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Xichang University, Xichang, Sichuan, China

Introduction: To elucidate the physiological and molecular responses of peanut
(Arachis hypogaea L L. c.v. 'Haihua No. 1') to copper stress, this study aimed to
investigate the changes in root morphology, ion content, oxidative stress, and
gene expression under copper stress conditions.

Methods: Seedlings were exposed to 0 (control) or 50 mg/L CuSO, solution, with
three biological replicates for each treatment. Root length and biomass were
measured quantitatively, along with tissue contents of eight ions (K*, Na*, Mg®*,
Ca%*, Fe3*, Mn?*, Cu?*, Zn?"), secondary oxidative stress indices, and activities of
key antioxidant enzymes. RNA-seq and gPCR validation were performed to
analyze transcriptional changes and identify specific gene-response modules
in peanut seedling roots under copper stress.

Results: Copper stress significantly induced the expression of MPK4, a key
component of the MPK4 pathway. Post-translationally, MPK4 likely
phosphorylated two critical protein classes: NAC and LBD. NAC functioned as
a core transcription factor, directly regulating the transcription of copper
defense-related genes. LBD directly down-regulated genes associated with
lateral root growth, indirectly promoting the expression of genes involved in
GSH-dependent heavy metal detoxification and secondary oxidative stress (e.g.,
GST and POD), thereby enhancing the plant's detoxification and
antioxidant capacity.

Discussion: This study provides insights into the regulatory mechanisms that
peanut plants employ to cope with copper stress. The findings highlight the roles
of MPK4, NAC, and LBD in the plant's response to copper stress and suggest that
these genes could be targeted in breeding programs to develop copper-tolerant
peanut cultivars. The results may provide theoretical support for the
development of such cultivars.

Arachis hypogaea, copper stress, physiological response, MAPK pathway,
gene expression
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Introduction

With the rapid acceleration of industrialization and continuing
population growth, heavy-metal contamination of soils has
escalated into a critical global environmental concern (Li et al,
2020). According to the Survey Bulletin on the National Soil
Contamination Status (Ministry of Environmental Protection and
Ministry of Land and Resources, April 2014), 16.1% of all
monitored sites across China exceeded national environmental
quality standards; among these non-compliant sites, 82.8% were
attributed to inorganic pollutants, and copper (Cu®**) alone
exhibited a site-exceedance rate of 2.1% (Wu et al, 2021). In
China, the Southwest region constitutes a major non-ferrous
metallogenic belt, and mining as well as smelting operations
within this region are the dominant sources of soil contamination
by Cu®*, Fe**, Zn?*, and other heavy metals (Borkert and Cox,
1999). For example, soils surrounding the Dongchuan and Luchun
copper mines in Yunnan Province exhibit pronounced heavy-metal
enrichment, with concentrations markedly exceeding regional
geochemical background values (Afzal et al, 2022). Such
contamination not only suppresses local vegetation growth but
also poses a potential threat to human health via trophic transfer
through the food web (Demecsova et al., 2020).

Peanut (Arachis hypogaea L.) is cultivated worldwide and serves
as a pivotal economic and oilseed crop in southwest China; its yield
and quality directly determine agricultural productivity and food
safety in peanut-producing regions (Kobayashi et al., 2019).
Nevertheless, in Cu®"-contaminated soils both vegetative growth
and kernel quality are severely compromised. Excess Cu®" not only
suppresses plant development, but also compromises the safety of
peanuts destined for human consumption (Sharma et al., 2021).
Therefore, elucidating the response mechanisms of peanut to Cu**
stress is essential for ensuring regional agricultural sustainability
and food security.

During long-term evolution, plants have developed a
sophisticated network of heavy-metal stress responses, including
antioxidant defense, signal transduction, and ion-homeostatic
regulation to adapt to their surrounding geochemical
environments (Cai et al, 2023). Under metal stress, excessive
reactive oxygen species (ROS) are scavenged through the
activation of antioxidant enzymes such as superoxide dismutase
(SOD), glutathione peroxidase (GPX), and catalase (CAT) (Wang
et al, 2021). Concomitantly, plants maintain intracellular metal
homeostasis via finely tuned ion-balance mechanisms; for instance,
under Fe** deficiency, the expression of FERRIC REDUCTION
OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER 1
(IRTI) is up-regulated to enhance Fe uptake and translocation
(Zhai et al., 2017).

Among the signaling networks that orchestrate these responses,
the mitogen-activated protein kinase (MAPK) cascade functions as
a pivotal pathway enabling plants to perceive and transduce
external stress cues (Yadav et al., 2021). MAPK modules typically
operate through sequential phosphorylation (MAPKKK —
MAPKK — MAPK) to regulate downstream transcription factors,
thereby initiating defense mechanisms against metal toxicity
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(Takatsuji, 1998). In Arabidopsis, the MEKKI-MKK4/MKK5-
MPK3/MPKG6 cascade confers resistance to both abiotic and biotic
stresses (Xu et al., 2019). Similarly, in rice, infection by
Magnaporthe oryzae triggers endoplasmic-reticulum-stress-
mediated activation of MAPK cascades to enhance disease
resistance (Li et al., 2021). In potato (Solanum tuberosum), the
StMEKI-mediated MAPK cascade plays a pivotal role in immunity
against pathogens (KChan et al., 2021) whereas in cotton (Gossypium
hirsutum) the GhMAP3K65 gene modulates pathogen perception
via salicylic acid, jasmonic acid, and ethylene signaling, as well as
ROS homeostasis; silencing GhMAP3K65 significantly enhances
resistance to Ralstonia solanacearum (Ammar et al., 2025).

Beyond biotic stresses, MAPK pathways are also integral to
heavy-metal tolerance. Under Zn>' stress, MYB72 protein
orchestrates Zn>* uptake and detoxification (Peralta et al., 2022);
Cd** exposure activates MPK3 and MPK6 via ROS accumulation to
enhance Cd** tolerance in Arabidopsis (Liu et al., 2010); Cr** stress
induces the bZIP transcription factor TGA3 to promote H,S
biosynthesis through transcriptional activation of LCD, thereby
improving Cr’* resistance (Fang et al,, 2017); Pb>" exposure up-
regulates RsWRKY to modulate the antioxidant system (Khedia
et al, 2019); Ni** stress is mitigated by SbMYBI5 regulated
antioxidant enzyme activities (Sapara et al., 2019); and As
tolerance is conferred by OsARMI-mediated control of As uptake
and root-to-shoot translocation (Wang et al., 2017). Collectively,
these studies demonstrate that MAPK cascades initiate heavy-metal
stress defense by phosphorylation-dependent activation of
downstream transcription factors.

Consistent cross-species multi-omics evidence has established
the MAPK cascade as the convergent node that integrates ROS, NO,
and hormonal signals during heavy-metal stress, directly
phosphorylating key transcription factors such as WRKY, MYB,
and bZIP to activate antioxidant and ion-homeostatic networks (Li
et al., 2022). Nevertheless, the expression patterns of the MAPK
module and its Cu*"-specific defense logic in peanut under Cu**
stress remain undocumented.

To address this knowledge gap, we exposed peanut seedlings to
0 and 50 mg/L Cu®* for 48 hours using a hydroponic system. By
combining root transcriptomics with physiological readouts, we
aim to elucidate the response mechanisms of the MAPK signaling
pathway, antioxidant enzymes, and transcription factor DEGs in
peanut roots to copper stress, thereby providing a theoretical basis
for breeding heavy-metal-resistant crops.

Materials and methods
Material cultivation

Seeds of peanut cultivar ‘Haihua No. I’ were used. Intact,
uniformly sized seeds were selected on the basis of 100-seed
weight and kernel diameter using a caliper and analytical balance.
Selected seeds were surface-sterilized with 70% (v/v) ethanol for 10
min, rinsed three times with sterile deionized water, and germinated
on moist filter paper in Petri dishes at 28 + 1 °C in darkness.
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Distilled water was replenished every 12 h to maintain constant
moisture. After 72 h, the seedlings were cultured in distilled water
for 4 days at 25 °C to be used as experimental material.

Experimental design

The experiment consisted of two treatment groups: a distilled
water control (CK) and a copper stress treatment (Cu). The copper
stress treatment was administered using 50 mg/L of CuSO,-H,O. Each
treatment was applied for 48 hours with three biological replicates.

After the treatment, we photographed the samples to document
their growth status. Subsequently, we harvested the roots. A portion
of the root samples was immediately frozen in liquid nitrogen and
stored at -80 °C for subsequent physiological, transcriptome (RNA-
seq), and RT-qPCR analyses. The remaining samples were blanched
at 90 °C for 30 minutes, then oven-dried to a constant weight at 60 °
C to measure the content of various ions in the tissues.

Metrics and analysis methods

Growth phenotype of peanut seedling roots

The growth status of the peanut seedlings was documented by
taking high-resolution photos with a smartphone. Subsequently, the
roots were harvested, and root length was measured with a caliper,
while fresh root weight was determined using an electronic balance.

Analysis of oxidative stress indicators and
antioxidant enzyme activities in peanut seedling
roots

Frozen peanut root samples stored at -80 °C were used to
determine several stress-related physiological indices. These
included the content of reactive oxygen species (ROS), specifically
superoxide anion (O,") and hydrogen peroxide (H,0,), as well as
malondialdehyde (MDA). We also measured the activities of three
antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT),
and peroxidase (POD) (Dong et al., 2023).

Absolute quantification of eight cations in peanut
seedling roots

Dried samples were digested in 5 mL HNO;/HCIO, solution
(5:1, v/v) at 180 °C until the solution became clear. The resulting
digest was then brought to a final volume of 25 mL with ultrapure
water. The absolute content of the eight cations (K", Na™, Ca?t, Mg2
* Fe**, Mn>*, Cu®", and Zn*") was determined using flame atomic
absorption spectrophotometry (AAS, PinAAcle 900T, PerkinElmer,
USA). The measurements were validated using matrix-matched
standards and a certified reference material (NIST 1573a).

High-throughput transcriptome sequencing
(RNA-seq)

Total RNA was extracted from peanut roots stored at —80 °C
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to
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the manufacturer’s protocol. RNA integrity was assessed using an
Agilent Bioanalyzer 2100 system with the RNA Nano 6000 LabChip
kit (Agilent Technologies, Santa Clara, CA, USA), and only samples
with an RNA integrity number (RIN) > 8.0 were used for
subsequent steps.

Strand-specific cDNA libraries were constructed from 2 ug of
total RNA using the TruSeq RNA Sample Preparation Kit v2
(Ilumina, San Diego, CA, USA) according to the manufacturer’s
guidelines. Briefly, poly(A)-enriched mRNA was purified with oligo
(dT)-conjugated magnetic beads, fragmented, and reverse-
transcribed into ¢cDNA. The ¢cDNA was then end-repaired, A-
tailed, and ligated to indexed adapters. After 12 cycles of PCR
amplification (98 °C for 30 s; 12 cycles of 98 °C for 10 s, 60 °C for
305,72 °Cfor 30 s; 72 °C for 5 min), the libraries were quantified with
a Qubit 3.0 fluorometer (Thermo Fisher Scientific) and validated on
the Bioanalyzer 2100. Paired-end 150-bp sequencing was performed
on the Illumina HiSeq 4000 platform by LC Sciences (Hangzhou,
China), generating approximately 6 Gb of clean data per sample
(Dong et al,, 2023). Our raw sequencing data have been uploaded to
the NCBI database (https://www.ncbinlm.nih.gov/). The accession
ID for the Sequence Read Archive (SRA) dataset is SUB15570566.

Quantitative real-time polymerase chain reaction
assay

Total RNA was extracted from root samples, which had been
snap-frozen in liquid nitrogen and stored at —80 °C to prevent RNA
degradation. The extraction was performed using the RNAiso Plus
reagent (Takara Bio, Kusatsu, Japan) according to the
manufacturer’s instructions. Subsequently, mRNA was enriched
from the total RNA using oligo(dT)-conjugated magnetic beads
(Invitrogen, Carlsbad, CA, USA) and further purified via probe-
based hybridization. First-strand cDNA was synthesized with the
GoScriptTM Reverse Transcription System (Promega, Beijing,
China) from 1 pg of purified mRNA.

Quantitative real-time PCR was performed on a Quan'[StudioTM
5 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA,
USA) using GoTaq® qPCR Master Mix (Promega, Beijing, China)
in a 20 pL reaction volume containing 2 uL of 1:10-diluted cDNA,
0.4 uM each primer, and 1 x master mix. Cycling conditions were
95 °C for 3 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for
30 s. Melting-curve analysis (65-95 °C, 0.5 °C increment) confirmed
amplicon specificity.

Actin-7 (GenBank ID: LOCI112715878) served as the internal
reference gene. Relative mRNA abundance was calculated by the
2044 method (Sun et al., 2024). Primer sequences and amplicon
sizes are listed in Supplementary Table S1.

Data processing and statistical analysis

Raw data for root growth parameters, physiological indices, and
RT-qPCR were organized and normalized in Microsoft Excel 2016.
After quality filtering with Trimmomatic v0.39, clean reads
were aligned to the Arachis hypogaea reference genome (NCBI
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Taxonomy ID 3818) using HISAT2 v2.2.1 (Kim et al., 2019) Gene-
level counts were generated with featureCounts v2.0.3 (Liao et al,
2014) Differentially expressed genes (DEGs) were identified using
edgeR v3.38.0 (Robinson et al., 2010) under thresholds of |log, fold
change| = 1 and FDR < 0.05.

GO and KEGG enrichment of DEGs and was conducted using
clusterProfiler v4.0 with a hypergeometric test (p < 0.05, Benjamini-
Hochberg correction).

For physiological phenotypes, ion contents, and RT-qPCR data,
one-way analysis of variance (ANOVA) was performed in R v4.3.1
using the aov() function, followed by Duncan’s multiple range test
(o0 = 0.05).

Data visualization was performed as follows: bar plots of
physiological data and KEGG enrichment results were generated
in Origin 2021; heatmaps were constructed with TBtools-II (Chen
et al., 2023).

Results

Root growth, oxidative stress, and
antioxidant responses in peanut seeding
roots under copper stress

Excess Cu”" markedly inhibited root elongation and biomass
accumulation in peanut seedlings. Compared with the control (CK),
50 mg/L. Cu”* treatment reduced mean primary root length by
32.9% (CK: 6.540 cm vs. Cu”*: 4.390 cm) and fresh root weight by
18.6% (CK: 0.590 g vs. Cu®*: 0.480 g). Concurrently, Cu®* stress
significantly elevated antioxidant enzyme activities (Figures 1A-C).
Superoxide dismutase (SOD) activity increased from 587.077 U g™
h™ in CK to 654.867 U g* h™ under Cu®" stress; catalase (CAT)
activity rose from 318.723 to 369.33 U g™ min™!, while peroxidase
(POD) activity exhibited the most pronounced induction,
increasing 1.75-fold (from 769.807 to 1 345. 14 U g min™). The
oxidative burst profile revealed that superoxide anion (O,") content
declined slightly (CK: 12.44 pg/g; Cu*: 10.873 ug/g), whereas
hydrogen peroxide (H,O,) and malondialdehyde (MDA)
accumulated markedly. H,O, content increased >16-fold (CK:
22.08 ug/g; Cu’*: 372533 pg/g), and MDA concentration rose
1.59-fold (CK: 7.06 umol/g; Cu?*: 112 pumol/g) (Figures 1D-F).
These data demonstrate that excess Cu”" elicits secondary oxidative
stress in peanut roots, triggering a compensatory up-regulation of
the enzymatic antioxidant system (SOD, CAT, and POD) to
mitigate Cu’*-induced ROS accumulation and membrane
lipid peroxidation.

Eight metal ion concentrations in peanut
seeding roots under copper stress

After 48 h of exposure, ionomic profiling revealed marked shifts
in root metal.

contents (Figure 2). Sodium (Na®) exhibited the sharpest
decline, dropping by 61.6%from 130.517 mg/kg in the control
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(CK) to 50.033 mg/kg under Cu®' stress. Potassium (K') and
calcium (Ca®*) showed modest variations: K* decreased from
11.407 to 9.577mg/g (-16.0%), whereas Ca®" slightly increased
from 7.77 to 8.557 mg/g (+10.1%), although neither change
reached statistical significance (p < 0.05).

Among divalent micronutrients, magnesium (Mg>*) fell by
52.5% (CK:6.6 mg/g; Cu**:3.137 mg/g), zinc (Zn>*) by 57.4%
(269.1 vs 114.547 mg/kg), and manganese (Mn’>") by 30.7%
(9.143 vs 6.34 mg/kg). Iron (Fe’") displayed only a marginal
reduction of 1.8% (90.793 vs 89.173 mg/kg).

In contrast, copper (Cu*") accumulation was dramatic. Root
Cu*" concentration surged 57.9-fold from 31.867mg/kg in CK to
1846.603 mg/kg under Cu’" stress.

Collectively, the data indicate that excess exogenous Cu®" not
only caused extreme Cu’" accumulation but also triggered
substantial losses of Na*, K*, Mg2+, 7Zn>*, and Mn>*, while Ca**
and Fe’" remained relatively stable. This ionic imbalance
underscores the severity of Cu’'-induced nutrient deficiency
stress in peanut roots.

DEGs and enrichment analysis of peanut
seedling roots under copper stress

Following 48 h of Cu®" exposure, volcano plots revealed a
striking transcriptional reprogramming (Figure 3). A total of 9901
DEGs were identified, with 2700 genes up-regulated and 7201 genes
down-regulated, indicating that Cu®" stress exerts a predominantly
repressive effect on root gene expression.

KEGG pathway enrichment analysis further uncovered
significant perturbations in primary and secondary metabolism.
Within the global “metabolic pathways” (ko01100), 743 genes were
suppressed while only 399 were induced (down/up ratio = 1.86).
This pronounced skew suggests a broad inhibition of carbohydrate,
amino-acid, and energy metabolism, likely compromising ATP-
dependent ion uptake and exacerbating nutrient deficiency.

Similarly, the “biosynthesis of secondary metabolites”
(ko01110) displayed 431 down-regulated versus 279 up-regulated
genes (down/up ratio =1.54). The disproportionate suppression of
this pathway implies that Cu®" stress hampers the production of
flavonoids, phenylpropanoids, and other stress-protective
compounds thereby weakening the root’s antioxidant
defense network.

These transcriptomic signatures reveal that excess Cu®" not
only triggers massive transcriptional repression but also targets
metabolic and secondary-metabolite pathways that are central to
energy homeostasis and oxidative stress mitigation in peanut roots.

Figure 4 summarizes the Gene Ontology (GO) enrichment of
differentially expressed genes (DEGs) in peanut roots exposed to 48
h of Cu®" stress, focusing on the 20 terms with the smallest p-values.
These categories illuminate the principal biological responses
triggered by excess Cu**.

From a Molecular Function (MF) perspective, we found the
terms for hydrolase activity acting on glycosidic bonds
(GO:0016798), hydrolase activity, hydrolyzing O-glycosyl
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FIGURE 1

Root growth, secondary oxidative stress and antioxidant enzyme activities in peanut seedling roots under two treatments. (A) Root growth
photographs; (B) Root length; (C) Root weight; (D) Superoxide dismutase (SOD) activity; (E) Catalase (CAT) activity; (F) Peroxidase (POD) activity;
(G) Superoxide anion (O,") content; (H) Hydrogen peroxide (H,O,) content; (I) Malondialdehyde (MDA) content.

compounds (GO:0004553), and general catalytic activity
(G0O:0003824). This means that hydrolase, oxidoreductase, and
transferase pathways were significantly activated during Cu**
stress. It is worth noting that oxidoreductase activity
(GO:0016491) and transferase activity (GO:0016740) showed
relatively weaker enrichment, which suggests that plants may
primarily utilize glycosyltransferases and related enzymes to
synthesize secondary metabolites to promote Cu** chelation and
detoxification. Meanwhile, terms such as intrinsic component of
membrane (GO:0031224) and plasma membrane (GO:0016020)
were significantly enriched, which emphasizes the critical role of
membrane-associated structures in Cu*" perception and stress
signaling. The extracellular region (GO:0044425) also showed a
modest enrichment, indicating that membrane-resident
peroxidative repair systems contribute to cell wall integrity under
Cu*" stress. Additionally, in terms of Biological Process (BP) terms,
external encapsulating structure organization (GO:0045229) was
the most prominent process, suggesting that plants rapidly
strengthen their cell wall architecture to form a physical barrier,
thereby limiting Cu®" influx into root tissues. Polysaccharide
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metabolic process (GO:0005976) and carbohydrate metabolic
process (GO:0005975) showed weaker enrichment, which
indicates that short-term (48 h) Cu®" stress prioritizes immediate
defense responses, meaning that plant carbohydrate metabolism
is affected.

Antioxidant-related DEGs in peanut
seedling roots under copper stress

Some DEGs related to antioxidant enzyme coding and
glutathione metabolism were listed in Figure 5. We found that
under copper stress, only two genes encoding copper/zinc
superoxide dismutase (Cu/Zn-SOD, CSD), LOCI112706839 and
LOC112772458, were transcriptionally upregulated. Interestingly,
no DEGs encoding catalase (CAT) were detected. In stark contrast,
the peroxidase (POD) superfamily exhibited a significant
transcriptional response. A total of 53 DEGs encoding PER
enzymes were identified, distributed across 20 subtypes, encoding
PER3, PER4, PER52, and PER53. Notably, the PER52 subtype alone
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Contents of 8 metal cations in peanut seedling roots under two treatments. (A) Sodium ion (Na*); (B) Potassium ion (K*); (C) Calcium ion (Ca®"); (D)
Magnesium ion (Mg?*); (E) Zinc ion (Zn?*); (F) Manganese ion (Mn?*); (G) Iron ion (Fe**); (H) Copper ion (Cu®").

comprised 13 DEGs, suggesting a recent gene duplication event that
may have conferred a selective advantage in reactive oxygen species
(ROS) scavenging during Cu®" stress. Additionally, two DEGs
encoding L-ascorbate peroxidase (APX), LOCI112747725 and
LOCI112800332, were also upregulated. This indicates that the
transcriptional activation of POD enzyme-encoding genes plays a
dominant role in the secondary oxidative stress response of peanut
roots to copper stress.
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The glutathione S-transferase (GST) superfamily contained 31
members, categorized into three subfamilies: GSTF (3 DEGs), GSTL
(6 DEGs), and GSTU (21 DEGs). Almost all GST genes were
upregulated, with the GSTU class showing the strongest response.
Concurrently, two DEGs encoding glutathione hydrolase (GGT),
LOCI112751306 and LOC112802049, were also upregulated by
copper stress. Collectively, these findings reveal that the
conversion and hydrolysis of glutathione are crucial mechanisms
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for peanut roots to cope with copper stress, acting synergistically
with the antioxidant enzyme system.

DEGs of mitogen-activated protein kinase
cascade in peanut seedling roots under
copper stress

Figure 6 listed some of the copper-responsive DEGs encoding
MAPK signaling pathway proteins. We found that all five DEGs
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encoding MPK were upregulated by copper stress, and the upstream
gene encoding MKK2, LOC112790474, was also upregulated. In
contrast, most of the DEGs encoding MAPKKK isoforms were
transcriptionally suppressed by Cu®'. Despite the transcriptional
suppression of MAPKKK at the sampling time point, it is
interesting to note that the transcription of its downstream MKK
and MAPK modules was activated by copper stress. This finding
may suggest that the core downstream modules of the MAPK
signaling pathway are activated in response to copper stress,
thereby playing a role in coping with the stress.
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Transcription Factor coding DEGs in
peanut seedling roots under copper stress

We also investigated the response of transcription factor-
encoding DEGs to copper stress, and in Figure 7, we found a large
number of DEGs in eight common transcription factor (TF) families.
Notably, some families showed a significant downregulation trend: 19
out of 21 DEGs in the bHLH family were consistently downregulated
under copper stress. A similar trend was observed in the GRAS family
(13 out of 15 DEGs) and the MYB family (13 out of 15 DEGs). In
stark contrast, all DEGs from the NAC family (8 DEGs) and the LBD
family (5 DEGs) were strongly upregulated by copper stress. This
suggests that while most transcription factor genes are suppressed,
members of the NAC and LBD families may be specifically
responsible for regulating downstream stress and adaptive
pathways in response to Cu" toxicity.

Quantitative real-time polymerase chain
reaction validation of high-throughput
transcriptome sequencing (RNA-seq)

To validate the accuracy of the RNA sequencing (RNA-seq)
data, we randomly selected 18 DEGs for quantitative real-time PCR
(RT-qPCR) validation. These 18 genes included 4 DEGs related to
the MAPK signaling pathway, 8 encoding transcription factor
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proteins, 2 encoding peroxidase (POD) enzymes, 2 encoding
glutathione S-transferase, and 2 additional randomly selected genes.

As shown in Figure 8, among the 18 DEGs, the expression
trends of 14 genes were consistent between the two testing methods,
indicating a high reliability of the RNA-seq data. However, the RT-
qPCR results for four DEGs (LOCI12706158 (ERF071),
LOC112726690 (ERF109), LOC112697019 (NAC037) and
LOC112695735 (RRSI)) were inconsistent with the RNA-seq
results, which might be attributed to technical differences between
the methods or the dynamic nature of gene expression.

Discussion

Secondary oxidative stress and
antioxidation in peanut roots under copper
stress

Elevated Cu®* concentrations not only disrupt normal cellular
physiology but also inhibit both cell division and elongation,
ultimately retarding overall plant growth. In the present study,
Cu®* exposure induced pronounced oxidative stress in peanut roots,
as evidenced by a 1.5-fold increase in malondialdehyde (MDA)
content relative to the control. This elevation indicates extensive
peroxidation of membrane lipids and, consequently, severe
oxidative injury to root cell membranes (Saleem et al.,, 2020).
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Heatmap of differentially expressed genes encoding antioxidant-related enzymes in peanut seedling roots under two treatments. CSD, Copper/Zinc
Superoxide Dismutase; PER, Peroxidase; APX, Ascorbate Peroxidase; GGT, Gamma-Glutamyltransferase; GST, Glutathione S-Transferase; GSTU,

Glutathione S-Transferase U.

Interestingly, although superoxide anion (O,’) levels decreased,
hydrogen peroxide (H,0,) accumulated 17-fold under Cu®" stress.
This apparent paradox aligns with the dual role of H,0O, as both a
reactive oxygen species and a signaling molecule. At elevated
concentrations, H,O, operates in a dose-dependent manner to
activate antioxidant defenses and to modulate the expression of
stress-responsive genes, thereby exerting profound regulatory
effects on plant growth and development (Khedia et al., 2019).

Under copper stress, the activities of three key antioxidant
enzymes in peanut seedling roots increased markedly: superoxide
dismutase (SOD) rose by 11%, catalase (CAT) by 16%, and
peroxidase (POD) by 75% (Figure 1). This concerted up-regulation
indicates that peanut initiates a robust enzymatic antioxidant defense
to mitigate Cu’"-induced reactive oxygen species (ROS)
accumulation and to maintain cellular redox homeostasis.

This pattern aligns with previous reports in which cadmium or
other heavy-metal stresses similarly enhance SOD and CAT activities

Frontiers in Plant Science

to quench ROS and limit oxidative damage (Liu et al,, 2014). The
disproportionately strong induction of POD observed here, however,
suggests that peanut may deploy a distinct POD-centric
detoxification strategy under Cu®" stress. Whether this reflects an
isoform-specific POD expansion, substrate preference, or interaction
with Cu®'-chelating metabolites remains to be elucidated.

Oxygen ion content in peanut roots under
copper stress

Copper stress elicited pronounced perturbations in the
concentrations of eight metal ions in peanut roots (Figure 2). As
we observed, Cu?' exhibited a dramatic surge (= 58-fold), while the
levels of Na*, K, Mg2+, 7Zn?*, and Mn?" declined significantly.

Integrated cation contents data and RNA-seq evidence suggests
that this disruption of ion balance is mechanistically linked to the
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transcriptional regulation of cation-transport genes. The underlying
mechanism involves competitive binding to shared transporters,
such as cation channels, heavy-metal ATPases (HMAs), and natural
resistance-associated macrophage proteins (NRAMPs). Specifically,
the downregulation of shaker-type K" channel transcripts (e.g.,
AKT/KAT homologs) and high-affinity K transporters (HKTs)
directly reduces K™ uptake, while the concomitant suppression of
ZIP and NRAMP family members restricts the acquisition of Zn>"
and Mn?* (Gao et al., 2008; Kazemi-Dinan et al., 2014; Xu
et al., 2015).

Concurrently, the plant initiates active defense mechanisms. We
observed the upregulation of genes encoding Cu’'-chelating agents
(e.g., metallothioneins, phytochelatin synthases) and Cu’
"-transporting P-type ATPases (HMAs), which facilitates the
intracellular sequestration of Cu®" and its vacuolar
compartmentalization. This process further exacerbates Cu®*
enrichment in the roots while simultaneously intensifying the
deficiencies of competing cations due to impaired uptake.
Furthermore, Cu®"-induced oxidative stress compromises membrane
integrity and ion selectivity, and the inhibition of root elongation along
with the reduction in root-hair density indirectly exacerbates these
nutrient deficiencies.

Nevertheless, the marked decline in Zn>* levels is likely to exert
deleterious effects on plant growth and development, as zinc
functions as an essential catalytic component of numerous
enzymes and is indispensable for photosynthesis, respiration, and
other vital physiological processes (Kazemi-Dinan et al, 2014).
Collectively, these findings demonstrate that copper stress imposes
severe negative impacts on peanut growth and, under extreme
conditions, may accelerate the onset of senescence and death in
peanut as well as in other plant species.
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The effect of copper stress on gene
transcription in peanut roots

RNA-seq analysis revealed extensive transcriptional
reprogramming in peanut seedling roots under Cu®* stress: 2700
genes were up-regulated and 7201 genes were down-regulated
(Figure 3). Volcano plots and enrichment profiling indicated that
these differentially expressed genes (DEGs) were predominantly
enriched in “metabolic pathways” and “biosynthesis of secondary
metabolites” (ko01100 and ko01110), corroborating that excess Cu?
" broadly perturbs primary and specialized metabolism (Bao et al.,
2021), thereby impairing normal physiological functions.

Gene Ontology (GO) enrichment further highlighted significant
over-representation of molecular functions related to oxidoreductase
and transferase activities (Figure 4). The concordance between these
GO terms and the observed increases in antioxidant enzyme activities
substantiates that peanut enhances its ROS-scavenging capacity by
transcriptional up-regulation of antioxidant-related genes, thereby
improving survival under Cu®" stress (Leng et al., 2015).

The MAPK cascade is a highly conserved signaling pathway
that transmits extracellular stimuli through sequential
phosphorylation events, thereby modulating gene expression, cell
proliferation, differentiation, and programmed cell death (Seger and
Krebs, 1995). In plants, this cascade has been shown to orchestrate
responses to a wide array of abiotic stresses. For instance, early
studies in Arabidopsis revealed that Fe deficiency triggers MAPK-
mediated phosphorylation cascades that modulate downstream
transcription factors (TFs), thereby initiating defense reactions
(Jian et al, 2024). Similarly, in mammalian systems, JNK and
p38-MAPKs govern inflammatory and apoptotic responses,
whereas the ERK pathway primarily regulates cell growth and
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Heatmap of differentially expressed genes encoding transcription factors from seven families in peanut seedling roots under two treatments. bHLH,
basic Helix-Loop-Helix; ERF, Ethylene Response Factor; DREB, Dehydration-Responsive Element-Binding Protein; RAP2, Related to AP2; GRAS,
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differentiation (Moustafa et al., 2014). In our study, the Cu®'-
induced upregulation of MPK4 and MKK2 (Figure 6) and the
strong upregulation of all 13 DEGs from the LBD and NAC
transcription factor families (Figure 7) occurred concurrently.
This co-expression pattern may suggest that under copper stress,
MPK4 protein in peanut roots has the opportunity to phosphorylate
members of the LBD and NAC families, thereby activating
downstream stress-responsive genes for Cu®" detoxification or
adaptation (Guo et al,, 2021).

NAC transcription factors are widely recognized for their
significant role in improving plant tolerance to abiotic stresses
such as drought and salinity (Shu et al., 2024). In recent years, an
increasing number of studies have also begun to uncover their new
functions in enhancing plant resistance to heavy metal stress. For
instance, heterologous overexpression of the AemNAC2 gene from
Aegilops markgrafii in wheat significantly enhanced the plant’s
tolerance to cadmium stress while markedly reducing the cellular
cadmium levels (Du et al., 2020). Similarly, in rice, overexpression
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of OsNAC300 increased the tolerance of transgenic rice to cadmium
stress, whereas its knockdown resulted in increased sensitivity to the
heavy metal (Liu et al., 2023). Furthermore, a study involving the
heterologous expression of the EuNACY gene from Eucommia
ulmoides in yeast demonstrated that it enhanced the yeast’s
tolerance to both copper and manganese stress. This was
accompanied by the upregulation of the yeast ScSMFI and the
ScSOD2 (Zhan et al., 2024). However, direct evidence is still scarce
regarding the precise heavy metal-responsive genes whose
transcription is regulated by these factors.

Although LBD proteins are widely recognized for their role in
regulating lateral organ development (e.g., lateral roots and leaves)
(Lee et al., 2009, Lee et al., 2019), some reports have also indicated
their function in responding to salt and drought stresses (Guan et al,,
2023; Chen et al., 2024). However, their role in enhancing plant heavy
metal tolerance is seldom reported. Based on the findings of the
present study (Figure 4 and Figure 5), the upregulation of LBD-
encoding genes may have a deeper significance. Under copper stress,
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FIGURE 8

RT-qPCR validation of 18 DEGs in peanut seedling roots under two treatments. MAPKK, Mitogen-Activated Protein Kinase Kinase; WRKY, WRKY
Transcription Factor; PER, Peroxidase; GSTU, Glutathione S-Transferase U; ERF, Ethylene Response Factor; bHLH, basic Helix-Loop-Helix; NAC, NAC
Transcription Factor; RRS, Resistance to Root Rot Symptom; PME, Pectin Methylesterase.

the plant might actively reduce lateral root growth by upregulating  detoxification, POD-mediated antioxidation and cell wall
these genes. This strategy is likely aimed at reallocating limited  biosynthesis, thereby prioritizing cell survival and homeostasis.

biological resources from root morphological development to more Additionally, although authentic Cu®* receptors remain
critical defense mechanisms, such as GSH-dependent heavy metal  unidentified, our RNA-seq revealed several DEGs encoding
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membrane proteins — such as receptor-like kinases (RLKs), wall-
associated kinases (WAKLs), LRR-RLKs, and ZIP transporters
(Supplementary Table $3) — as candidate upstream Cu’
*-perception components for future validation.

In this study, the MAPK cascade is positioned as a central hub:
upstream Cu”* signals (extracellular Cu** — ROS/NO burst —
MAPKKK activation) feed into the module, while downstream
phosphorylated MPKs target WRKY, bHLH and ERF
transcription factors (Figure 6, 7). RNA-seq identified eight
differentially expressed MAPKKKs, one MAPKK and five MPKs,
together with 75 TF genes (21 bHLH, 28 ERF, 8 NAC etc.),
providing the first transcriptional evidence that this linear “Cu**
— ROS/NO — MAPK — TF — defense gene” axis operates in
peanut roots under graded Cu®" stress. The precise molecular
interactions among these MAPK components and their target TFs
warrant further investigation.

Conclusions

Based on the integrated physiological and transcriptomic
studies, this research definitively demonstrates that the gene
response in peanut seedling roots exhibits remarkable specificity
within the “Cu®* — ROS/NO — MAPK — TF — defense gene”
model. Specifically, we have shown that copper stress strongly
induces the expression of MPK4, a key nodal point within the
MAPK pathway. Post-translationally, MPK4 is highly likely to
phosphorylate two critical protein classes: NAC and LBD. Within
this unique regulatory network, NAC functions as a core
transcription factor, directly regulating the transcription of copper
defense-related genes. Concurrently, LBD directly down-regulates
genes associated with lateral root growth. This action by LBD,
through a reallocation of biological resources, indirectly promotes
the increased expression of genes involved in GSH-dependent
heavy metal detoxification and secondary oxidative stress (e.g.,
GST and POD), thereby cooperatively enhancing the plant’s
detoxification and antioxidant capacity.
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