

results, providing strong algorithmic support for the intelligent

monitoring and management of thrips.
4.6 Comparative analysis

4.6.1 Comparison of backbone
First, we compared PartialNeXt with several existing backbone

networks, without using any attention mechanisms in the network.

The features from four levels of the backbone network were input

into the vanilla FPN for feature fusion. The performance

comparison results are shown in Table 6. When using

PartialNeXt, the model outperforms several existing backbone

networks in terms of F1 score, RMSE, and R2 on both the

validation and test sets. Compared to ConvNeXtV2-Nano, after

applying PConv, the model’s performance significantly improves,

demonstrating that using PConv is a better choice than DWConv.

When compared to classic backbone networks such as ResNet-50

(He et al., 2016), Swin Transformer-Tiny (Liu et al., 2021b), and

FasterNet-S (Chen et al., 2023), PartialNeXt, through lightweight

design and PConv optimization, is able to extract richer features. At

the same time, PartialNeXt maintains a high degree of lightweight

efficiency, as shown in Supplementary Table S1. Compared to the

larger backbone network Swin Transformer-Tiny, PartialNeXt

achieves higher performance and a 4.5× faster inference speed. In

comparison with ConvNeXtV2-Nano, PartialNeXt delivers

significantly higher performance with minimal efficiency loss.
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4.6.2 Comparison of attention mechanism
Next, we fixed the backbone network as PartialNeXt and used

the vanilla FPN for feature fusion. We compared the performance

and efficiency of different attention mechanisms. The performance

comparison results are shown in Table 7. When using our proposed

HA to process the multi-level feature maps of the backbone

network, model performance improves, especially in R2, which

shows a notable enhancement. This indicates that, after using

HA, the model’s output becomes more stable. Meanwhile, as

shown in Supplementary Table S2, the computational cost of HA

is lower than that of CBAM, and the inference speed is only slightly

lower than MLCA, achieving a good balance between model

performance and efficiency.

4.6.3 Comparison of FPN
Finally, we compared the performance and efficiency of

different FPNs. With the backbone network fixed as PartialNeXt

and no attention mechanism, the performance comparison results

are shown in Table 8. Using our proposed AFM-FPN further

enhanced the model’s feature fusion mechanism, improving the

model’s detection and counting performance for thrips. At the same

time, as shown in Supplementary Table S3, the model with AFM-

FPN has lower parameters and computational cost, balancing

model performance and efficiency effectively.
4.7 Ablation study

4.7.1 Loss ablation
We conducted an ablation study on the components of the loss

function, and the visualization results are shown in Figure 14. When

only LL is used, the model exhibits “laziness,” predicting the entire

image as the foreground to include all thrips. When LL+LB is used,

the lack of constraints on false positives leads to a large number of
TABLE 5 Comparison of model complexity with existing methods.

Method Params (M) FLOPs (G)
Training speed

(it/s)
Inference FPS

on GPU
Inference FPS

on CPU

TCD-Net 21.13 114.36 20.76 91.66 1.67

RPH-Counter 36.37 247.58 14.06 62.66 0.94

Faster R-CNN 41.35 322.42 13.21 38.76 0.16

Cascade R-CNN 69.16 350.22 11.52 34.36 0.16

Dynamic
R-CNN

41.75 323.60 12.92 38.46 0.17

Deformable
DETR

41.21 319.21 3.45 14.86 0.24

DDQ-DETR 48.31 437.31 3.09 12.95 0.15

YOLOv8l 43.63 275.32 15.62 52.44 0.53

YOLOv11l 25.31 147.46 17.04 74.29 0.75
frontiersin.org

https://doi.org/10.3389/fpls.2025.1663813
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2025.1663813
false positive predictions. When LL+LF is used, the model predicts a

larger spot for each thrips, but due to the absence of constraints on

prediction boundaries, the model is unable to separate thrips that

are close together. When the complete loss function is used, the

model predicts a smaller spot for each thrips, with individuals well

separated, and false positives are constrained, achieving precise

detection and counting of thrips.

4.7.2 Network module ablation
We conducted ablation experiments on the three key

improvements we proposed to validate their effectiveness, and the

model performance comparison results are shown in Table 9. Each

of the three proposed improvement modules effectively enhances

the model’s performance, and when combined, they exhibit

significant synergistic effects. First, when used individually, each

of these modules improves the evaluation metrics, confirming the
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independent effectiveness of each module. Then, combining two

modules further enhances performance, with PConv+AFM-FPN

performing the best, showing an 8.21% improvement in R2 on the

test set. Finally, when all three improvements are combined, the

model achieves optimal performance, with the test set F1 reaching

85.67%, RMSE reduced by 15.6%, and R2 increased by 12.68%.

These results significantly outperform the baseline and any

combination of submodules, demonstrating the rationality and

necessity of the multi-module collaborative design.

As shown in Table 10, we further investigated the impact of

these improvements on the model’s computational efficiency. First,

PConv, due to the use of partial vanilla convolution, results in a

noticeable increase in parameters and computational load

(+5M Params, +25.96G FLOPs), but has minimal impact on

training speed. HA, with almost no increase in parameters and

computation, slightly reduces the inference speed, indicating that
FIGURE 12

Visual comparison of prediction results with existing methods.
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the computational overhead of its attention mechanism is

manageable. The multi-scale fusion structure introduced by

AFM-FPN also only slightly increases the computational burden

(+0.2M Params, +4.49G FLOPs), while maintaining high training

and inference efficiency. When combining the modules, the

inference speed drops to 91.66 it/s but still exceeds the real-time

requirements. Overall, the modules achieve a good balance between

computational cost and performance improvement.
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5 Discussion

We identified the performance shortcomings of existing

methods in thrips detection and made key improvements to

address these issues. The main advantages of TCD-Net include:

1) State-of-the-art optimization: TCD-Net follows the latest neural

network optimization approaches, improving the model’s

performance through enhancements in feature extraction,
FIGURE 13

Visualization of the prediction results of TCD-Net.
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attention mechanisms, and multi-scale feature fusion. 2) Model

efficiency: While optimizing the model, we ensure its efficiency by

using methods with low parameter and computational

requirements, rather than merely stacking modules, achieving a

balance between performance and efficiency. 3) Specialized loss

function: We use a loss function tailored for small object pest

detection, avoiding the issue in traditional object detection methods

where it is difficult to predict and match precise small target

bounding boxes, ensuring the model’s baseline performance.

However, this work still faces some limitations. First, regarding

the dataset, we have collected a thrips dataset with over 47K+

annotations in a greenhouse, and the public release of this dataset

can contribute to the field of extremely small pest detection.

Although TCD-Net has shown good performance in our

environment, greenhouse and field conditions are nearly infinitely

complex, and the diversity and scale of the dataset still require
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further development. While data collection and annotation took

considerable time and incurred high labor costs, it remains crucial

to gather richer datasets in future work. New data augmentation

techniques can be explored, such as using generative models like

GANs and diffusion models to synthesize new data, which can be

combined with the original dataset, reducing annotation costs and

increasing data richness (Lu et al., 2022; Zhang et al., 2024b).

Furthermore, unsupervised and weakly supervised methods can

be explored for model training to reduce the need for large

annotated datasets and enhance model generalization (Bollis

et al., 2022; Han et al., 2025).

Regarding method optimization, further development of the

model’s attention and feature fusion mechanisms is an ongoing

direction that requires continued exploration. At the same time,

model efficiency must be considered to ensure feasibility in practical

deployment. The loss function also needs further development.

While it has been successful for small pest counting, its current

support for large-scale, multi-class tasks is limited. Future work

could focus on optimizing the localization loss part of the loss

function to enhance its multi-class support capabilities. Another

potential avenue is the development of hybrid or multi-branch

networks to improve support for large-scale pest detection. For

example, using a hybrid machine learning and deep learning

structure could enhance model performance, or employing a

combined density estimation and object detection network could

simultaneously improve pest detection and counting accuracy (Gao

et al., 2024; Han et al., 2024).
6 Conclusions

This paper presents an efficient model for thrips counting and

detection, capable of performing real-time, accurate counting and

detection of thrips on the leaves of Spathiphyllum floribundum

‘Clevelandii’ in greenhouses. TCD-Net is a unique fully

convolutional network structure, which utilizes our designed

efficient PartialNeXt as the backbone network, combined with

lightweight Hybrid Attention and AFM-FPN to extract and fuse

rich thrips features. By predicting a small region for each thrips,

TCD-Net achieves precise counting and detection. Experiments

were conducted on a dataset containing over 47K thrips

annotations, and the results demonstrate that TCD-Net provides

highly accurate counting and detection performance, while

maintaining low model complexity and an inference speed that

far exceeds real-time detection. On the test set, TCD-Net achieved

an F1 score of 85.67% and a counting result correlation of 75.50%,

outperforming existing methods in both counting and detection

accuracy. Additionally, the model size (21.13M parameters) and

theoretical computational load (114.36 GFLOPs) are less than half

that of two-stage object detection methods, while the inference

speed (91.66 it/s) is more than twice as fast as that of two-stage

object detection methods. In summary, TCD-Net achieves higher

thrips counting and detection accuracy with lower computational

complexity, demonstrating its potential for detecting extremely

small pests. Future optimization directions include further
TABLE 6 Performance comparison of backbone.

Backbone
Val Test

F1 RMSE R2 F1 RMSE R2

ResNet-50 82.66% 2.77 65.14% 81.91% 3.01 63.79%

Swin
Transformer-

Tiny
82.99% 2.75 65.21% 82.57% 2.99 64.21%

ConvNeXt-
Tiny

82.84% 2.78 65.09% 82.20% 2.96 63.88%

ConvNeXtV2-
Nano

82.91% 2.77 64.99% 82.21% 2.94 62.82%

FasterNet-S 82.58% 2.88 66.42% 81.80% 3.07 59.99%

PartialNeXt 83.69% 2.79 71.25% 83.56% 2.87 65.87%
TABLE 7 Performance comparison of attention mechanism.

Attention
Val Test

F1 RMSE R2 F1 RMSE R2

- 83.69% 2.79 71.25% 83.56% 2.87 65.87%

CBAM 85.12% 2.67 72.44% 84.20% 2.68 67.17%

MLCA 84.81% 2.64 71.46% 84.37% 2.58 68.99%

HA 85.54% 2.46 75.34% 84.94% 2.61 69.04%
TABLE 8 Performance comparison of FPN.

FPN
Val Test

F1 RMSE R2 F1 RMSE R2

Vanilla FPN 83.69% 2.79 71.25% 83.56% 2.87 65.87%

PAFPN 85.05% 2.48 72.27% 84.58% 2.62 70.01%

AFM-FPN 85.93% 2.45 75.75% 85.35% 2.55 71.03%
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FIGURE 14

Visual comparison of loss ablation.
TABLE 9 Ablation study on model performance.

PConv HA
AFM-
FPN

Val Test

F1 RMSE R2 F1 RMSE R2

82.91% 2.77 64.99% 82.21% 2.94 62.82%

✓ 83.69% 2.79 71.25% 83.56% 2.87 65.87%

✓ 83.20% 2.73 66.97% 82.66% 2.83 64.55%

✓ 83.68% 2.66 68.49% 83.07% 2.90 65.88%

✓ ✓ 85.54% 2.46 75.34% 84.94% 2.61 69.04%

✓ ✓ 85.93% 2.45 75.75% 85.35% 2.55 71.03%

✓ ✓ 84.39% 2.55 72.70% 83.60% 2.72 67.36%

✓ ✓ ✓ 86.20% 2.43 76.80% 85.67% 2.48 75.50%
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improving model training and inference speeds, integrating with

patrol robots for intelligent pest monitoring in greenhouses, and

expanding its application to other types of pests, contributing to

intelligent pest reporting systems.
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✓ ✓ 21.13 114.34 20.99 96.31

✓ ✓ 16.13 88.40 21.18 97.54

✓ ✓ ✓ 21.13 114.36 20.76 91.66
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