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A novel efficient eggplant
disease detection method
with multi-scale learning and
edge feature enhancement
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1Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and
Technology, Weifang, China, 2Department of Computer Engineering, Dongseo University,
Busan, Republic of Korea
In the context of the rapid development of smart agriculture, the detection of crop

diseases remains a critical and challenging task. The diversity in eggplant disease

scales, disease edge features, and the complexity of planting backgrounds

significantly impact disease detection effectiveness. To address these challenges,

we propose an eggplant disease detection network with edge feature

enhancement based on multi-scale learning. The overall network adopts a

“backbone–neck–head” architecture: the backbone extracts features, the neck

performs feature fusion, and a three-scale detection head produces the final

predictions. First, we designed the Multi-scale Edge Information Enhance (CSP-

MSEIE) module to extract features from different disease scales and highlight edge

information to obtain richer target features. Second, the Multi-source Interaction

Module (MSIM) and Dynamic Interpolation Interaction Module (DIIM) sub-modules

were designed further to enhance the model’s capacity for multi-scale feature

representation. By leveraging dynamic interpolation and feature fusion strategies,

these sub-modules significantly improved the model’s ability to detect targets in

complex backgrounds. Then, leveraging these sub-modules, we designed the

Multi-scale Context Reconstruction Pyramid Network (MCRPN) to facilitate spatial

feature reconstruction and hierarchical context extraction. This framework

efficiently combines feature information across multiple levels, strengthening the

model’s ability to capture and utilize contextual details. Finally, we validated the

effectiveness of the proposed model on two disease datasets. It is noteworthy that

on the eggplant disease data, the proposed disease detection model achieved

improvements of 4.7% and 7.2% in mAP50 and mAP50–95 metrics, respectively,

and the model’s frames per second (FPS) reached 270.5. This detection network

provides an effective solution for the efficient detection of crop diseases.
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1 Introduction

Eggplants are widely cultivated and highly valued for their rich

content of dietary fiber and essential vitamins. They play a crucial role

in improving global dietary patterns and promoting nutritional

balance. Advancements in agricultural technology and the rapid

growth of international trade have significantly increased both the

cultivation area and total production of eggplants in recent years. By

2022, global eggplant production had exceeded 59 million tons, and

the cultivation area surpassed 1.89 million hectares, underscoring its

importance in modern agriculture (Yan et al., 2024). However, the

expansion of cultivation has made eggplants more vulnerable to

diseases and pest infestations, as shown in Figure 1, especially under

increasingly complex and unpredictable climate conditions.

Common problems such as yellow spot disease, fruit rot, and pest

infestations severely threaten eggplant yield and quality, resulting in

significant economic losses for growers (Liu and Wang, 2021).

Efficient disease management remains a central challenge in

agricultural production. Traditional management methods mainly

rely on manual inspection and chemical control, both of which have

notable limitations. Manual inspection is time-consuming and prone

to errors due to subjective judgment and reliance on individual

experience, making it unsuitable for large-scale modern agriculture.

Moreover, the growing reliance on pesticides to combat frequent

disease outbreaks not only raises production costs but also increases

pathogen resistance, posing additional threats to the environment

and food safety. Therefore, developing accurate and efficient disease

detection and management technologies is imperative.

In recent years, automated detection technologies have advanced

rapidly in agriculture, offering innovative solutions for addressing

eggplant diseases. For example, spectral analysis has been

preliminarily applied to eggplant disease identification. However, the
Frontiers in Plant Science 02
complexity of processing high-dimensional spectral data and the

associated information loss during dimensionality reduction have

become major development bottlenecks (Wu, 2018). Additionally,

texture-based feature extraction algorithms combined with

classification models have shown moderate effectiveness in eggplant

disease classification (Xie and He, 2016). However, these methods

depend on manual feature extraction, suffer from pixel-level

information loss, and exhibit high computational complexity,

limiting their scalability and practical use. The emergence of machine

learning has introduced promising solutions for crop disease

recognition. Convolutional Neural Network (CNN)-based models

have been successfully applied to eggplant disease recognition,

demonstrating notable advantages over traditional approaches.

However, early machine learning models mainly focused on

classification tasks (Krishnaswamy Rangarajan and Purushothaman,

2020; Maggay, 2025; Theckedath and Sedamkar, 2025), neglecting the

critical aspect of disease localization. This limitation prevents these

models from fully replacing manual inspection, as accurate localization

is essential for targeted treatment and intervention.

The rise of computer deep learning technology has driven object

detection models toward greater efficiency and precision. These

models can classify diseases and accurately localize them in images,

representing a breakthrough in automated crop disease detection.

Object detection models are typically categorized into two types:

single-stage and two-stage detectors. Representative two-stage

models include SSD (Tian et al., 2023), Faster R-CNN (Ren et al.,

2017), and RetinaNet (Math and Dharwadkar, 2023). These models

first generate region proposals or candidate bounding boxes,

followed by classification and fine-grained localization within

those regions. In contrast, single-stage models such as the YOLO

(You Only Look Once) (Redmon et al., 2016; Redmon and Farhadi,

2017; Bochkovskiy et al., 2020; Redmon and Farhadi, 2018; Jocher
FIGURE 1

Status of eggplant cultivation, highlighting that very small, concealed fruit diseases (e.g., Fruit Borer) are often missed during field inspection.
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et al., 2022; Wang et al., 2022; Redmon and Farhadi, 2025; Wang

et al., 2024b; Li et al., 2022) series are widely recognized for their

real-time performance and high accuracy. Recent research has

increasingly focused on enhancing YOLO models for crop disease

detection. For example, Liu et al. proposed a YOLOv5 variant with a

novel loss function to detect tomato brown rot (Liu et al., 2023).

Wang et al. integrated a Transformer into YOLOv8 to enhance

tomato disease detection, significantly improving its ability to

capture detailed disease features (Wang and Liu, 2024). Jiang

et al. combined the Swin Transformer with CNN to optimize

YOLOv8’s feature extraction, improving detection performance

for cabbage diseases under complex conditions (Jiang et al.,

2024). Liu et al. introduced a multi-source information fusion

approach based on YOLOv8 to enhance detection accuracy across

multiple vegetable diseases (Liu and Wang, 2024). Moreover, some

researchers have further improved detection performance on

target images by employing edge-image enhancement (Wang

et al., 2023) and additional image-preprocessing techniques

(Wang et al., 2024c).

Although these enhanced YOLO models have shown progress,

they primarily focus on leaf diseases, small datasets, and parameter

tuning. However, the impact of scale variations in fruit disease

regions and edge features under complex backgrounds on detection

accuracy remains underexplored. To address this critical gap in

current eggplant fruit disease detection methods, we propose an

eggplant disease detection network with edge feature enhancement

based on multi-scale learning. The key contributions of this paper

are outlined as follows:
Fron
• We develop the Multi-scale Edge Information Enhancement

(CSP-MSEIE) module, which extracts features across

multiple disease scales and highlights the edge

characteristics of affected regions, enabling richer and more

comprehensive target representations.

• We develop the Multi-source Interaction Module (MSIM),

Dynamic Interpolation Interaction Module (DIIM), and

Multi-scale Context Extraction Module (MCEM), which

enhance the model’s capacity to capture multi-scale features
tiers in Plant Science 03
and improve target detection accuracy in complex

backgrounds by utilizing dynamic interpolation and the

fusion of multiple features.

• We construct the Multi-scale context reconstruction pyramid

network (MCRPN). This network aims to reconstruct spatial

features and extract pyramid context, effectively integrating

feature information from different levels and enhancing

contextual awareness, thereby improving the model’s

detection performance.

• We conducted extensive ablation and comparative

experiments on the two datasets, and the results show that

EggplantDet outperforms other advanced detection algorithms

in detection performance, even surpassing the advanced

detection model YOLO11.
2 Materials and methods

2.1 Materials

Dataset processing: We validated the effectiveness of the

proposed model on two datasets: PlantDoc (Singh et al., 2019)

and eggplant disease. PlantDoc is a dataset of 2,569 images across 13

plant species and 30 classes (diseased and healthy) for image

classification and object detection. There are 8,851 labels. Among

them, the eggplant disease data is an eggplant fruit disease dataset

from the Roboflow platform, containing four distinct disease

categories (BSCS, 2024). The dataset includes four categories:

healthy, fruit borer, yellow spot, and fruit rot. Detailed category

distributions are presented in Figure 2. It is divided into training,

validation, and test sets, comprising 2507, 744, and 365

images, respectively. The dataset was collected from diverse,

natural cultivation environments, making it highly valuable for

applied research.

To better enhance the model’s generalization ability and

detection performance on the eggplant disease dataset, we utilized

the online data augmentation method of the Roboflow platform to
FIGURE 2

Display of some four eggplant diseases before enhancement. (A) Healthy (B) Fruit Borer (C) Yellow Spot (D) Fruit Rot.
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perform data augmentation on the training dataset of this eggplant

disease dataset. The augmentations included: 90° rotation

(clockwise and counter-clockwise), saturation adjustment (-30%

to +30%), general rotation (-45° to +45°), horizontal and vertical

flipping, grayscale (applied to 15% of images), hue adjustment (-15°

to +15°), cropping (0-20% zoom), brightness adjustment (-15% to

+15%), exposure adjustment (-10% to +10%), Gaussian blur (up to
Frontiers in Plant Science 04
4.8 px), noise addition (up to 1.99% of pixels), and shear

transformation (± 15° horizontally and vertically) in Figure 3. As

a result of these 12 augmentation methods, the expanded dataset

includes 7521 images for training, 744 for validation, and 365

for testing.

Implementation details: This study was implemented using a

Python deep learning framework on the Windows 11 operating
FIGURE 3

Display of some four eggplant diseases after enhancement.
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system. For the training process, a batch size of 16 was used, with

the SGD optimizer, an initial learning rate of 0.01, weight decay set

to 0.0005, and the training was carried out over 100 epochs. The

detailed experimental settings are provided in Table 1.
2.2 Methods

2.2.1 Macroscopic architecture of EggplantDet
Considering the scale variations of eggplant disease targets and their

susceptibility to complex background interference, we constructed

EggplantDet based on the YOLOv8 model. Figure 4 illustrates the

overall architecture of the proposed EggplantDet. The detection network

comprises three main components: the Backbone, the Multi-scale

Context Reconstruction Pyramid Network (MCRPN), and the Head.
Fron
• Backbone: The input feature map size is 640×640×3,

utilizing multiple 3×3 convolutions to reduce image

dimensions and increase channel numbers. To extract

features across various disease scales and emphasize the

edge information of the diseases, the CSP-MSEIE module

was designed and integrated into the Backbone (as shown in
tiers in Plant Science 05
Figure 3). The convolution, CSP-MSEIE, and SPPF modules

work together to generate P3 features of 80×80×256, P4

features of 40×40×512, and P5 features of 20×20×1024 for

the subsequent MCRPN network.

• MCRPN: As depicted in the center of Figure 3, P3, P4, and

P5 are first processed through the RCM (Ni et al., 2024)

module to reconstruct and extract key contextual features in

both horizontal and vertical directions. Subsequently, the

MCEM module integrates features from different levels,

while the MSIM and DIIM modules fuse multi-scale

features. This significantly improves target recognition

performance in complex backgrounds.

• Head: The detection head integrates features from three

scale layers: P3, P4, and P5. This design effectively captures

fine-grained information in low-level feature maps, thereby

enhancing detection accuracy for multi-scale targets. In

terms of loss functions, the model retains traditional box

and classification losses to ensure accurate prediction box

locations and categories.
Overall, the model applies targeted optimizations to both the

Backbone and Neck components. Specifically, the introduction of

the CSP-MSEIE module and MCRPN network significantly

enhances the extraction and fusion of multi-scale and edge

features, enabling EggplantDet to exhibit greater robustness and

accuracy in eggplant disease detection tasks.
2.2.2 Cross-Stage Partial - Multi-scale Edge
Information Enhance (CSP-MSEIE)

To extract multi-scale features and emphasize target edge

information, we designed the Multi-scale Edge Information

Enhance (MSEIE) module. We integrated it with the Cross Stage
TABLE 1 Experimental environment.

Name Details

Programming language Python 3.9

GPU NVIDIA GeForce RTX 4090

CUDA 11.8

Pytorch 2.0.1

Platform Visual Studio Code
FIGURE 4

The overall architecture of EggplantDet.
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Partial Net (CSP) structure to form the Cross Stage Partial-Multi-

scale Edge Information Enhance (CSP-MSEIE) module, enhancing

the learning capability of convolutional neural networks in the

Backbone. As depicted in Figure 5, the MSEIE module is comprised

of three main components: (1) Multi-scale feature extraction:

Different parameters of AdaptiveAvgPool (3, 6, 9, 12) are used to

achieve multi-scale pooling, extracting local information of different

sizes, which helps capture hierarchical features of images. (2) Edge

enhancement: The Edge Enhancer module is specifically designed

to extract disease edge information, thereby enhancing the

network’s sensitivity to edge features. As illustrated in Figure 6,

the Edge Enhancer module initially applies average pooling to the

input feature map to capture low-frequency information. Next, the

smoothed feature map is subtracted from the original input feature

map to extract the enhanced edge information (high-frequency

details). Finally, this high-frequency information is added back

to the original feature map to produce the enhanced output. (3)

Feature fusion: Features from various scales are aligned to a unified

scale through interpolation operations, and after concatenation,

they are fused through convolutional layers into a unified feature

representation, thus improving the model’s perception of multi-

scale features. The CSP-MSEIE module integrates multi-scale

feature extraction, edge information enhancement, and

convolution operations. Incorporating the CSP-MSEIE module

into the Backbone notably enhances edge features and the

model’s capacity to extract features.
Frontiers in Plant Science 06
2.2.3 The principle and details of the MCEM,
MSIM and DIIM

To more effectively reconstruct spatial features and capture

multi-scale contextual information, we designed three key modules:

Multi-scale Context Extraction Module (MCEM), Multi-source

Interaction Module (MSIM), and Dynamic Interpolation

Interaction Module (DIIM). In the MCEM module, for the P3,

P4, and P5 level features extracted by the Backbone, average pooling

is first applied to unify feature scales and perform fusion, followed

by the use of the RCM module to model axial global context for

extracting rectangular key region features. Finally, the features P’3,

P’4, and P’5 features are generated through the split operation,

thereby effectively integrating information from different levels and

enhancing the contextual awareness of the MCRPN network. In the

MSIM module, convolution operations are first used to adjust the

number of channels, then the sigmoid function and interpolation

algorithm further adjust feature dimensions, followed by the

multiplication of features from two branches. In the DIIM

module, interpolation operations automatically adjust the

dimensions of matching features, followed by convolution

operations for additive fusion. These three modules greatly

enhance the model’s capability to capture features across multiple

scales and enhance target recognition performance in complex

backgrounds by employing dynamic interpolation and the fusion

of multiple features. This process can be specifically expressed in

Equations 1–3:
FIGURE 5

The structure details of the MCEM, MSIM and DIIM.
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outputMCEM = Split(RCM(C(AP(P3, P4, P5))))1 (1)

outputMSIM = X1 + (Interpolation(Conv(X2)))2 (2)

outputDIIM = X1 � Interpolation(S(Conv(X2)))3 (3)

Where AP(·) represents the average pooling operation, S represents

the h-sigmoid function, + denotes addition operation, × denotes

multiplication operation, and C(·) is the Concatenation operation.
3 Experiments

3.1 Experimental indicators

In this study, we used several indicators to assess the

performance of our model: GFLOPs, Parameters, mean Average

Precision (mAP50-90), mean Average Precision (mAP50), and
Frontiers in Plant Science 07
Frames per second (FPS). Of these, mAP50 was selected as the

primary evaluation metric. The procedure for calculating the mean

Average Precision is described in Equations 4–7.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

AP =
Z
0
P(R) dR (6)

mAP = o
K
i=1APi
K

(7)

The variable K signifies the total count of distinct object

classifications within the dataset, while each class’s precision is

quantified by its specific Average Precision (AP) score. In the
FIGURE 6

The structure of the CSP-MSEIE.
TABLE 2 Comparison with advanced object detection models on the PlantDoc dataset.

Model Params GFLOPs mAP50-95 mAP50 FPS

YOLOv8n (baseline) (Redmon and Farhadi, 2025) 3.0M 8.1 0.285 0.420 190.4

YOLOv9t (Wang et al., 2024b) 2.1M 7.6 0.290 0.423 193.4

YOLOv10n (Wang et al., 2024a) 2.3M 6.6 0.286 0.428 209.5

YOLOv11n (Jocher and Qiu, 2024) 2.6M 6.3 0.295 0.431 227.6

EggplantDet (Ours) 3.1M 7.7 0.304 0.438 241.2
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TABLE 3 Detection results with different models on the eggplant disease dataset.

Model Params GFLOPs mAP50-95 mAP50 FPS

Faster-RCNN (Ren et al., 2017) 314M 341.2 0.451 0.721 92.7

SSD (Liu et al., 2016) 53M 112.5 0.418 0.682 44.6

RT-DETR (Zhao et al., 2024) 82M 109.6 0.447 0.728 109.2

YOLOv3 (Redmon and Farhadi, 2018) 12M 19.0 0.423 0.746 80.1

YOLOv5n (Jocher et al., 2022) 2.5M 7.1 0.439 0.763 92.9

YOLOv6 (Li et al., 2022) 4.2M 11.8 0.438 0.755 106.6

YOLOv7 (Wang et al., 2022) 5.6M 13.4 0.426 0.768 118.5

YOLOv8n (Baseline) (Redmon and Farhadi, 2025) 3.0M 8.1 0.469 0.805 186.1

YOLOV8s (Redmon and Farhadi, 2025) 11.1M 28.4 0.478 0.815 108.1

YOLOv9t (Wang et al., 2024b) 2.0M 7.6 0.463 0.810 203.7

YOLOv10n (Wang et al., 2024a) 2.3M 6.5 0.474 0.815 226.1

YOLOv11n (Jocher and Qiu, 2024) 2.6M 6.3 0.476 0.826 250.8

EggplantDet (Ours) 3.1M 7.7 0.503 0.843 270.5
F
rontiers in Plant Science
 08
FIGURE 7

Comparison of detection accuracy during training of different models on the eggplant disease dataset.
TABLE 4 The results of the ablation study on the eggplant disease dataset.

Baseline CSP-MSEIE MCRPN MCEM Parameters GFLOPs mAP50-95 mAP50 FPS

3,006,428 8.1 0.469 0.805 186.1

✓ 2,855,900 7.6 0.474 0.823 221.2

✓ 3,339,492 8.3 0.481 0.818 217.7

✓ 3,114,612 8.1 0.467 0.816 209.8

✓ ✓ 3,237,964 7.8 0.493 0.837 266.5

✓ ✓ 3,034,108 7.9 0.489 0.832 251.4

✓ ✓ 3,439,628 8.2 0.487 0.828 247.8

EggplantDet(ours) ✓ ✓ ✓ 3,183,580 7.7 0.503 0.843 270.5
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performance evaluation equations, several key indicators are

utilized: True Positives (TP) represent accurately identified

instances of the target condition, False Positives (FP) indicate

cases where the algorithm incorrectly flagged non-existent

conditions as present, and False Negatives (FN) encompass

actual occurrences of the condition that the system failed

to recognize.
Frontiers in Plant Science 09
3.2 Comparison studies

To verify the generalization ability of the proposed detection

model, this paper first compared the disease detection performance

of current mainstream advanced object detection models on the

public PlantDoc dataset. As shown in Table 2, compared with the

baseline model, EggplantDet achieved improvements of 4.3% and
FIGURE 8

The visualization detection results of different models, (A) Baseline Model; (B) YOLO11; (C) EggplantDet.
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6.7% in mAP50 and mAP50–95, respectively. Compared with the

advanced YOLO11n, EggplantDet improved mAP50–95 by 3.0%

and mAP50 by 1.6%. Additionally, in terms of Frames per second

(FPS), EggplantDet also outperformed other advanced mainstream

detection models.

Secondly, to further verify the advantages of the proposed

eggplant disease detection model, we conducted a comprehensive
Frontiers in Plant Science 10
experimental comparative evaluation on the augmented eggplant

disease dataset. Table 3 presents the experimental results of several

advanced detection algorithms, including both two-stage and

mainstream single-stage models for comparison. As shown in

Table 3, two-stage detectors (e.g., SSD and Faster R-CNN) exhibited

significantly lower mAP and FPS compared to the proposed method.

Additionally, they required substantially more parameters and
FIGURE 9

The visualization detection results of different models, (A) Baseline Model; (B) YOLO11; (C) EggplantDet.
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GFLOPs than the other algorithms. Among single-stage detectors,

EggplantDet achieved the best mAP50–95, mAP50, and FPS, while

maintaining similar parameter counts and GFLOPs. Compared to the

baseline YOLOv8n, EggplantDet achieved 84.3% mAP50 and 50.3%

mAP50–95, with respective improvements of 4.7% and 7.2%. Notably,

EggplantDet outperformed the state-of-the-art YOLO11n by 0.017 in

mAP50, 0.027 in mAP50–90, and 19.7 in FPS. Figures 7A, B visually

demonstrate the mAP comparison between EggplantDet and the

baseline model on the enhanced eggplant dataset, indicating

EggplantDet’s excellent performance throughout the process. In

conclusion, the improved EggplantDet network demonstrates

excellent performance in both detection accuracy and speed,

possessing high practical value.
3.3 Ablation studies

To evaluate the effectiveness of the proposed modules, YOLOv8

was adopted as the baseline model, and each module was tested

individually on the enhanced eggplant disease dataset. The ablation

results for the proposed modules are presented in Table 4. Initially, the

CSP-MSEIE, MCRPN, and MCEM modules were introduced

individually. Each module contributed to improvements in detection

performance. Specifically, introducing CSP-MSEIE alone yielded the

highest improvement in mAP50, whereas MCRPN contributed the

most to mAP50–95. Subsequently, the modules were combined in

pairs. All three combinations further enhanced detection

performance, demonstrating strong synergy among the modules.

Notably, the combination of CSP-MSEIE and MCRPN resulted in

mAP50–95, mAP50, and FPS increasing to 49.3%, 83.7%, and 266.5,

respectively. Finally, all three modules were integrated simultaneously.

As shown in the last row of Table 4, combining the proposed modules

improved the model’s mAP50 and mAP50–95 by 4.7% and 7.2%,

respectively, with FPS reaching 270.5. This further confirms the

efficacy of the proposed CSP-MSEIE, MCRPN, and MCEM

modules in detecting eggplant diseases.
3.4 Visual comparative studies

Figures 8, 9 demonstrate EggplantDet’s detection results

compared with those of the baseline model and advanced model on

the eggplant disease dataset. The figures visually confirms the

proposed detection network’s advantages. The results show that

EggplantDet achieves the highest detection accuracy across all four

categories, significantly outperforming both the baseline and advanced

model YOLO11n. These results suggest that the proposed model

outperforms others in eggplant disease detection. Consequently, it

offers a promising solution for crop disease detection tasks.
4 Conclusion

Crop pest and disease detection technology provides strong

support for the development of smart agriculture. To address
Frontiers in Plant Science 11
challenges such as disease scale variations, blurred edge features,

and background interference in eggplant diseases, this paper proposes

an eggplant disease detection network based on multi-scale edge

feature enhancement (EggplantDet), which effectively improves the

detection accuracy and localization precision of diseased areas while

enhancing detection speed. In the feature extraction stage, the CSP-

MSEIE module is incorporated to capture hierarchical features, and

the EdgeEnhancer module is used to extract edge information,

thereby enhancing the network’s sensitivity to edges. In the feature

processing stage, the MCRPN network captures multi-scale

contextual information in horizontal and vertical directions and

obtains axial global context to explicitly model rectangular key

regions, effectively integrating feature information from different

levels. Finally, a range of data augmentation techniques is applied

to enhance the eggplant disease dataset, thereby boosting the

detection model’s ability to generalize. The enhanced detection

network outperforms the advanced object detection model

YOLO11n, in both detection accuracy and speed. In the future, we

will continue to research disease detection networks for more crop

varieties and explore lightweight and efficient pest and disease

detection technologies to accelerate the transformation of research

results into precision crop cultivation applications.

Future work will focus on extending disease detection networks

to additional crop species and exploring lightweight, efficient

detection technologies to accelerate the deployment of intelligent

pest and disease monitoring in precision agriculture.
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