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Integrated transcriptomic and
metabolomic analyses elucidate
the regulatory role of SIBEL11 in
tomato fruit ripening
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Transcription factors serve as key regulators in orchestrating fruit ripening,
modulating gene expression networks that govern physiological processes
such as color change, texture softening, and sugar accumulation in response
to hormonal signals like ethylene and abscisic acid. SIBEL11, a BEL1-like
transcription factor, was previously shown to mediate premature fruit
abscission in tomato. However, the molecular mechanisms by which SIBEL11
regulates ripening, including its direct target genes, metabolic pathways, and
interaction networks, remain largely unknown. In this study, an integrated
approach combining untargeted metabolomics and transcriptomics was
employed to investigate the metabolic and molecular alterations in wild-type
(WT) and SIBEL11-RNAi knockdown tomato fruits. UPLC-MS/MS analysis
identified a total of 189 differentially expressed metabolites (DEMs), with 74
upregulated and 115 downregulated in SIBEL11-RNAi compared to the WT.
Meanwhile, transcriptome analysis uncovered 665 differentially expressed
genes (DEGs), including key regulators directly associated with ripening
processes. Conjoint analysis demonstrated significant enrichment of both
DEGs and DEMs in critical metabolic pathways, such as ascorbate and aldarate
metabolism, glycolysis, and phenylpropanoid biosynthesis. These pathways were
demonstrated to be directly or indirectly modulated by SIBEL11, highlighting its
central role in coordinating metabolic reprogramming during fruit maturation.
Specifically, SIBEL11 appears to fine-tune the balance among energy supply, cell
wall modification, and antioxidant biosynthesis, thereby influencing fruit texture,
nutritional quality, and shelf-life. Collectively, these findings not only provide
novel insights into the regulatory network of SIBEL11 in tomato ripening but also
offer potential genetic targets for the development of tomato cultivars with
improved postharvest traits and enhanced fruit quality and secondary
metabolite production.
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1 Introduction

Tomato is a globally important economic crop and a model
species for fleshy fruit development research. Its ripening process
directly influences the nutritional quality, storage processing, and
commercial value of the harvested fruits. Fruit firmness, a central
phenotypic trait, is regulated by multiple metabolic pathways.
Specifically, ascorbic acid metabolism impacts cell wall cross-
linking through hydroxyproline synthesis (Vaughan, 1973),
henylpropanoid-mediated lignin deposition directly enhances cell
wall mechanical strength (Liu et al., 2016), and energy supply from
glycolysis may indirectly modulate the softening rate by regulating
cell wall degrading enzyme activities (Adetunjia et al., 2016).
Concurrently, tomato ripening entails a cascade of physiological
and biochemical transitions, such as chlorophyll degradation,
carotenoid biosynthesis and volatile compound accumulation
(Ming et al., 2023; Gambhir et al., 2024), under tight regulation of
complex transcriptional networks and phytohormone signaling
pathways, notably ethylene and abscisic acid.

Previous studies have uncovered the pivotal roles of several
transcription factor (TF) families during tomato fruit ripening. For
instance, tomato MADS-RIN protein regulates fruit ripening
through direct binding to CArG box element in the promoter
regions of ripening-associated genes and forming multi-
complexes with other MADS-box proteins like FUL1 and FUL2
(Wang et al, 2014). NAC family protein NOR-likel positively
regulates the expression of ethylene biosynthesis related genes
(SIACS2, SIACS4), color formation (SIGgpps2, SISGRI), and cell
wall metabolism (SIPG2a, SIPL, SICEL2, SIEXPI) to promote
ripening initiation (Gao et al, 2018). Ethylene responsive factor
SIERF6 exhibits tissue-specific regulatory patterns and positively
regulates tomato fruit ripening through modulating the expression
of another transcription factors, SIDEAR2 and SITCP12 (Chen
et al., 2025).

BEL1-like (BELL) proteins are ubiquitous transcription factors
in plants. They belong to three-amino acid-loop-extension (TALE)
superfamily, and usually form heterodimers with other proteins to
regulate organogenesis, hormone metabolism, and environmental
adaptability (Sharma et al., 2014; Wang et al., 2025). For instance, in
Arabidopsis thaliana, members of the BELI-like homeodomain
family, including PENNYWISE (PNY), POUND-FOOLISH
(PNF), ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1),
and VAAMANA (VAN), interact with KNOX family proteins
BREVIPEDICELLUS (BP) and SHOOT MERISTEMLESS (STM)
through heterodimer formation. This regulatory complex
orchestrates critical developmental processes, such as apical
meristem maintenance, inflorescence architecture specification,
and floral transition (Smith and Hake, 2003; Bhatt et al., 2004;
Kanrar et al., 2006; Rutjens et al, 2009). In potato (Solanum
tuberosum L.), StBEL5 interacts with potato homeobox 1
(POTH1) and modulates tuber formation by suppressing the
expression of a gibberellin biosynthesis gene GA20ox1 (Chen
et al, 2004). In tomato, fourteen BELl-like genes have been
identified (He et al, 2022b). Among them, two members have
been reported to be involved in fruit development. SIBL4 acts as a

Frontiers in Plant Science

10.3389/fpls.2025.1666515

central regulator coordinating chlorophyll homeostasis by
modulating chloroplast ultrastructure formation, pectin
methylesterase-mediated cell wall remodeling, and carotenoid
biosynthesis during fruit maturation. Meanwhile it drives the
expansion of pedicel abscission zone via auxin gradient
redistribution and programmed cell death, thereby mediating
ripening-associated fruit detachment (Yan et al., 2020, 2021). In
contrast, SIBEL11 is hypothesized to be a downstream regulator of
ethylene signaling during ripening, which is supported by its
marked upregulation during the breaker-stage and the presence of
ethylene-responsive elements (EREs) in its promoter (He et al,
2022b). Previous studies revealed that silencing SIBELI1I prevents
premature fruit drop, affects chloroplast development and enhances
chlorophyll accumulation in tomato fruit (Meng et al., 2018; Dong
et al., 2024). However, the molecular mechanisms through which
SIBEL11 regulates fruit ripening, including its direct target genes,
metabolic pathways, and epigenetic mechanisms, remains unclear.
The breaker stage, characterized by the initiation of chlorophyll
degradation and the onset of carotenoid accumulation (as
evidenced by the first visible color transition from green to
yellowish-orange at the stylar end), represents a phenologically
critical checkpoint in tomato fruit ripening (Sato et al., 2012) This
phase coincides with the burst of ethylene biosynthesis and
transcriptional activation of ripening-related genes governing cell
wall modification, volatile synthesis, and chloroplast-to-
chromoplast transition (Klee and Giovannoni, 2011; Gambhir
et al., 2024). Selection of this developmental window is grounded
in its role as a definitive molecular switch from maturation to
ripening—a period when transcriptional reprogramming events
directly associated with quality trait establishment are initiated.
Furthermore, SIBEL11 exhibits stage-specific upregulation during
this phase, as previously reported (He et al., 2022a), making it an
optimal time point to dissect its regulatory hierarchy. Sampling at
this stage minimizes confounding effects from pre-ripening
developmental processes while capturing early transcriptomic
and metabolomic signatures linked to ripening progression,
thereby enabling precise identification of SIBEL11-dependent
pathways before secondary regulatory networks mask primary
molecular responses.

Transcriptomics and metabobolics are the main approaches
that utilize high-throughput sequencing technologies.
Transcriptomics, leveraging high-throughput sequencing
technologies (e.g., Illumina platforms), enable deep sequencing
and differential expression analysis of whole transcriptomes to
dissect molecular mechanisms at the gene expression level
(Sarfraz et al, 2025). Metabolomics focuses on systematically
identifying the composition and dynamics of metabolites in
biological samples through high-resolution mass spectrometry,
enabling precise quantification to reveal terminal phenotypic
responses and biochemical regulatory networks under
environmental stress (Oh et al., 2023). This study integrates
transcriptomic and metabolomic approches to elucidate the
specific regulatory role of the SIBEL11 in tomato fruit ripening.
By comparing two groups, a wild-type control with normal SIBEL11
expression and another with perturbed SIBEL11 expression, we aim
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to unravel the precise regulatory mechanisms of SIBEL11 during
ripening, thereby providing genetic resources and technical
foundations for optimizing secondary metabolite production
in tomato.

2 Materials and methods
2.1 Preparation of plant samples

SIBEL11-RNAI transgenic line was kindly donated by Dr. Daqi
Fu, School of Food Science and Nutrition Engineering, China
Agricultural University. All tomato plants, wild type (Micro-tom)
and SIBEL11-RNAi line used in this experiment were cultivated in a
growth incubator under photo-cycle condition of 16-h light (22000
Lux) at 25°C and 8-h dark at 20°C and a maintained humidity at
70%~80%. Fresh fruit samples were collected at breaker stage and
used for the subsequent transcriptomic and metabolic analyses.
Three biological and technical replicates were implemented for both
transcriptome and metabolome profiling.

2.2 Measurement of tomato fruit firmness

Fruit firmness was measured using a pointer-type fruit firmness
tester (Model GY-3, Aipu Measuring Instruments Co., Ltd., China).
The test sample was placed face up on a horizontal experimental
bench, and the compression force required to break the fruit was
recorded. The value was divided by the surface area of the
compressed region, and the pressure required per unit area was
taken as the firmness metric of the tomato fruit.

2.3 Transcriptomics analysis

Tomato fruit samples were flash-frozen in liquid nitrogen,
freeze-dried using a vacuum freeze-dryer (Scientz-100F), and
ground into powder with zirconium oxide beads using a mixer
mill at 65 Hz for 1 minute. Total RNA was extracted using a RNA
extraction kit (Tiangen Biotech, Beijing, China) according to the
manufacturer’s instructions. RNA quantity and purity were
measured using a Nano Drop ND-1000 (Thermo Fisher), with
acceptable thresholds set as A260/A280 = 1.8-2.1 and A260/A230 >
2.0. RNA integrity was evaluated using an Agilent Bioanalyzer 2100,
and only samples with RNA Integrity Number (RIN) > 7.0 were
selected for downstream analysis. cDNA libraries were constructed
using the Illumina TruSeq Stranded mRNA Library Prep Kit,
including mRNA enrichment, fragmentation, double-stranded
cDNA synthesis, end repair, adapter ligation, and PCR
amplification. After quality validation, libraries were sequenced
on an Illumina NovaSeq 6000 system (LC-Bio, Hangzhou, China)
in paired-end (PE150) mode, generating >6 GB of raw data
per sample.

Raw sequencing reads were preprocessed using Fastp to remove
low-quality reads (Q < 20), adapter-contaminated sequences, and
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reads with >5% ambiguous bases (N). Paired-end reads were
aligned to the tomato reference genome (SL4.0, downloaded from
Sol Genomics Network) using HISAT2 v2.2.1 with parameters: —
rna-strandness RF —dta —phred33. Index files were generated using
hisat2-build with default settings. Gene expression levels were
quantified as Fragments Per Kilobase of transcript per Million
mapped reads (FPKM), a widely used metric for estimating
transcript abundance. Differential expression analysis was
performed using DESeq2 (v1.38.3), with significance thresholds
set as |log,(fold change)| =1 and Benjamini-Hochberg adjusted P-
value (FDR) < 0.05. Functional enrichment analysis included KEGG
pathway analysis via hypergeometric testing (FDR < 0.05) and Gene
Ontology (GO) term analysis using Fisher’s exact test, both
referenced against the tomato genome annotation database.

2.4 Metabolomics analysis

The pretreatment process for tomato samples was consistent
with transcriptomics protocols. A 50 mg aliquot of the powdered
sample was mixed with 1 mL of pre-chilled extraction solvent
(methanol/water/formic acid, 15:4:1, v/v/v), vortexed, and sonicated
in an ice bath (20 kHz, 5-second intervals, total duration 1 hour).
The mixture was centrifuged at 8,000 x g for 5 minutes at 4°C, and
the supernatant was collected, vacuum-dried, and reconstituted in
80% methanol. After purification via centrifugation (20,000 x g, 20
minutes, 4°C), the solution was filtered through a 0.22 pm cellulose
acetate membrane and stored in HPLC vials at -80°C. Three
biological replicates were included per group, with quality control
(QC) samples prepared by pooling equal amounts of WT and
SIBEL11-RNAi extracts. Three consecutive injections of QC
samples were performed prior to formal analysis to stabilize the
instrument. Chromatographic separation was carried out on an
Agilent SB-C18 column (1.8 pm x 2.1 mm x 100 mm) using a
UPLC system (ExionLC' " AD) coupled with a 6500 QTRAP mass
spectrometer. The mobile phases consisted of 0.1% formic acid in
water (A) and 0.1% formic acid in acetonitrile (B), with a gradient
program: 95% A to 95% B over 9 minutes, held for 1 minute, then
returned to initial conditions in 70 seconds (flow rate: 0.35 mL/min;
column temperature: 40°C). Mass spectrometry parameters
included electrospray ionization (ESI) in positive/negative
switching mode, ion source temperature of 550°C, and spray
voltages of +5,500/4,500 V.

Raw data were processed using MS-DIAL for peak alignment,
retention time correction, and peak area extraction. Metabolites
were identified by matching accurate mass (mass tolerance < 0.01
Da) and MS/MS spectra (mass tolerance < 0.02 Da) against in-
house standards, the Human Metabolome Database (HMDB), and
MassBank. Features detected in > 50% non-zero measurements
within at least one experimental group were retained for
downstream analysis. Differential metabolites were identified
through a dual-filter approach combining Orthogonal Partial
Least Squares-Discriminant Analysis (OPLS-DA) parameters and
statistical criteria: (1) variable importance in projection (VIP)
scores > 1,(2) absolute fold-change (FC) = 2 with p< 0.05.
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2.5 RNA extraction and RT-qPCR analysis

Total RNA was extracted from tomato tissues using the
RNApure Plant Kit (CWBIO, Beijing, China). For first-strand
cDNA synthesis, 2 ug of total RNA was reverse-transcribed using
reverse transcriptase and oligo(dT) primers. Quantitative PCR
(qPCR) was performed on a qTOWER3/G real-time system
(Analytik Jena, Germany). Each reaction (20 pL total volume)
contained 25 ng c¢cDNA, 200 nM of each primer, and 4 pL
SuperReal PreMix Plus (Tiangen Biotech, Beijing, China;
containing DNA polymerase, dNTPs, and optimized buffer
components). The thermal cycling program included an initial
denaturation at 95°C for 30 s, followed by 40 cycles of 95°C for 5
s (denaturation) and 59°C for 30 s (annealing/extension). Melt
curve analysis was performed to verify amplification specificity.
Gene expression levels were normalized to the tomato actin gene as

an internal control. the 244

was rigorously applied for relative
quantification of gene expression (Livak and Schmittgen, 2001).
The primer sequences used in this study are provided in

Supplementary Table S1.

2.6 Statistical analysis

Data are presented as mean + standard deviation (SD).
Multivariate data analysis and graphical visualization were
performed using R (version 4.0.3) and associated R packages.

3 Result

3.1 Transcriptomic analysis of SIBEL11's
role in tomato fruit ripening

Observations of developing fruits in wild-type and SIBELII-
RNAI lines revealed that silencing SIBEL11 expression significantly
enhanced chlorophyll accumulation in immature fruits (a
phenotype previously reported by Meng et al., 2018). No obvious
signs of fruit softening were detected during the growth phase
(Figure 1A). However, fruits began to abscise progressively upon
entering the ripening stages (Dong et al., 2024), with noticeable
softening observed via tactile evaluation. Subsequent analysis
confirmed the silencing efficiency of SIBELII in transgenic lines,
demonstrating a marked reduction in SIBELII transcript levels at
the breaker stage fruits (Figure 1B). Firmness measurements
revealed a 30% reduction in SIBELII-RNAi fruits at breaker
stage (Figure 1C).

To elucidate the molecular mechanisms, we conducted
comparative transcriptome profiling of wild-type and SIBELII-
RNAi fruits using Illumina NovaSeq 6000 sequencing. As shown
in Supplementary Table S2, a total of 13.43 GB of raw data
(267,776,280 paired-ended reads) were generated. Stringent
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quality control using Fastp v0.23.4 was conducted to remove low-
quality reads, adapter sequences and reads containing > 5%
ambiguous bases (N), yielding 39.72 GB of high-quality clean
data (263,556,950 valid reads) with Q30 > 95.97%, and GC
content of 42%-45%.

The biological repeatability of the samples was evaluated using
Pearson correlation coefficient (Supplementary Figure S1A). Intra-
group sample correlations exceed R? > 0.9, revealing the reliability
and reproducibility of the experimental design. Gene expression
levels were normalized using the FPKM method and visualized via
violin plots (Supplementary Figure S1B) and density distribution
map (Supplementary Figure S1C). These analyses revealed similar
gene expression patterns between groups, with log;o(FPKM) values
concentrated in the range of -2 to 2, indicating that SIBELII
silencing did not induce global transcriptional alterations.

3.2 GO and KEGG pathway analyses of
differentially expressed genes

Differentially expressed genes (DEGs) were further detected
using DESeq2 v1.38.3 with a threshold of |log, Fold Change| > 1 and
FDR-corrected P < 0.05 (Figure 2A, Supplementary Table S3). Only
665 DEGs were identified, including 417 up-regulated and 248
down-regulated genes. Hierarchical clustering heatmap (Figure 2B)
revealed distinct intergroup segregation and tight intragroup
clustering of DEGs. To verify the transcriptomic results, 14 DEGs
were selected for RT-qPCR analysis (Supplementary Figure 52). The
expression patterns of the tested DEGs were consistent with that in
the transcriptome.

GO enrichment analysis of DEGs are shown in Figure 2C and
Supplementary Table S4. In the category of Biological Process, DEGs
are significantly enriched in the pathways of single-organism process
like single-organism metabolic process, single-organism localization,
single-organism transport, suggesting that SIBEL11 regulates basal
physiological functions. The enrichment of DEGs in other processes,
such as oxidative-reduction process, localization and transport
related processes, are also detected. In the category of molecular
function, the significant enrichment of oxidoreductase activity,
cofactor binding, and coenzyme binding, further supported the
alteration of oxidative-reduction process in SIBELI1-RNAIi
tomatoes. The detection of binding and transport activities, such as
tetrapyrrole binding, heme binding, fructose 1,6-bisphosphate 1-
phosphatase activity, benzoate and xenobiotic transporters, hinted
at potential changes in secondary metabolism. In the category of
cellular component, however, only the “photosystem II oxygen
evolving complex” was significantly enriched, indicating a potential
impact on chloroplast function. This finding aligns with the result of
KEGG enrichment analysis (Figure 2D, Supplementary Table S5)
where DEGs clustered in photosynthesis-antenna protein pathways.
Additionally, enrichment in linoleic acid metabolism, brassinosteroid
biosynthesis and ABC transporter were also detected.
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3.3 Metabolite statistics and quality control

As the chromatography system/mass spectrometer is in direct
contact with the samples, the accumulation of residues in the
chromatographic column and the mass spectrometry ion source
may cause signal drift or system errors with increasing sample load
(Hao et al,, 2023). To ensure data reliability and repeatability, three
quality control (QC) samples were used for continuous monitoring
of the instrument in this study. The superimposed analysis of total
ion chromatograms in both positive and negative ion modes
showed that the peak intensities and time reproducibility of the
QC samples were highly consistent (Supplementary Figure S3),
demonstrating excellent signal stability of the instrument. Further
pearson correlation analysis of the QC samples showed that the
correlation coefficients were greater than 0.9 (Supplementary Figure S4),

10.3389/fpls.2025.1666515

confirming the stability of the experimental procedure and the optimal
performance of the instrument.

Metabolites were structurally identified by matching retention
time, molecular mass (mass error <10 ppm), MS/MS fragmentation
patterns, and collision energy against both in-house and public
databases. All identifications were subjected to rigorous manual
verification. Metabolites with a coefficient of variation (CV) <30%
in QC samples were retained for subsequent analysis. A total of 714
metabolites were identified in wild-type (WT) and SIBELI11-RNAi
tomato samples, spanning 22 metabolic categories, including
alcohols(16), alkaloids(41), amino acid and derivatives(92),
anthocyanins(12), carbohydrates(20), flavanone(21), flavone(51),
flavonoid(18), flavonol(29), indole derivatives(6), isoflavone(5),
lipids(75), nucleotide and derivates(59), organic acids and
derivatives(106), phenolamides(27), phenylpropanoids(62),
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Fruit developmental status and firmness in wild-type and SIBEL11-RNAI plants. (A) Fruit development stages of WT and SIBEL11-RNAi plants, DPA, day
post anthesis, Br, breaker, scale=1cm. (B) The relative expression of SIBEL11 in WT and SIBEL11-RNAi fruits at breaker stage, p < 0.0001. (C) The fruit
firmness of WT and SIBEL11-RNAI fruits at breaker stage. Statistical significance was assessed using a one-way analysis of variance (ANOVA) with
Tukey's multiple comparisons test; different lowercase letters indicate significant differences (P < 0.05). Statistical significance was assessed using a
two way analysis of variance (ANOVA)with Sidak's multiple comparisons test. ****P < 0.0001.
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polyphenol(7), proanthocyanidins(1), quinones(2), sterides(5),
Terpene(13), Vitamins and derivatives(16) and unclassified
compounds(30) (Supplementary Table S6).

3.4 Multivariate statistical analysis of
tomato fruits metabolites

Multivariate analyses of 714 metabolites revealed distinct
metabolic profiles between WT and SIBELII-RNAi tomato lines.
Principal component analysis (PCA) separated the two groups along
the primary axis (PC1, 66.93% variance), with WT and SIBELI1I-
RNAIi samples clustering negatively and positively, respectively
(Figure 3A). While PCA validated experimental stability and
intergroup variability, its unsupervised nature limited sensitivity to
subtle biological differences. To address this, supervised orthogonal
partial least squares-discriminant analysis (OPLS-DA) was employed,
yielding an enhanced group discrimination (Figure 3B). The model
exhibited high reliability (permutation test: R?Y > 0.5, Q* >0.5) with
no overfitting (Figure 3C), confirming robust metabolic distinctions

between genotypes.

10.3389/fpls.2025.1666515

3.5 Identification and cluster analysis of
differential metabolites

A three-tiered screening strategy (absolute FC > 2, P < 0.05, OPLS-
DA-derived VIP > 1) was implemented to identify metabolically
significant features. A total of 189 differential metabolites were
identified in the WT and SIBELI1-RNAi tomato samples. As shown
in Figure 4A, compared with WT, 115 metabolites were up-regulated
and 74 were down-regulated in SIBEL11-RNAi tomatoes compared to
WT. These differential metabolites include 26 lipids, 25 organic acids
and derivatives, 20 phenylpropanoids, 18 amino acids and derivatives,
16 phenolic amines, 16 flavonoids, 11 nucleotides and derivatives, 10
flavonols, 10 alkaloids, 7 flavones, 7 flavanones, 4 terpenoids, 3
alcohols, 3 vitamins and derivatives, 2 polyphenols, 2 anthocyanins,
2 isoflavones, 2 indoles and derivatives, 1 carbohydrate, 1
proanthocyanidin and 3 unclassified compounds (Figure 4B).

A clustering heatmap was generated to visualize sample
relationships and the differences of metabolite intensity, based on
the normalized expression values of differential metabolites. As
shown in Supplementary Figure S5, a distinct hierarchical clustering
of metabolite among groups was observed. The top 10 up-regulated
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and down-regulated differential metabolites were selected using fold
change as a criterion. As shown in Figure 4C, the top 10 up-
regulated differential metabolites included fumaric acid, N-caffeoyl
spermidine, geniposide, syringic acid, tricin O-hexosyl-O-syringin
alcohol, N-sinapoyl cadaverine, O-p-coumaroyl quinic acid O-
rutinoside derivative, 3-O-p-coumaroyl shikimic acid, cinnamoyl
tyramine, phosphatidylcholine acyl 19:2/16:0. The top 10 down-
regulated differential metabolites were O-feruloyl coumarin, D-
erythro-sphinganine, coumarin O-rutinoside, tricin 5-O-hexoside,
3-(4-hydroxyphenyl)propionic acid, eriodictiol C-hexosyl-O-
hexoside N-acetyl-L-tyrosine, sakuranetin, hesperetin O-hexosyl-
O-hexoside, N-p-coumaroyl hydroxyagmatine.

3.6 Analysis of KEGG enrichment pathways
for differential metabolites

KEGG pathway enrichment analysis of the differentially
expressed metabolites was performed using Metaboanalyst 4.0.
The top 20 significantly enriched metabolic pathways are
presented in Figure 4D, including flavonoid biosynthesis,
phenylpropanoid biosynthesis, biosynthesis of phenylpropanoids,

10.3389/fpls.2025.1666515

ubiguinone and other terpenoid-guinone biosynthesis, longevity
regulating pathway, toluene degradation, dopaminergic synapse,
stilbenoid, diarylheptanoid and gingerol biosynthesis, asthma,
betalain biosynthesis, biosynthesis of enediyne antibiotics,
biosynthesis of vancomycin group antibiotics, bisphenol
degradation, fc epsilon RI signaling pathway, folate biosynthesis,
histamine H2/H3 receptor agonists/antagonists, monoterpenoid
biosynthesis, phosphatidylinositol signaling system, PI3K-akt
signaling pathway, puromycin biosynthesis.

3.7 Integrated analysis of metabolomic and
transcriptomic of tomato in the two
groups

KEGG enrichment analysis of differential genes and metabolites
identified 25 co-enriched KEGG-enriched pathways (Figure 5A).
To further explore the relationship between DEMs and DEGs and
determine the pathways affected by SIBEL11, we overlaid p-values
thresholds on KEGG histograms, prioritizing pathways enriched by
both DEMs (p < 0.05) and DEGs (p < 0.01) (Figure 5B). This
approach identified six key pathways, including ABC transporters,
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FIGURE 3

Multivariate statistical analysis of tomato metabolites. (A) PCA score plot. (B) OPLS-DA score plot. (C) 200 permutation tests of the OPLS-DA model

verification.
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ascorbate and aldarate metabolism, glycine/serine/threonine
metabolism, glycolysis/gluconeogenesis, phenylpropanoid
biosynthesis, and pyruvate metabolism.

Expression and regulatory patterns of differential metabolites
and genes associated with glycolysis/gluconeogenesis, ascorbate/
aldarate metabolism, and phenylpropanoid biosynthesis are
summarized in Figure 6. In glycolysis/gluconeogenesis, salicin
decreased twofold, accompanied by downregulation of ADHI

(A) Glycolysis / Gluconeogenesis

HEK/HKL2, ppgK, GCK,

a-D-Glucose glk, ADPGK, pfkC

10.3389/fpls.2025.1666515

(3.3-fold) and PK (2.4-fold) (Figure 6A, Supplementary Table S7).
For ascorbate/aldarate metabolism, inositol declined 2.7-fold, while
APX (24-fold), ALDH (5.7-fold), and GME (2.1-fold) were
upregulated, contrasting with the marked suppression of AO (5.7-
fold) (Figure 6B, Supplementary Table S7). In phenylpropanoid
biosynthesis, seven metabolites, including coniferyl alcohol (5.1-
fold), sinapyl alcohol (4.7-fold), L-tyrosine (4.6-fold), Scopoletin
(2.9-fold), caffeate (2.6-fold), coniferyl aldehyde (2.6-fold) and
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The differential metabolites and differential gene regulatory networks related to SIBEL11 in tomatoes. (A) Glycolysis/Gluconeogenesis Pathway.
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cinnamic acid (2.2-fold), showed elevated abundance, whereas
syringin declined 5.9-fold. Concurrently, UGT72E (69.2-fold),
CCR (11.3-fold) and EI.11.1.7 (2.3-fold) were upregulated,
opposing the 1.9-fold downregulation of PAL (Figure 6C,

10.3389/fpls.2025.1666515

Supplementary Table §7). Figure 7 illustrates coordinated
metabolic and transcriptional interactions across ABC
transporters, pyruvate metabolism, and glycine/serine/threonine
metabolism. In the category of ABC transporters, ornithine (5.3-
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fold) and biotin (4.3-fold) accumulated, while inositol decreased
2.7-fold alongside the upregulation of ABCBI4 and ABCB3 (8-fold
and 7.6-fold, respectively) (Figure 7A, Supplementary Table S7).
Pyruvate metabolism exhibited fumaric acid accumulation with
four upregulated genes, including ALDH (5.7-fold), maeB (5.4-
fold), DLD (4.8-fold) and chMDH (2.2-fold), contrasting with the
suppression of PK (2.4-fold) (Figure 7B, Supplementary Table S7).
Glycine/serine/threonine metabolism featured elevated L-
tryptophan (4.0-fold) and phosphoserine (2.2-fold), concurrent
with upregulation of gevH(5.4-fold), DLD (4.8-fold) and AGXT
(2.9-fold), opposing the downregulation of glyA (2.2-fold).
(Figure 7C, Supplementary Table S7).

4 Discussion

The transcription factor SIBEL11, a member of the BEL1-like
family, has emerged as a key regulator of plant development in
recent studies (Meng et al., 2018; He et al., 2022a; Dong et al., 2024).
Our integrated multi-omics approach unveiled its comprehensive
influence on transcriptional reprogramming and metabolic
remodeling across six interconnected pathways, providing
mechanistic insights into its role in coordinating ripening-
associated physiological transitions.

Ascorbic acid (vitamin C), a critical antioxidant in fruits,
governs ripening and postharvest storage quality through its
dynamic accumulation (Corpas et al., 2024; Lin et al,, 2025). The
ascorbate metabolism pathway serves as a critical node in SIBEL11-
mediated regulation. In SIBELII-RNAI fruits, despite significant
downregulation of L-galactose pathway rate-limiting enzyme GME
(2.1-fold upregulation), which typically drives ascorbate
biosynthesis (Zheng et al., 2022), we observed depleted myo-
inositol levels (2.7-fold decrease) (Figure 6B, Supplementary
Table S7). This paradox suggests preferential metabolic flux
diversion through the alternative L-gulose salvage pathway, likely
compensating for restricted precursor availability. Simultaneous
suppression of ascorbate oxidase (AO, 5.7-fold) aligns with
elevated APX (24-fold) and ALDH (5.7-fold) expression,
indicating a strategic trade-off between ascorbate degradation
inhibition and enhanced antioxidant capacity (Figure 6B,
Supplementary Table S7). Such coordinated regulation ensures
sufficient hydroxyproline biosynthesis for cell wall cross-linking
while mitigating oxidative stress—a dual mechanism underlying the
observed 30% firmness reduction (Wu et al., 2024). Notably, this
metabolic tension mirrors findings in SIBL4-mutant tomatoes (Yan
et al,, 2020), suggesting a conserved BEL-family regulatory
paradigm in redox-structural coupling.

The phenylpropanoid pathway constitutes a central metabolic
network in plant secondary metabolism, respobsible for the
biosynthesis of lignin, flavonoid derivatives, and phenolic acid
compounds that collectively mediate cell wall reinforcement and
oxidative stress mitigation (Anwar et al., 2021; Yao et al,, 2021; Liang
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et al., 2024). Which displayed hierarchical dysregulation
characterized by upstream repression and terminal activation.
While PAL suppression (1.9-fold) constrained cinnamic acid
biosynthesis, consequent accumulation of L-tyrosine (4.6-fold) and
cinnamic acid (2.2-fold) implies alternative substrate provisioning
through tyrosine ammonia-lyase (TAL) activity—a compensatory
mechanism previously undocumented in BEL-regulated systems
(Figure 6C, Supplementary Table S7). Downstream activation of
CCR (11.3-fold) and UGT72E (69.2-fold) contrasts sharply with
syringin depletion (5.9-fold), revealing metabolic bottlenecks at
monolignol glycosylation steps (Figure 6C, Supplementary Table
S7). This transcriptional-metabolic disconnect may arise from
substrate competition between UGT72E isoforms, as evidenced by
differential affinity for coniferyl/sinapyl alcohol derivatives (Anwar
et al, 2021). The net physiological outcome—reduced lignification
coupled with enhanced soluble phenolic accumulation—mirrors the
“metabolic channeling” strategy observed in pathogen-challenged
plants (Yao et al, 2021), positioning SIBEL11 as a plasticity
regulator during ripening-stress cross-talk.

As the central energy-converting hub of sugar metabolism, the
glycolysis/gluconeogenesis pathway underpins cellular energy
supply during fruit ripening (Stroka et al., 2024). SIBEL11I
knockdown induced a paradoxical glycolytic profile: upregulated
HK and ADHI contrasted with PK suppression and salicin
depletion (Figure 6A, Supplementary Table S7). This pattern
suggests bifurcated carbon flux—enhanced sucrose cleavage drives
ethanolic fermentation rather than mitochondrial respiration,
potentially optimizing ATP yield under reduced TCA cycle
activity. The resultant NAD+ regeneration could mitigate ROS
accumulation from RBOH-mediated respiratory burst (Jones
et al., 2007), explaining maintained fruit integrity despite
accelerated softening. Such metabolic flexibility aligns with the
“overflow hypothesis” in glycolytic regulation (Liu et al, 2021),
establishing SIBEL11 as an energy rheostat balancing catabolic
efficiency and oxidative damage.

The ABC transporter system emerged as a SIBEL11-dependent
hub for secondary metabolite trafficking. While ABCB14 (8-fold) and
ABCB3 (7.6-fold) induction typically enhances phytoalexin efflux
(Gani et al, 2021), concomitant myo-inositol depletion suggests
compromised osmoregulation-mediated turgor maintenance
(Figure 7A, Supplementary Table S7). This creates a metabolic
dilemma—increased defense compound export vs. cellular
dehydration risk. The ornithine/biotin accumulation-inositol
depletion axis mirrors stress-adapted solute redistribution in
drought-tolerant cultivars (Liang et al., 2024), implying SIBEL11’s
role in abiotic-biotic stress integration during ripening.

5 Conclusion

This study unveils the mechanism by which the transcription
factor SIBEL11 regulates in tomato fruit ripening. Through integrated
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transcriptomics and metabolomics analyses, we demonstrate that
SIBEL11 modulates gene expression and metabolite accumulation
across critical pathways, including ABC transporters, ascorbate and
aldarate metabolism, glycine/serine/threonine metabolism, glycolysis/
gluconeogenesis, phenylpropanoid biosynthesis, and pyruvate
metabolism. These pathways collectively govern fruit nutritional
quality, firmness, antioxidant capacity and ripening initiation.
SIBEL11 affects ascorbate homeostasis and cell wall remodeling by
regulating ascorbic acid metabolism, enhances phenolic compounds
accumulation and antioxidant defenses via phenylpropane pathway
activation, fine-tunes energy metabolism through modulation of sugar
catabolism, with downstream impacts on redox homeostasis.
Meanwhile, SIBEL11 influences the ABC transporter-mediated
pathway to alter the transmembrane transport of secondary
metabolite trafficking and boosts pathogen defense mechanism.
Collectively, our findings reveal a multi-layered regulatory network
through which SIBEL11 integrates metabolic, structural, and defensive
processes during fruit ripening.
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