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Leaf total phosphorus content (LTP) is a key indicator for assessing fruit nutrition

status. As a rapid non-destructive inspection method, Near-infrared

spectroscopy technology is susceptible to the influence of changes in plant

growth periods and spectral noise on its prediction accuracy. At present, how to

synergistically utilize growth period information and Spectral pre - processing

methods to optimize the LTP Predictionmodel remains to be further studied. The

study systematically collected Leaf sample and their near-infrared Spectral data

during three key growth periods of Korla fragrant pear (fruit-setting period, fruit

swelling period, and Maturity period). In the Spectral pre-processing stage,

multiple scattering correction, Savitzky-Golay Smooth, First Derivative (FD),

Second Derivative (SD) and their combined algorithms were comprehensively

applied. The Competitive Adaptive Reweighted Sampling (CARS) algorithm was

used for characteristic wavelength selection, and based on this, Growth period

specificity BP neural network model and cross-growth period general prediction

models were constructed respectively to evaluate the performance of different

Modeling strategies. Results The study showed that LTP content exhibited a

significant differential distribution across different growing stage. In the

characteristic wavelength bands, after processing with Combined pre-

processing method (e.g., MSC+ FD), the correlation coefficient between the

spectrum and LTP content significantly increased to approximately 0.90. The

predictive performance of the Growth-period-specific model was

comprehensively superior to that of the general model, with the Validation set

coefficient of determination remaining above 0.83. Compared with the general

model, the Coefficient of determination (R2) increased by 0.05-0.16, and the root

mean square error decreased by 0.0029-0.0079. This study successfully

constructed a technical system of “Growth period-Preprocessing-Model”. The

results indicated that the Modeling strategy considering the characteristics of
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crop growing stage could significantly improve the predictive ability of near-

infrared spectroscopy models. This study provides a reliable technical framework

for Precision nutrient management in orchard, and the established methodology

can also serve as a reference for nutrient Surveillance of other fruit tree plants.
KEYWORDS

korla fragrant pear, total phosphorus in leaves, near-infrared spectrum, growth period
specificity, machine learning
1 Introduction

Phosphorus as an essential mineral element for plant growth

and development plays a critical role in physiological processes such

as nucleic acid synthesis, energy metabolism, and the maintenance

of cell membrane structures (Chen et al., 2021; Song et al.,

2024).The dynamic change of Leaf total phosphorus (LTP)

content is not only a direct reflection of fruit nutrition status, but

also an important basis for precise fertilization in orchards (Shah

et al., 2024).As a characteristic cash crop in the arid regions of

northwestern China, Phosphorus nutritional diagnosis in korla

fragrant pear has significant practical implications for improving

fruit quality and yield (Wang et al., 2022).
02
Near-infrared spectroscopy (NIRS) technology offers an

innovative approach for in-situ monitoring of nutritive element of

plant due to its advantages of non-destructive inspection, high-

throughput analysis, and rapid response. By capturing the

vibrational absorption features of hydrogen-containing groups

(e.g., P-O-H), it enables spectrum analysis of leaf Phosphorus

content (Murguzur et al., 2019).

Current research on fruit tree Phosphorus Spectral diagnosis

faces three bottlenecks that require breakthroughs: First, most

studies have not systematically considered the impact of Growth

period differences on leaf Phosphorus distribution. The phosphorus

metabolism characteristics of korla fragrant pear differ significantly

during the fruit-setting period, fruit-expanding period, and
FIGURE 1

Experimental overall visualization flowchart.
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maturity, exhibiting distribution patterns of low content and high

dispersion during the fruit-setting period, stable state during the

fruit-expanding period, and high content and high dispersion

during maturity (Figure 2). These patterns necessitate model

construction that adapts to the physiological characteristics of

different phenological periods. However, existing studies mostly

adopt an intertemporal general model, limiting prediction accuracy

(Siedliska et al., 2021).Second, the synergistic mechanism of

Spectral preprocessing technology remains unclear. Although

single preprocessing methods (such as Multivariate scattering

correction MSC, Derivative processing FD/SD) can separately

achieve physical interference elimination or chemical characteristics

enhancement, they struggle to simultaneously meet the dual

requirements of noise suppression and dynamic information

preservation. Systematic exploration of optimized combined

preprocessing strategies is still lacking (Han et al., 2025; Qi et al.,

2025).Third, Feature band selection and Model parameter

optimization are not dynamically coupled with the Growth period.

The spectral absorption peak associated with Phosphorus (4000–7500

cm-¹) exhibits significant differences in response intensity across

different Growth period, whereas traditional feature selection

algorithms fail to fully exploit this time-space specificity, resulting

in insufficient model generalization ability (Tian et al., 2024).

It is worth noting that although near-infrared spectrum analysis

has been widely applied in the non-destructive detection of crop

nutrients, research on quantitative prediction of phosphorus in fruit

trees remains insufficient. Most current studies have focused on field

crops such as wheat (Zhang et al., 2022) and rice (Arias et al., 2021),

with inadequate exploration of the relationship between leaf total

phosphorus (LTP) content and spectral response in fruit tree leaves

such as korla fragrant pear. Due to the relatively complex

morphological structure of fruit tree leaves, combined with

variations in the canopy microenvironment and physiological

dynamics at different growing stages, the difficulty of Spectral
Frontiers in Plant Science 03
modeling is increased. Existing research methods often directly

apply Traditional regression algorithms such as PLSR and SVR

(Ahmadi et al., 2021), failing to conduct targeted model

improvement based on the spectral characteristics of fruit trees, and

particularly lacking a systematic research approach that integrates

phenological change, preprocessing method, and machine learning

model. Therefore, establishing a spectral prediction model for LTP

content that can respond to the Growth period characteristics of

fragrant pear is of great significance for achieving precise monitoring

of phosphorus nutrition.

To address the above research bottlenecks, this study aims to

overcome the limitations of traditional general models and achieve

systematic innovation from theoretical, technical, and applied

perspectives, specifically reflected in: 1. Systematically analyzing

the unique distribution patterns (left-skewed, stable, right-skewed)

of LTP content in korla fragrant pear at different Growth periods

(Fonseca-Garcıá et al., 2021)and their differential requirements for

spectral models, providing a solid physiological basis for Stage-

based modeling.2. In-depth exploration of various preprocessing

methods (single and combined) under different growth periods

within the Collaborative optimization mechanism (e.g., MSC+FD

for high-dispersion stages, SG+SD for weak-signal stages), rather

than simple stacking, to achieve efficient spectral information

purification (Tan et al., 2025). 3. Construction of a complete

technical system of “growth period specificity-preprocessing

collaboration-model adaptation” to validate the performance

improvement of the Stage-based modeling strategy compared to a

general model (Cao et al., 2021), providing a directly applicable

solution for precision orchard management.

To this end, this study first analyzes the distribution

characteristics of leaf total phosphorus (LTP) in korla fragrant

pear across different growth periods using Box plot, clarifying the

content dynamics during the fruit-setting period (minimum 0.02%,

maximum 0.25%, left-skewed distribution), fruit-expanding period
FIGURE 2

Content of korla fragrant pear total phosphorus in leaves in different periods; Different letters indicate significant differences between groups(P<
0.05).The black dots represent the LTP content of each sample within each Growth period, and the black curve represents the foot normal
distribution.
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(median 0.15%, concentrated in 0.10%–0.20%), and maturity period

(maximum 0.45%, right-skewed distribution) (Figure 2), providing

a physiological basis for Spectral modeling; secondly, integrating

MSC, SG smoothing, FD/SD derivative processing, and combined

strategies (MSC+FD, SG+SD, etc.) to optimize spectral signals,

achieving synergy between physical interference elimination and

chemical characteristics enhancement in the core sensitive region of

4000–5500 cm-¹ and the 5500–7500 cm-¹ combined frequency

region (Figures 3-4); further, using the competitive adaptive

reweighted sampling (CARS) algorithm to screening feature band

(Zhang et al., 2023)2. In-depth exploration of various preprocessing

methods (single and combined) under different growth periods

within the Collaborative optimization mechanism (e.g., MSC+FD
Frontiers in Plant Science 04
for high-dispersion stages, SG+SD for weak-signal stages), rather

than simple stacking, to achieve efficient spectral information

purification (Tan et al., 2025). 3. Construction of a complete

technical system of “growth period specificity-preprocessing

collaboration-model adaptation” to validate the performance

improvement of the Stage-based modeling strategy compared to a

general model (Cao et al., 2021), providing a directly applicable

solution for precision orchard management.

To this end, this study first analyzes the distribution

characteristics of leaf total phosphorus (LTP) in korla fragrant

pear across different growth periods using Box plot, clarifying the

content dynamics during the fruit-setting period (minimum 0.02%,

maximum 0.25%, left-skewed distribution), fruit-expanding period
FIGURE 3

Analysis of original spectral images: (A) is the original spectral image; (B) is the interior visualization of the average of human spectral images over
different periods.
FIGURE 4

Different spectral images under different preprocessing methods: (A): MSC; (B): SG; (C): FD; (D): SD; (E): MSC+FD; (F): MSC+SD; (G): SG+FD; (H): SG+SD.
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(median 0.15%, concentrated in 0.10%–0.20%), and maturity period

(maximum 0.45%, right-skewed distribution) (Figure 2), providing

a physiological basis for Spectral modeling; secondly, integrating

MSC, SG smoothing, FD/SD derivative processing, and combined

strategies (MSC+FD, SG+SD, etc.) to optimize spectral signals,

achieving synergy between physical interference elimination and

chemical characteristics enhancement in the core sensitive region of

4000–5500 cm-¹ and the 5500–7500 cm-¹ combined frequency

region (Figures 3-4); further, using the competitive adaptive

reweighted sampling (CARS) algorithm to screening feature band

(Zhang et al., 2023), combined with algorithms such as BP neural

network (Yang et al., 2021)and random forest (Capitaine et al.,

2021)to construct Growth-period-specific model, with model

performance evaluated and compared through metrics including

Coefficient of determination (R²) and Root mean square

error (RMSE).

This study not only improves the Growth period adaptation

theory for Spectral diagnosis of fruit tree Phosphorus, but also

provides a Methodological reference for the application of Near-

infrared technology in Precise orchard nutrient management. As an

important component of a series of studies, this result corroborates

previous Spectral diagnosis research on plants such as potato and

rice (Zhang et al., 2019; Gao et al., 2023), collectively revealing the

coupling pattern of ‘spectral trait-growth period-nutritive index’,

thus laying the foundation for constructing a universal technical

system for fruit nutrition diagnosis (Xiao et al., 2022; Guo et al.,

2024). Subsequent research will focus on the integration of Mid-

infrared spectroscopy and near-infrared spectrum, as well as

correction mechanisms for field environmental interferences,

promoting the translation of Spectral diagnosis technology from

laboratory research to practical application.
2 Materials and methods

2.1 Overview of the test site

The experiment was conducted at the campus of Tarim

University in Alar City, Xinjiang. The test material was 23-year-

old Korla Fragrant Pear (grafted onto Birchleaf Pear rootstock),

planted in north-south rows with a spacing of 2 m×4 m. The

orchard was irrigated using the Flood irrigation method, and other

management practices were carried out according to local

conventional protocols. Mature trees with vigorous growth and

uniform tree vigor were selected for the study. Please refer to

Figure 1 for the experiment process.
2.2 Sample collection

At the fruit bearing periods (April 23, 2024), fruit expansion

period (July 11, 2024), and maturity period (September 20, 2024) of

Kuerle fragrant pear fruit, mature leaves were collected from the

middle and lower segments of current-year branches at the outer

edge of the tree crown of each Test tree. During collection, single
Frontiers in Plant Science 05
leaves from the east, south, west, and north directions of the tree

crown were carefully selected. Leaves from 150 trees were collected

for each period, labeled, and stored in Ziplock bag inside a 4°C

refrigerator for subsequent Spectral scanning and Total phosphorus

content analysis.
2.3 Original spectrum acquisition

Remove Test sample from the -4°C freezer and place it in the

laboratory where the spectrometer is located (ambient temperature

24°C) for 12 hours to equilibrate, ensuring that the sample

temperature is consistent with room temperature and eliminating

interference from temperature gradients (Zheng et al., 2023). After

powering on the Fourier Transform Near-Infrared Spectrometer

(Antaris II FT-NIR) and allowing it to warm up for 30 minutes,

perform Diffuse reflectance correction using the Standard

whiteboard (He et al., 2023). If necessary, gently clean dust from

the leaf surface with a dust-free cloth. On the leaf, select two regions

each at the upper and lower ends, using the vein as a boundary (four

sites in total), and use different colors to mark the spectra of

different regions. At each region, repeat the scan 4 times using

the following parameters: Spectral range 10000–4000 cm-¹,

Resolution 8 cm-¹, Gain 2×, Number of accumulations per scan

64 times (Zheng et al., 2024). Single leaf yielded 16 spectral curves,

and after baseline correction, the average was calculated and used as

the final Absorbance (A) value of the sample for subsequent

Chemometric modeling and analysis. This method effectively

controlled the effects of Temperature fluctuation, Instrument

drift, and Leaf heterogeneity through Standardized preprocessing,

Instrument calibration, and Multi-point repeated measurement,

laying the data foundation for constructing a High-precision

prediction model.
2.4 Determination of total potassium in
korla fragrant pear leaves

Collect the Leaf sample after Spectral data acquisition and

sequentially wash with tap water, 0.1% detergent solution, tap

water, and Distilled water (entire process ≤ 2 min). After

removing surface moisture with Dust-free absorbent paper, place

the sample in a 105°C Forced air drying oven for fixation for 20

min, then dry to constant weight at 80°C (Dayton et al., 2017); grind

the dried sample using a Stainless steel crusher and pass through a

60-mesh nylon sieve (Xu et al., 2016). Accurately weigh 0.2000 g of

the Sieved sample into a 100 mL Digestion tube. Moisten the sample

with Distilled water, then add 5 mL of Concentrated sulfuric acid

(H2SO4), and fit the mouth of the tube with a curved neck funnel.

On a Digestion furnace, initially heat gently at low temperature;

gradually increase the temperature after dense white smoke appears

due to decomposition of sulfuric acid. When the solution turns

brown-black, remove the Digestion tube, cool, then add 10 drops of

300 g·L-¹ hydrogen peroxide (H2O2) dropwise while thoroughly

shaking. Continue heating for 15 min. Repeat the above H2O2
frontiersin.org
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addition operation 2–3 times until the Digestion solution becomes

colorless or clear and transparent, then heat for an additional 10

min to completely remove excess H2O2 (Zou et al., 2019); after

cooling, rinse the curved neck funnel with Distilled water, combine

the rinsing solution into the Digestion tube, and dilute to the 100

mL mark; determination of Total phosphorus content is performed

using the molybdenum antimony resistance colorimetric method

(Li Ting and Hong Xing, 2022), specifically: transfer 5 mL of

Digestion solution (pre-dilute if concentration is too high) into a

50 mL volumetric flask, add 5 mL of freshly prepared molybdenum-

antimony-ascorbic acid color developer [preparation: slowly add

100 mL of 0.5 mol/L H2SO4 to a mixed solution containing 10 g

ammonium molybdate and 0.5 g antimony potassium tartrate, cool,

then add 1.5 g of Ascorbic acid and dilute to 500 mL], dilute to

volume with Distilled water, and allow color development in the

dark at 20–30°C for 30 min; using the Blank solution as reference,

measure the absorbance at 700 nm, and calculate the Total

phosphorus content of the sample using Equation 1:

LTP( % ) =
C � V � D
m� 104

(1)

where C is the measured concentration (mg/L), V is the final

volume (100 mL), D is the dilution factor, and m is the sample

weight (0.2000 g)
2.5 Spectrum data conversion

In the spectral data processing process, specific Spectral

transformation can be used to mitigate the effects of

environmental factors and interferences, improve the Signal-to-

noise ratio, and make the spectral form more suitable for

Korla fragrant pear LTP. In this study, several mathematical

transformations were applied to the original spectra, generating

six types of spectral data: Original absorbance (A), MSC, SG, FD,

SD, MSC+FD,MSC+SD, SG+FD, SG+SD (As shown in Table 1).

MSC is a Normalization technique that reduces baseline drift,

improves the Signal-to-noise ratio, and better reveals differences

and similarities among samples; it is commonly used to eliminate

scattering effects on spectral data (Gautam et al., 2015). SG is a Local

smoothing method based on Polynomial fitting, which performs

Weighted filtering on Spectral data through a Sliding window,

achieving Random noise reduction while preserving Peak shape

and Spectral details (Liu et al., 2016). FD can enhance the

Resolution of spectra, distinguish Overlapping peaks, and is

suitable for determining Peak position and boundary, especially

for eliminating Background interference in Quantitative analysis

(Sonobe and Hirono, 2023). SD is more sensitive in identifying Peak

inflection points and shoulder peaks, and suppresses the Broad

background signal, commonly used in the analysis of fine structures

in complex spectra (Gao et al., 2016). MSC+FD first corrects the

Scattering effect using MSC, then applies First-order derivative (FD)

to eliminate residual baseline drift and improve peak Resolution,

making it suitable for scenarios with strong scattering interference

and requiring precise Peak positioning (Wang et al., 2023). MSC
Frontiers in Plant Science 06
+SD enhances spectral details after MSC reduces scattering, with

the second-order derivative (SD) further identifying subtle

differences in overlapping peaks, suitable for complex samples

requiring resolution of highly overlapping peaks (Xie et al., 2018).

SG+FD first applies SG smoothing to reduce noise, then calculates

the first-order derivative (FD), avoiding amplification of noise in

derivative results, thus balancing noise suppression and resolution

enhancement in spectra with high noise levels (Zhou et al., 2024).

SG+SD first uses SG smoothing to reduce noise, after which the

second-order derivative (SD) more accurately reflects spectral

curvature, avoiding false peaks caused by noise, making it suitable

for spectra requiring fine structure analysis where noise is

significant (An et al., 2021).
2.6 Extraction of spectrum characteristic
bands

To reduce the band redundancy and interference of high-

dimensional spectral data, feature bands significantly associated

with leaf total phosphorus content (LTP) (LTP) were selected from

the spectral data to improve modeling accuracy. In this study, the

Competitive adaptive reweighted sampling (CARS) algorithm (Sun

et al., 2021; Xing et al., 2021) was adopted, based on the principle of

darwin’s theory of biological evolution’s survival of the fittest.

Efficient dimensionality reduction of spectral variables was

achieved by coupling Partial least squares (PLS) modeling with an

adaptive variable screening mechanism. This algorithm evaluates

the importance of variables based on the absolute percentage

evaluation of PLS model coefficients, generates an initial

wavelength subset through Monte Carlo sampling (MCS), and

dynamically adjusts variable weight by incorporating an

Exponential decay function to strengthen the selective retention

of high-contribution bands. Simultaneously employing the
TABLE 1 Spectral preprocessing methods.

Full name Abbreviation Function

Multiple Scattering
Correction

MSC Eliminate scattering

Savitzky-Golay smoothing SG Reduce noise

First derivative FD Enhance spectral resolution

Second derivative SD
Conduct fine structural
analysis

Multiple Scattering
Correction+ First
Derivative

MSC+FD
Eliminate scattering +
Enhance spectral resolution

Multiple Scattering
Correction+Second
Derivative

MSC+SD
Eliminate scattering +
Conduct fine structural
analysis

Savitzky-Golay+First
Derivative

SG+FD
Reduce noise + Enhance
spectral resolution

Savitzky-Golay+Second
Derivative

SG+SD
Reduce noise + Conduct fine
structural analysis
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Adaptive weighted sampling (ARS) strategy, wavelengths are

weighted screening based on the Absolute value of coefficients,

prioritizing the retention of Important bands and eliminating

Redundant information. After Multi-round iterative optimization,

the final Characteristic wavelength combination highly correlated

with LTP is obtained, providing an efficient Input variable set for

subsequent Regression modeling.
2.7 Machine learning modeling

Based on the above trait selection results, three algorithms—

Random forest (RF), Support vector machine (SVR), and Back

Propagation(BP)neural network—were used to construct a Korla

Fragrant Pear LTP estimation model.

RF (Guo and Hao, 2021)reduces model variance by integrating

multiple decision trees, with core parameter settings as follows:

Number of decision trees (n _ estimators) was set to four gradients

—100, 250, 500, and 750—where the smaller value (100) was used

to explore the model baseline performance, medium values (250,

500) balanced computational efficiency and ensemble effect, and the

larger value (750) verified the fitting ability under extreme ensemble

scale (Rhodes et al., 2023); min_samples_leaf (min_samples_leaf)

was set to five gradients—1, 3, 5, 7, and 10—where the minimum

value (1) allowed the decision tree to grow sufficiently to capture

subtle variations, medium values (3, 5) suppressed noise

dissociation, and larger values (7, 10) enforced simplification of

tree structure to reduce complexity (Jeong et al., 2016;

Scornet, 2016).

SVR (Virnodkar et al., 2020)employed four types of kernel

functions for comparison: Radial basis kernel function (RBF),

Linear kernel function, Polynomial kernel function, and Sigmoid

kernel function. The optimal parameter values of the penalty

coefficient (C) and the kernel function parameter (g) were

determined through grid search optimization, thereby identifying

the optimum parameter and the kernel function.

BP neural network (Li et al., 2021)consists of input, output, and

an intermediate hidden layer. A single hidden layer is used, with the

number of nodes set to 1–10. The model iterates 1000 times, with a

learning rate of 0.01 and a training target error of 1×10-⁶. Six

training functions (trainlm, traingd, trainscg, traingdx, trainbfg, and

traincgb) are compared to determine the optimal parameters and

the best training function (Wang et al., 2023).

This paper conducts comprehensive comparative experiments

with the currently recognized advanced baseline model in the field.

For this, we selected three high-performing and widely used

Representative model for spectral analysis as advanced

representatives of the baseline model. Partial least squares

regression (PLSR) and Light gradient boosting machine

(LightGBM) and One-dimensional convolutional neural network

(1D-CNN).

PLSR is a Regression modeling method proposed in the early

1980s by Svante Wold and others for handling High-dimensional,

multicollinear data (Li et al., 2024). It achieves prediction of Y by
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extracting Latent Variables (Latent Variables) from the

Independent variable (X) and Dependent variable (Y), and

establishing a linear regression relationship between these latent

variables. It is particularly suitable for the Chemometrics field such

as Spectroscopy and Chromatography. LightGBM was proposed in

2017 by Microsoft Research Asia, and is an efficient implementation

of the Gradient Boosting Decision Tree (GBDT) framework, greatly

improving Training speed and reducing Memory consumption,

while maintaining high prediction accuracy, making it perform

exceptionally well on Large-scale data (Gupta et al., 2021).1D-CNN

originated from the LeNet-5 architecture proposed by Yann LeCun

and others in the late 1980s and early 1990s for Handwritten digit

recognition (designed for 2D images), which was the prototype of

the Convolutional Neural Network (CNN). 1D-CNN can

automatically learn Local patterns and Multi-scale features in

data, making it highly suitable for processing one-dimensional

signal such as time series analysis, audio frequency processing,

and Near-infrared spectroscopy (Liu et al., 2022).
2.8 Medel evaluation methods

This study implemented the aforementioned Regression

algorithm using MATLAB R2024b, and comprehensively

evaluated Model performance using three metrics: Coefficient of

determination (R²), Root mean square error (RMSE), and Residual

prediction deviation (RPD):

R²: Measures Model goodness of fit. The value ranges from 0 to

1. The closer R² is to 1, the higher the agreement between the Model

predicted value and the measured value (Ahmad Yasmin et al.,

2021). The calculation formula is shown in Equation 2.

RMSE: Quantifies the absolute magnitude of Prediction error.

The smaller the RMSE value, the higher the Model prediction

accuracy (Li et al., 2024). The calculation formula is shown in

Equation 3.

RPD: Reflects the predictive capability of the model. Evaluation

criteria: RPD > 3: Excellent Model prediction ability; 2< RPD ≤ 3:

The model can be used for preliminary prediction; RPD ≤ 2: Poor

Model prediction ability. The calculation formula is shown in

Equation 4.In model evaluation, the Dataset is divided into

training sets and Test set at a ratio of 3:1, and the above metrics

are calculated separately to comprehensively assess the model’s

Fitting effect, Prediction accuracy, and Generalization ability (Chu

et al., 2023).

R2 = 1 −o
n
i=1(ym − yp)

2

on
i=1(ym − �y)2

(2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ym − yp)

2

s
(3)

RPD =
Sy

RMSE
=

1
n−1on

i=1(ym,i − �ym)
2

PMSE
(4)
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the sample size; ym and ypThey are the actual value and the

predicted value of Korla fragrant pear Leaf Total Potassium

respectively; �yIt is the average value of the actual Korla fragrant

pear Leaf Total Potassium; SyIs the standard deviation of the Leaf

Total Potassium measurement value of Korla fragrant pear
3 Results and analysis

3.1 Content of korla fragrant pear total
phosphorus in leaves at different periods

As shown in Figure 2 Box plot, the LTP content in Korla Fragrant

Pear leaves exhibited significant distribution differences across various

growing stage, providing a basis for Stage-basedmodeling. Samples from

the fruit-setting period generally had lower overall content but included

individual high-value outliers, reflecting periodic fluctuations in

Phosphorus demand during this stage. This distribution facilitates the

model’s ability to capture differences in Spectral response under low and

high phosphorus conditions. The distribution of LTP content during the

fruit swelling period was relatively concentrated with low dispersion,

indicatingmore stable Phosphorus levels at this stage, allowingmodeling

to focus on identifying representative Spectral characteristics. The

maturity period showed more high-value samples and extreme high

values, which, while increasing the difficulty of model identification, also

provided critical sample support for establishing Quantitative prediction

within the high-content range. The above distribution characteristics

indicate that there are significant differences in the Growth period LTP

content and their degree of variation among various periods. Therefore,

adopting a unified prediction model is unlikely to achieve global

optimization. Instead, it is necessary to construct specificity model

based on the data characteristics of each period to improve Prediction

accuracy and robustness.
3.2 Analysis of leaf spectral data in korla
fragrant pear

This study is based on the use of Near-Infrared Spectroscopy

(4000–10000 cm-¹) to analyze the Leaf total phosphorus (LTP)

content of Korla fragrant pear. Differences in leaf LTP content exist

during Different growth stages, manifested as Fruit-setting period< Fruit

expansion period< Maturity period, providing a sample basis for Stage-

based modeling. It provides a sample foundation for Spectral modeling.

Spectral response indicates that changes in LTP content are

significantly associated with the Vibrational absorption of

Hydrogen-containing group (such as P-O-H). In the 4000–5500 cm-

¹ range, the Hydrogen group overtone absorption of Phosphorus

substance overlaps with that of moisture and Carbohydrates, forming

the Core sensitive region for LTP; the Combination frequency and

overtone in the 5500–7500 cm-¹ range can synergistically and

complementarily verify differences in total phosphorus

(Figure 3A).The line discretization and polymerization of Spectrum

curves from different samples reflect the group differences in LTP

content. Combined with the Growth period classification of Spectrum
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plots, distinct dispersion and polymerization of curves in characteristic

intervals across different periods are observed (Figure 3B), further

providing a basis for establishing the Stage-based prediction model.
3.3 Spectral data preprocessing

This study applied MSC, SG, FD, SD and their combined

methods to preprocess the near-infrared spectra of Korla fragrant

pear leaves, aiming to enhance the Spectral characteristics associated

with LTP content while reducing noise and scattering interference.

The Original spectrum was influenced by baseline effects and noise,

leading to significant signal overlap and indistinct variations

(Figure 3A). MSC effectively removed baseline drift caused by particle

size and surface scattering, markedly improving spectral consistency

and comparability (Figure 4A); SG suppressed random noise while

preserving the original Peak shape, thereby increasing the Signal-to-

noise ratio and help to highlight phosphorus-related absorption features

(Figure 4B); FD processing amplified the dynamic differences of

absorption peak related to LTP content by calculating the spectral

rate of change, which improved feature discernibility (Figure 4C); SD

further accentuated subtle changes in Spectral curvature, proving

particularly useful for extracting weak signals from low-content

samples (Figure 4D).Combined preprocessing strategy integrates the

advantages of individual methods, further enhancing Spectrum quality.

MSC+FD eliminates physical scattering while amplifying dynamic

spectral features, making it more effective at capturing variations in

LTP content (Figure 4E); MSC+SD improves detail resolution on the

basis of scatter correction, supplying the model with more stable and

refined input (Figure 4F); SG+FD preserves and accentuates spectral

changes induced by chemical constituents while reducing noise, thereby

balancing the need for Smooth and feature enhancement (Figure 4G);

SG+SD achieves both noise suppression and high-frequency detail

enhancement, making it suitable for dynamic monitoring and

Modeling of LTP content across the whole growth period (Figure 4H).

The results demonstrate that different preprocessing methods

improve Spectrum quality in various aspects, including noise

suppression, removal of physical interference, and enhancement of

dynamic features. Combined methods exhibit stronger adaptability

and synergistic Gain effects. Subsequently, the optimal pretreatment

strategy will be selected based on Model performance metrics, laying

the groundwork for high-accuracy prediction of LTP content.
3.4 Spectral data and correlation analysis
with LTP

This study evaluated the optimization effects of various

methods on Phosphorus information extraction by analyzing the

Correlation (r) between different Preprocessed spectra and LTP

content. The main findings are summarized below (representative r

values are provided in Figure 5):

The Original spectrum (Figure 5A) displays broad and smooth

Peak shape, rendering it susceptible to scattering and Noise

interference; Multiplicative scatter correction processing (Figure 5B)
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effectively suppressed physical interference; Savitzky-Golay processing

(Figure 5C) showed no noticeable improvement; First Derivative

processing (Figure 5D) amplified both Dynamic correlation details

and Noise interference; Second Derivative processing (Figure 5E)

improved the ability to extract trace phosphorus-containing

components and detect Weak correlation with LTP.

Combined preprocessing methods exhibited stronger Synergistic

effect. The MSC+FD approach (Figure 5F) significantly enhanced the

Recognition ability of LTP in Highly discrete samples; MSC+ SD

(Figure 5G) improved the resolution of LTP information in Low

phosphorus content samples; SG+ FD(Figure 5H) strengthened the

correlation between spectral data and LTP while enhancing

Interpretability; SG+ SD (Figure 5I) reduced Noise interference and

accentuated Weak absorption difference, thereby improving the
Frontiers in Plant Science 09
Dynamic monitoring ability of LTP during Different growth stages. In

summary, the Combined pre-processing method can more effectively

extract Spectral characteristics associated with LTP content, thereby

providing a more reliable data foundation for subsequent Modeling.

Correlation Analysis between Different Spectral Data and LTP

in Figure 5: (A) Original spectrum; (B) MSC; (C) SG; (D) FD;

(E) SD; (F) MSC+FD; (G) MSC+SD; (H) SG+FD; (I) SG+SD.
3.5 Selection of LTP characteristic bands in
korla fragrant pear

This study utilized the Competitive Adaptive Reweighted

Sampling algorithm to screening feature bands highly correlated
FIGURE 5

(A) Original spectrum; (B) MSC; (C) SG; (D) FD; (E) SD; (F) MSC+FD; (G) MSC+SD; (H) SG+FD; (I) SG+SD.
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with LTP content from preprocessed near-infrared spectra, and

analyzed the distribution characteristics of these bands across both

the whole growth period and Different growth stages (as shown

in Figure 6).

The results demonstrate that combined preprocessing methods

(such as MSC+FD,SG+SD) consistently extracted denser and more

comprehensive feature bands across all Different growth stages,

proving particularly effective at capturing subtle chemical

absorption variations. In contrast, single preprocessing methods

(e.g., Multiplicative scatter correction or Second Derivative) mainly

focused on core absorption peak regions, resulting in fewer but

more specific feature bands.

Regarding growth stage differences: during the fruit-setting

stage, LTP content was high and exhibited high variability.

Combined preprocessing methods produced densely clustered

feature bands in certain spectral regions, effectively adapting to

high-phosphorus absorption variations and capturing dynamic

differential features. During the fruit-expansion stage, LTP

content remained stable, and feature bands were more uniformly

distributed across the 4000–8000 cm-¹ range. Combined methods

formed continuous characteristic zones in some bands, aligning

with chemical equilibrium states during this stable period and

enabling the identification of more comprehensively correlated
Frontiers in Plant Science 10
bands. In the maturity stage, LTP content was low and

absorption signals were weak, making it necessary to rely on

combined preprocessing to enhance the extraction of bands

sensitive to trace components. The Feature band selection results

provide critical input for building subsequent staged LTP content

prediction models. By leveraging Growth period characteristics,

suitable Pretreatment strategies can be selected to improve model

accuracy and specificity.
3.6 Korla fragrant pear LTP estimation
model

This study constructed Growth-period-specific models and an

intertemporal general model based on the LTP content and Spectral

data of Korla fragrant pear leaves at Different growth stages, using

Coefficient of determination (R²), Root mean square error (RMSE),

and Residual prediction deviation (RPD) as evaluation metrics for

Model performance (Supplementary Material 1). The results indicated

that each Growth-period-specific model significantly outperformed

the intertemporal general model in predicting LTP content.

As shown in Tables 1 and 2, the optimal model for the fruit-

setting period (FD+CARS-BP) achieved R² = 0.89, RMSE = 0.0212,
FIGURE 6

Selection of korla fragrant pear LTP characteristic bands: (A) represents the selection for the spectral data of the whole growth period; (B) represents
the selection for the spectral data of the fruit bearing periods; (C) represents the selection for the spectral data of the fruit swelling period; (D)
represents the selection for the spectral data of the fruit ripening period.
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RPD = 3.1696 on the Training set and R² = 0.88, RMSE = 0.0241,

RPD = 2.6963 on the validation set, demonstrating a stronger ability

to capture the dynamic Spectral characteristics of highly discrete

LTP content. Its performance was significantly superior to that of

the MSC-CARS-BP general model. The optimal model for the Fruit

expansion period (SG+FD-CARS-BP) achieved Coefficient of

determination (R²) values of 0.86 and 0.83 on the Training set

and validation set, respectively, with Root mean square error

(RMSE) values of 0.0211 and 0.0254, and RPD values of 2.6721

and 2.4571, demonstrating better adaptation to the relatively stable

Spectrum-chemical state during this period. The optimal model for

the Maturity period (SG+SD-CARS-BP) achieved Coefficient of

determination (R²) values above 0.85 on both training and

validation sets, with Root mean square error (RMSE) below 0.021

and RPD exceeding 2.68, indicating effective resolution of weak

Spectrum signals from low-content LTP and significantly

outperforming the general model.

Linear fitting results (Figure 7) further support the above

conclusions. The Coefficient of determination (R²) values for the

Fruit-setting period model reached 0.905 and 0.888 on the

training and validation sets, respectively, indicating its strong

fitting and Generalization ability even with highly Variant data.

The Coefficient of determination (R²) values for the Fruit

expansion period model were all above 0.83, and those for the

Maturity period model exceeded 0.86, further confirming the

adaptability and stability of the specificity model across

Different growth stages. Studies have shown that the Growth-

period-specific model, by aligning with the differences in LTP

content and Spectral characteristics across various periods,

significantly improves prediction accuracy, providing a reliable

model option for precise phosphorus nutrition management in
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orchards. Therefore, it is recommended to use the FD+CARS-BP

model during the fruit-setting period, the SG+FD-CARS-BP

model during the fruit swelling period, and the SG+SD-CARS-

BP model during the maturity period for predicting the Korla

fragrant pear LTP content.
3.7 Model parameters and function
selection

In the Random forest (RF) Modeling process, the number of

Decision trees and the value of min_samples_leaf are key hyper

parameters that directly affect model complexity and Generalization

ability. With too few trees, the model’s fitting ability is inadequate,

leading to poor fitting. As the number of trees increases, the model

improves prediction stability through ensemble learning. However,

beyond a certain point, the performance Gain becomes marginal,

while computational cost and Overfitting risk rise (Huang et al.,

2016; Guo et al., 2019; Dabiri et al., 2022). Taking the fruit ripening

period SG+FD-CARS-RF model as an example (Figures 8A–D),

when the number of trees is 500 and min_samples_leaf is 5, the

difference in Coefficient of determination (R²) between the Training

set and the validation set is the smallest (0.0112), and the Root mean

square error (RMSE) difference is only 0.006—significantly better

than other parameter combinations. This indicates that this

configuration maintains strong Generalization ability while

mitigating overfitting, and was therefore identified as the optimal

parameter set. For the SVM model, using the mature stage

Multiplicative scatter correction-Competitive Adaptive

Reweighted Sampling-SVM as an example, it is essential to

optimize the regularization parameter C and the kernel parameter
TABLE 2 Indicators of the best models under each machine learning algorithm in each period.

Period Model
Training set Validation set

R2 RMSE RPD R2 RMSE RPD

Entire growth period

MSC+SD-CARS-
RF

0.80 0.0269 2.2094 0.76 0.0334 2.0521

MSC-CARS-BP 0.84 0.0258 2.4436 0.81 0.0268 2.3764

MSC+FD-CARS-
SVM

0.79 0.0287 2.1862 0.78 0.0290 2.0917

Fruit setting period

SG+FD-CARS-RF 0.85 0.0267 2.5807 0.77 0.0295 2.0965

FD+CARS-BP 0.89 0.0212 3.1696 0.88 0.0241 2.9663

MSC+SD-CARS-
SVM

0.84 0.0279 2.2024 0.79 0.0281 1.9787

Fruit Enlargement
Stage

MSC+SD-CARS-
RF

0.80 0.0257 2.2293 0.82 0.0238 2.3391

SG+FD-CARS-BP 0.86 0.0211 2.6721 0.83 0.0254 2.4571

MSC-CARS-SVM 0.90 0.0194 4.3079 0.81 0.0228 2.2185

Fruit Ripening Stage

SG+FD-CARS-RF 0.81 0.0231 2.3696 0.80 0.0237 2.2457

SG+SD-CARS-BP 0.86 0.0203 2.6977 0.85 0.0207 2.6844

MSC-CARS-SVM 0.82 0.0227 3.0751 0.86 0.0218 2.2088
frontiersin.org

https://doi.org/10.3389/fpls.2025.1666460
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yu et al. 10.3389/fpls.2025.1666460
g. As illustrated in Figures 9A–D, when C = 5 and g=0.1, the model

performs well on both the Training set and the validation set (with

Coefficient of determination (R²) values of 0.8185 and 0.8552, and

Root mean square error (RMSE) values of 0.0227 and 0.0218,

respectively), demonstrating a good balance. Although a higher

Training set Coefficient of determination (R²) of 0.8716 is achieved

when C = 10 and g=0.3, the validation set Coefficient of
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determination (R²) drops significantly to 0.6943, indicating clear

overfitting. Thus, C = 5 and g=0.1 are identified as the optimal

parameters. Further comparison among different kernel functions

shows that the Radial basis kernel function (RBF) delivers the best

overall performance, with the smallest discrepancy in Coefficient of

determination (R²) between the validation set and the Training set.

In contrast, although the Polynomial kernel function performs well
FIGURE 7

(A) shows the linear fit between the measured and predicted values of the training sets for the fruit bearing periodsFD+CARS-BP model; (B) shows
the linear fit between the measured and predicted values of the validation set for the fruit bearing periodsFD+CARS-BP model; (C) shows the linear
fit between the measured and predicted values of the training sets for the fruit swelling periodSG+FD-CARS-BP model; (D) shows the linear fit
between the measured and predicted values of the validation set for the fruit swelling periodSG+FD-CARS-BP model; (E) shows the linear fit
between the measured and predicted values of the training sets for the fruit ripening periodSG+SD-CARS-BP model; (F) shows the linear fit between
the measured and predicted values of the validation set for the fruit ripening periodSG+SD-CARS-BP model.
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on the Training set, its validation set Coefficient of determination

(R²) decreases by up to 0.3792, reflecting inadequate Generalization

ability. This suggests that the RBF kernel is more suitable for the

characteristics of the present dataset. In the BP neural network

model, using the fruit-setting period FD+CARS-BP as an example,

the number of nodes in the hidden layer significantly influences the

model’s expressive power. As shown in Figures 10A, B, when the

hidden layer contains 5 nodes, both the Training set and validation

set show high Coefficient of determination (R²) and low Root mean

square error (RMSE), indicating that this configuration maintains

strong fitting ability without noticeable overfitting. Further

comparison among different training functions shows that the

trainlm function performs best in this model, achieving a

validation set Coefficient of determination (R²) of 0.88 and an

Root mean square error (RMSE) of 0.0241, surpassing other

training functions and demonstrating its superior suitability for

the given data structure and task complexity.
3.8 Performance comparison with
advanced baseline model

To evaluate the performance of the optimal models selected for

each Growth period, this study conducted a comprehensive
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comparison with widely recognized advanced baseline models in

the field, namely PLSR, 1D-CNN, and LightGBM. Each baseline

model employed the same Pretreatment and Feature band selection

methods as the corresponding optimal model for the respective

growth stage (Fruit-setting period: First Derivative-Competitive

Adaptive Reweighted Sampling; Fruit-expanding period:SG+FD-

CARS; Maturity period:SG+SD-CARS) to ensure a fair comparison

(Table 3).

As presented in Table 4, during the fruit-setting period, the FD

+CARS-BP model attained a Coefficient of determination (R²) of 0.88

on the validation set, surpassing PLSR (0.81) and 1D-CNN (0.84).

Although its R² was marginally lower than that of LightGBM (0.85),

the model demonstrated a lower Root mean square error (RMSE)

(0.0241) and a higher RPD (2.97), indicating more stable and reliable

prediction performance. During the fruit swelling period, the SG+FD-

CARS-BPmodel achieved a validation set Coefficient of determination

(R²) of 0.83 and an Root mean square error (RMSE) of 0.0254,

outperforming both PLSR and 1D-CNN, and performing comparably

to LightGBM. Notably, while LightGBM attained a high Coefficient of

determination (R²) on the Training set (0.90), its performance on the

validation set declined significantly (0.82), suggesting potential

overfitting. In contrast, the model proposed in this study exhibited

more consistent performance across both training and validation sets,

indicating superior Generalization ability.
FIGURE 8

RFhyper parameter settings: (A) is R2 of training sets; (B) is Root mean square error (RMSE) of training sets; (C) is R2 of the validation set; (D) is Root
mean square error (RMSE) of the validation set.
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At the Maturity period, the SG+SD-CARS-BP model delivered

the best overall predictive performance, with a validation set

Coefficient of determination (R²) of 0.85, an Root mean square

error (RMSE) of 0.0207, and an RPD of 2.68. All metrics surpassed

those of PLSR and 1D-CNN. Compared to LightGBM, the proposed

model showed better performance in terms of Root mean square

error (RMSE) and RPD, further highlighting its accuracy and stability
Frontiers in Plant Science 14
in practical applications. In summary, systematic comparisons with

multiple advanced baseline model demonstrate that the Growth

period-specific machine learning model developed in this study

exhibits consistently excellent and stable predictive ability across

different growth stages, confirming the effectiveness and superiority

of the Stage-based modeling strategy for monitoring LTP content in

Korla fragrant pear leaves.
FIGURE 9

SVM hyper parameter settings and kernel function selection: (A) is R2 of training sets; (B) is Root mean square error (RMSE) of training sets; (C) is R2
of validation set; (D) is Root mean square error (RMSE) of validation set; (E) is R2 of four kernel functions for training sets and validation set; (F) is
Root mean square error (RMSE) of four kernel functions for training sets and validation set.
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FIGURE 10

BP neural networkhyper parameter settings and kernel function selection: (A) is R2 and Root mean square error (RMSE) of training sets; (B) is R2 and
Root mean square error (RMSE) of the validation set; (C) is R2 of six training functions; (D) is Root mean square error (RMSE) of six training functions.
TABLE 3 Performance comparison with advanced baseline model.

Period Model
Training set Validation set

R² RMSE RPD R² RMSE RPD

Fruit setting period

BP 0.89 0.0212 3.17 0.88 0.0241 2.97

PLSR 0.83 0.0265 2.54 0.81 0.0305 2.35

LightGBM 0.93 0.017 3.95 0.85 0.0262 2.74

1D-CNN 0.91 0.0191 3.52 0.84 0.0268 2.68

Fruit Enlargement Stage

BP 0.86 0.0211 2.67 0.83 0.0254 2.46

PLSR 0.81 0.024 2.35 0.78 0.028 2.23

LightGBM 0.90 0.018 3.13 0.82 0.026 2.4

1D-CNN 0.88 0.0198 2.85 0.81 0.0265 2.36

Fruit Ripening Stage

BP 0.86 0.0203 2.7 0.85 0.0207 2.68

PLSR 0.83 0.0221 2.48 0.81 0.0231 2.4

LightGBM 0.92 0.015 3.66 0.86 0.0199 2.79

1D-CNN 0.89 0.0182 3.01 0.80 0.0272 2.41
F
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4 Discussion

This study systematically investigates the prediction of Leaf

total phosphorus (LTP) content in Korla Fragrant Pear,

comprehensively revealing the application patterns of Near-

Infrared Spectroscopy in fruit nutrition diagnosis through the

analysis of Growth period differences, spectral pre-processing

refinement, trait screening, and model construction and

validation. It provides theoretical and technical support for

Precision nutrient management in orchard. Specific discussions

are as follows.
4.1 The dynamic of LTP content during the
fertile period and model adaptability

Different growth stages Korla Fragrant Pear leaf LTP content

showed significant differences (P< 0.05), with low and discrete

content during the fruit-setting period, stable during the fruit

expansion period, and high and discrete during the Maturity period

(Figure 2). The FD+CARS-BP model performed excellently during the

fruit-setting period, with R² of training sets reaching 0.90504 and

validation set R² of 0.88785. FD preprocessing enhanced spectral

dynamic differences, and the CARS algorithm accurately screening

bands associated with highly discrete LTP, adapting to the “high

dynamic phosphorus content-complex Spectral response” trait

(Yu et al., 2024).;Fruit expansion period SG+FD-CARS-BP model

leverages the synergistic effect of SG noise reduction and FD

enhancement to balance the “Stable Spectra-Basic Phosphorus

Absorption” relationship, with R2 values of 0.86243 and 0.83488 for

training sets and validation set respectively; Maturity period SG+SD-

CARS-BPmodel utilizes SG and SD fine feature extraction to effectively

capture trace phosphorus association information, achieving R2 values

of 0.87246 and 0.86146 for training sets and validation set respectively.

This demonstrates that the Growth-period-specific model significantly

improves prediction accuracy by adapting to the dynamics of LTP

content across different periods (high dispersion, stable state, low

concentration), validating the necessity of “Stage-based modeling”

in fruit nutrition diagnosis. These findings align with the conclusions

of Li et al (Bing zhi et al., 2010). in their study on hyperspectral

estimation models of total nitrogen content in apple tree leaf leaves,

which reflects the growth period adaptation law of fruit tree nutrition

spectral diagnosis.
4.2 The synergistic mechanism of spectral
preprocessing

Single preprocessing (MSC, SG, FD, SD) optimizes spectra from

perspectives of physical interference elimination, noise suppression,

dynamic enhancement, and fine feature extraction, yet exhibits

functional limitations (e.g., FD tends to amplify noise, Second

derivative is sensitive to noise) (Bao et al., 2024). Combined

preprocessing (e.g., MS+FD, SG+SD achieves “multi-functional

synergy”: MSC+FD first eliminates scattering interference and
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then amplifies chemical absorption dynamic change, enhancing

the Spectral response of highly discrete LTP during the fruit-setting

period; SG+SD first reduces noise to smooth the curve and then

extracts fine structures of absorption peak, adapting to weak signals

of low concentrations in the Maturity period. Correlation analysis

shows that combined strategies can increase the r value of typical

peaks and valleys by 0.05–0.15, demonstrating that the “synergistic

effect” of preprocessing is key to extracting Phosphorus-association

information, providing an effective approach for spectral

refinement of complex samples. This aligns with the consensus in

the Chemometrics field that “Combined preprocessing enhances

Model performance”, clarifying the refinement direction of spectral

pre-processing in orchard Phosphorus diagnosis (Li et al., 2024).
4.3 Optimization of model hyper
parameter and its impact on model
performance

The performance of a Machine learning model is significantly

influenced by the selection of hyper parameter, and the refinement

of these hyper parameter directly affects the model’s Generalization

ability and Prediction accuracy (Schratz et al., 2019; Yang and

Shami, 2020). Most existing studies have directly used default

parameters to construct Spectroscopy estimation models without

in-depth algorithmic refinement, which limits the performance

improvement of the models. To address this limitation, this study

systematically conducted research on hyper parameter refinement,

employing grid search and cross validation methods to finely tune

the parameters of Random forest (RF), Support vector machine

(SVR), and BP neural network, significantly enhancing the stability

and Prediction accuracy of the models.

For the RF model, experiments found that when n_estimators is

500 and min_samples_leaf is 5, the model achieves an optimal

balance between training and prediction, effectively avoiding the

phenomena of overfitting and poor fitting. In the Support Vector

Regression model, the Penalty coefficient (C) C = 5 and kernel

parameter g=0.1 were determined, and the Radial Basis Function

(RBF) was selected. The Model performance outperformed other

configurations such as linear kernel and polynomial kernel.

In the BP neural network, by comparing various training

functions, the trainlm function was ultimately identified as the

most suitable for the research task, achieving an ideal Fitting effect

while ensuring convergence speed.

The above optimization results indicate that conducting parameter

optimization for different algorithm systems can effectively exploit the

model’s potential and avoid the performance shortcomings caused by

directly using default parameters. Through meticulous parameter

tuning, this study provides a reliable configuration foundation for

building a high-accuracy LTP content prediction model, and also offers

a reference for algorithm optimization in similar Spectral modeling

research.To ensure optimal Model performance, this study employed

grid search and cross validation to refine the hyper parameters of RF,

Support Vector Regression, and BP. Neither overfitting nor poor fitting

phenomena occurred, further confirming the excellent performance of
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the model under this parameter combination. Therefore, the optimal

parameters for this model are a number of decision trees of 500 and

a min_samples_leaf of 5. Consequently, it is concluded that the model

performs best when C = 5 and g=0.1. To further establish the model,

the results indicated that the performance of the Radial Basis Function

(RBF) is superior to the other three functions. Under the results, it was

found that the trainlm training function is more suitable for this model.
4.4 Comparison with advanced baseline
models

In previous studies, Partial least squares regression (PLSR), Light

Gradient Boosting Machine (LightGBM) (LightGBM), and One-

dimensional convolutional neural network (1D-CNN) have been

widely used in the field of Spectroscopy. For example, researchers

such as those from AgResearch employed ryegrass as experimental

material and constructed a Spectroscopy prediction model using PLSR

to evaluate the composition of ryegrass plants. Their results

demonstrated strong predictive performance for total polysaccharide

(R² = 0.58), High molecular weight sugars (R² = 0.63), ash (R² = 0.50),

and nitrogen content (R² = 0.70) (Shorten et al., 2019). In another

study, Jun Yan et al. used maize to develop a LightGBM-based

prediction model for genomic selection prediction of maize lines.

The model achieved an Area Under the Curve (AUC) of 0.793,

indicating excellent performance in classification tasks involving

large sample sizes (Yan et al., 2021).Guo, C. et al. constructed a

cotton Fv/Fm prediction model based on 1D-CNN for drought

tolerance assessment, using cotton as the experimental material. The

predicted value showed a strong Correlation with the measured value

(R² ≥ 0.641). The results demonstrate that 1D-CNN offers high

accuracy and stability in processing Large-scale data (Guo et al., 2022).

Although these models have shown excellent performance in

studies by various researchers, the stability of PLSR under specific
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conditions across Different growth stages requires further

enhancement. Both LightGBM and 1D-CNN are prone to high

squared errors or significant bias when training samples are limited,

increasing the risk of poor fitting. In comparison, this study

identified more adaptive optimal Modeling strategies for Spectral

features at Different growth stages through rigorous screening: the

fruit-setting stage employs the FD+CARS-BP model, the expansion

stage uses the SG+FD-CARS-BP model, and the Maturity period

favors the SG+SD-CARS-BP model. The results show that these

models exhibit superior predictive stability and adaptability across

Different growth stages, enabling them to better handle the

challenges of Modeling with small sample sizes, thus improving

the accuracy of component prediction during specific growth stages.
4.5 Model generalization ability and cross-
period challenges

Cross-period model comparisons revealed that the special

models exhibited an R2 value 0.05–0.16 higher than that of the

general model during this growth period, while the Root mean

square error (RMSE) was 0.0029–0.0079 lower. Due to its inability

to adapt to the “dynamic Spectroscopy fingerprint” of LTP across

Different growth stages (such as the high discrete peak during the

Fruit-setting period and the weak signal peak during the Maturity

period), when the Fruit-setting period FD+CARS-BP model was

extended to the Fruit expansion period, the R2 of the validation set

decreased from 0.88 to 0.78, reflecting the specificity of the

“Spectroscopy–phosphorus content” relationship across growth

periods. In practical applications, it is necessary to switch models

based on the growth period or explore intertemporal transfer

learning strategies (such as fine-tuning parameters of a pre-

trained model) to balance model accuracy and convenience. This

provides practical references for the field application and Roll out of
TABLE 4 Comparison of intertemporal models.

Model Period
Training set Validation set

R2 RMSEC RPD R2 RMSEC RPD

Reproductive Stage
MSC-CARS-BP Model

fruit setting stage 0.94 0.0174 4.0725 0.73 0.0350 1.9914

Fruit Enlargement Stage 0.82 0.0248 2.3936 0.77 0.0258 2.3936

Fruit Ripening Period 0.74 0.0280 2.0821 0.69 0.0286 1.8807

Fruit Setting Period
FD+CARS-BP Model

fruit setting period 0.89 0.0212 3.1696 0.88 0.0241 2.9663

Fruit Enlargement Stage 0.86 0.0264 2.8344 0.78 0.0323 2.4215

Fruit Ripening Period 0.82 0.0245 2.3448 0.78 0.0270 2.1481

Fruit Swelling Stage
SG+FD-CARS-BP

Model

fruit-setting period 0.79 0.0262 2.2430 0.77 0.0285 2.3265

Fruit Enlargement Stage 0.86 0.0211 2.6721 0.83 0.0254 2.4571

Fruit Ripening Period 0.84 0.0224 2.6924 0.76 0.0285 2.1165

Fruit Ripening Stage
SG+SD-CARS-BP

Model

fruit setting stage 0.80 0.0246 2.2669 0.81 0.0280 2.2801

Fruit Swelling Stage 0.70 0.0306 1.8600 0.73 0.0330 1.9688

Fruit Ripening Period 0.86 0.0203 2.6977 0.85 0.0207 2.6844
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orchard Spectroscopy models and also clarifies the direction for

future model refinement—enhancing the model’s adaptability to

differences between growth periods.
4.6 Limitations of the study and future
directions

This study focuses on near-infrared spectroscopy (4000–10000 cm-

¹), with insufficient exploration of phosphorus characteristic peak (such

as P–O bond stretching vibration, ~1000–1300 cm-¹). Future work

could integrate Mid-infrared spectroscopy to expand features’

dimension, while simultaneously refining preprocessing and model

parameter. Moreover, model training relies on laboratory Spectral data,

without fully accounting for interference from field environments (e.g.,

light, temperature) on spectra. It is necessary to develop field spectral

correction models and incorporate dynamic parameter adjustments to

enhance technical practicality, thereby promoting the transition of

Spectral diagnosis technology from the laboratory to practical

application and improving the technical system for precision nutrient

management in fruit trees.

In summary, this study clarifies the “Growth period specificity-

Pretreatment synergy-model adaptation” technical framework for

predicting Korla fragrant pear LTP, demonstrating that Stage-based

modeling combined with Combined preprocessing can significantly

improve prediction accuracy, providing a scientific paradigm for

precision nutrient management in fruit trees. Subsequent efforts

need to strengthen the integration of multiple Spectroscopy and

field validation to further promote the application of Spectroscopy

technology in orchard production.

5 Conclusion

This study systematically analyzed the Leaf total phosphorus

(LTP) content of Korla Fragrant Pear using Near-Infrared

Spectroscopy, established a prediction model based on Growth

period characteristics, and significantly improved detection

accuracy and model applicability. The main conclusions include:

The LTP content of Korla Fragrant Pear leaves showed significant

differences across various growing stages. The content was lowest

during the Fruit-setting period, with a left-skewed distribution

ranging from 0.02% to 0.25%; it stabilized during the Fruit

expansion period, with a median of approximately 0.15%; and

peaked during the Maturity period, exhibiting a right-skewed

distribution with a maximum value of 0.45%. spectral analysis

revealed that Spectral features in the 4000–5500 cm-¹ and 5500–

7500 cm-¹ ranges were closely correlated with phosphorus content,

providing a basis for developing the prediction model. This study

constructed an LTP prediction model adapted to Different growth

stages. The optimal model for the fruit-setting period was FD+CARS-

BP, with the Coefficient of determination (R²) for the training sets

and validation set being 0.89 and 0.88, respectively; the optimal

model for the fruit expansion period was SG+FD-CARS-BP, with the

Coefficient of determination (R²) for the training sets and validation

set being 0.86 and 0.83, respectively; the optimal model for the
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Maturity period was SG+SD-CARS-BP, with the Coefficient of

determination (R²) for the training sets and validation set being

0.86 and 0.85, respectively. The predictive performance of all stage-

specific models was significantly better than that of the intertemporal

general model, with the Coefficient of determination (R²) increasing

by 0.05–0.16 and the Root mean square error (RMSE) decreasing by

0.0029–0.0079. This has practical implications for precision

fertilization management in orchards and provides a basis for

subsequent research to further enrich the trait system by

combining Mid-infrared spectroscopy technology and to develop

calibration models for real field environments, thereby enhancing the

practicality and roll-out value of the method.
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