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Leaf total phosphorus content (LTP) is a key indicator for assessing fruit nutrition
status. As a rapid non-destructive inspection method, Near-infrared
spectroscopy technology is susceptible to the influence of changes in plant
growth periods and spectral noise on its prediction accuracy. At present, how to
synergistically utilize growth period information and Spectral pre - processing
methods to optimize the LTP Prediction model remains to be further studied. The
study systematically collected Leaf sample and their near-infrared Spectral data
during three key growth periods of Korla fragrant pear (fruit-setting period, fruit
swelling period, and Maturity period). In the Spectral pre-processing stage,
multiple scattering correction, Savitzky-Golay Smooth, First Derivative (FD),
Second Derivative (SD) and their combined algorithms were comprehensively
applied. The Competitive Adaptive Reweighted Sampling (CARS) algorithm was
used for characteristic wavelength selection, and based on this, Growth period
specificity BP neural network model and cross-growth period general prediction
models were constructed respectively to evaluate the performance of different
Modeling strategies. Results The study showed that LTP content exhibited a
significant differential distribution across different growing stage. In the
characteristic wavelength bands, after processing with Combined pre-
processing method (e.g.,, MSC+ FD), the correlation coefficient between the
spectrum and LTP content significantly increased to approximately 0.90. The
predictive performance of the Growth-period-specific model was
comprehensively superior to that of the general model, with the Validation set
coefficient of determination remaining above 0.83. Compared with the general
model, the Coefficient of determination (R?) increased by 0.05-0.16, and the root
mean square error decreased by 0.0029-0.0079. This study successfully
constructed a technical system of “Growth period-Preprocessing-Model". The
results indicated that the Modeling strategy considering the characteristics of
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crop growing stage could significantly improve the predictive ability of near-
infrared spectroscopy models. This study provides a reliable technical framework
for Precision nutrient management in orchard, and the established methodology
can also serve as a reference for nutrient Surveillance of other fruit tree plants.

KEYWORDS

korla fragrant pear, total phosphorus in leaves, near-infrared spectrum, growth period
specificity, machine learning

1 Introduction

Phosphorus as an essential mineral element for plant growth
and development plays a critical role in physiological processes such
as nucleic acid synthesis, energy metabolism, and the maintenance
of cell membrane structures (Chen et al, 2021; Song et al,
2024).The dynamic change of Leaf total phosphorus (LTP)
content is not only a direct reflection of fruit nutrition status, but
also an important basis for precise fertilization in orchards (Shah
et al., 2024).As a characteristic cash crop in the arid regions of
northwestern China, Phosphorus nutritional diagnosis in korla
fragrant pear has significant practical implications for improving
fruit quality and yield (Wang et al., 2022).

Near-infrared spectroscopy (NIRS) technology offers an
innovative approach for in-situ monitoring of nutritive element of
plant due to its advantages of non-destructive inspection, high-
throughput analysis, and rapid response. By capturing the
vibrational absorption features of hydrogen-containing groups
(e.g., P-O-H), it enables spectrum analysis of leaf Phosphorus
content (Murguzur et al., 2019).

Current research on fruit tree Phosphorus Spectral diagnosis
faces three bottlenecks that require breakthroughs: First, most
studies have not systematically considered the impact of Growth
period differences on leaf Phosphorus distribution. The phosphorus
metabolism characteristics of korla fragrant pear differ significantly
during the fruit-setting period, fruit-expanding period, and
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Experimental overall visualization flowchart.
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FIGURE 2

Content of korla fragrant pear total phosphorus in leaves in different periods; Different letters indicate significant differences between groups(P<
0.05).The black dots represent the LTP content of each sample within each Growth period, and the black curve represents the foot normal

distribution.

maturity, exhibiting distribution patterns of low content and high
dispersion during the fruit-setting period, stable state during the
fruit-expanding period, and high content and high dispersion
during maturity (Figure 2). These patterns necessitate model
construction that adapts to the physiological characteristics of
different phenological periods. However, existing studies mostly
adopt an intertemporal general model, limiting prediction accuracy
(Siedliska et al., 2021).Second, the synergistic mechanism of
Spectral preprocessing technology remains unclear. Although
single preprocessing methods (such as Multivariate scattering
correction MSC, Derivative processing FD/SD) can separately
achieve physical interference elimination or chemical characteristics
enhancement, they struggle to simultaneously meet the dual
requirements of noise suppression and dynamic information
preservation. Systematic exploration of optimized combined
preprocessing strategies is still lacking (Han et al., 2025; Qi et al,
2025).Third, Feature band selection and Model parameter
optimization are not dynamically coupled with the Growth period.
The spectral absorption peak associated with Phosphorus (4000-7500
cm’™) exhibits significant differences in response intensity across
different Growth period, whereas traditional feature selection
algorithms fail to fully exploit this time-space specificity, resulting
in insufficient model generalization ability (Tian et al., 2024).

It is worth noting that although near-infrared spectrum analysis
has been widely applied in the non-destructive detection of crop
nutrients, research on quantitative prediction of phosphorus in fruit
trees remains insufficient. Most current studies have focused on field
crops such as wheat (Zhang et al., 2022) and rice (Arias et al., 2021),
with inadequate exploration of the relationship between leaf total
phosphorus (LTP) content and spectral response in fruit tree leaves
such as korla fragrant pear. Due to the relatively complex
morphological structure of fruit tree leaves, combined with
variations in the canopy microenvironment and physiological
dynamics at different growing stages, the difficulty of Spectral

Frontiers in Plant Science

modeling is increased. Existing research methods often directly
apply Traditional regression algorithms such as PLSR and SVR
(Ahmadi et al., 2021), failing to conduct targeted model
improvement based on the spectral characteristics of fruit trees, and
particularly lacking a systematic research approach that integrates
phenological change, preprocessing method, and machine learning
model. Therefore, establishing a spectral prediction model for LTP
content that can respond to the Growth period characteristics of
fragrant pear is of great significance for achieving precise monitoring
of phosphorus nutrition.

To address the above research bottlenecks, this study aims to
overcome the limitations of traditional general models and achieve
systematic innovation from theoretical, technical, and applied
perspectives, specifically reflected in: 1. Systematically analyzing
the unique distribution patterns (left-skewed, stable, right-skewed)
of LTP content in korla fragrant pear at different Growth periods
(Fonseca-Garcla et al., 2021)and their differential requirements for
spectral models, providing a solid physiological basis for Stage-
based modeling.2. In-depth exploration of various preprocessing
methods (single and combined) under different growth periods
within the Collaborative optimization mechanism (e.g., MSC+FD
for high-dispersion stages, SG+SD for weak-signal stages), rather
than simple stacking, to achieve efficient spectral information
purification (Tan et al, 2025). 3. Construction of a complete
technical system of “growth period specificity-preprocessing
collaboration-model adaptation” to validate the performance
improvement of the Stage-based modeling strategy compared to a
general model (Cao et al, 2021), providing a directly applicable
solution for precision orchard management.

To this end, this study first analyzes the distribution
characteristics of leaf total phosphorus (LTP) in korla fragrant
pear across different growth periods using Box plot, clarifying the
content dynamics during the fruit-setting period (minimum 0.02%,
maximum 0.25%, left-skewed distribution), fruit-expanding period
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FIGURE 3

Analysis of original spectral images: (A) is the original spectral image; (B) is the interior visualization of the average of human spectral images over

different periods.

(median 0.15%, concentrated in 0.10%-0.20%), and maturity period
(maximum 0.45%, right-skewed distribution) (Figure 2), providing
a physiological basis for Spectral modeling; secondly, integrating
MSC, SG smoothing, FD/SD derivative processing, and combined
strategies (MSC+FD, SG+SD, etc.) to optimize spectral signals,
achieving synergy between physical interference elimination and
chemical characteristics enhancement in the core sensitive region of
4000-5500 cm™ and the 5500-7500 cm™ combined frequency
region (Figures 3-4); further, using the competitive adaptive
reweighted sampling (CARS) algorithm to screening feature band
(Zhang et al., 2023)2. In-depth exploration of various preprocessing
methods (single and combined) under different growth periods
within the Collaborative optimization mechanism (e.g., MSC+FD
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for high-dispersion stages, SG+SD for weak-signal stages), rather
than simple stacking, to achieve efficient spectral information
purification (Tan et al, 2025). 3. Construction of a complete
technical system of “growth period specificity-preprocessing
collaboration-model adaptation” to validate the performance
improvement of the Stage-based modeling strategy compared to a
general model (Cao et al,, 2021), providing a directly applicable
solution for precision orchard management.

To this end, this study first analyzes the distribution
characteristics of leaf total phosphorus (LTP) in korla fragrant
pear across different growth periods using Box plot, clarifying the
content dynamics during the fruit-setting period (minimum 0.02%,
maximum 0.25%, left-skewed distribution), fruit-expanding period
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(median 0.15%, concentrated in 0.10%-0.20%), and maturity period
(maximum 0.45%, right-skewed distribution) (Figure 2), providing
a physiological basis for Spectral modeling; secondly, integrating
MSC, SG smoothing, FD/SD derivative processing, and combined
strategies (MSC+FD, SG+SD, etc.) to optimize spectral signals,
achieving synergy between physical interference elimination and
chemical characteristics enhancement in the core sensitive region of
4000-5500 cm™ and the 5500-7500 cm™ combined frequency
region (Figures 3-4); further, using the competitive adaptive
reweighted sampling (CARS) algorithm to screening feature band
(Zhang et al., 2023), combined with algorithms such as BP neural
network (Yang et al, 2021)and random forest (Capitaine et al,
2021)to construct Growth-period-specific model, with model
performance evaluated and compared through metrics including
Coefficient of determination (R?) and Root mean square
error (RMSE).

This study not only improves the Growth period adaptation
theory for Spectral diagnosis of fruit tree Phosphorus, but also
provides a Methodological reference for the application of Near-
infrared technology in Precise orchard nutrient management. As an
important component of a series of studies, this result corroborates
previous Spectral diagnosis research on plants such as potato and
rice (Zhang et al., 2019; Gao et al., 2023), collectively revealing the
coupling pattern of ‘spectral trait-growth period-nutritive index’,
thus laying the foundation for constructing a universal technical
system for fruit nutrition diagnosis (Xiao et al., 2022; Guo et al,
2024). Subsequent research will focus on the integration of Mid-
infrared spectroscopy and near-infrared spectrum, as well as
correction mechanisms for field environmental interferences,
promoting the translation of Spectral diagnosis technology from
laboratory research to practical application.

2 Materials and methods
2.1 Overview of the test site

The experiment was conducted at the campus of Tarim
University in Alar City, Xinjiang. The test material was 23-year-
old Korla Fragrant Pear (grafted onto Birchleaf Pear rootstock),
planted in north-south rows with a spacing of 2 mx4 m. The
orchard was irrigated using the Flood irrigation method, and other
management practices were carried out according to local
conventional protocols. Mature trees with vigorous growth and
uniform tree vigor were selected for the study. Please refer to
Figure 1 for the experiment process.

2.2 Sample collection

At the fruit bearing periods (April 23, 2024), fruit expansion
period (July 11, 2024), and maturity period (September 20, 2024) of
Kuerle fragrant pear fruit, mature leaves were collected from the
middle and lower segments of current-year branches at the outer
edge of the tree crown of each Test tree. During collection, single
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leaves from the east, south, west, and north directions of the tree
crown were carefully selected. Leaves from 150 trees were collected
for each period, labeled, and stored in Ziplock bag inside a 4°C
refrigerator for subsequent Spectral scanning and Total phosphorus
content analysis.

2.3 Original spectrum acquisition

Remove Test sample from the -4°C freezer and place it in the
laboratory where the spectrometer is located (ambient temperature
24°C) for 12 hours to equilibrate, ensuring that the sample
temperature is consistent with room temperature and eliminating
interference from temperature gradients (Zheng et al., 2023). After
powering on the Fourier Transform Near-Infrared Spectrometer
(Antaris II FT-NIR) and allowing it to warm up for 30 minutes,
perform Diffuse reflectance correction using the Standard
whiteboard (He et al., 2023). If necessary, gently clean dust from
the leaf surface with a dust-free cloth. On the leaf, select two regions
each at the upper and lower ends, using the vein as a boundary (four
sites in total), and use different colors to mark the spectra of
different regions. At each region, repeat the scan 4 times using
the following parameters: Spectral range 10000-4000 cm™,
Resolution 8 cm™, Gain 2x, Number of accumulations per scan
64 times (Zheng et al., 2024). Single leaf yielded 16 spectral curves,
and after baseline correction, the average was calculated and used as
the final Absorbance (A) value of the sample for subsequent
Chemometric modeling and analysis. This method effectively
controlled the effects of Temperature fluctuation, Instrument
drift, and Leaf heterogeneity through Standardized preprocessing,
Instrument calibration, and Multi-point repeated measurement,
laying the data foundation for constructing a High-precision
prediction model.

2.4 Determination of total potassium in
korla fragrant pear leaves

Collect the Leaf sample after Spectral data acquisition and
sequentially wash with tap water, 0.1% detergent solution, tap
water, and Distilled water (entire process < 2 min). After
removing surface moisture with Dust-free absorbent paper, place
the sample in a 105°C Forced air drying oven for fixation for 20
min, then dry to constant weight at 80°C (Dayton et al., 2017); grind
the dried sample using a Stainless steel crusher and pass through a
60-mesh nylon sieve (Xu et al., 2016). Accurately weigh 0.2000 g of
the Sieved sample into a 100 mL Digestion tube. Moisten the sample
with Distilled water, then add 5 mL of Concentrated sulfuric acid
(H,SO,), and fit the mouth of the tube with a curved neck funnel.
On a Digestion furnace, initially heat gently at low temperature;
gradually increase the temperature after dense white smoke appears
due to decomposition of sulfuric acid. When the solution turns
brown-black, remove the Digestion tube, cool, then add 10 drops of
300 gL' hydrogen peroxide (H,O,) dropwise while thoroughly
shaking. Continue heating for 15 min. Repeat the above H,O,
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addition operation 2-3 times until the Digestion solution becomes
colorless or clear and transparent, then heat for an additional 10
min to completely remove excess H,O, (Zou et al., 2019); after
cooling, rinse the curved neck funnel with Distilled water, combine
the rinsing solution into the Digestion tube, and dilute to the 100
mL mark; determination of Total phosphorus content is performed
using the molybdenum antimony resistance colorimetric method
(Li Ting and Hong Xing, 2022), specifically: transfer 5 mL of
Digestion solution (pre-dilute if concentration is too high) into a
50 mL volumetric flask, add 5 mL of freshly prepared molybdenum-
antimony-ascorbic acid color developer [preparation: slowly add
100 mL of 0.5 mol/L H,SO4 to a mixed solution containing 10 g
ammonium molybdate and 0.5 g antimony potassium tartrate, cool,
then add 1.5 g of Ascorbic acid and dilute to 500 mL], dilute to
volume with Distilled water, and allow color development in the
dark at 20-30°C for 30 min; using the Blank solution as reference,
measure the absorbance at 700 nm, and calculate the Total
phosphorus content of the sample using Equation 1:

CxVxD

LTP(%) ==

1

where C is the measured concentration (mg/L), V is the final
volume (100 mL), D is the dilution factor, and m is the sample
weight (0.2000 g)

2.5 Spectrum data conversion

In the spectral data processing process, specific Spectral
transformation can be used to mitigate the effects of
environmental factors and interferences, improve the Signal-to-
noise ratio, and make the spectral form more suitable for
Korla fragrant pear LTP. In this study, several mathematical
transformations were applied to the original spectra, generating
six types of spectral data: Original absorbance (A), MSC, SG, FD,
SD, MSC+FD,MSC+SD, SG+FD, SG+SD (As shown in Table 1).
MSC is a Normalization technique that reduces baseline drift,
improves the Signal-to-noise ratio, and better reveals differences
and similarities among samples; it is commonly used to eliminate
scattering effects on spectral data (Gautam et al., 2015). SG is a Local
smoothing method based on Polynomial fitting, which performs
Weighted filtering on Spectral data through a Sliding window,
achieving Random noise reduction while preserving Peak shape
and Spectral details (Liu et al, 2016). FD can enhance the
Resolution of spectra, distinguish Overlapping peaks, and is
suitable for determining Peak position and boundary, especially
for eliminating Background interference in Quantitative analysis
(Sonobe and Hirono, 2023). SD is more sensitive in identifying Peak
inflection points and shoulder peaks, and suppresses the Broad
background signal, commonly used in the analysis of fine structures
in complex spectra (Gao et al., 2016). MSC+FD first corrects the
Scattering effect using MSC, then applies First-order derivative (FD)
to eliminate residual baseline drift and improve peak Resolution,
making it suitable for scenarios with strong scattering interference
and requiring precise Peak positioning (Wang et al., 2023). MSC
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+SD enhances spectral details after MSC reduces scattering, with
the second-order derivative (SD) further identifying subtle
differences in overlapping peaks, suitable for complex samples
requiring resolution of highly overlapping peaks (Xie et al., 2018).
SG+FD first applies SG smoothing to reduce noise, then calculates
the first-order derivative (FD), avoiding amplification of noise in
derivative results, thus balancing noise suppression and resolution
enhancement in spectra with high noise levels (Zhou et al., 2024).
SG+SD first uses SG smoothing to reduce noise, after which the
second-order derivative (SD) more accurately reflects spectral
curvature, avoiding false peaks caused by noise, making it suitable
for spectra requiring fine structure analysis where noise is
significant (An et al., 2021).

2.6 Extraction of spectrum characteristic
bands

To reduce the band redundancy and interference of high-
dimensional spectral data, feature bands significantly associated
with leaf total phosphorus content (LTP) (LTP) were selected from
the spectral data to improve modeling accuracy. In this study, the
Competitive adaptive reweighted sampling (CARS) algorithm (Sun
etal., 2021; Xing et al., 2021) was adopted, based on the principle of
darwin’s theory of biological evolution’s survival of the fittest.
Efficient dimensionality reduction of spectral variables was
achieved by coupling Partial least squares (PLS) modeling with an
adaptive variable screening mechanism. This algorithm evaluates
the importance of variables based on the absolute percentage
evaluation of PLS model coefficients, generates an initial
wavelength subset through Monte Carlo sampling (MCS), and
dynamically adjusts variable weight by incorporating an
Exponential decay function to strengthen the selective retention
of high-contribution bands. Simultaneously employing the

TABLE 1 Spectral preprocessing methods.

Full name Abbreviation Function

Multiple Scatteri
whpe Scatlering MSC Eliminate scattering

Correction

Savitzky-Golay smoothing = SG Reduce noise

First derivative FD Enhance spectral resolution

Conduct fine structural
Second derivative SD i
analysis

Multiple Scatterin,
P 8 Eliminate scattering +

Correction+ First MSC+FD i
. Enhance spectral resolution
Derivative
Multiple Scattering Eliminate scattering +
Correction+Second MSC+SD Conduct fine structural
Derivative analysis
Savifzky-Golay+First SG+FD Reduce noise +- Enhance
Derivative spectral resolution
Savitzky-Golay+Second SG+SD Reduce noise + Conduct fine

Derivative structural analysis
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Adaptive weighted sampling (ARS) strategy, wavelengths are
weighted screening based on the Absolute value of coefficients,
prioritizing the retention of Important bands and eliminating
Redundant information. After Multi-round iterative optimization,
the final Characteristic wavelength combination highly correlated
with LTP is obtained, providing an efficient Input variable set for
subsequent Regression modeling.

2.7 Machine learning modeling

Based on the above trait selection results, three algorithms—
Random forest (RF), Support vector machine (SVR), and Back
Propagation(BP)neural network—were used to construct a Korla
Fragrant Pear LTP estimation model.

RF (Guo and Hao, 2021)reduces model variance by integrating
multiple decision trees, with core parameter settings as follows:
Number of decision trees (n _ estimators) was set to four gradients
—100, 250, 500, and 750—where the smaller value (100) was used
to explore the model baseline performance, medium values (250,
500) balanced computational efficiency and ensemble effect, and the
larger value (750) verified the fitting ability under extreme ensemble
scale (Rhodes et al., 2023); min_samples_leaf (min_samples_leaf)
was set to five gradients—1, 3, 5, 7, and 10—where the minimum
value (1) allowed the decision tree to grow sufficiently to capture
subtle variations, medium values (3, 5) suppressed noise
dissociation, and larger values (7, 10) enforced simplification of
tree structure to reduce complexity (Jeong et al., 2016;
Scornet, 2016).

SVR (Virnodkar et al., 2020)employed four types of kernel
functions for comparison: Radial basis kernel function (RBF),
Linear kernel function, Polynomial kernel function, and Sigmoid
kernel function. The optimal parameter values of the penalty
coefficient (C) and the kernel function parameter (y) were
determined through grid search optimization, thereby identifying
the optimum parameter and the kernel function.

BP neural network (Li et al., 2021)consists of input, output, and
an intermediate hidden layer. A single hidden layer is used, with the
number of nodes set to 1-10. The model iterates 1000 times, with a
learning rate of 0.01 and a training target error of 1x10°°. Six
training functions (trainlm, traingd, trainscg, traingdx, trainbfg, and
traincgb) are compared to determine the optimal parameters and
the best training function (Wang et al., 2023).

This paper conducts comprehensive comparative experiments
with the currently recognized advanced baseline model in the field.
For this, we selected three high-performing and widely used
Representative model for spectral analysis as advanced
representatives of the baseline model. Partial least squares
regression (PLSR) and Light gradient boosting machine
(LightGBM) and One-dimensional convolutional neural network
(1D-CNN).

PLSR is a Regression modeling method proposed in the early
1980s by Svante Wold and others for handling High-dimensional,
multicollinear data (Li et al., 2024). It achieves prediction of Y by
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extracting Latent Variables (Latent Variables) from the
Independent variable (X) and Dependent variable (Y), and
establishing a linear regression relationship between these latent
variables. It is particularly suitable for the Chemometrics field such
as Spectroscopy and Chromatography. LightGBM was proposed in
2017 by Microsoft Research Asia, and is an efficient implementation
of the Gradient Boosting Decision Tree (GBDT) framework, greatly
improving Training speed and reducing Memory consumption,
while maintaining high prediction accuracy, making it perform
exceptionally well on Large-scale data (Gupta et al., 2021).1D-CNN
originated from the LeNet-5 architecture proposed by Yann LeCun
and others in the late 1980s and early 1990s for Handwritten digit
recognition (designed for 2D images), which was the prototype of
the Convolutional Neural Network (CNN). I1D-CNN can
automatically learn Local patterns and Multi-scale features in
data, making it highly suitable for processing one-dimensional
signal such as time series analysis, audio frequency processing,
and Near-infrared spectroscopy (Liu et al., 2022).

2.8 Medel evaluation methods

This study implemented the aforementioned Regression
algorithm using MATLAB R2024b, and comprehensively
evaluated Model performance using three metrics: Coefficient of
determination (R?), Root mean square error (RMSE), and Residual
prediction deviation (RPD):

R*: Measures Model goodness of fit. The value ranges from 0 to
1. The closer R? is to 1, the higher the agreement between the Model
predicted value and the measured value (Ahmad Yasmin et al,
2021). The calculation formula is shown in Equation 2.

RMSE: Quantifies the absolute magnitude of Prediction error.
The smaller the RMSE value, the higher the Model prediction
accuracy (Li et al, 2024). The calculation formula is shown in
Equation 3.

RPD: Reflects the predictive capability of the model. Evaluation
criteria: RPD > 3: Excellent Model prediction ability; 2< RPD < 3:
The model can be used for preliminary prediction; RPD < 2: Poor
Model prediction ability. The calculation formula is shown in
Equation 4.In model evaluation, the Dataset is divided into
training sets and Test set at a ratio of 3:1, and the above metrics
are calculated separately to comprehensively assess the model’s
Fitting effect, Prediction accuracy, and Generalization ability (Chu
et al,, 2023).

n _ 2
RP-1- i1 Om )’p) @)

E?:l(ym _)7)2

RMSE = ,/%i(ym =) (3)
i=1

RPD = SJ’ — n_EIE?:I(ym,i _ym)z
RMSE PMSE
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the sample size; y;,, and y,They are the actual value and the
predicted value of Korla fragrant pear Leaf Total Potassium
respectively; yIt is the average value of the actual Korla fragrant
pear Leaf Total Potassium; SyIs the standard deviation of the Leaf
Total Potassium measurement value of Korla fragrant pear

3 Results and analysis

3.1 Content of korla fragrant pear total
phosphorus in leaves at different periods

As shown in Figure 2 Box plot, the LTP content in Korla Fragrant
Pear leaves exhibited significant distribution differences across various
growing stage, providing a basis for Stage-based modeling. Samples from
the fruit-setting period generally had lower overall content but included
individual high-value outliers, reflecting periodic fluctuations in
Phosphorus demand during this stage. This distribution facilitates the
model’s ability to capture differences in Spectral response under low and
high phosphorus conditions. The distribution of LTP content during the
fruit swelling period was relatively concentrated with low dispersion,
indicating more stable Phosphorus levels at this stage, allowing modeling
to focus on identifying representative Spectral characteristics. The
maturity period showed more high-value samples and extreme high
values, which, while increasing the difficulty of model identification, also
provided critical sample support for establishing Quantitative prediction
within the high-content range. The above distribution characteristics
indicate that there are significant differences in the Growth period LTP
content and their degree of variation among various periods. Therefore,
adopting a unified prediction model is unlikely to achieve global
optimization. Instead, it is necessary to construct specificity model
based on the data characteristics of each period to improve Prediction
accuracy and robustness.

3.2 Analysis of leaf spectral data in korla
fragrant pear

This study is based on the use of Near-Infrared Spectroscopy
(4000-10000 cm™) to analyze the Leaf total phosphorus (LTP)
content of Korla fragrant pear. Differences in leaf LTP content exist
during Different growth stages, manifested as Fruit-setting period< Fruit
expansion period< Maturity period, providing a sample basis for Stage-
based modeling. It provides a sample foundation for Spectral modeling.

Spectral response indicates that changes in LTP content are
significantly associated with the Vibrational absorption of
Hydrogen-containing group (such as P-O-H). In the 4000-5500 cm’
' range, the Hydrogen group overtone absorption of Phosphorus
substance overlaps with that of moisture and Carbohydrates, forming
the Core sensitive region for LTP; the Combination frequency and
overtone in the 5500-7500 cm™ range can synergistically and
complementarily verify differences in total phosphorus
(Figure 3A).The line discretization and polymerization of Spectrum
curves from different samples reflect the group differences in LTP
content. Combined with the Growth period classification of Spectrum
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plots, distinct dispersion and polymerization of curves in characteristic
intervals across different periods are observed (Figure 3B), further
providing a basis for establishing the Stage-based prediction model.

3.3 Spectral data preprocessing

This study applied MSC, SG, FD, SD and their combined
methods to preprocess the near-infrared spectra of Korla fragrant
pear leaves, aiming to enhance the Spectral characteristics associated
with LTP content while reducing noise and scattering interference.

The Original spectrum was influenced by baseline effects and noise,
leading to significant signal overlap and indistinct variations
(Figure 3A). MSC effectively removed baseline drift caused by particle
size and surface scattering, markedly improving spectral consistency
and comparability (Figure 4A); SG suppressed random noise while
preserving the original Peak shape, thereby increasing the Signal-to-
noise ratio and help to highlight phosphorus-related absorption features
(Figure 4B); FD processing amplified the dynamic differences of
absorption peak related to LTP content by calculating the spectral
rate of change, which improved feature discernibility (Figure 4C); SD
further accentuated subtle changes in Spectral curvature, proving
particularly useful for extracting weak signals from low-content
samples (Figure 4D).Combined preprocessing strategy integrates the
advantages of individual methods, further enhancing Spectrum quality.
MSC+FD eliminates physical scattering while amplifying dynamic
spectral features, making it more effective at capturing variations in
LTP content (Figure 4E); MSC+SD improves detail resolution on the
basis of scatter correction, supplying the model with more stable and
refined input (Figure 4F); SG+FD preserves and accentuates spectral
changes induced by chemical constituents while reducing noise, thereby
balancing the need for Smooth and feature enhancement (Figure 4G);
SG+SD achieves both noise suppression and high-frequency detail
enhancement, making it suitable for dynamic monitoring and
Modeling of LTP content across the whole growth period (Figure 4I).

The results demonstrate that different preprocessing methods
improve Spectrum quality in various aspects, including noise
suppression, removal of physical interference, and enhancement of
dynamic features. Combined methods exhibit stronger adaptability
and synergistic Gain effects. Subsequently, the optimal pretreatment
strategy will be selected based on Model performance metrics, laying
the groundwork for high-accuracy prediction of LTP content.

3.4 Spectral data and correlation analysis
with LTP

This study evaluated the optimization effects of various
methods on Phosphorus information extraction by analyzing the
Correlation (r) between different Preprocessed spectra and LTP
content. The main findings are summarized below (representative r
values are provided in Figure 5):

The Original spectrum (Figure 5A) displays broad and smooth
Peak shape, rendering it susceptible to scattering and Noise
interference; Multiplicative scatter correction processing (Figure 5B)
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FIGURE 5

(A) Original spectrum; (B) MSC; (C) SG; (D) FD; (E) SD; (F) MSC+FD; (G) MSC+SD; (H) SG+FD; (1) SG+SD.

effectively suppressed physical interference; Savitzky-Golay processing
(Figure 5C) showed no noticeable improvement; First Derivative
processing (Figure 5D) amplified both Dynamic correlation details
and Noise interference; Second Derivative processing (Figure 5E)
improved the ability to extract trace phosphorus-containing
components and detect Weak correlation with LTP.

Combined preprocessing methods exhibited stronger Synergistic
effect. The MSC+FD approach (Figure 5F) significantly enhanced the
Recognition ability of LTP in Highly discrete samples; MSC+ SD
(Figure 5G) improved the resolution of LTP information in Low
phosphorus content samples; SG+ FD(Figure 5H) strengthened the
correlation between spectral data and LTP while enhancing
Interpretability; SG+ SD (Figure 5I) reduced Noise interference and
accentuated Weak absorption difference, thereby improving the
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Dynamic monitoring ability of LTP during Different growth stages. In
summary, the Combined pre-processing method can more effectively
extract Spectral characteristics associated with LTP content, thereby
providing a more reliable data foundation for subsequent Modeling.

Correlation Analysis between Different Spectral Data and LTP
in Figure 5: (A) Original spectrum; (B) MSC; (C) SG; (D) ED;
(E) SD; (F) MSC+FD; (G) MSC+SD; (H) SG+FD; (I) SG+SD.

3.5 Selection of LTP characteristic bands in
korla fragrant pear

This study utilized the Competitive Adaptive Reweighted
Sampling algorithm to screening feature bands highly correlated

frontiersin.org


https://doi.org/10.3389/fpls.2025.1666460
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yu et al.

A

SG+SD-CARS +— -o—

SG+FD-CARS

MSC+SD-CARS

MSC+FD-CARS

SD-CARS

FD-CARS

SG-CARS

MSC-CARS

T T T T T T T
4000 5000 6000 7000 8000 9000 10000

Wavenumber (cm™)

C

SG+SD-CARS ——-0-

SG+FD-CARS

MSC+SD-CARS

MSC+FD-CARS

SD-CARS

FD-CARS

SG-CARS

MSC-CARS

T T T T T T
4000 5000 6000 7000 8000 9000 10000

Wavenumber (cm™)

FIGURE 6

10.3389/fpls.2025.1666460

B

SG+SD-CARS — - —I-0—d—

SG+FD-CARS

MSC+SD-CARS

MSC+FD-CARS

SD-CARS

FD-CARS

SG-CARS

MSC-CARS

T T T T T T
4000 5000 6000 7000 8000 9000 10000

Wavenumber (cm™)

D

SG+SD-CARS ——-0-

SG+FD-CARS

MSC+SD-CARS

MSC+FD-CARS

SD-CARS

FD-CARS

SG-CARS

MSC-CARS

T T T T T T T
4000 5000 6000 7000 8000 9000 10000

Wavenumber (cm™)

Selection of korla fragrant pear LTP characteristic bands: (A) represents the selection for the spectral data of the whole growth period; (B) represents
the selection for the spectral data of the fruit bearing periods; (C) represents the selection for the spectral data of the fruit swelling period; (D)

represents the selection for the spectral data of the fruit ripening period.

with LTP content from preprocessed near-infrared spectra, and
analyzed the distribution characteristics of these bands across both
the whole growth period and Different growth stages (as shown
in Figure 6).

The results demonstrate that combined preprocessing methods
(such as MSC+FD,SG+SD) consistently extracted denser and more
comprehensive feature bands across all Different growth stages,
proving particularly effective at capturing subtle chemical
absorption variations. In contrast, single preprocessing methods
(e.g., Multiplicative scatter correction or Second Derivative) mainly
focused on core absorption peak regions, resulting in fewer but
more specific feature bands.

Regarding growth stage differences: during the fruit-setting
stage, LTP content was high and exhibited high variability.
Combined preprocessing methods produced densely clustered
feature bands in certain spectral regions, effectively adapting to
high-phosphorus absorption variations and capturing dynamic
differential features. During the fruit-expansion stage, LTP
content remained stable, and feature bands were more uniformly
distributed across the 4000-8000 cm™ range. Combined methods
formed continuous characteristic zones in some bands, aligning
with chemical equilibrium states during this stable period and
enabling the identification of more comprehensively correlated
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bands. In the maturity stage, LTP content was low and
absorption signals were weak, making it necessary to rely on
combined preprocessing to enhance the extraction of bands
sensitive to trace components. The Feature band selection results
provide critical input for building subsequent staged LTP content
prediction models. By leveraging Growth period characteristics,
suitable Pretreatment strategies can be selected to improve model
accuracy and specificity.

3.6 Korla fragrant pear LTP estimation
model

This study constructed Growth-period-specific models and an
intertemporal general model based on the LTP content and Spectral
data of Korla fragrant pear leaves at Different growth stages, using
Coeflicient of determination (R*), Root mean square error (RMSE),
and Residual prediction deviation (RPD) as evaluation metrics for
Model performance (Supplementary Material 1). The results indicated
that each Growth-period-specific model significantly outperformed
the intertemporal general model in predicting LTP content.

As shown in Tables 1 and 2, the optimal model for the fruit-
setting period (FD+CARS-BP) achieved R* = 0.89, RMSE = 0.0212,
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TABLE 2 Indicators of the best models under each machine learning algorithm in each period.

Training set Validation set
Period
RMSE RMSE
MSC+SD-CARS-
SC+SRFC S 0.80 0.0269 2.2094 0.76 0.0334 2.0521
Entire growth period =~ MSC-CARS-BP 0.84 0.0258 2.4436 0.81 0.0268 2.3764
MSC+FD-CARS-
0.79 0.0287 2.1862 0.78 0.0290 2.0917
SVM
SG+FD-CARS-RF 0.85 0.0267 2.5807 0.77 0.0295 2.0965
o ) FD+CARS-BP 0.89 0.0212 3.1696 0.88 0.0241 2.9663
Fruit setting period
MSC+SD-CARS-
SCHSD-CARS 0.84 0.0279 2.2024 0.79 0.0281 1.9787
SVM
MSC+SD-CARS-
RE 0.80 0.0257 2.2293 0.82 0.0238 2.3391
Fruit Enlargement
Stage SG+FD-CARS-BP 0.86 0.0211 2.6721 0.83 0.0254 24571
MSC-CARS-SVM 0.90 0.0194 4.3079 0.81 0.0228 22185
SG+FD-CARS-RF 0.81 0.0231 2.3696 0.80 0.0237 2.2457
Fruit Ripening Stage = SG+SD-CARS-BP 0.86 0.0203 2.6977 0.85 0.0207 2.6844
MSC-CARS-SVM 0.82 0.0227 3.0751 0.86 0.0218 2.2088

RPD = 3.1696 on the Training set and R*> = 0.88, RMSE = 0.0241,  orchards. Therefore, it is reccommended to use the FD+CARS-BP
RPD = 2.6963 on the validation set, demonstrating a stronger ability = model during the fruit-setting period, the SG+FD-CARS-BP
to capture the dynamic Spectral characteristics of highly discrete ~ model during the fruit swelling period, and the SG+SD-CARS-
LTP content. Its performance was significantly superior to that of =~ BP model during the maturity period for predicting the Korla
the MSC-CARS-BP general model. The optimal model for the Fruit ~ fragrant pear LTP content.
expansion period (SG+FD-CARS-BP) achieved Coefficient of
determination (R?) values of 0.86 and 0.83 on the Training set
and validation set, respectively, with Root mean square error 3./ Model parameters and function
(RMSE) values of 0.0211 and 0.0254, and RPD values of 2.6721  Selection
and 2.4571, demonstrating better adaptation to the relatively stable
Spectrum-chemical state during this period. The optimal model for In the Random forest (RF) Modeling process, the number of
the Maturity period (SG+SD-CARS-BP) achieved Coefficient of = Decision trees and the value of min_samples_leaf are key hyper
determination (R*) values above 0.85 on both training and  parameters that directly affect model complexity and Generalization
validation sets, with Root mean square error (RMSE) below 0.021  ability. With too few trees, the model’s fitting ability is inadequate,
and RPD exceeding 2.68, indicating effective resolution of weak leading to poor fitting. As the number of trees increases, the model
Spectrum signals from low-content LTP and significantly  improves prediction stability through ensemble learning. However,
outperforming the general model. beyond a certain point, the performance Gain becomes marginal,
Linear fitting results (Figure 7) further support the above  while computational cost and Overfitting risk rise (Huang et al,
conclusions. The Coefficient of determination (R?) values for the  2016; Guo et al., 2019; Dabiri et al., 2022). Taking the fruit ripening
Fruit-setting period model reached 0.905 and 0.888 on the period SG+FD-CARS-RF model as an example (Figures 8A-D),
training and validation sets, respectively, indicating its strong  when the number of trees is 500 and min_samples_leaf is 5, the
fitting and Generalization ability even with highly Variant data.  difference in Coefficient of determination (R?) between the Training
The Coefficient of determination (R*) values for the Fruit setand the validation set is the smallest (0.0112), and the Root mean
expansion period model were all above 0.83, and those for the  square error (RMSE) difference is only 0.006—significantly better
Maturity period model exceeded 0.86, further confirming the  than other parameter combinations. This indicates that this
adaptability and stability of the specificity model across  configuration maintains strong Generalization ability while
Different growth stages. Studies have shown that the Growth-  mitigating overfitting, and was therefore identified as the optimal
period-specific model, by aligning with the differences in LTP  parameter set. For the SVM model, using the mature stage
content and Spectral characteristics across various periods,  Multiplicative scatter correction-Competitive Adaptive
significantly improves prediction accuracy, providing a reliable = Reweighted Sampling-SVM as an example, it is essential to
model option for precise phosphorus nutrition management in  optimize the regularization parameter C and the kernel parameter
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(A) shows the linear fit between the measured and predicted values of the training sets for the fruit bearing periodsFD+CARS-BP model; (B) shows
the linear fit between the measured and predicted values of the validation set for the fruit bearing periodsFD+CARS-BP model; (C) shows the linear
fit between the measured and predicted values of the training sets for the fruit swelling periodSG+FD-CARS-BP model; (D) shows the linear fit
between the measured and predicted values of the validation set for the fruit swelling periodSG+FD-CARS-BP model; (E) shows the linear fit
between the measured and predicted values of the training sets for the fruit ripening periodSG+SD-CARS-BP model; (F) shows the linear fit between
the measured and predicted values of the validation set for the fruit ripening periodSG+SD-CARS-BP model.

Y. As illustrated in Figures 9A-D, when C = 5 and y=0.1, the model
performs well on both the Training set and the validation set (with
Coefficient of determination (R?) values of 0.8185 and 0.8552, and
Root mean square error (RMSE) values of 0.0227 and 0.0218,
respectively), demonstrating a good balance. Although a higher
Training set Coefficient of determination (R*) of 0.8716 is achieved
when C = 10 and y=0.3, the validation set Coefficient of
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determination (R*) drops significantly to 0.6943, indicating clear
overfitting. Thus, C = 5 and y=0.1 are identified as the optimal
parameters. Further comparison among different kernel functions
shows that the Radial basis kernel function (RBF) delivers the best
overall performance, with the smallest discrepancy in Coefficient of
determination (R?) between the validation set and the Training set.
In contrast, although the Polynomial kernel function performs well
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on the Training set, its validation set Coefficient of determination
(R?) decreases by up to 0.3792, reflecting inadequate Generalization
ability. This suggests that the RBF kernel is more suitable for the
characteristics of the present dataset. In the BP neural network
model, using the fruit-setting period FD+CARS-BP as an example,
the number of nodes in the hidden layer significantly influences the
model’s expressive power. As shown in Figures 10A, B, when the
hidden layer contains 5 nodes, both the Training set and validation
set show high Coefficient of determination (R*) and low Root mean
square error (RMSE), indicating that this configuration maintains
strong fitting ability without noticeable overfitting. Further
comparison among different training functions shows that the
trainlm function performs best in this model, achieving a
validation set Coefficient of determination (R*) of 0.88 and an
Root mean square error (RMSE) of 0.0241, surpassing other
training functions and demonstrating its superior suitability for
the given data structure and task complexity.

3.8 Performance comparison with
advanced baseline model

To evaluate the performance of the optimal models selected for
each Growth period, this study conducted a comprehensive
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comparison with widely recognized advanced baseline models in
the field, namely PLSR, 1D-CNN, and LightGBM. Each baseline
model employed the same Pretreatment and Feature band selection
methods as the corresponding optimal model for the respective
growth stage (Fruit-setting period: First Derivative-Competitive
Adaptive Reweighted Sampling; Fruit-expanding period:SG+FD-
CARS; Maturity period:SG+SD-CARS) to ensure a fair comparison
(Table 3).

As presented in Table 4, during the fruit-setting period, the FD
+CARS-BP model attained a Coefficient of determination (R*) of 0.88
on the validation set, surpassing PLSR (0.81) and 1D-CNN (0.84).
Although its R* was marginally lower than that of LightGBM (0.85),
the model demonstrated a lower Root mean square error (RMSE)
(0.0241) and a higher RPD (2.97), indicating more stable and reliable
prediction performance. During the fruit swelling period, the SG+FD-
CARS-BP model achieved a validation set Coefficient of determination
(R* of 0.83 and an Root mean square error (RMSE) of 0.0254,
outperforming both PLSR and 1D-CNN, and performing comparably
to Light GBM. Notably, while LightGBM attained a high Coefficient of
determination (R*) on the Training set (0.90), its performance on the
validation set declined significantly (0.82), suggesting potential
overfitting. In contrast, the model proposed in this study exhibited
more consistent performance across both training and validation sets,
indicating superior Generalization ability.
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SVM hyper parameter settings and kernel function selection: (A) is R2 of training sets; (B) is Root mean square error (RMSE) of training sets; (C) is R2
of validation set; (D) is Root mean square error (RMSE) of validation set; (E) is R2 of four kernel functions for training sets and validation set; (F) is
Root mean square error (RMSE) of four kernel functions for training sets and validation set.

At the Maturity period, the SG+SD-CARS-BP model delivered
the best overall predictive performance, with a validation set
Coefficient of determination (R*) of 0.85, an Root mean square
error (RMSE) of 0.0207, and an RPD of 2.68. All metrics surpassed
those of PLSR and 1D-CNN. Compared to LightGBM, the proposed
model showed better performance in terms of Root mean square
error (RMSE) and RPD, further highlighting its accuracy and stability
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in practical applications. In summary, systematic comparisons with
multiple advanced baseline model demonstrate that the Growth
period-specific machine learning model developed in this study
exhibits consistently excellent and stable predictive ability across
different growth stages, confirming the effectiveness and superiority
of the Stage-based modeling strategy for monitoring LTP content in
Korla fragrant pear leaves.
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BP neural networkhyper parameter settings and kernel function selection: (A) is R2 and Root mean square error (RMSE) of training sets; (B) is R2 and
Root mean square error (RMSE) of the validation set; (C) is R2 of six training functions; (D) is Root mean square error (RMSE) of six training functions.

TABLE 3 Performance comparison with advanced baseline model.

Training set Validation set
RMSE RMSE

BP 0.89 0.0212 3.17 0.88 0.0241 297
PLSR 0.83 0.0265 2.54 0.81 0.0305 2.35

Fruit setting period
LightGBM 0.93 0.017 3.95 0.85 0.0262 2.74
1D-CNN 091 0.0191 3.52 0.84 0.0268 2.68
BP 0.86 0.0211 2.67 0.83 0.0254 2.46
PLSR 0.81 0.024 235 0.78 0.028 223

Fruit Enlargement Stage

LightGBM 0.90 0.018 3.13 0.82 0.026 24
1D-CNN 0.88 0.0198 2.85 0.81 0.0265 2.36
BP 0.86 0.0203 2.7 0.85 0.0207 2.68
PLSR 0.83 0.0221 2.48 0.81 0.0231 2.4

Fruit Ripening Stage
LightGBM 0.92 0.015 3.66 0.86 0.0199 2.79
1D-CNN 0.89 0.0182 3.01 0.80 0.0272 241
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4 Discussion

This study systematically investigates the prediction of Leaf
total phosphorus (LTP) content in Korla Fragrant Pear,
comprehensively revealing the application patterns of Near-
Infrared Spectroscopy in fruit nutrition diagnosis through the
analysis of Growth period differences, spectral pre-processing
refinement, trait screening, and model construction and
validation. It provides theoretical and technical support for
Precision nutrient management in orchard. Specific discussions
are as follows.

4.1 The dynamic of LTP content during the
fertile period and model adaptability

Different growth stages Korla Fragrant Pear leaf LTP content
showed significant differences (P< 0.05), with low and discrete
content during the fruit-setting period, stable during the fruit
expansion period, and high and discrete during the Maturity period
(Figure 2). The FD+CARS-BP model performed excellently during the
fruit-setting period, with R* of training sets reaching 0.90504 and
validation set R* of 0.88785. FD preprocessing enhanced spectral
dynamic differences, and the CARS algorithm accurately screening
bands associated with highly discrete LTP, adapting to the “high
dynamic phosphorus content-complex Spectral response” trait
(Yu et al, 2024);Fruit expansion period SG+FD-CARS-BP model
leverages the synergistic effect of SG noise reduction and FD
enhancement to balance the “Stable Spectra-Basic Phosphorus
Absorption” relationship, with R2 values of 0.86243 and 0.83488 for
training sets and validation set respectively; Maturity period SG+SD-
CARS-BP model utilizes SG and SD fine feature extraction to effectively
capture trace phosphorus association information, achieving R2 values
of 0.87246 and 0.86146 for training sets and validation set respectively.
This demonstrates that the Growth-period-specific model significantly
improves prediction accuracy by adapting to the dynamics of LTP
content across different periods (high dispersion, stable state, low
concentration), validating the necessity of “Stage-based modeling”
in fruit nutrition diagnosis. These findings align with the conclusions
of Li et al (Bing zhi et al, 2010). in their study on hyperspectral
estimation models of total nitrogen content in apple tree leaf leaves,
which reflects the growth period adaptation law of fruit tree nutrition
spectral diagnosis.

4.2 The synergistic mechanism of spectral
preprocessing

Single preprocessing (MSC, SG, FD, SD) optimizes spectra from
perspectives of physical interference elimination, noise suppression,
dynamic enhancement, and fine feature extraction, yet exhibits
functional limitations (e.g., FD tends to amplify noise, Second
derivative is sensitive to noise) (Bao et al., 2024). Combined
preprocessing (e.g., MS+FD, SG+SD achieves “multi-functional
synergy”: MSC+FD first eliminates scattering interference and
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then amplifies chemical absorption dynamic change, enhancing
the Spectral response of highly discrete LTP during the fruit-setting
period; SG+SD first reduces noise to smooth the curve and then
extracts fine structures of absorption peak, adapting to weak signals
of low concentrations in the Maturity period. Correlation analysis
shows that combined strategies can increase the r value of typical
peaks and valleys by 0.05-0.15, demonstrating that the “synergistic
effect” of preprocessing is key to extracting Phosphorus-association
information, providing an effective approach for spectral
refinement of complex samples. This aligns with the consensus in
the Chemometrics field that “Combined preprocessing enhances
Model performance”, clarifying the refinement direction of spectral
pre-processing in orchard Phosphorus diagnosis (Li et al., 2024).

4.3 Optimization of model hyper
parameter and its impact on model
performance

The performance of a Machine learning model is significantly
influenced by the selection of hyper parameter, and the refinement
of these hyper parameter directly affects the model’s Generalization
ability and Prediction accuracy (Schratz et al, 2019; Yang and
Shami, 2020). Most existing studies have directly used default
parameters to construct Spectroscopy estimation models without
in-depth algorithmic refinement, which limits the performance
improvement of the models. To address this limitation, this study
systematically conducted research on hyper parameter refinement,
employing grid search and cross validation methods to finely tune
the parameters of Random forest (RF), Support vector machine
(SVR), and BP neural network, significantly enhancing the stability
and Prediction accuracy of the models.

For the RF model, experiments found that when n_estimators is
500 and min_samples_leaf is 5, the model achieves an optimal
balance between training and prediction, effectively avoiding the
phenomena of overfitting and poor fitting. In the Support Vector
Regression model, the Penalty coefficient (C) C = 5 and kernel
parameter ¥=0.1 were determined, and the Radial Basis Function
(RBF) was selected. The Model performance outperformed other
configurations such as linear kernel and polynomial kernel.

In the BP neural network, by comparing various training
functions, the trainlm function was ultimately identified as the
most suitable for the research task, achieving an ideal Fitting effect
while ensuring convergence speed.

The above optimization results indicate that conducting parameter
optimization for different algorithm systems can effectively exploit the
model’s potential and avoid the performance shortcomings caused by
directly using default parameters. Through meticulous parameter
tuning, this study provides a reliable configuration foundation for
building a high-accuracy LTP content prediction model, and also offers
a reference for algorithm optimization in similar Spectral modeling
research.To ensure optimal Model performance, this study employed
grid search and cross validation to refine the hyper parameters of RF,
Support Vector Regression, and BP. Neither overfitting nor poor fitting
phenomena occurred, further confirming the excellent performance of
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the model under this parameter combination. Therefore, the optimal
parameters for this model are a number of decision trees of 500 and
a min_samples_leaf of 5. Consequently, it is concluded that the model
performs best when C = 5 and y=0.1. To further establish the model,
the results indicated that the performance of the Radial Basis Function
(RBF) is superior to the other three functions. Under the results, it was
found that the trainlm training function is more suitable for this model.

4.4 Comparison with advanced baseline
models

In previous studies, Partial least squares regression (PLSR), Light
Gradient Boosting Machine (LightGBM) (LightGBM), and One-
dimensional convolutional neural network (1D-CNN) have been
widely used in the field of Spectroscopy. For example, researchers
such as those from AgResearch employed ryegrass as experimental
material and constructed a Spectroscopy prediction model using PLSR
to evaluate the composition of ryegrass plants. Their results
demonstrated strong predictive performance for total polysaccharide
(R* = 0.58), High molecular weight sugars (R* = 0.63), ash (R* = 0.50),
and nitrogen content (R*> = 0.70) (Shorten et al., 2019). In another
study, Jun Yan et al. used maize to develop a LightGBM-based
prediction model for genomic selection prediction of maize lines.
The model achieved an Area Under the Curve (AUC) of 0.793,
indicating excellent performance in classification tasks involving
large sample sizes (Yan et al, 2021).Guo, C. et al. constructed a
cotton Fv/Fm prediction model based on 1D-CNN for drought
tolerance assessment, using cotton as the experimental material. The
predicted value showed a strong Correlation with the measured value
(R* > 0.641). The results demonstrate that ID-CNN offers high
accuracy and stability in processing Large-scale data (Guo et al., 2022).

Although these models have shown excellent performance in
studies by various researchers, the stability of PLSR under specific

TABLE 4 Comparison of intertemporal models.

10.3389/fpls.2025.1666460

conditions across Different growth stages requires further
enhancement. Both LightGBM and 1D-CNN are prone to high
squared errors or significant bias when training samples are limited,
increasing the risk of poor fitting. In comparison, this study
identified more adaptive optimal Modeling strategies for Spectral
features at Different growth stages through rigorous screening: the
fruit-setting stage employs the FD+CARS-BP model, the expansion
stage uses the SG+FD-CARS-BP model, and the Maturity period
favors the SG+SD-CARS-BP model. The results show that these
models exhibit superior predictive stability and adaptability across
Different growth stages, enabling them to better handle the
challenges of Modeling with small sample sizes, thus improving
the accuracy of component prediction during specific growth stages.

4.5 Model generalization ability and cross-
period challenges

Cross-period model comparisons revealed that the special
models exhibited an R2 value 0.05-0.16 higher than that of the
general model during this growth period, while the Root mean
square error (RMSE) was 0.0029-0.0079 lower. Due to its inability
to adapt to the “dynamic Spectroscopy fingerprint” of LTP across
Different growth stages (such as the high discrete peak during the
Fruit-setting period and the weak signal peak during the Maturity
period), when the Fruit-setting period FD+CARS-BP model was
extended to the Fruit expansion period, the R2 of the validation set
decreased from 0.88 to 0.78, reflecting the specificity of the
“Spectroscopy-phosphorus content” relationship across growth
periods. In practical applications, it is necessary to switch models
based on the growth period or explore intertemporal transfer
learning strategies (such as fine-tuning parameters of a pre-
trained model) to balance model accuracy and convenience. This
provides practical references for the field application and Roll out of

Training set Validation set
Period
RMSEC RMSEC
fruit setting stage 0.94 0.0174 40725 0.73 0.0350 1.9914
Reproductive Stage Fruit Enlargement Stage 0.82 0.0248 23936 0.77 0.0258 2.3936
ur a\ R A . . .| .
MSC-CARS-BP Model 8 5

Fruit Ripening Period 0.74 0.0280 2.0821 0.69 0.0286 1.8807
fruit setting period 0.89 00212 3.1696 0.88 0.0241 2.9663

Fruit Setting Period
rutt seting Fero Fruit Enlargement Stage 0.86 0.0264 2.8344 0.78 0.0323 24215

FD+CARS-BP Model
Fruit Ripening Period 0.82 0.0245 2.3448 0.78 0.0270 2.1481
fruit-setting period 0.79 0.0262 22430 0.77 0.0285 2.3265

Fruit Swelling Stage
SG+FD-CARS-BP Fruit Enlargement Stage 0.86 0.0211 26721 0.83 0.0254 24571

Model

Fruit Ripening Period 0.84 00224 26924 0.76 0.0285 2.1165
fruit setting stage 0.80 0.0246 22669 081 0.0280 22801

Fruit Ripening Stage
SG+SD-CARS-BP Fruit Swelling Stage 0.70 0.0306 1.8600 0.73 0.0330 1.9688

Model

Fruit Ripening Period 0.86 0.0203 2.6977 0.85 0.0207 26844

Frontiers in Plant Science

17

frontiersin.org


https://doi.org/10.3389/fpls.2025.1666460
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yu et al.

orchard Spectroscopy models and also clarifies the direction for
future model refinement—enhancing the model’s adaptability to
differences between growth periods.

4.6 Limitations of the study and future
directions

This study focuses on near-infrared spectroscopy (4000-10000 cm”
1), with insufficient exploration of phosphorus characteristic peak (such
as P-O bond stretching vibration, ~1000-1300 cm™). Future work
could integrate Mid-infrared spectroscopy to expand features’
dimension, while simultaneously refining preprocessing and model
parameter. Moreover, model training relies on laboratory Spectral data,
without fully accounting for interference from field environments (e.g.,
light, temperature) on spectra. It is necessary to develop field spectral
correction models and incorporate dynamic parameter adjustments to
enhance technical practicality, thereby promoting the transition of
Spectral diagnosis technology from the laboratory to practical
application and improving the technical system for precision nutrient
management in fruit trees.

In summary, this study clarifies the “Growth period specificity-
Pretreatment synergy-model adaptation” technical framework for
predicting Korla fragrant pear LTP, demonstrating that Stage-based
modeling combined with Combined preprocessing can significantly
improve prediction accuracy, providing a scientific paradigm for
precision nutrient management in fruit trees. Subsequent efforts
need to strengthen the integration of multiple Spectroscopy and
field validation to further promote the application of Spectroscopy
technology in orchard production.

5 Conclusion

This study systematically analyzed the Leaf total phosphorus
(LTP) content of Korla Fragrant Pear using Near-Infrared
Spectroscopy, established a prediction model based on Growth
period characteristics, and significantly improved detection
accuracy and model applicability. The main conclusions include:

The LTP content of Korla Fragrant Pear leaves showed significant
differences across various growing stages. The content was lowest
during the Fruit-setting period, with a left-skewed distribution
ranging from 0.02% to 0.25%; it stabilized during the Fruit
expansion period, with a median of approximately 0.15%; and
peaked during the Maturity period, exhibiting a right-skewed
distribution with a maximum value of 0.45%. spectral analysis
revealed that Spectral features in the 4000-5500 cm™ and 5500-
7500 cm™ ranges were closely correlated with phosphorus content,
providing a basis for developing the prediction model. This study
constructed an LTP prediction model adapted to Different growth
stages. The optimal model for the fruit-setting period was FD+CARS-
BP, with the Coefficient of determination (R?) for the training sets
and validation set being 0.89 and 0.88, respectively; the optimal
model for the fruit expansion period was SG+FD-CARS-BP, with the
Coefficient of determination (R?) for the training sets and validation
set being 0.86 and 0.83, respectively; the optimal model for the
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Maturity period was SG+SD-CARS-BP, with the Coefficient of
determination (R*) for the training sets and validation set being
0.86 and 0.85, respectively. The predictive performance of all stage-
specific models was significantly better than that of the intertemporal
general model, with the Coefficient of determination (R?) increasing
by 0.05-0.16 and the Root mean square error (RMSE) decreasing by
0.0029-0.0079. This has practical implications for precision
fertilization management in orchards and provides a basis for
subsequent research to further enrich the trait system by
combining Mid-infrared spectroscopy technology and to develop
calibration models for real field environments, thereby enhancing the
practicality and roll-out value of the method.
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