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MsDAD1 acts as a heat-induced
“senescence brake” in alfalfa
Yuguang Song, Xinying Guo, Linyao Wang, Yingying Zheng,
Ting Li and Wei Dong*

School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
Heat stress severely limits the productivity of alfalfa (Medicago sativa L.). In this

study, the defender against apoptotic death 1 (DAD1) gene, MsDAD1, was

identified and functionally characterized as a key positive regulator of heat

tolerance. The expression of MsDAD1 was specifically and strongly induced by

heat stress, and phylogenetic analysis confirmed its high conservation across

plant species. Ectopic overexpression of MsDAD1 in transgenic alfalfa

significantly enhanced tolerance to heat stress. Compared to wild-type plants,

MsDAD1-overexpressing lines (MsDAD1-OE) exhibited reduced leaf chlorosis and

abscission, higher relative water content, lower electrolyte leakage, greater

chlorophyll retention, and diminished accumulation of reactive oxygen species

(H2O2, O2
-) and malondialdehyde (MDA), suggesting improved membrane

integrity and reduced oxidative damage. Transcriptome (RNA-seq) analysis and

subsequent physiological validation indicated that MsDAD1 suppresses heat-

induced accumulation of jasmonic acid (JA) and abscisic acid (ABA) by down-

regulating key biosynthetic genes, LOX1 and NCED1. As a result, MsDAD1-OE

plants displayed attenuated JA- and ABA-mediated leaf senescence under heat

stress. Furthermore, MsDAD1 overexpression delayed heat-induced flowering,

correlating with the repression of flowering-promoting genes such as FT and

ELF4. Collectively, these findings demonstrate thatMsDAD1 enhances alfalfa heat

tolerance by mitigating oxidative stress, modulating JA and ABA biosynthesis to

delay senescence, and altering flowering time under high-temperature

conditions. MsDAD1 represents a promising genetic target for improving heat

resilience in alfalfa.
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1 Introduction

Temperature is a critical environmental factor influencing plant growth, development,

geographical distribution, quality, and productivity (Zhou et al., 2024). Global temperatures

are projected to rise by approximately 0.2°C per decade, potentially reaching 1.8–4.0°C

above current levels by the year 2100. Recent studies have shown that for each 1°C increase

in average temperature, yields of major crops such as wheat, rice, maize, and soybeans

decline by 6.0%, 3.2%, 7.4%, and 3.1%, respectively (Arshad and Hannoufa, 2022; Battisti
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and Naylor, 2009; Zhao et al., 2017). Heat stress induces a wide

range of often detrimental changes in plant growth, morphology,

physiological processes, and ultimately yield (Arshad and Hannoufa,

2022). At the cellular and biochemical levels, heat stress disrupts

metabolite homeostasis and inhibits numerous physiological and

biochemical processes. These include alterations in water status,

membrane stability, photosynthesis, secondary metabolite

production, and hormone balance (Guo et al., 2023). Heat stress

rapidly impairs photosynthesis by damaging chloroplast

ultrastructure, reducing photosynthetic pigment content, and

impairing photosystem II function (Li et al., 2018). Additionally, it

affects protein synthesis and stability, compromises membrane

integrity, and induces the accumulation of reactive oxygen species

(ROS) (Correia et al., 2022). Heat stress also disrupts organelle

function, alters hormone signaling pathways (Ding and Yang, 2022),

and perturbs calcium and lipid signaling as well as kinase activity

(e.g., MAPKs, CBKs, CDPKs). These responses are accompanied by

transcriptomic reprogramming and widespread metabolomic shifts

(Haider et al., 2021).

The plant hormone jasmonic acid (JA) plays a critical role in the

response to heat stress. Studies have shown that heat stress induces

the accumulation of JA and its derivatives, including jasmonoyl-

isoleucine (JA-Ile) and 12-oxo-phytodienoic acid (OPDA), thereby

enhancing cell viability and heat tolerance in Arabidopsis (Wang

et al., 2023). Exogenous application of JA to wild-type plants prior

to heat exposure alleviates heat-induced damage, indicating that JA

directly contributes to heat stress protection (Hu et al., 2017).

However, excessive JA accumulation can also promote premature

senescence in plants. For instance, the expression levels of LOX1

(LIPOXYGENASE 1), LOX3, and LOX4 increase markedly during

leaf senescence, resulting in significantly higher JA concentrations

in senescent leaves compared to non-senescent ones (Hu et al.,

2017). Furthermore, treatment with exogenous JA accelerates leaf

senescence and induces the expression of senescence-associated

genes (Lim et al., 2007).

In addition to its role in stress responses, jasmonic acid (JA) also

plays a critical role in inflorescence and flower development (Yuan

and Zhang, 2015). JA has been identified as a key phytohormone

regulating diurnal flower-opening time (DFOT) in rice (Zhu et al.,

2024). In Arabidopsis, peroxisomal b-oxidation enzymes—

including ACYL-COA OXIDASE (ACX), MULTIFUNCTIONAL

PROTEIN (MFP; possessing 2-trans-enoyl-CoA hydratase and L-3-

hydroxyacyl-CoA dehydrogenase activities), and 3-KETOACYL-

COA THIOLASE (KAT)—are essential for proper inflorescence

patterning (Yuan and Zhang, 2015; Ghasemi Pirbalouti et al., 2014;

Schaller and Stintzi, 2009; Wiszniewski et al., 2014). Exogenous

application of methyl jasmonate (MeJA) has been shown to

promote flowering time and influence floral organ development

in oilseed rape (Brassica napus L.) (Pak et al., 2009). More recently,

MeJA treatment was found to accelerate DFOT in rice, with the

proportion of opened florets increasing in a concentration-

dependent manner (Wang M et al., 2024). While the roles of JA

in plant development and stress adaptation are well established, the

molecular mechanisms underlying its regulation of temperature-
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dependent flowering time and heat-induced leaf senescence remain

largely unknown.

The DAD1 protein was initially identified in the temperature-

sensitive tsBN7 mutant cell line (Zhou et al., 1997). DAD1 functions

as a subunit of the oligosaccharyltransferase (OST) complex, a key

catalytic component of the endoplasmic reticulum (ER) (Wang

et al., 2024). The OST complex catalyzes N-glycosylation in the ER,

facilitating the attachment of oligosaccharides to specific asparagine

residues on nascent polypeptides. This modification is essential for

proper protein folding and subsequent export from the ER (Yan

et al., 2005; Roboti and High, 2012; Zhang et al., 2016). Although

DAD1 family proteins have been implicated in salinity tolerance,

high-light responses, and disease resistance in plants, their roles in

heat stress regulation remain poorly understood (Wang et al., 2022;

Yan et al., 2019; Wang X et al., 2024; Beaugelin et al., 2019).

In this study, we identifiedMsDAD1 as a heat-inducible gene in

alfalfa. Overexpression of MsDAD1 suppressed the heat-induced

hyperaccumulation of jasmonic acid (JA) and abscisic acid (ABA),

enhanced reactive oxygen species (ROS) scavenging, and delayed

both leaf senescence and flowering under heat stress. We propose

that MsDAD1 functions as a heat-responsive “senescence brake” in

alfalfa, offering a promising genetic target for future breeding efforts

aimed at improving thermotolerance.
2 Materials and methods

2.1 Plant material, growth conditions and
stress treatment

The alfalfa (Medicago sativa L.) genotypes used in this study

included the wild-type cultivar SY4D andMsDAD1 transgenic lines

(OE#1 and OE#3), which were generated in the SY4D background.

Rooted stem cuttings of both wild-type and transgenic plants were

prepared and transplanted into 10×10 cm pots. Plants were grown

under controlled environmental conditions: a 16/8 h light/dark

photoperiod, a temperature of 23°C, relative humidity of 50–70%,

and a light intensity of 300 mmol m-² s-¹.

To analyze the expression pattern ofMsDAD1 under heat stress,

four-week-old alfalfa seedlings were transferred to a climate

chamber and exposed to high-temperature treatment (40°C) for 0,

1, 3, 6, 12, 24, and 48 hours. To evaluate the heat tolerance function

of MsDAD1, transgenic and wild-type plants were subjected to a

controlled heat stress regime in a growth chamber set at 32°C

(night)/40°C (day), allowing for plant survival and the assessment

of physiological responses. Phenotypic evaluations were conducted

after six days of treatment.

For flowering time analysis under both normal and heat stress

conditions, above ground part of wild-type and MsDAD1-

overexpressing (OE) plants were cut off at the same time. Plants

were divided into two groups: one maintained under normal

conditions (20°C night/23°C day), and the other exposed to a

heat stress regime of 30°C (night)/35°C (day), with identical

photoperiod and light intensity settings as the control group.
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For hormone treatment assays, healthy mature leaves were

divided into two groups. One group was placed on half-strength

Murashige and Skoog (½ MS) medium (control), and the other was

treated with 50 mM jasmonic acid (JA) or abscisic acid (ABA),

respectively. Unless otherwise stated, all experiments were

performed with at least three biological replicates.
2.2 Gene isolation and sequence analysis

The full-length coding sequence (CDS) of MsDAD1 was

amplified using gene-specific primers listed in Supplementary

Table S1. PCR amplification was performed with an initial

denaturation at 98°C for 3 minutes, followed by 35 cycles of 98°C

for 10 seconds, 55°C for 30seconds, and 72°C for 1 minute, with a

final extension at 72°C for 10 minutes. The amplified product was

ligated into the pMD19-T vector (Takara) and verified by Sanger

sequencing. Homologous polypeptide sequences of DAD1 were

retrieved from the GenBank database. Phylogenetic analysis was

conducted using the neighbor-joining method. Sequence alignment

was performed with ClustalX (www.clustal.org), and the

phylogenetic tree was constructed using MEGA version 6.0

(www.megasoftware.net) with 1000 bootstrap replicates to assess

branch support and reliability.
2.3 RNA extraction and qRT‐PCR

Total RNA was extracted using the MiniBEST Plant RNA

Extraction Kit (TaKaRa, Dalian, China), following the

manufacturer’s protocol. First-strand cDNA synthesis was

performed using the TransScript II One-Step gDNA Removal and

cDNA Synthesis SuperMix Kit (TransGen, Beijing, China).

Quantitative real-time PCR (qRT-PCR) was conducted using 2×

SYBR Green Mix (Vazyme, Cat. No. Q711-03) according to the

manufacturer’s instructions. The ACT2 gene was used as an internal

reference for normalization. Relative transcript levels were

calculated using the 2^–DDCt method (Livak and Schmittgen,

2001). Primer sequences are listed in Supplementary Table S1.

Each biological sample was analyzed in triplicate.
2.4 Plasmid construction and genetic
transformation

To generate transgenic alfalfa seedlings, the coding sequence of

MsDAD1 was cloned and inserted into the binary vector 35S::

NOS::1300, under the control of the CaMV:: 35S promoter. The

resulting construct was introduced into alfalfa via Agrobacterium

tumefaciens-mediated transformation, following the protocol

described in Transgenic Plants: Methods and Protocols (Jiang

et al., 2019). Transgenic lines were selected on hygromycin-

containing medium, and successful integration of MsDAD1 was

confirmed by PCR analysis.
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2.5 Physiological measurement

Relative water content (RWC) was determined using the leaf

saturation method. Electrolyte leakage (EL) was measured with a

conductivity meter (BELL, BEC-6600, Dalian, China). Briefly, six

fully expanded, healthy leaves were collected from the middle

canopy of each plant at the same developmental stage. The fresh

weight of each sample was recorded prior to analysis and then

incubated in 25 mL of double-distilled water. After 2 hours of gentle

shaking, the initial conductivity of the solution was measured using

a DIST-5 conductometer (Hanna Instruments). Samples were then

boiled to release all electrolytes, and the final conductivity was

recorded. EL was expressed as a percentage of the total conductivity

and normalized to fresh weight. Chlorophyll content was measured

using a SPAD chlorophyll meter (SPAD-502; Konica Minolta

Sensing, Japan). Hydrogen peroxide (H2O2), malondialdehyde

(MDA), and superoxide anion (O2
-) levels were quantified using

commercial assay kits (Jiancheng Bioengineering Institute, Nanjing,

China). Endogenous levels of jasmonic acid (JA) and abscisic acid

(ABA) were quantified using 20 mg of fresh plant tissue.

Phytohormones were extracted with 10% (v/v) methanol in water

(MeOH/H2O). A cocktail of stable isotope-labeled internal

standards was added to validate the liquid chromatography–mass

spectrometry (LC-MS) quantification. The extracts were purified

using Oasis hydrophilic-lipophilic balanced (HLB) columns (30

mg/1 mL; Waters), and targeted analytes were eluted with 80% (v/v)

methanol. The eluent, containing both neutral and acidic

compounds, was gently evaporated to dryness under a stream of

nitrogen. Chromatographic separation was carried out using an

Acquity Ultra Performance Liquid Chromatography (UPLC)

system (Waters) equipped with an Acquity UPLC BEH C18

column (100 × 2.1 mm, 1.7 μm; Waters). The effluent was

introduced into the electrospray ionization (ESI) source of a Xevo

TQ-S triple quadrupole mass spectrometer (Waters) for targeted

quantification of JA and ABA.
2.6 Transcriptomic analysis

Two-week-old wild-type and MsDAD1-overexpressing (OE)

seedlings were cultivated as previously described. Leaf tissues

were harvested and immediately frozen in liquid nitrogen for

total RNA extraction. For each sample, 1.5 mg of mRNA was used

as input for library preparation. RNA sequencing libraries were

constructed using the NEBNext Ultra RNA Library Prep Kit for

Illumina (New England Biolabs), following the manufacturer’s

instructions. RNA concentration was measured using a

NanoDrop 2000C spectrophotometer (Thermo Scientific,

Mississauga, Canada), and RNA integrity was assessed with an

Agilent 2100 Bioanalyzer using an RNA Nano chip (Agilent

Technologies, Santa Clara, CA, USA). RNA libraries were

constructed and sequenced using the Illumina HiSeq 2500

platform at the Centre for Applied Genomics, SickKids Hospital

(Toronto, Canada), under a fee-for-service agreement. Differential
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gene expression analysis between MsDAD1-OE lines and wild-type

plants was performed using the DESeq2 R package (version 1.20.0).

P-values were adjusted for multiple testing, and genes with an

adjusted p-value< 0.001 were defined as differentially expressed

genes (DEGs). Gene Ontology (GO) enrichment analysis was

performed, and GO terms with a corrected p-value < 0.05 were

considered significantly enriched. Functional annotation of DEGs

was carried out using the NR, GO, and KEGG databases.
2.7 Statistical analysis

All experiments and gene expression analyses were conducted

with at least three independent biological replicates. Results are

presented as mean values ± standard error (SE). Statistical analyses

were performed using one-way analysis of variance (ANOVA).

Asterisks above columns indicate statistically significant differences

compared to the control: p < 0.05 (*) and p < 0.01 (**). Different

letters above histogram bars denote significant differences among

treatments at p < 0.05, as determined by post hoc multiple

comparison tests.
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3 Results

3.1 The expression of MsDAD1 was
significantly induced under heat stress in
alfalfa

Based on transcriptomic analysis of alfalfa (Medicago sativa L.)

from our previous study (Dong et al., 2018), a gene encoding

defender against apoptotic death 1 (DAD1), designated MsDAD1

was identified. Phylogenetic analysis revealed that this gene shares

the highest sequence homology with MtDAD1 from Medicago

truncatula, a model legume species, and was thus named

MsDAD1 (Figure 1A). Expression analysis showed that MsDAD1

is significantly upregulated in response to heat stress (Figure 1B),

suggesting its potential role in high-temperature adaptation. The

coding sequence (CDS) ofMsDAD1 was subsequently cloned using

primers listed in Supplementary Table S1. Consistent with other

DAD1 orthologs, MsDAD1 encodes a protein with three predicted

transmembrane (TM) domains (TM I/II/III) and contains a

conserved oligosaccharyltransferase (OST) subunit domain

(Figure 1C). Phylogenetic analysis further demonstrated that
FIGURE 1

Sequence characteristics and heat stress response of MsDAD1. (A) Phylogenetic tree of DAD1 homologs from various plant species constructed
using the neighbor-joining (NJ) method based on amino acid sequences. Bootstrap values were calculated from 1000 replicates. (B) Expression
profile of MsDAD1 in alfalfa under heat stress (40°C) at different time points, as determined by qRT-PCR. Data represent mean ± SE of three
biological replicates. (C) Conserved domain and structural features of MsDAD1 and its homologs, highlighting predicted transmembrane (TM)
domains and oligosaccharyltransferase (OST) subunit regions. **Asterisks indicate that the expression level of MsDAD1 in samples treated with
high-temperature stress shows a significant difference (p < 0.01) compared with the 0 h control.
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MsDAD1 shares 98%, 92%, and 87% sequence identity with DAD1

orthologs from M. truncatula, soybean (Glycine max), rice (Oryza

sativa), and Arabidopsis thaliana, respectively, indicating that

DAD1 is highly conserved across plant species (Figure 1C;

Supplementary Table S1).
3.2 Overexpression of MsDAD1 enhanced
heat stress tolerance in alfalfa

To investigate the role of MsDAD1 in heat stress tolerance,

transgenic alfalfa plants constitutively expressing MsDAD1 were

developed through stable genetic transformation. qRT-PCR analysis of

six independent transgenic lines revealed that MsDAD1-OE1 and

MsDAD1-OE3 exhibited the highest transcript levels and were selected

for subsequent experiments (Supplementary Figure S1). Phenotypic

evaluation under heat stress showed that MsDAD1-OE plants were

more resilient than wild-type (WT) plants. While WT plants displayed

pronounced leaf chlorosis and abscission,MsDAD1-OE lines maintained

greener, healthier foliage with reduced visible damage (Figures 2A, B).
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Physiological responses of WT and MsDAD1-OE lines were

further evaluated under both normal and heat stress conditions.

Under non-stress conditions, no significant differences in relative

water content (RWC) were observed between the genotypes

(Figure 2C). However, upon exposure to heat stress, RWC

declined in all plants, with MsDAD1-OE lines maintaining

significantly higher RWC compared to WT (Figure 2C).

Electrolyte leakage, assessed via ion conductivity, was significantly

elevated in both genotypes under heat stress, but the increase was

more pronounced in WT plants, indicating greater membrane

damage (Figure 2D). Correspondingly, MsDAD1-OE lines

retained higher chlorophyll content than WT under heat stress,

consistent with delayed senescence phenotypes (Figure 2E).

As heat stress disrupts reactive oxygen species (ROS)

homeostasis, the accumulation of hydrogen peroxide (H2O2),

superoxide anion (O2
-), and malondialdehyde (MDA) were

quantified. Under heat stress, MsDAD1-OE lines exhibited

significantly lower levels of H2O2 and O2
- compared to WT

(Figures 2F, G). MDA content, a marker of lipid peroxidation

and oxidative damage, was also markedly reduced in MsDAD1-OE
FIGURE 2

Overexpression of MsDAD1 enhances heat tolerance in alfalfa. (A) Phenotypic comparison of wild-type (WT) and MsDAD1-overexpressing (OE) lines
after exposure to high-temperature stress (35°C night/40°C day) for six days. (B) Enlarged view of the red-boxed region from panel (A), highlighting
leaf morphology differences. (C-H) Physiological responses of WT and MsDAD1-OE plants under control and heat stress conditions: (C) Relative
water content (RWC), (D) Electrolyte leakage, (E) Chlorophyll content, (F) Hydrogen peroxide (H2O2) content, (G) Superoxide anion (O2

-) content,
(H) Malondialdehyde (MDA) content.
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plants relative to WT (Figure 2H). These results suggest that

MsDAD1 overexpression mitigates heat-induced oxidative damage

by enhancing ROS scavenging capacity.

Collectively, these findings demonstrate thatMsDAD1-OE lines

outperform WT under heat stress, exhibiting enhanced

physiological stability, reduced oxidative damage, and improved

stress tolerance.
3.3 MsDAD1 regulates the biosynthesis of
jasmonic acid and abscisic acid in alfalfa

To elucidate the transcriptional changes regulated by MsDAD1,

RNA-seq analysis on wild-type and MsDAD1-overexpressing (OE)

alfalfa plants was performed. After quality control filtering, high-

quality reads were retained for downstream analysis. A total of

1,088 differentially expressed genes (DEGs) were identified between

WT andMsDAD1-OE lines, using thresholds of |Log2
FoldChange| ≥ 1

and adjusted p-value < 0.05 (Figure 3A). Among these, 611 genes

were upregulated and 477 genes were downregulated in MsDAD1-

OE plants. qRT-PCR validation of six randomly selected genes
Frontiers in Plant Science 06
confirmed the RNA-seq results, showing a high degree of

consistency (Figures 3B–G).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses revealed that DEGs were

primarily associated with cellular and metabolic processes,

biosynthesis of secondary metabolites, plant–pathogen

interactions, MAPK signaling, plant hormone signal transduction,

glutathione metabolism, and flavonoid and phenylpropanoid

biosynthesis (Figures 3H, I; Supplementary Tables S2, S3).

Given the critical role of plant hormones in heat stress responses,

we focused on hormone-related genes. Transcriptome data revealed

that MsDAD1-OE plants exhibited reduced expression of key genes

involved in jasmonic acid (JA) and abscisic acid (ABA) biosynthesis

s p e c ifi c a l l y , L IPOXYGENASE1 (LOX1 ) a nd 9 - c i s -

EPOXYCAROTENOID DIOXYGENASE1 (NCED1), respectively.

This suggests that MsDAD1 may modulate JA and ABA metabolism

during heat stress. To validate this, the expression of LOX1 andNCED1

inWT andMsDAD1-OE plants were examined under control and heat

stress conditions. Under normal conditions, both genes showed slightly

lower expression in MsDAD1-OE plants compared to WT, but the

differences were not statistically significant (p >0.05). Upon exposure to
FIGURE 3

RNA-seq analysis of wild-type and MsDAD1-OE alfalfa seedlings. (A) Volcano plot showing differentially expressed genes (DEGs) between wild-type
(WT) and MsDAD1-overexpressing (OE) seedlings. DEGs were defined by |Log2FoldChange| ≥ 1 and adjusted p < 0.05. (B-G) Validation of selected
DEGs by qRT-PCR. Expression levels are shown relative to WT. Data represent mean ± SE from three biological replicates. (H) Gene Ontology (GO)
enrichment analysis of DEGs. Significantly enriched GO terms are shown based on biological processes. (I) KEGG pathway enrichment analysis of
DEGs. Dot size indicates the number of genes associated with each pathway, while color intensity reflects the adjusted p-value (Padj).
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high temperatures, expression of both LOX1 and NCED1 was

significantly upregulated in both genotypes; however, the induction

was notably stronger in WT plants (Figures 4B–E, G). LOX1 encodes a

key enzyme in the JA biosynthetic pathway, catalyzing the conversion

of a-linolenic acid to 13-hydroperoxyoctadecatrienoic acid (13-

HPOT), a critical initial step in JA production (Figure 4A). NCED1

is the rate-limiting enzyme in ABA biosynthesis, catalyzing the

oxidative cleavage of carotenoids to produce xanthoxin, a precursor

of ABA (Figure 4F). To determine whether altered gene expression

translated into changes in hormone levels, endogenous JA and ABA

concentrations under both control and heat stress conditions were

quantified. Heat stress significantly increased the accumulation of both

hormones in WT andMsDAD1-OE plants; however, the increase was

significantly greater in WT plants (Figures 4I, J).

Together, these results indicate that MsDAD1 negatively

regulates the heat-induced accumulation of JA and ABA in
Frontiers in Plant Science 07
alfalfa, likely through suppression of LOX1 and NCED1,

contributing to enhanced stress tolerance.
3.4 Ectopic expression of MsDAD1
suppressed JA/ABA-induced leaf
senescence

To assess the involvement of JA and ABA in regulating leaf

senescence in alfalfa, senescence phenotypes were evaluated

following exogenous hormone treatments. Compared to the

control, application of either JA or ABA significantly accelerated

chlorophyll degradation, leaf yellowing, electrolyte leakage, and

malondialdehyde (MDA) accumulation in both wild-type and

MsDAD1-OE plants (Figures 5A-D). However, the severity of

these senescence-associated responses was moderately attenuated
FIGURE 4

MsDAD1 regulates the biosynthesis of jasmonic acid (JA) and abscisic acid (ABA) in alfalfa. (A) Simplified schematic representation of the JA
biosynthetic pathway in plants. (B-E) Relative expression levels of LOX1 in WT and MsDAD1-OE seedlings under normal and heat-stress conditions,
as determined by qRT-PCR. (F) Simplified schematic representation of the ABA biosynthetic pathway. (G, H) Relative expression levels of NCED1
(a key ABA biosynthesis gene) and PYL (an ABA receptor gene) in WT and MsDAD1-OE seedlings under normal and heat-stress conditions.
(I, J) Endogenous levels of JA (I) and ABA (J) in WT and MsDAD1-OE seedlings under normal and heat-stress conditions.
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in theMsDAD1-OE lines relative to wild-type plants. Under JA and

ABA treatments, MsDAD1-OE plants retained higher chlorophyll

content and exhibited lower electrolyte leakage and MDA levels

compared to the wild type (Figures 5B-D). These findings suggest

that MsDAD1 delays the progression of leaf senescence by limiting

excessive JA and ABA accumulation, particularly under heat

stress conditions.
3.5 MsDAD1 is a key regulator involved in
heat-mediated flowering in alfalfa

Extensive evidence indicates that heat stress can significantly

disrupt the vegetative-to-reproductive transition in plants. In this

study, longitudinal monitoring of developmental progression

revealed a marked delay in flowering time in MsDAD1-OE lines

compared to wild-type (WT) plants (Figure 6A). Under normal

growth conditions, MsDAD1-OE plants exhibited delayed

flowering, as reflected by a longer time to floral initiation,

increased node number, and greater plant height at flowering

onset (Figures 6B–D). Although high-temperature stress

accelerated flowering in alfalfa, this effect was notably attenuated

inMsDAD1-OE lines, suggesting a role forMsDAD1 in modulating

temperature-dependent flowering responses (Figures 6B–D).

Given the late-flowering phenotype of the MsDAD1-OE plants,

the expression of flowering-related differentially expressed genes

(DEGs) identified in our RNA-seq dataset were examined. Several
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key flowering regulators—such as FLOWERING LOCUS T (FT),

EARLY FLOWERING 4 (ELF4), and FLOWERING TIME

CONTROL GENE (FY)—were downregulated in MsDAD1-OE

plants (Figure 6E). These genes are known to play critical roles in

regulating flowering under heat stress conditions.

To validate these observations, we analyzed the expression of FT

and ELF4 via qRT-PCR in both WT andMsDAD1-OE plants. Under

normal conditions, expression levels of both genes were significantly

lower inMsDAD1-OE lines compared to WT. Heat stress induced the

expression of FT and ELF4 in both genotypes, but the induction was

significantly stronger in WT plants (Figures 6F, G). These results

suggest that MsDAD1 overexpression suppresses the heat-induced

upregulation of flowering-promoting genes, thereby contributing to

delayed flowering under elevated temperatures.
4 Discussion

Global warming has led to an increased frequency of extreme

high-temperature events. Rising ambient temperatures driven by

climate change are altering the geographical distribution of plant

species and affecting a range of morphological and developmental

traits, ultimately posing a serious threat to crop productivity

(Matthews et al., 2019; Pausas, 2025). Alfalfa (Medicago sativa L.),

though well-adapted to warm, semi-humid, and semi-arid

environments, is particularly sensitive to high-temperature stress

(Buzzanca et al., 2025). Exposure to heat combined with high
FIGURE 5

Overexpression of MsDAD1 significantly suppresses JA- and ABA-induced leaf senescence. (A) Leaf senescence phenotypes of wild-type (WT) and
MsDAD1-OE seedlings following treatment with control (mock), exogenous jasmonic acid (JA), or abscisic acid (ABA). (B-D) Quantification of
chlorophyll content (B), electrolyte leakage (C), and malondialdehyde (MDA) content (D) in leaves corresponding to panel (A).
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humidity accelerates leaf senescence and triggers premature

defoliation, significantly reducing both yield and forage quality

(Arshad and Hannoufa, 2022).

In our previous transcriptomic analysis comparing salt-tolerant and

salt-sensitive alfalfa genotypes, we identifiedMsDAD1 andMsDAD2 as

salinity-induced genes (Dong et al., 2018). Functional studies revealed
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that overexpression of MsDAD2 enhanced salt tolerance in transgenic

alfalfa (Wang X al., 2024). Despite sharing 95% sequence similarity,

MsDAD1 and MsDAD2 display distinct stress-response profiles:

MsDAD1 is strongly induced by high-temperature stress, while

MsDAD2 is not. This divergence suggests that MsDAD1 and

MsDAD2 may participate in separate abiotic stress signaling pathways.
FIGURE 6

MsDAD1 modulates heat stress-associated flowering in alfalfa. (A) Overexpression of MsDAD1 delays flowering time in alfalfa under both normal and
high-temperature conditions. (B-D) Quantification of flowering-related physiological traits in WT and MsDAD1-OE seedlings under control and heat
stress conditions: (B) days to flowering, (C) node number at flowering, and (D) plant height at flowering. (E) Simplified schematic of the molecular
module involved in heat stress-mediated flowering regulation, highlighting the roles of the evening complex (EC), PIF4, and FT. (F, G) Expression
analysis of ELF4 (F) and FT (G) in WT and MsDAD1-OE seedlings under control and heat stress conditions, as determined by qRT-PCR.
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The DAD1 gene was originally identified in a temperature-

sensitive mutant cell line (tsBN7) in animals, where it was shown to

play a role in programmed cell death suppression (Zhou et al.,

1997). DAD1 encodes a subunit of the oligosaccharyltransferase

(OST) complex, a central component of the endoplasmic reticulum

(ER) machinery responsible for N-glycosylation of nascent proteins

(Yan et al., 2005). This process involves the attachment of

oligosaccharides to specific asparagine residues and is essential for

correct protein folding and ER export (Kukuruzinska and Lennon,

1998). In plants, the functional roles of DAD1 homologs under

abiotic stress remain incompletely understood. For instance,

AtDAD1 has been shown to protect Arabidopsis protoplasts from

UV-C-induced programmed cell death (PCD) (Danon et al., 2004),

and in Gladiolus L., DAD1 expression sharply declines during petal

senescence (Yamada et al., 2004). However, the molecular

mechanisms by which DAD1 proteins mediate stress responses

and developmental processes remain largely uncharacterized.

MsDAD1 suppresses the expression of key rate-limiting

enzymes LOX1 and NCED1, involved in jasmonic acid (JA) and

abscisic acid (ABA) biosynthesis, respectively (Figure 4). This

suppression was particularly pronounced under high-temperature

stress conditions. JA and ABA are widely recognized as stress

hormones involved in plant responses to both biotic and abiotic

stressors (Wang et al., 2025). In addition to their roles in stress

signaling, these hormones regulate several physiological processes,

including root elongation, reproductive organ development, and

senescence (Wan et al., 2025; Varshney and Majee, 2021; Kim et al.,

2018). Previous studies have shown that heat shock activates the JA

signaling pathway and promotes JA accumulation, as observed in

agarwood and Arabidopsis through increased expression of

biosynthetic genes such as OPR3 (Wang et al., 2023; Xu et al.,

2016; Tian et al., 2020). However, contrasting findings have been

reported, suggesting a more nuanced role of JA in heat responses.

For instance, Du et al. (2013) reported that genes involved in JA

biosynthesis were downregulated under heat stress but upregulated

during drought and cold stress. Similarly, Zhu et al. (2021) showed

that elevated temperatures in Arabidopsis lead to reduced JA levels

due to the upregulation of JOXs and ST2A, which degrade active JA.

In cotton, high temperatures suppressed the expression of GhAOC2

in anthers, leading to reduced JA biosynthesis (Khan et al., 2023).

These seemingly contradictory findings may stem from differences

in plant species, experimental designs, stress intensity, or exposure

duration. Thus, JA levels are not static during heat stress but are

influenced by multiple factors. Short-term or moderate heat stress

may elevate JA levels to promote stress tolerance, whereas

prolonged or extreme heat stress can lead to excessive JA and

ABA accumulation, which may trigger premature senescence and

cell death. In Arabidopsis, OXI1 and DAD1 were shown to

antagonistically regulate light-induced cell death through

modulation of JA and salicylic acid (SA) levels (Beaugelin et al.,

2019). Furthermore, many studies have demonstrated that ABA

and JA can act synergistically under environmental stress

conditions (Wang et al., 2025). In Arabidopsis and tobacco, ABA

receptor proteins such as PYRABACTIN RESISTANCE1-Like

(PYLs) regulate metabolic reprogramming via the JA signaling
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pathway (Aleman et al., 2016). These findings point to a complex

JA–ABA crosstalk network that fine-tunes plant metabolism

and growth.

Whether MsDAD1 participates directly in metabolic

homeostasis or signaling crosstalk between JA and ABA remains

to be determined. Future research is needed to elucidate how

MsDAD1 specifically responds to high-temperature stress and

modulates JA and ABA biosynthesis or signaling. In addition to

its role in hormone regulation, MsDAD1 also appears to influence

flowering time in alfalfa. Plants overexpressing MsDAD1 exhibited

delayed flowering under both normal and heat stress conditions

(Figures 6A-D). Transcriptome profiling revealed significant

downregulation of the flowering-time regulators FLOWERING

LOCUS T (FT) and EARLY FLOWERING 4 (ELF4), with a more

pronounced effect under heat stress (Figures 6E-G). The role of FT

in regulating flowering time is well established in various plant

species, including alfalfa (Kang et al., 2019). In Arabidopsis thaliana,

ELF3 functions as a central component in temperature sensing and

thermomorphogenesis by participating in the evening complex

(EC), together with ELF4 and LUX ARRYTHMO (LUX) (Zhu

et al., 2023; Liu et al., 2024). Recent studies suggest that warm

temperatures inhibit the EC complex’s DNA-binding activity by

reducing the subnuclear localization of ELF3, thereby permitting

PIF4 to interact with FT and promote flowering (Preston and

Fjellheim, 2022). This EC–PIF4–FT module represents a critical

mechanism in temperature-regulated flowering. Based on our

current findings, we propose that MsDAD1 may modulate

flowering time in alfalfa through regulation of the EC–PIF4–FT

signaling axis. However, the precise molecular mechanism by which

MsDAD1 interfaces with this pathway remains largely unexplored

and warrants further investigation.
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