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Biochar is a promising soil amendment, but its long-term consecutive effects on
greenhouse tomato systems are insufficiently explored. To investigate the dynamic
and accumulative effects of consecutive biochar application on soil chemical
properties and tomato (Solanum lycopersicum L.) yield and quality, a three-year
arched shed field experiment was conducted with five biochar rates: 0 (CK), 0.5
(T1), 1.0 (T2), 2.0 (T3), and 4.0 (T4) kg-m2. Soil chemical properties, tomato growth,
yield components, and fruit quality were analyzed. Results showed biochar slightly
increased soil electrical conductivity (all below salinization threshold); only T4
significantly raised soil pH (by 0.4 units) and organic matter (by 132.8%) vs. CK.
Annual differences in soil available potassium diminished to non-significance, while
available phosphorus was 50.8% (T2) and 63.0% (T3) higher than CK. Tomato plant
height and dry matter increased with biochar rate; T1-T4 improved fruits per plant
(2.0%-17.0%) and single fruit weight (7.0%-16.0%) over CK, with T2 (13.7%-24.1%)
and T3 (19.8%-33.2%) achieving the highest significant yield increases. For quality,
T2 had the highest comprehensive index, followed by T1 and T3, with their three-
year average scores up by 33.1%, 15.4%, and 15.4% respectively. In conclusion, 1.0-
2.0 kg'm™ biochar optimally enhanced tomato yield and nutritional/organoleptic
quality, with no significant interannual cumulative effects of biochar rate on yield or
quality—providing theoretical and technical support for high-quality greenhouse
tomato production.
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1 Introduction

Tomato (Solanum lycopersicum L.), the world’s second most consumed vegetable crop
(Hasnain et al., 2020), possesses both significant economic value and nutritional functions.
Due to its rich nutrient composition and diverse culinary applications, it occupies a core
position in the global vegetable industry (Samui et al., 2020). According to statistics from
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the Food and Agriculture Organization (FAO, 2023), global tomato
production reached 186.1 million metric tons in 2022, with a
harvested area of 4.7 million hectares. China accounts for
approximately 1.119 million hectares of tomato cultivation, of
which about 60% is under protected cultivation (FAO, 2023).
Tomatoes serve as a primary dietary source of antioxidant
compounds such as Vitamin C (VC) and lycopene (Luo et al,
2021), whose intake is closely associated with the prevention of
chronic diseases (e.g., cancer, cardiovascular diseases)
(Rattanavipanon et al., 2021). In agricultural production,
achieving synergistic improvement of high yield and superior
quality has always been a core objective in the field of protected
tomato cultivation.

Biochar, as one of the key soil amendments for building
sustainable agricultural systems (Semida et al, 2019), can be
produced via pyrolysis technology from carbon-containing
feedstocks such as lignocellulosic biomass, crop straws, livestock
manure, and sewage sludge (Bolan et al.,, 2021). This
thermochemical process occurs under low-oxygen or anoxic
conditions, primarily generating non-condensable syngas,
condensable liquid fractions, and solid product biochar (Osman
et al,, 2022). The amendment of biochar significantly influences
fundamental soil chemical properties such as pH and electrical
conductivity (EC). Due to its inherent alkaline nature and the
presence of alkaline ash, biochar application typically increases
soil pH, which is particularly beneficial for acidic soil remediation
(Zhang et al.,, 2025). Concurrently, the dissolution of salts from
biochar and the enhanced release of ions due to the pH increase can
elevate soil EC (Mao et al., 2024; Luczak et al., 2021). However, the
extent of these changes is highly dependent on the properties of
both the biochar and the native soil. Understanding these dynamics
is crucial for assessing the applicability of biochar in specific
agricultural contexts, such as protected cultivation. In agriculture,
biochar improves soil environment through multiple mechanisms:
it not only reduces nutrient leaching, enhances soil fertility (Rosa
et al, 2024), and decreases heavy metal bioavailability (Fu et al,
2024), but also improves water-holding capacity by optimizing soil
pore structure (Wu et al., 2025), and enhances root nutrient uptake
efficiency by promoting mycorrhizal fungal colonization and
microbial community diversity (Gu et al., 2021). These properties
provide multi-dimensional promotion for crop growth.
Additionally, returning pyrolyzed agricultural waste to fields not
only achieves by-product recycling but also strengthens the
sustainability of agricultural ecosystems. Therefore, biochar
application in tomato cultivation can be regarded as a win-
win strategy.

TABLE 1 Physical and chemical properties of tested soil.

10.3389/fpls.2025.1666930

In tomato production, biochar application has been found to
promote root development, increase root length and fine root
proliferation, and enhance nutrient absorption capacity (He et al.,
2021), with significant yield improvements observed in some
studies (Agbna et al.,, 2017). However, existing research
conclusions are inconsistent: some field trials show no yield
increase or even negative effects of biochar on tomatoes (Wu
et al, 2022; Obadi et al, 2023). Regarding fruit quality,
contradictory results exist in its regulatory effects on total soluble
solids (TSS) and vitamin C (VC) content (Abdelghany et al., 2023).
Notably, current studies mostly focus on the dosage effects of
biochar in a single growing season (Agbna et al., 2017; Guo et al,
2021), but there is a serious lack of understanding of the
accumulation characteristics of biochar effects under long-term
continuous application.

Given this, the present study conducted a three-year fixed-site
experiment on protected tomato cultivation to systematically
investigate the dynamic effects and accumulative effects of
consecutive biochar application rates (0-4.0 kg:m™) on yield
components, fruit quality indices, and soil chemical properties.
The objectives were to quantify the response patterns of tomato
yield and quality to different application rates and determine the
optimal biochar application rate that balances high yield and
superior quality. The research findings will provide technical
parameters for the precise application of biochar in protected
tomato production, facilitating the establishment of a sustainable
production model that synergistically improves yield and quality
while integrating environmental and economic benefits.

2 Materials and methods
2.1 Experimental site description

This study was conducted in a greenhouse tunnel in Shouguang
City, Shandong Province (118°44’ E, 36°53’ N) from 2021 to 2023.
Tomato cultivar 'Diana’ (Wanglin Agriculture, China) was used as
the test crop. The biochar applied in the experiment was produced
by Pingdingshan Lvzhiyuan Activated Carbon Co., Ltd., using a
mixture of crop straws, wood chips, and fruit shells as raw materials.
The biochar was pyrolyzed at 600°C and then ground into 50-100
mesh powder. The soil type in the experimental area was loam, and
the basic chemical properties and nutrient status of the soil and
biochar are detailed in Table 1. The fertilizer used was a compound
fertilizer (N-P,05-K,O > 60%, 20-20-20 + Fe+Zn+B > 0.2%)
produced by Jinzhengda Ecological Engineering Group Co., Ltd.

Total N Available P Available K Organic matter Hydrolyzable N = Salt content pH

Unit gkg! mgkg” mgkg” gkg! mgkg” %
Soil 0.84 7.75 127.50 12.90 52.00 0.04 7.41
Biochar 1.16 665.00 508.00 80.60 20.40 0.36 7.77
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FIGURE 1

Trends in air temperature (a-c) and relative humidity (d-f) in protected facilities during 2021-2023.

The variations in air temperature and relative humidity inside the
facility during the experimental period are presented in Figure 1.
During the growing season, the mean air temperature and mean
relative humidity were 25.7°C and 67.4% in 2021, 26.0°C and 70.1%
in 2022, and 27.1°C and 64.2% in 2023, respectively. Overall, the
diurnal temperature range narrowed gradually over the three
experimental years. Notably, the variation in day-night
temperature difference was smaller in 2021 than in 2022 and 2023.

2.2 Experimental design

The trial adopted a tomato (April-August) and Chinese cabbage
(August-December) rotation system. A single-factor randomized block
design was implemented with five biochar application rates (0, 0.5, 1.0,
2.0, and 4.0 kgm™), labeled as CK (control), T1, T2, T3, and T4,
respectively. The plot dimensions were 3.0 m X 1.2 m, with two rows of
tomato plants per plot, spaced at 60 cm row spacing and 30 cm plant
spacing, totaling 20 plants per plot. Biochar was uniformly broadcast
and incorporated into the 0-10 cm soil layer annually before tomato
seedling transplantation, while no biochar was applied during the
cabbage cultivation phase. A drip irrigation system with 16 mm
diameter tubing, emitters spaced at 30 c¢m intervals, and a flow rate
of 2 L'h™ was installed immediately after transplanting tomato
seedlings (at the 4-leaf stage). Emitters were positioned 3 cm from
the plant base. In T1 and T3 plots, two randomly selected emitters were
equipped with tensiometers installed at 20 cm depth to monitor soil
matric potential. Irrigation was initiated across all plots when any
monitored value dropped below -35 kPa, with a single irrigation quota
of 10 mm. The total irrigation water amount (W) during the entire
tomato growing season was 4200 m*hal, 3900m>ha’!, and 4000
m*ha! in 2021, 2022, and 2023, respectively. The fertilization regime
involved weekly fertigation using a compound fertilizer (N-P,05-K,O
= 20-20-20 + trace elements). If irrigation thresholds were not met,
one-third of the irrigation quota (3.3 mm) was applied solely for
fertilization, corresponding to a fertilizer application rate of 61.11 kg-ha™
! per session.
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Field management practices included topping tomato plants
when the fifth fruit cluster developed. The tomato growth cycle was
divided into stages (seedling, flowering, fruit setting, rapid
expansion, and maturation), with standardized protocols for weed
control, pest management (using low-residue pesticides), pruning,
and vine training. All procedures were rigorously repeated across
growing seasons to ensure experimental consistency.

2.3 Measured parameters and methods

(1) Greenhouse temperature monitoring: Air temperature and
humidity were monitored using a hygrothermograph (BENETECH
GM1365, China) suspended 1.2 m above ground in the
experimental area. Data were automatically recorded at 1-
hour intervals.

(2) Plant growth parameters: At maturity each year, three
randomly selected plants per treatment were analyzed. Plant
height was measured from the soil surface to the apex of the
main stem using a tape measure. Stem diameter was determined
at 10 cm above the soil surface using a vernier caliper (Zou et al.,
2017). For dry matter accumulation measurement, three plants per
treatment were deactivated in a 105°C oven for 30 min, then dried
to constant mass at 75°C. Dry mass was quantified using a 0.001 g
precision analytical balance (Du et al.,, 2020).

(3) Tomato yield and its components: During each growing
season, the fruit number per truss (N on individual plants was
recorded periodically. At maturity, fruits were harvested in multiple
batches to determine the average single fruit weight W(g),
measured to the nearest 0.1 g. The yield per plant Y,(kg) was

calculated using Equation 1:
Wf X Nf
Y, =—~ 2 1
P 1000 W

The final total tomato yield T, (10* kgha) is converted
through Equation 2. Wherein, the number of plants per plot is N,,
=20, and A is the plot area (m?).
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Y, xN, x 10*
__'p P

Ty - A (2)

(4) Crop water productivity (CWP) calculation was calculated

using Equation 3 as follows:
CWP =T,/ (3)

Where CWP is the Crop water productivity, kg-m™*; Ty is the
total output of tomatoes, kg-ha'l;l represents the total irrigation
amount, m>ha'.

(5) Tomato quality assessment: At fruit maturity, ten uniformly
sized fruits at equivalent ripening stages were selected from the 2nd
and 3rd trusses of plants within each treatment. A composite
homogenate was prepared for analysis by pooling one-quarter of
the pericarp tissue from each sampled fruit. All determinations were
performed with three analytical replicates per parameter. Lycopene
content: Quantified by ultraviolet-visible (UV-Vis)
spectrophotometry (Hu et al., 2005). Soluble solids content (SSC):
Measured using a digital refractometer (precision: + 0.1°
Brix).Soluble sugar content: Determined via the anthrone-sulfuric
acid colorimetric assay (Zhang and Li, 2016).Titratable acidity
(TA): Assessed by acid-base titration (Zhang and Li, 2016).
Sugar-acid ratio: Calculated as soluble sugar content divided by
titratable acidity. Ascorbic acid (vitamin C) content: Measured by
2,6-dichlorophenolindophenol (DCPIP) titration (Zhang and
Li, 2016).

Among the aforementioned tomato fruit quality parameters, the
contents of soluble sugars, sugar-acid ratio, soluble solids content
(SSC), vitamin C (ascorbic acid), and lycopene exhibit a positive
correlation with quality (i.e., higher values indicate superior
quality). To quantitatively evaluate fruit quality, a relative scoring
system was established: All quality parameters for the CK (control)
treatment were assigned a baseline relative value of 100. For each
subsequent treatment, the relative value of a specific quality
parameter was calculated as the ratio of its measured content in
that treatment to the corresponding value in the CK treatment
(Equation 4):

g, =2 (4)

In the formula, q; represents the relative score of the i-th quality
indicator (soluble sugars, sugar-acid ratio, soluble solids content
(SSC), ascorbic acid (vitamin C), or lycopene). wi is the weighting
coefficient (all assigned 0.2). Organic acids were not included in the
evaluation system due to the lack of clear superiority. Then the
overall quality Q of tomato fruit can be expressed as shown in

Equation 5:

Q=32, (wi x i) (5)
ek

(6) Soil chemical indicators: At the end of each year’s test, soil
samples from the 0-20 cm layer were randomly collected, air-dried,
and extracted at a soil-water ratio of 1:5 (mass ratio) with 3 minutes
of stirring. Electrical conductivity (EC) was measured using a
benchtop conductivity meter (Leici DDS-307A, China), and pH
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was determined with a pH meter (Leici PHS-2F, China). Soil
organic matter (SOM) content was calculated via the potassium
dichromate oxidization-ferrous sulfate titration method (Ministry
of Agriculture of the People’s Republic of China [MOA], 2006). Soil
available potassium was analyzed by the neutral ammonium acetate
extraction-flame photometric method (MOA, 2004), hydrolysable
nitrogen by the alkaline diffusion method (Mulvaney and Khan,
2001), and available phosphorus by sodium bicarbonate extraction-
molybdenum-antimony anti-spectrophotometry (MOA, 2014).

2.4 Data analysis

Data were organized in Microsoft Excel (Microsoft Corp., USA)
and visualized using Origin 2024 Pro (OriginLab Corp., USA).
Statistical analyses, including one-way ANOVA and two-way
ANOVA (to assess biochar rate [C], year [Y], and interaction
[CxY]), were performed in SPSS 27.0 (IBM Corp., USA). Post hoc
comparisons used Fisher’s LSD test (P< 0.05).

3 Results and analysis

3.1 Effects of biochar dosage on soil
physicochemical properties

Figure 2 presents the soil chemical properties in the 0-20 cm
soil layer after tomato harvest during 2021-2023. While soil EC
values increased with biochar application compared to the CK
treatment, they remained at low levels (non-saline). Significant
increases in soil pH and organic matter content were observed
only in the T4 treatment, with maximum increases of 0.4 units and
17.83 gkg (132.8%), respectively. The differences in soil available
potassium content among treatments showed a decreasing trend
annually, becoming non-significant by the third year. Although
differences in soil hydrolyzable nitrogen content existed among
treatments, they were not significant. Soil available phosphorus
content significantly increased in 2 and T3 treatments, with
maximum increases of 50.8% and 63.0%, respectively. Two-way
ANOVA (Figure 2) showed that biochar application rate (C) had
significant main effects on soil pH, EC, available potassium,
available phosphorus, and SOM content. Interannual variation
(Y) significantly influenced soil pH, hydrolyzable nitrogen,
available phosphorus, and available potassium. Interaction effect
analysis revealed that biochar and interannual variation had highly
significant interactions (P< 0.01) only for soil pH, EC, and available
potassium, with no significant interaction effects on SOC,
hydrolyzable nitrogen, or available phosphorus.

3.2 Effects of biochar application rate on
tomato growth

Figure 3 displays the growth status of tomatoes under different
biochar application rates. As the biochar application rate increased,
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for biochar (C), year (Y), and their interaction (C X Y) were calculated at P = 0.05. Significance is denoted as: *P< 0.05, **P< 0.01, ***P< 0.001; ns,

not significant.

both plant height and dry matter accumulation of tomatoes showed a
gradual increasing trend. Compared with CK, the plant height in the
T4 treatment increased by 5.7%, 7.1%, and 11.0% in 2021, 2022, and
2023, respectively, and the aboveground dry matter accumulation
increased by 33.2%, 36.1%, and 23.9%, with significant differences (P<
0.05). Except that the stem diameter of the T4 treatment was
significantly smaller than that of the CK treatment in 2021, there
were no significant differences in stem diameter between the T1-T4
treatments and the CK treatment in other years.

Two-way ANOVA results (Figure 3) showed that biochar
application rate (C) had significant or highly significant effects on
plant height, stem diameter, and dry matter accumulation.
Interannual variation (Y) had highly significant effects on plant
height and dry matter accumulation. The interaction between
biochar and interannual variation had no significant effects only
on stem diameter and dry matter accumulation, indicating that the
differences in tomato growth indices across years were primarily
driven by the independent effects of biochar application rate and
year, rather than their interaction.

Frontiers in Plant Science

3.3 Effects of biochar application rate on
tomato yield and its components

Figure 4 presents the tomato yield and its components under
different biochar application rates during 2021-2023. The yield
parameters (fruit number per plant, single fruit weight, total
yield) exhibited significant dose-response relationships to biochar
application rates (C) across growing seasons (P< 0.05). Over three
years, T1-T4 treatments significantly increased fruit number per
plant, single fruit weight, and total yield compared with CK, but no
interannual cumulative effects were observed. The highest yield and
its components were recorded in T3. Compared with CK, T3
significantly increased fruit number per plant by 11.4%, 17.4%,
and 15.8%, single fruit weight by 16.3%, 13.5%, and 3.5%, and yield
by 29.5%, 33.2%, and 19.8% in 2021, 2022, and 2023, respectively
(P< 0.05). T2 ranked second, with significant increases in fruit
number per plant (5.9%, 11.7%, 12.0%), single fruit weight (13.7%,
11.1%, 1.5%), and yield (20.4%, 24.1%, 13.7%) compared with CK
across the three years (P< 0.05). Meanwhile, CWP in T1-T4
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Plant height (a), stem diameter (b), and plant dry mass (c) of tomatoes under different biochar application rates during 2021-2023. Different
lowercase letters indicate significant differences among treatments at P< 0.05. According to LSD testing, F-values and significance levels for biochar
(C), year (Y), and their interaction (C X Y) were calculated at P = 0.05. Significance is denoted as: *P< 0.05, **P< 0.01, ***P< 0.001; ns, not significant.

treatments showed a synchronous increasing trend with
yield indicators.

Two-way ANOVA results (Figure 4) showed that the main
effects of biochar application rate (C) and interannual variation (Y)
on fruit number per plant, single fruit weight, total yield, and CWP
were all highly significant (P< 0.01). However, the CxY interaction
effects on single fruit weight, fruit number per plant, and CWP were
not significant. Notably, the CxY interaction had a significant effect
on tomato yield, indicating that the yield-enhancing effect of
biochar is influenced by interannual environmental factors.

3.4 The influence of biochar dosage on
tomato quality

Figure 5 shows the quality indicators of tomato fruits treated
with different biochar application rates from 2021 to 2023. It can be
seen that the dose-effect relationship was basically the same over the
three years, that is, with the increase of biochar application rate, the
contents of soluble sugar, sugar-acid ratio, vitamin C (VC), and
lycopene in tomatoes all showed a single-peak dose-response
characteristic of rising first and then falling. The maximum values
mostly occurred in the T2 treatment. Compared with the CK
treatment, the soluble sugar content increased significantly by
43.1%, 11.0%, and 8.0% respectively in 2021-2023, and the sugar-
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acid ratio increased by 28.7%, 30.5%, and 14.2% respectively,
reaching significant levels in the first two years. VC content
increased by 109.5%, 10.0% and 20.7% respectively; Lycopene
content increased significantly by 50.07%, 19.35%, and 101.36%.
Followed by T1 treatment, The maximum increases in soluble
sugar, sugar-to-acid ratio, vitamin C (VC), and lycopene in 2021~
2023 were 19.4%, 10.8%, 71.4%, and 46.2%, respectively. However,
excessive application of biochar (4.0 kg'm™, T4 treatment) can
cause fluctuations or even reductions in quality indicators, such as
soluble sugar and sugar-acid ratio in 2021 and VC content lower
than CK in 2022, suggesting a tendency for excessive biochar
application to have inhibitory effects on individual fruit quality.

Two-way ANOVA results (Figure 5) showed that biochar
application rate (C) and interannual variation (Y) had significant
main effects on soluble sugar, sugar-acid ratio, TSS, lycopene, and
VC content. In terms of interaction effects, CxY significantly
influenced soluble sugar and lycopene, while the interaction
effects on sugar-acid ratio, TSS, and VC were not significant, with
their responses primarily driven by the independent effects of
biochar application rate or year.

As shown in Figure 6, the comprehensive quality index score
(Q) of tomato fruits reached the maximum value in the T2
treatment from 2021-2023, increasing by 48.23%, 18.82%, and
32.36% compared with the CK treatment, respectively. The three-
year average values of comprehensive quality indices across
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treatments showed that compared with CK, the comprehensive
scores of T1-T4 increased by 15.4%, 33.1%, 15.4%, and 9.4%,
respectively, with the order: T2 > T1 = T3 > T4 > CK.

3.5 Correlations between tomato yield/
quality parameters and soil chemical
properties

The Pearson correlation matrix constructed based on the data
from a 3-year biochar application rate experiment (Figure 7)
systematically reveals the correlation between soil chemical indices
and tomato yield and quality at the end of the experiment. Firstly, the
tomato yield (TY) shows an extremely significant positive correlation
with soil available phosphorus (AP) (r = 0.41, p < 0.01), indicating
that when the content of AP in the soil is high, the absorption and
utilization of phosphorus by plants are not inhibited; on the contrary,
sufficient supply of available phosphorus may promote yield increase,
confirming that phosphorus is the core factor driving yield. In
contrast, TY has an extremely significant negative correlation with
available potassium (AK) (r = -0.63, p < 0.01). A high residual content
of AK in the soil means that plants absorb less potassium, which may
inhibit yield formation due to an imbalance between potassium
supply and demand. Secondly, the soluble sugar content (SuC) has
extremely significant negative correlations with both soil available
potassium (AK) and hydrolyzable nitrogen (HN) (AK: r = -0.55, p <
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0.01; HN: r = -0.49, p < 0.01), indicating that the higher the contents
of AK and HN in the soil, the less potassium and nitrogen are
absorbed by plants, which restricts carbohydrate synthesis and leads
to a decrease in SuC. Organic acid (TA), soluble solids content (SSC),
and lycopene (LYC) all show extremely significant negative
correlations with soil HN (TA: r = -0.76, p < 0.001; SSC: r = -0.69,
p <0.001; LYC: r = -0.57, *p < 0.001), suggesting that a high content
of HN in the soil results in less nitrogen absorption by plants, thus
inhibiting the synthesis of the above substances. However, vitamin C
(VC) has a significant positive correlation with HN (r = 041, p <
0.01), implying that when the residual nitrogen content in the soil is
high, although plants absorb and utilize less nitrogen, it may promote
VC synthesis through specific metabolic pathways, reflecting the
differential regulatory effect of nitrogen on quality indices. In
addition, soil EC, pH, and total organic matter (TOM) show no
significant correlations with tomato yield and quality.

4 Discussion

4.1 Effects of biochar on soil
physicochemical properties

The regulatory effects of biochar on soil nutrient cycling are

closely related to its own physicochemical properties. In this study,
biochar application increased soil pH, EC, and SOM content, which is
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consistent with most acidic soil improvement studies (Zhang et al.,
2025). This is because biochar itself has a high pH (usually alkaline)
and contains alkaline cations (e.g., Ca**, Mg®"), which neutralize H*
in the soil through release processes, thereby driving pH elevation
(Schulz et al,, 2013). The increase in soil EC may be caused by a dual
mechanism: 1) Direct salt input from dissolution of biochar-derived
ash (Mao et al, 2024). 2) The increase in soil pH increases the
dissociation degree of weakly acidic functional groups such as
carboxyl and phenolic hydroxyl groups, generating more negative
charges (Wang et al., 2014), thereby enhancing the adsorption and
exchange capacity of soil colloids for cations, promoting the release of
cations from mineral salts, increasing ion concentration in the soil
solution, and leading to an increase in EC (Luczak et al., 2021). The
continuous accumulation of SOM is primarily attributed to three
aspects: 1) The decomposition rate of organic carbon input by
biochar is significantly lower than its application amount,
promoting long-term SOC accumulation (Jin et al,, 2019); 2) The
abundant pore structure of biochar provides physical protection
space for organic molecules, enhancing their adsorption and
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retention capacity for active organic matter (Yang et al., 2025); 3)
Biochar increases microbial carbon use efficiency, causing
microorganisms to use more organic carbon for biosynthesis rather
than respiration (Kalu et al., 2024a), thereby indirectly inhibiting soil
microbial respiration and reducing the organic carbon mineralization
rate (Weng et al, 2017).In this study, biochar application was
observed to decrease soil available potassium content, increase soil
available phosphorus content, and cause no significant change in
hydrolyzable nitrogen. The reverse response of available potassium
may be related to the cation competition effect of high-temperature
pyrolyzed biochar. The increased organic matter content and cation
exchange capacity (CEC) by biochar enhanced the adsorption
competition between potassium ions and cations such as calcium
and magnesium, leading to a decrease in the available potassium
content (He et al., 2025). The increase in soil available phosphorus
content is because biochar application can stimulate phosphorus-
solubilizing bacteria (Gul and Whalen, 2016). Additionally, different
amounts of biochar can inhibit acid phosphatase activity while
enhancing alkaline phosphatase activity, promoting P hydrolysis
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Comprehensive evaluation of tomato quality attributes with different biochar amendments over three consecutive years.

and ensuring a continuous supply of available phosphorus in the soil
(Peng et al,, 2023; Zhao et al., 2020). Although some studies have
shown that biochar can increase soil total nitrogen storage (Ding
et al,, 2016), after biochar is applied to the soil, its high C/N ratio
causes microorganisms to absorb more nitrogen from the soil for
their own growth and metabolism during the decomposition of
organic matter in biochar, thereby reducing the hydrolyzable
nitrogen content in the soil (Nguyen et al., 2017). However, some
studies have shown that the amount of extractable nutrients in the
soil can increase after biochar application (Wang et al., 2024). This
discrepancy may be related to fertilizer types, soil types, and microbial
activities (Burrell et al., 2016). Additionally, structural characteristics
of biochar such as pore size distribution and surface functional
groups can also affect its regulatory effects on soil nutrient cycling
(Parasar and Agarwala, 2025). In practical applications, these
influencing factors may act synergistically to jointly determine the
regulatory effects of biochar on soil nutrient cycling.

4.2 Effects of biochar on tomato growth
and yield

The yield-enhancing effects of biochar on crops have been

widely documented (Agbna et al, 2017). Our study further
demonstrates that appropriate biochar application rates
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significantly promoted tomato plant height, dry matter
accumulation, and yield formation. The underlying mechanisms
include: 1) biochar increases soil CEC by releasing H through
abundant oxygen-containing functional groups and adsorbing
cations in the soil (Kabir et al., 2023). The porous network
structure of biochar further enhances cation adsorption, thereby
improving soil nutrient supply capacity, promoting root
proliferation and nutrient absorption, and increasing plant height
and dry matter accumulation; 2) biochar improves soil physical
structure and water-holding capacity, strengthens water use by
reducing evaporation and increasing transpiration (Xiao et al,
2024), and enhances CWP, thus increasing fruit yield. 3) biochar
application improved the soil microenvironment by promoting soil
enzyme activity and microbial abundance, making more nutrients
available for tomato plants (Guo et al, 2021). However, under
continuous annual biochar application, no dose-dependent
cumulative yield effects were observed. This may be because the
soil system reached a dynamic equilibrium after long-term biochar
addition, where further increases in application rate did not
sustainably enhance crop growth once soil physical, chemical, and
biological properties were optimized. In 2021, the T4 treatment (4.0
kg-m™) exhibited significantly reduced stem diameter and
diminished yield gains. This could be attributed to excessive
biochar causing a significant decline in soil available potassium,
combined with potential plant growth inhibitors (low-content
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incompletely pyrolyzed volatile organic compounds) (Deenik et al.,
2010), which may have inhibited soil nitrogen-fixing microbial
activity or directly impacted root development, thereby exerting
negative effects on crop growth at high application rates (Obadi
et al., 2023).

Compared with previous studies, the effects of biochar at
different rates on tomato yield in this study exhibited certain
discrepancies. For example, Guo et al. (2021) found that 35 tha™
biochar (3.5 kg'm™) maximized tomato yield under greenhouse
conditions, while Lei et al. (2024) reported a linear increase in yield
with increasing biochar application rates. Such differences may
originate from variations in biochar feedstock, pyrolysis
temperature, soil baseline properties, and experimental
environments. For instance, She et al. (2018) demonstrated that
biochars pyrolyzed at different temperatures significantly differed in
their effects on tomato growth and yield.

4.3 Effects of biochar on tomato fruit
quality

This study demonstrates that the application of biochar at

suitable rates significantly enhances multiple quality indices of
tomato fruits. Specifically, the soluble sugar content of tomatoes
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in biochar-treated plots increased significantly. This improvement
can be attributed to the following mechanisms: biochar application
promotes root growth, enhances plant nutrient uptake capacity,
facilitates the translocation of photosynthates, and thereby
accelerates carbohydrate accumulation in fruits—ultimately
leading to higher soluble sugar content (Yan et al., 2024;
Mazzurco-Miritana et al., 2025). The sugar-acid ratio, an
important parameter for evaluating tomato taste, significantly
increased in biochar-treated plots compared with CK, indicating
that biochar synergistically regulated organic acid metabolism while
increasing soluble sugars, balancing fruit flavor. Total soluble solids
(TSS) content also increased with biochar application rates,
consistent with reports by Almaroai and Eissa (2020). The
mechanism may involve biochar-improved soil structure
promoting water homeostasis, thereby enhancing fruit dry matter
accumulation efficiency (Ikram et al., 2024).Vitamin C (VC), a key
non-enzymatic antioxidant, represents a major nutritional quality
indicator of tomatoes (Giannakourou and Taoukis, 2021).
Experimental results showed VC content increased to varying
degrees with biochar application, consistent with findings by Guo
et al. (2021) and Agbna et al. (2017). This is attributed to biochar
enhancing rhizospheric soil enzyme activity and improving root
environment. Root growth plays a crucial role in nutrient uptake,
significantly influencing vitamin C content in plants (Yang et al,

frontiersin.org


https://doi.org/10.3389/fpls.2025.1666930
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

2020). Additionally, lycopene content in biochar-treated tomatoes
was significantly higher than CK in all years. Previous studies by
Khan et al. (2019) under field conditions reported increased
antioxidant compounds (ascorbic acid, lycopene, B-carotene) in
ripe tomato fruits with biochar application, consistent with our
results. However, Petruccelli et al. (2015) reported conflicting
results, possibly due to differences in test regions, soil types, and
biochar types (Suthar et al,, 2018).

Two-way ANOVA showed highly significant interannual main
effects (P< 0.01) on all tomato quality indices, likely due to
interannual environmental fluctuations altering plant
photosynthetic efficiency and secondary metabolism, thereby
modifying quality expression (Devadze et al., 2025). Specifically,
microclimatic differences across the three growing seasons drove
varying quality responses: the 2022 season had a mean temperature of
26.0 °C and relative humidity of 70.1%, and its specific environmental
conditions notably inhibited photosynthesis and secondary
metabolism during fruit development—explaining the relatively
lower accumulation of sugars, organic acids, and lycopene, and
thus weaker quality improvements that year (Zheng et al., 2023).
While 2023 had the highest mean temperature (27.1 °C), its lower
relative humidity (64.2%) and more favorable diurnal temperature
variation likely alleviated the impacts of adverse environmental
conditions. In contrast, 2021 maintained relatively moderate
conditions (mean temperature 25.7 °C, relative humidity 67.4%),
which were more conducive to quality formation.

4.4 Cumulative effects of continuous
biochar application

After three years of continuous biochar application in this
experiment, soil nutrient cycling gradually stabilized, with no
significant dose accumulation effect observed. The reasons can be
attributed to the following aspects: Firstly, as the application period
increases, the saturation effect of soil adsorption sites limits the
continuous retention capacity of biochar (Kalu et al, 2024a).
Meanwhile, biochar forms stable complexes with soil minerals and
organic matter, causing some nutrients to be trapped inside these
complexes and reducing their bioavailability (Kalu et al., 2024a),
which in turn weakens the sustained promotional effect on soil
fertility and crop growth. Secondly, the aging process of biochar
alters its surface chemical properties, reducing its nutrient adsorption
capacity and reactive activity, thereby weakening its regulatory effect
on soil nutrient cycling (Apostolovic et al., 2024). Thirdly, long-term
biochar application can induce adaptive changes in soil
microorganisms (Idbella et al., 2024). Microorganisms show
improved efficiency in utilizing carbon sources and nutrients in
biochar, and may influence the transformation and supply of soil
nutrients through feedback regulatory mechanisms. Simultaneously,
microbial metabolites or enzymes can either inhibit or promote the
transformation of different nutrients, further complicating the
regulatory effect of biochar (Sharma et al., 2025). Ultimately, these
factors result in an insignificant dose accumulation effect.
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5 Conclusions

Collectively, the three-year fixed-location field trial demonstrated
that compared with the CK treatment, biochar-amended treatments
(T1-T4) increased tomato fruit number per plant and average fruit
weight to varying degrees, thereby enhancing overall yield formation.
Notably, the T2 and T3 treatments achieved the most substantial
and statistically significant (P< 0.05) yield increments, ranging
from 13.7% to 24.1% and 19.8% to 33.2%, respectively. Fruit
quality analysis revealed that the T2 treatment yielded tomatoes
with the highest comprehensive quality index, followed by T1 and
T3. The three-year mean comprehensive quality scores for these
treatments increased by 33.1%, 15.4%, and 15.4%, respectively. No
significant interannual cumulative effects of biochar application rate
on crop yield or quality were observed. In conclusion, a biochar
application rate of 1.0-2.0 kg:m™ optimally achieves synergistic
enhancement of both yield and fruit quality in greenhouse tomato
production systems.

Future research could focus on the following directions: 1)
Deciphering key functional microbial groups in biochar-microbe-
plant interactions through high-throughput sequencing; 2)
Revealing metabolic pathways of biochar regulating fruit quality
formation by integrating transcriptomics; 3) Conducting multi-
region and multi-crop long-term field experiments to evaluate the
long-term effects of biochars with different feedstocks and pyrolysis
temperatures on soil quality, nutrient cycling, and crop
productivity. These studies will provide more systematic
theoretical support for the precise application of biochar in
sustainable protected agriculture.
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