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Soil salinization poses a severe threat to global food security by reducing crop
productivity, particularly in semi-arid regions where sorghum (Sorghum bicolor L.) is a
major cereal crop. Hydrogen sulfide (H,S) has recently been recognized as a signaling
molecule involved in plant stress tolerance. However, its role in regulating the
chloroplastic ascorbate—glutathione (AsA-GSH) cycle and photosynthetic
performance in sorghum under salt stress remains unclear. To investigate the
potential regulatory role of exogenous H,S, sorghum seedlings were subjected to
salt stress with or without sodium hydrosulfide (NaHS, an H,S donor). Physiological,
biochemical, and chlorophyll fluorescence parameters were assessed to evaluate
growth performance, antioxidant capacity, and photosynthetic responses. The
concentrations of reduced and oxidized forms of ascorbate (AsA/DHA) and
glutathione (GSH/GSSG), together with the activities of key enzymes in the AsA—
GSH cycle, were determined. Salt stress significantly inhibited sorghum seedling
growth, enhanced reactive oxygen species (ROS) accumulation, and disrupted redox
homeostasis. Exogenous H,S alleviated these effects by stimulating the AsA-GSH
cycle in chloroplasts. H,S treatment maintained higher levels of reduced AsA and GSH
while promoting moderate accumulation of DHA and GSSG, accompanied by
elevated activities of ascorbate peroxidase (APX), glutathione reductase (GR),
dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase
(MDHAR). Moreover, H,S improved photosynthetic performance by maintaining
chlorophyll content and chloroplast ultrastructure, optimizing chlorophyll
fluorescence parameters, and protecting photosystem Il (PSIl) from photoinhibition.
Enhanced electron transfer from the PSIl reaction center to plastoquinone further
indicated an improved capacity for energy dissipation under salt stress. These findings
demonstrate that exogenous H,S confers salt tolerance in sorghum by activating the
chloroplastic AsSA—GSH redox cycle and preserving photosynthetic efficiency. The
study highlights H,S as a critical mediator of chloroplast redox regulation, providing an
effective strategy for enhancing sorghum resilience to soil salinization and promoting
sustainable agricultural production.
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1 Introduction

Soil salinization, a consequence of irrigation practices, climate
change, and natural soil processes, has become a major threat
to global food security by severely impacting crop productivity
(Mishra et al, 2023). Salinity stress restricts crop productivity by
inducing osmotic stress and ion toxicity, which disrupt water uptake,
ion homeostasis, photosynthesis, and ultimately reduce growth and
yield (Parihar et al, 2015). Sorghum (Sorghum bicolor L.), an
important cereal crop known for its tolerance to various
environmental stresses, is predominantly cultivated in regions
prone to salt-affected soils (Liu et al., 2023; Wei et al., 2024).
Salinity hampers sorghum growth by disrupting essential
physiological processes, including photosynthesis (Rajabi Dehnavi
et al., 2022; Yang et al., 2020) and antioxidant metabolism
(Chen et al.,, 2022; Guo et al,, 2022), leading to reduced yields and
potential crop failures. During crop adaptation to salinity stress, the
identification and exploitation of salt-tolerance genes—such as the
TALE (Liang et al., 2025), the CASPL (Xue et al., 2024a, 2024b), and
the RALF (Xue et al., 2024c) and TEF (Liu et al., 2024)—constitute a
pivotal strategy for breeding salt-tolerant cultivars. At same time, the
exogenous application of plant growth regulators represents another
critical approach for modulating sorghum salt tolerance.

The photosynthetic apparatus is a primary target in plants
under salt stress, with the thylakoid membrane and associated
electron transport components being particularly sensitive (Zhang
et al., 2010). Within the chloroplast, the AsA-GSH cycle acts as a
shield for photosynthesis against the oxidative harm triggered by
salt stress (Tan et al., 2022). Beyond enhancing plant resilience
across various stress scenarios (Zhu et al., 2022), this cycle also plays
a key role in scavenging reactive oxygen species (ROS) within plant
cells (Wu et al.,, 2019). However, under salt stress, the AsA-GSH
cycle in plants is significantly impaired (Prajapati et al., 2023),
adversely affecting crucial cellular activities such as stomatal
movement (Khan et al., 2021). Notably, Hydrogen sulfide (H,S)
can counteract salt stress by activating antioxidants within the AsA-
GSH cycle and boosting the ROS scavenging ability within wheat
plant cells (Kaya et al., 2023). However, the precise regulatory
mechanisms by which H,S influences the photosynthetic process
and the antioxidant metabolic pathways in sorghum seedlings
remain to be elucidated.

Hydrogen sulfide (H,S), an emerging gasotransmitter with
significant physiological functions in plants, has demonstrated
potential in modulating plant responses to abiotic stresses (Xuan
et al,, 2020). Functioning as a signaling molecule, H,S participates
in a variety of plant processes, including regulating gene expression,
modifying proteins post-translationally, and preserving cellular
redox balance (Alvi et al., 2023). Recent studies have highlighted
that H,S could be crucial in enhancing plant resilience to adverse
stress by regulating antioxidant defense mechanisms and
safeguarding photosynthetic machinery. For instance, exogenous
H,S application can improve cabbage photosynthesis under black
rot stress by reducing chlorophyll degradation, enhancing gas
exchange, and upregulating Calvin cycle enzyme activities and
gene expressions related to photosynthesis (Wang et al., 2024). In
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addition, exogenous application of H,S, has been widely employed
to enhance drought tolerance in plants. Such treatments promote
the accumulation of polyamines, soluble sugars, and glycine betaine,
while simultaneously stimulating antioxidant enzyme activities.
These changes collectively mitigate drought-induced osmotic and
oxidative stress, thereby improving the adaptive capacity of plants
under adverse conditions (Thakur et al, 2021). Cui et al. (2025)
indicated that H,S enhances plant cold tolerance by activating
antioxidant defense mechanisms and facilitating the
accumulation. In addition, exogenous iron and H,S collectively
enhance seedling growth, maintain pigment composition, and
bolster the antioxidative defense system in tomato seedlings
under NaCl stress by increasing endogenous H,S content and L-
cysteine desulthydrase activity (Subba et al., 2023). Also, exogenous
H,S has been demonstrated to mitigate salt stress in cucumber
seedlings through multiple mechanisms, including boosting
photosynthesis, maintaining the AsA-GSH cycle, protecting
mineral ion intake, reducing the Na*/K*, and activating the SOS
and MAPK signaling pathways ((Luo et al., 2023). Thus, there is a
significant interest in elucidating the role of H,S in regulating the
physiological functions in sorghum under salt stress conditions.
The primary objectives of this experiment were to: (1)
investigate how H,S influences the growth of sorghum seedlings
under salt stress conditions; (2) determine the impact of H,S on the
photosynthetic machinery; (3) examine the influence of H,S on the
AsA-GSH cycle in chloroplasts, which serves as a vital antioxidant
defense system. By elucidating these mechanisms, our research
seeks to provide essential insights for developing strategies to
improve crop resilience against soil salinization, ultimately
contributing to crop production and sustainable agriculture.

2 Materials and methods
2.1 Experimental location

The experiment was carried out within an artificial climate
chamber (model AR-41L3 Flex, Percival, HK) situated in the
Sorghum Physiology Laboratory at the Agronomy College,
Shenyang Agricultural University. Specifically, the experimental
chamber was set to maintain a consistent temperature of 28°C
throughout both day and night, with a photoperiod set at 12 hours,
an illumination intensity of 280 pmol m2s!, and a relative
humidity at 84%.

2.2 Experimental materials and design

Sorghum inbred line, SX44B, was utilized as the experimental
material in this study. Homogeneous sorghum seeds were
meticulously chosen and sanitized using a 5% sodium
hypochlorite solution for a duration of 10 minutes, after which
they were placed in Petri dishes. Subsequently, the seeds were
germinated in an incubator with a constant temperature value
maintained at 25°C for a period of 3 days. After germination,
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seedlings that exhibited robust growth were transferred into
hydroponic boxes, with 16 seedlings per box. The seedlings were
initially cultured in distilled water for 3 days, before being
transferred to a 1/2 Hoagland nutrient solution for an additional
3 days. Upon reaching the stage where second sorghum seedling leaf
fully expanded, they were exposed to stress treatment with a 200
mmol/L NaCl salt solution (Yu et al., 2025). Sodium hydrosulfide
(NaHS) at a concentration of 50 pmol/L was used as a hydrogen
sulfide (H,S) donor, and hypotaurine at 0.1 mmol/L served as an
H,S scavenger (based on previous results). Following salt stress, H,S
or the H,S scavenger was sprayed once daily for the three
consecutive days, with each application consisting of 8 mL. The
experiment consisted of five treatments: (1) plants not exposed to
salt stress received an equivalent volume of distilled water (CK), (2)
plants not exposed to salt stress and treated with H,S (CK+H,S), (3)
salt-stressed plants that were sprayed with distilled water (S), (4)
salt-stressed plants that were sprayed with H,S (S+H,S), and (5)
salt-stressed plants that were sprayed with both H,S and the H,S
scavenger (S+H,S+HT). Throughout the experiment, the nutrient
solution was refreshed every three days, and after a 7-day period of
salt stress, uniform sorghum seedlings were selected for the
measurement of various parameters (Tao et al., 2021).

2.3 Morphological measurements

Uniformly developed plant seedlings were selected from each
treatment and cleaned with distilled water. The moisture on the
surface of seedlings was carefully removed using filter paper.
Subsequently, the shoot and root parts were dissected using
scissors. The lengths of both the shoot and root sections were
then precisely measured with a calibrated ruler. The fresh weights of
these parts were accurately determined using an electronic balance
accurate to 0.001 grams. Following this, each part was individually
placed into a brown paper envelope and subjected to drying in an
oven at 80°C until reaching a constant weight. Ultimately, the dry
weights of the shoots and roots were then measured, with three
replicates for each treatment (Yu et al., 2024).

2.4 Determination of MDA and reactive
oxygen species content

The determination of O, content followed the method
described by (Luo et al., 2023). Specifically, 0.5 g of the first fully
expanded leaves from sorghum seedlings were collected in an ice
bath and homogenized in 2 mL of extraction buffer. The mixture
was then centrifuged at 8000xg for a duration of 10 minutes at 4°C,
and the resulting supernatant was carefully retrieved. Next,
Subsequently, 1 mL of the supernatant was combined with 0.5
mL of phosphate buffer (50 mmol/L, pH 7.8) and 0.1 mL of
hydroxylamine hydrochloride chemical solution (10 mmol/L),
and the reaction mixture was shaken and incubated at 25°C for
20 minutes. Subsequently, the mixture was treated with 1 mL of
para-aminobenzenesulfonic acid solution (58 mmol-L™") and 1 mL
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of o-naphthylamine solution (7 mmol-L™"). After adding these
reagents, the mixture was thoroughly combined and subjected to
oscillation at 30 °C for a period of 30 minutes. Ultimately, an equal
volume of chloroform was introduced into the mixture, which was
then subjected to centrifugation at 10,000xg for 3 minutes. The
supernatant was carefully extracted, and its absorbance was assessed
at a wavelength of 530 nm. The concentration of O, was
subsequently quantified by referring to a pre-established standard
calibration curve.

The H,O, content was determined according to the procedure
reported by Moloi and van der Westhuizen (2006). Specifically, 0.1
g of the first fully expanded leaves from sorghum seedlings were
ground in 5 mL of cold acetone. The resulting homogenate was
centrifuged at 4°C for 15 minutes, and the supernatant was carefully
decanted. To this supernatant, 0.5 mL of titanium tetrachloride
(TiCly) reagent was added. During the mixing process, 3.5 mL of
25% ammonium hydroxide (NH,OH) was added dropwise. The
mixture was then centrifuged again at 4°C for 5 minutes. The
supernatant was discarded, and the precipitate was washed
thoroughly with 5 mL of acetone until it turned colorless. Finally,
the precipitate was melted in NH,SO, solution (20 mL), and the
absorbance was determined at 415 nm.

Nitroblue Tetrazolium (NBT) and Diaminobenzidine (DAB)
Staining: Leaf segments (6-8 cm) from the first fully expanded
leaves of sorghum seedlings were collected, with four replicates per
treatment. Samples were incubated in NBT or DAB solution in the
dark at room temperature for 6 h, followed by decolorization in 95%
ethanol at 40 °C for 16 h. The decolorized leaves were rinsed, blotted
dry, and photographed.

The malondialdehyde (MDA) content was assessed using the
thiobarbituric acid (TBA) method, as described by Jin et al. (2020).
Specifically, a 0.5 g sample of the first fully expanded leaves from
sorghum seedlings was homogenized in trichloroacetic acid (5 mL)
while being kept in an ice bath to ensure low-temperature
conditions. After homogenization, the mixture was centrifuged at
8000xg for 15 minutes at 4°C to separate the components. Next, the
resulting supernatant (2 mL) was combined with 5 mL TBA
solution (0.67%) and incubated in boiling water for 30 minutes,
after which it was cooled in an ice bath. The mixture was then
subjected to centrifugation at 10000xg at 4°C for 15 minutes.
Finally, the absorbance was determined at wavelengths of 532
nm, 600 nm, and 450 nm, respectively, using a 0.67% TBA
solution as the reference.

The determination of MDA content is expressed through the
following formula:

MDA (umol/g FW) = 6.45 x (A532 — A600) — 0.56 X A450

where A450, A532, and A600 denote the optical density
readings at 450 nm, 532 nm, and 600 nm, respectively.

2.5 Chloroplast extraction and preparation

The extraction and preparation of chloroplasts from leaf tissues
were conducted in accordance with the protocol detailed by
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Bhattacharya et al. (2020). The first fully expanded leaves were
selected (1 g), washed, and dried to remove petioles and major
veins. The leaves were then homogenized in phosphate buffer
(2 mL) and passed through a 100 pum mesh filter. The filtrate
underwent centrifugation at 3000xg for 10 minutes on two separate
occasions. Following each centrifugation, the supernatant was
removed, and the resulting pellet was retained. Further
centrifugation was conducted at 200xg and 1000xg for 2 minutes
respectively, and the pellets were discarded while the supernatant
was taken. Finally, the supernatant was subjected to centrifugation
at 3000xg for 10 minutes, and the resulting pellet was collected
as the chloroplast fraction. The chloroplasts were resuspended in
400 pL of chloroplast suspension solution for use in
subsequent experiments.

2.6 Determination of antioxidant
substances in the AsA-GSH cycle

A 300 puL aliquot of chloroplast suspension was mixed with 1.2
mL of 6% perchloric acid that had been pre-cooled. This mixture
was then processed via centrifugation at 14000xg for 10 minutes at
a temperature of 4°C. The concentrations of Ascorbic acid (AsA)
and Dehydroascorbic acid (DHA) were assessed using the
technique detailed by Wang et al. (2012). In parallel, to measure
the levels of Glutathione (GSH) and Oxidized glutathione (GSSG),
another 300 pL of chloroplast suspension was combined with 1.2
mL of 5% sulfosalicylic acid and subjected to centrifugation under
identical conditions.

2.7 Determination of antioxidant
substances enzyme activities in the AsA-
GSH cycle

The assays for antioxidant enzyme activities within the AsA-
GSH cycle were conducted following the protocols provided by the
respective commercial kits. Specifically, the chloroplast suspension
was carefully decanted into a fresh centrifuge tube. The kits utilized
for measuring Ascorbate peroxidase (APX), Glutathione reductase
(GR), Dehydroascorbate reductase (DHAR), and
Monodehydroascorbate reductase (MDHAR) were procured from
Suzhou Greats Biotech Co., Ltd., located in Suzhou, China.

2.8 Observation of chloroplast
ultrastructure

Before collecting the samples, the leaves were thoroughly rinsed
with distilled water, and any residual surface moisture was gently
absorbed using filter paper. Next, the leaves were carefully excised
into slender strips, approximately 1 mm x 3 mm in dimension,
using a sharp blade (while avoiding the veins), and stored in glass
vials filled with 2.5% pentanediol. To ensure complete submersion
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of the leaves in the glutaraldehyde solution, the vials were carefully
depressurized using a syringe. Subsequently, they were kept at a
refrigerated temperature of 4°C for the fixation process. After 2
days, the samples underwent three successive rinses with phosphate
bufter (pH 7.8), fixed in osmium tetroxide (1%) for 2 hours, rinsed
again three times with phosphate buffer, and then subjected to a
dehydration process (50% and 70% ethanol, 80% and 90% acetone,
each concentration for 15 minutes, and finally treated three times
with 100% acetone, each time for 30 minutes). Subsequently, the
samples were embedded in a blend composed of epoxy propane and
SPON-812, followed by polymerization in a controlled environment
chamber for a duration of 12 hours. The samples were meticulously
sliced into 50 nm ultra-thin sections utilizing a Leica EM UC7
ultramicrotome (Wetzlar, Germany). These sections were
subsequently mounted onto copper grids and subjected to
staining with uranyl acetate and lead citrate solutions. Finally, the
detailed structural analysis was conducted using a Zeiss LSM 500
transmission electron microscope (Zeiss, Germany).

2.9 Determination of chlorophyll synthesis
precursors

The quantification of 5-Aminolevulinic acid (ALA) was
conducted according to the method outlined by Wang et al. (2021).
Specifically, 2 g of the first fully expanded leaves from sorghum
seedlings were ground in 6 mL of ice-cold acetic acid buffer (pH 4.6)
and then centrifuged at 5000xg for 15 minutes at 4°C. 4 mL of the
resulting supernatant were combined with 100 pL of ethyl acetate and
incubated at 100°C for 10 minutes. An equal volume of Ehrlich’s
reagent, which consists of 2% p-dimethylaminobenzaldehyde, 6%
perchloric acid, and 88% acetic acid, was added. After a 10-minute
incubation, the absorbance was measured at 554 nm.

The measurement of porphobilinogen (PBG) content was
adapted from the protocol described by Bogorad (1962) with
slight adjustments. In detail, 0.3 g of the first fully expanded
leaves from sorghum seedlings were carefully removed, finely
minced, and transferred to a mortar. The leaf tissue was then
homogenized with 2 mL of extraction buffer (0.6 mol/L Tris-HCI,
0.1 mol/L EDTA, pH 8.2) while kept in an ice bath until a
homogeneous mixture was achieved. This homogenate was
subsequently transferred to a centrifuge tube and centrifuged at
12000xg for 15 minutes. The supernatant was carefully collected,
and an equal volume of Ehrlich’s reagent was added. After
incubating in the dark for 15 minutes, the absorbance was
recorded at 553 nm.

To determine the levels of protoporphyrin IX (Proto IX), Mg-
protoporphyrin (Mg-Proto IX), and protochlorophyllide (Pchl), 0.3 g
of the first fully expanded leaves from sorghum seedlings were chosen
and homogenized in a mortar with 25 mL basic acetone (80%).
Following the removal of impurities through filtration, the
absorbance was determined at 575 nm, 590 nm, and 628 nm,
respectively. The concentrations were then calculated using the
equations provided by Wu et al. (2018).
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2.10 Determination of photosynthetic
pigments

Uniform plants from each treatment were selected, and the first fully
expanded leaves were selected. The leaf surface was cleaned thoroughly,
after which the leaves were cut into smaller sections. Subsequently, 0.1 g
of fresh leaves were weighed for each replicate, with a total of three
replicates for each treatment. Samples were positioned in glass
containers and fully immersed in 10 mL ethanol (95%). The
containers were stored in complete darkness for 48 hours to facilitate
the complete extraction of chlorophyll. Subsequently, the analysis was
performed using a UV-VIS spectrophotometer (Tokyo, Japan). The
specific wavelengths corresponding to the maximum absorption peaks
for chlorophyll a, chlorophyll b, and carotenoids in 95% ethanol were
identified as 665 nm, 649 nm, and 470 nm, respectively.

The formulas used for calculations are as follows:

Concentration of chlorophyll a(mg - g™'FW):
Ca = 13.95A665 — 6.8A649

Concentration of chlorophyll b(mg - g'FW):
Cb = 24.96A649 — 7.32A665

Concentration of carotenoids(mg - g™ FW):
Cc = (10004470 — 2.05Ca — 114.8Cb) /248

Where A665 and others indicate the optical density of
chlorophyll solutions at 665 nm, 649 nm, and 470 nm, respectively.

2.11 Determination of photosynthetic
parameters

The core photosynthetic metrics assessed included the net
photosynthetic rate (Pn), stomatal conductance (Gs),
transpiration rate (Tr), and intercellular CO, concentration (Ci).
These measurements were obtained from the first fully expanded
leaf of sorghum seedlings, utilizing a Li-6400 photosynthesis system
(LI-COR, USA). Each treatment was assessed with four replicates.
The measurement conditions were standardized to a light intensity
of 1000 p.mol-m'z-s 1a CO, concentration of 385 + 5 p.mol-mol'l,
and a temperature of 28°C.

2.12 Assessment of chlorophyll
fluorescence characteristics

For the assessment, the topmost fully expanded leaf was chosen,
with four replicates for per treatment. Following a thorough rinse with
distilled water and gentle drying of surface moisture using blotting
paper, the leaves were acclimated in the dark at ambient temperature
for 30 minutes. Leaf images were captured by a FlourCam FC800-O/
2020 chlorophyll fluorometer (Brno, Czech Republic). The
experimental setup for fluorescence measurements was configured in
this manner: the initial fluorescence (FO) was captured under low

Frontiers in Plant Science

10.3389/fpls.2025.1664076

actinic light intensity of 0.1 umol'm-*s-'. This was succeeded by a
saturation pulse light (10000 wmol-m-*s-' for 0.7 seconds) to measure
the maximum fluorescence (Fm). Following a 15-minute acclimation
period under a light intensity of 800 mol-m-*s-', the value of Fm’ was
determined. From these readings, several essential parameters were
extracted, including F0, Fm, the quantum efficiency of PSII (Fv/Fm),
and non-photochemical quenching (NPQ).

2.13 OJIP curve and PQ pool measurement

The topmost fully expanded leaf was employed to assess
chlorophyll fluorescence parameters, including OJIP curve and
PQ pool, utilizing a DUAL-PAM-100 dual-channel fluorometer
(WALZ, Germany). The measurements were conducted after the
leaves had been dark-adapted for 30 minutes.

2.14 Statistical analysis

Data were organized using Excel 2021, and graphs were created
with Graph Pad Prism 8. The data obtained from a minimum of
three replicates are presented as mean + SD. Variance analysis was
conducted using SPSS 26.0, and differences between treatments
were tested for significance using Duncan’s method. Differences
among treatments that are statistically significant at the p< 0.05
level are denoted by distinct lowercase letters.

3 Results

3.1 Effect of exogenous H,S on the
morphology of sorghum seedlings

Sorghum seedlings under salt stress exhibited a marked decline in
growth (Figure 1). Specifically, compared to CK, salt-treated seedlings
experienced substantial reductions in plant height (44.04%), root length
(34.38%), shoot fresh weight (44.54%), and shoot dry weight (31.9%). In
comparison with the S treatment, the S+H,S treatment increased the
plant height, root length, shoot fresh weight, and shoot dry weight of the
sorghum seedlings by 27.53%, 13.83%, 26.5%, and 37.97%, respectively.
The S+H,S+HT treatment resulted in a decrease in plant height, root
length, shoot fresh weigh, and shoot dry weight by 17.31%, 19.93%,
22.13%, and 27.52% compared to the S+H,S treatment. The
aforementioned results indicated that foliar application of H,S
significantly mitigated the adverse effects of salt stress on the growth
of sorghum seedlings, thereby enhancing their overall development.

3.2 Effect of exogenous H,S on active
oxygen species and MDA content of
sorghum seedlings

To directly visualize the production of ROS in sorghum seedling
leaves caused by salt stress, this study employed DAB and NBT staining
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case letters represented a significant difference at the 5% level (P<0.05).

solutions to specifically stain tissues containing H,O, and O, in the
sorghum seedling leaves. The intensity of leaf color correlates with the
concentration of H,O, and O,-, where a deeper color indicates higher
levels of these reactive oxygen species. Compared to the CK, the S
treatment significantly increased the content of O, H,O,, and MDA
in the sorghum seedling leaves by 129%, 56.56%, and 132.61%,
respectively (Figure 2). In contrast, the S+H,S treatment significantly
reduced the content of O,’, H,O,, and MDA by 47.47%, 19.47%,
and 28.88%, respectively, compared to the S treatment. Furthermore,
the S+H,S+HT treatment resulted in notable increases in the content
of O,’, H,0,, and MDA by 20.54%, 22.54%, and 40.29%, respectively,
compared to the S+H,S treatment.

3.3 Effect of exogenous H,S on the
contents of AsA, DHA, GSH and GSSG in
chloroplasts of sorghum seedlings

Salt stress significantly impaired the functioning of the AsA-GSH
cycle within the chloroplasts of sorghum leaves at seedling stage.
When compared to CK, the S treatment led to a significant reduction
in the levels of AsA and GSH within the chloroplasts of sorghum
seedling leaves, with decreases of 0.49% and 34.43% (P<0.05),
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respectively (Figures 3A, B), while the contents of DHA and GSSG
significantly decreased by 32.96% and 29.47%, respectively
(Figures 3C, D). The S+H,S treatment increased these contents by
5.72%, 23.77%, 17.22%, and 28.46%, respectively, compared to the
S treatment. In contrast, the S+H,S+HT treatment resulted in
substantial declines in the levels of AsA, GSH, DHA, and GSSG by
18.47%, 26.15%, 11.36%, and 12.5%, respectively, when compared to
the S+H,S treatment.

3.4 Exogenous H,S effectively increased
APX, GR, DHAR and MDHAR activities in
chloroplasts of sorghum seedlings

Salt stress notably suppressed the activity of enzymes involved
in the AsA-GSH cycle (Figure 4). Compared to CK, the activities of
APX, GR, DHAR, and MDHAR in the chloroplasts of sorghum
seedling leaves under S treatment significantly decreased by 32.72%,
51.6%, 31.28%, and 30.65%, respectively. In contrast, the S+H,S
treatment resulted in substantial enhancements in the activities of
APX, GR, DHAR, and MDHAR, with respective increases of
23.65%, 74.4%, 41.64%, and 31.88% compared to the S treatment.
Furthermore, the S+H,S+HT treatment significantly reduced the
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FIGURE 2

The DAB and NBT staining conditions and H,O,, O, and MDA content under different treatments. (A) Hydrogen peroxide content, (B) Superoxide
anion content, (C) Malondialdehyde content. Normal (CK); Normal spraying of H,S (CK+H,S); Salt stress (S; Salt stress spraying of H,S (S+H5S); Salt
stress spraying of H,S and H,S scavengers (S+H,S+HT). The data represented the mean of the three replicates, and the different lower-case letters

represented a significant difference at the 5% level (P<0.05).

activities of these enzymes by 26.19%, 66.59%, 50.51%, and 33.58%,
respectively, when compared to the S+H,S treatment.

3.5 Effect of exogenous H,S on chloroplast
structure of sorghum seedlings

Transmission electron microscopy showed that chloroplasts in CK-
treated seedling-age sorghum leaves were spindle-shaped, closely
appressed against the cell walls, with intact double membrane
structures and neatly stacked thylakoid grana that were clearly defined
(Figure 5). In contrast, the chloroplasts under S treatment exhibited
significant morphological alterations, with damaged chloroplast
membranes and disorganized thylakoid grana, some of which were
disintegrated and unclear. Compared to the S treatment, the S+H,S
treatment maintained the integrity of the double membrane structure,
and the thylakoid grana were more orderly arranged. This suggested that
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the foliar application of H,S can alleviate the damage to the chloroplast
structure in sorghum seedling leaves caused by salt stress.

3.6 Effect of exogenous H,S on chlorophyll
synthesis precursor contents of sorghum
seedlings

Salt stress led to elevated levels of ALA and PBG in sorghum
seedling leaves (Figures 6A, B), while simultaneously reducing the
contents of Protol IX, Mg-Protol IX, and Pchlide (Figures 6C-E).
Compared to CK, the S treatment resulted in substantial increases in
content of ALA and PBG by 76.06% and 29.96%, respectively.
Conversely, the contents of Protol IX, Mg-Protol IX, and Pchlide
significantly reduced by 29.3%, 32.39% and 23.78%, respectively. In
comparison with the S treatment, the S+H,S treatment significantly
reduced the content of ALA and PBG in sorghum leaves at the seedling
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stage by 26.61% and 22.53%, respectively, and increased the content of
Protol IX, Mg-Protol IX, and Pchlide by 26.2%, 35.91%, and 21.3%,
respectively. Furthermore, compared to the S+H,S treatment, the S
+H,S+HT treatment increased the content of ALA and PBG by 30.35%
and 10.33%, respectively, and significantly decreased the content of
Protol IX (21.39%), Mg-Protol IX (34.89%), and Pchlide (24.51%).

3.7 Effect of exogenous H,S on chloroplast
Chla, Chlb and Car contents of sorghum
seedlings

Under salt stress conditions, the concentrations of Chla, Chlb, and

Car in the leaves of sorghum seedlings were substantially reduced
(Figure 7). Compared to CK, S treatment led to substantial reductions

B

C

in the contents of Chla, Chlb, and Car by 46.56%, 30.64%, and 53.99%,
respectively. In contrast, compared to the S treatment, the S+H,S
treatment resulted in notable increases in Chla (14.97%), Chlb
(15.95%), and Car (34.21%). Furthermore, compared to the S+H,S
treatment, the S+H,S+HT treatment caused a decrease in the contents
of Chla (5.94%), Chlb (6.17%), and Car (10.19%).

3.8 Effect of exogenous H,S on chlorophyll
fluorescence parameters of sorghum
seedlings

The chlorophyll fluorescence parameters Fm and Fv/Fm in
sorghum seedling leaves decreased, while FO and NPQ increased
when subjected to salt stress (Figure 8). Compared to CK, the Fm
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FIGURE 4

Effects of H,S spraying on chloroplast APX, GR, DHAR and MDHAR activities of sorghum seedlings under salt stress (A) APX activity, (B) GR activity,
(C) MDHAR activity, (D) DHAR activity. Normal (CK): Normal spraying of H,S (CK+H,S): Salt stress (S): Salt stress spraying of H,S (S+H,S): Salt stress
spraying of H,S and H,S scavengers (S+H,S+HT). The data represented the mean of the three replicates, and the different lower-case letters

represented a significant difference at the 5% level (P<0.05).
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FIGURE 5

Effects of H,S spraying on the ultrastructure of chloroplasts in sorghum seedlings under salt stress. (CY) cytoplasm, (CH) chloroplast, (CHM)
chloroplast membrane, (THL) thylakoid lamella. (A-C) indicate normal (CK), Salt stress (S) and Effect of salt stress spray H,S (S+H>S) on chloroplast

ultrastructure (A-Dx7000 magnification, scale =2 um), respectively.

and Fv/Fm in the S treatment significantly decreased by 31.34% and
12.77%, respectively, while FO and NPQ significantly increased by
20.01% and 76.66%, respectively. In comparison with the S
treatment, the S+H,S treatment reduced FO and NPQ by 24.02%
and 33.96%, respectively, and increased Fm and Fv/Fm by 22.47%
and 9.1%, respectively. Furthermore, compared to the S+H,S
treatment, the S+H,S+HT treatment led to a decrease in Fm and
Fv/Fm by 20.44% and 7.95%, respectively, and an increase in FO and
NPQ by 34.15% and 4.71%, respectively.

3.9 Effect of exogenous H,S on gas
exchange parameters of sorghum
seedlings

Sorghum seedling leaves showed reduced Pn, Gs, and Tr
(Figures 9A-C) under salt stress, while Ci increased (Figure 9D).
S treatment compared to CK significantly reduced Pn, Gs and Tr in
sorghum seedling leaves by 88.76%, 79.63%, and 85.23%,
respectively, and Ci increased significantly by 49.72%. In contrast,
the S+H,S treatment significantly increased Pn, Gs and Tr by
351.02%, 144%, and 159.64%, separately, and significantly

decreased Ci by 38.27% compared to the S treatment.
Furthermore, compared to the S+H,S treatment, the S+H,S+HT
treatment significantly reduced Pn, Gs and Tr by 90.49%, 81.78%,
and 82.43%, respectively, and significantly increased Ci by 73.79%.

3.10 Impact of exogenous H,S on OJIP
curve and PQ pool in sorghum seedlings

Under salt stress, the shape of the OJIP curve of sorghum seedling
leaves varied with the different treatments (Figure 10A). Compared to
CK, the fluorescence signal intensity was significantly reduced in the
S treatment. The S+H,S treatment increased Compared with
S treatment, the fluorescence signal intensity of sorghum leaves at
seedling stage increased significantly. The fluorescence signal
intensity of leaves treated with S+H,S+HT showed no significant
difference compared to the S treatment. However, the fluorescence
signal intensity of leaves treated with S+H,S was higher than that of
the S+H,S+HT treatment, particularly during the I-P phase,
indicating a notable increase. Under salt stress, calculation of the
MT and ST area ratio indicated a decrease in the PQ pool of sorghum
seedling leaves (Figure 10B). Specifically, the size of the PQ pool was
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FIGURE 6

Effects of H,S spray on chlorophyll synthesis precursors of sorghum seedlings under salt stress (A) ALA, (B) PBG, (C) Protol IX, (D) Mg-Protol IX,
(E) Pchl. Normal (CK): Normal spray H,S (CK+H5S); Salt stress (S); Salt stress spray H,S (S+H>S); Salt stress spray H,S and H,S scavenger (S+H,S+HT).
The data represented the mean of the three replicates, and the different lower case letters represented a significant difference at the 5% level

(P<0.05)
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Effects of H,S spraying on Chla, Chlb and Car of sorghum seedlings under salt stress (A) Chla content, (B) Chlb content, (C) Car content. Normal (CK);
Normal spraying of H,S (CK+H5S); Salt stress (S); Salt stress spraying of H,S (S+H,S); Salt stress spraying of H,S and H,S scavengers (S+H,S+HT). The
data represented the mean of the three replicates, and the different lower-case letters represented a significant difference at the 5% level (P<0.05).

significantly diminished by 11.32% in the S treatment compared to
the CK. Conversely, compared to the S treatment, the PQ pool size
expanded by 3.01% in the S+H,S treatment.

Salt stress severely impeded the growth of sorghum seedlings, as
manifested by the reduction in plant height, root length, and biomass

accumulation compared with control plants. Such growth inhibition is

|

‘ .
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FIGURE 8

a common outcome of osmotic and ionic stress, which limits cell
expansion and nutrient acquisition. Similar inhibitory effects of salinity
on plant growth have been widely reported ( ).
However, exogenous H,S application effectively alleviated these
negative effects, highlighting its role as a growth-promoting factor
under saline conditions. Conversely, the suppression of endogenous
H,S abolished these benefits, further confirming its protective role in
sorghum growth under salt stress ( ).

Photosynthesis is particularly vulnerable to salinity, and our
findings demonstrate that salt stress led to a pronounced decline in
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Effects of H,S spraying on FO, Fm, Fv/Fm of sorghum seedlings under salt stress (A) FO, (B) Fm, (C) NPQ, (D) Fv/Fm. Normal (CK); Normal spraying of
H,S (CK+H,S); Salt stress (S); Salt stress spraying of H,S (S+H,S); Salt stress spraying of H,S and H,S scavengers (S+H,S+HT). The data represented
the mean of the three replicates, and the different lower-case letters represented a significant difference at the 5% level (P<0.05)
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Effects of H,S spraying on Pn, Tr, Gs and Ci of sorghum seedlings under salt stress (A) Pn, (B) Tr, (C) Gs, (D) Ci. Normal (CK): Normal spraying of H,S
(CK+H>S): Salt stress (S): Salt stress spraying of H,S (S+H,S): Salt stress spraying of H,S and H,S scavengers (S+H,S+HT). The data represented the
mean of the three replicates, and the different lower-case letters represented a significant difference at the 5% level (P<0.05)

photosynthetic parameters, including net photosynthetic rate (Pn),
stomatal conductance (Gs), and transpiration rate (Tr), along with an
increase in intercellular CO, concentration (Ci). These changes
indicate both stomatal and non-stomatal limitations to carbon
assimilation, consistent with previous studies (Guo et al,, 2018; Shen
et al,, 2024). Application of H,S markedly restored these parameters,
suggesting its role in enhancing photosynthetic efficiency under stress
(Figure 9). This recovery may be attributed to the preservation of
chlorophyll content and the stabilization of chloroplast ultrastructure.
Salt stress is known to inhibit chlorophyll biosynthesis, leading to
reduced Chla, Chlb, and Car contents (Kamran et al., 2020), whereas
H,S treatment prevented such declines, similar to earlier reports that
H,S protects chlorophyll from degradation under stress (Tang et al,
2020) (Figure 7). Furthermore, the increase in chlorophyll precursors
such as Proto IX and Pchl after H,S application aligns with evidence
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FIGURE 10

that H,S promotes chlorophyll synthesis (Wang et al., 2021).
Importantly, chlorophyll fluorescence parameters, including Fm and
Fv/Fm, which indicate PSII photochemical efficiency, were improved
by H,S (Figure 8). These results suggest that H,S protects PSII from
salt-induced damage, corroborated by the observed chloroplast
ultrastructure integrity. Moreover, the reduction in signal
fluorescence intensity under salt stress, implying impaired redox
homeostasis and potential damage to the oxygen-evolving complex
(Huang et al., 2019), was alleviated by H,S, which facilitated electron
transfer from PSII reaction centers to acceptors (QA, QB, PQ). A
critical consequence of salt stress is the excessive accumulation of
reactive oxygen species (ROS), including H,0, and O,-, which trigger
oxidative damage as indicated by enhanced malondialdehyde (MDA)
levels and positive DAB/NBT staining. This observation is consistent
with earlier reports of ROS-induced cellular injury in plants under
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Effects of H,S spraying on OJIP curves and PQ pools of rapid chlorophyll fluorescence-induced kinetics of sorghum seedlings under salt stress

(A) PQ library and (B) OJIP curves. Note: A single turnover saturation pulse analysis is performed to determine the P700 signal (ST), followed by a
double turnover saturation pulse analysis (MT), the PQ library is oxidized, then the PQ size is MT area over ST area. Normal (CK); Normal spraying of
H,S (CK+H,S); Salt stress (S); Salt stress spraying of HS (S+H,S); Salt stress spraying of H,S and H,S scavengers (S+H,S+HT). The data represented
the mean of the three replicates, and the different lower-case letters represented a significant difference at the 5% level (P<0.05).
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The mechanistic model of H,S alleviates salt stress in sorghum seedlings.

salinity (Ozfidan-Konakei et al,, 2020; Meng et al., 2024). In our study,
H,S significantly reduced ROS and lipid peroxidation markers, thereby
mitigating oxidative stress in sorghum seedlings (Figure 2). This
reduction suggests that H,S not only restricts ROS overproduction
but also enhances the detoxification mechanisms required to maintain
cellular redox balance.

The observed alleviation of oxidative stress by H,S is closely linked
to its regulatory effect on antioxidant metabolism. Under salt stress, the
contents of ascorbate (AsA) and glutathione (GSH), as well as their
oxidized counterparts (DHA and GSSG), declined, indicating disruption
of the ascorbate-glutathione (AsA-GSH) cycle (Chauhan et al., 2021;
Bashir et al,, 2022; Tan et al,, 2022) (Figure 3). Additionally, the activities
of key enzymes, including APX, GR, DHAR, and MDHAR, were
suppressed, further weakening the redox buffering capacity (Figure 4).
Previous studies have shown that these enzymes are regulated by stress
signals and are essential for detoxifying ROS (Pallavi et al,, 2012; Jahan
etal,, 2019), while overexpression of APX in transgenic plants enhances
oxidative stress tolerance (Gill and Tuteja, 2010). In our study,
exogenous H,S restored both the metabolite pools and enzymatic
activities, thereby reactivating the AsA-GSH cycle. Furthermore, the
cross-talk between the AsA-GSH cycle and other antioxidant systems
such as thioredoxin and glutaredoxin may contribute to the overall
redox homeostasis (Wu et al., 2019; Luo et al.,, 2023). Collectively, these
findings demonstrate that H,S enhances sorghum tolerance to salinity
by integrating growth regulation, photosynthetic protection, ROS
scavenging, and antioxidant metabolism.

5 Conclusion

This study demonstrated that under salt stress, exogenous
application of H,S effectively alleviated oxidative stress in sorghum

Frontiers in Plant Science

seedlings by activating the AsA-GSH cycle within chloroplasts, thereby
maintaining cellular redox homeostasis. Meanwhile, H,S preserved
chlorophyll content and chloroplast ultrastructure, improved
chlorophyll fluorescence parameters, protected photosystem II (PSII)
from damage, and facilitated electron transfer from the PSII reaction
center to plastoquinone. Collectively, these effects enhanced
photosynthetic performance, ultimately mitigating the adverse
impacts of salt stress on sorghum seedlings (Figure 11).
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