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Accurate and efficient detection of citrus leaf diseases is crucial for ensuring the
quality and yield of global citrus production. However, many existing agricultural
disease detection methods face significant challenges, including overlapping leaf
occlusion, difficulty in identifying small lesions, and interference from complex
backgrounds. These limitations often lead to reduced accuracy and efficiency of
object detection. Moreover, current models generally necessitate significant
computational resources and possess substantial model sizes, which restrict
their practical applicability and operational convenience. To tackle these issues,
this study presents a novel model named YOLO-Citrus. It is a lightweight and
efficient YOLOv1l-based model designed to enhance the precision of detection
while simultaneously minimizing computational expenses and the size of the
model. This makes it more suitable for practical agricultural applications. The
proposed solution incorporates three major innovations: the C3K2-STA module,
the ADown module, and the Wise-Inner-MPDIloU loss function. In particular,
YOLO-Citrus utilizes Star-Triplet Attention by embedding Triplet Attention into
the Star Block to enhance bottleneck performance in C3K2-STA. It also adopts
the ADown module as a lightweight and effective downsampling strategy and
introduces the Wise-Inner-MPDIloU loss to facilitate optimized bounding box
regression and enhanced detection accuracy. These advancements enable high
detection accuracy with substantially reduced computational requirements. The
experimental results demonstrate that YOLO-Citrus attains 96.6% mAP@O0.5,
representing an improvement of 1.4 percentage points over the YOLOvlls
baseline (95.2%). Furthermore, it reaches 81.6% mAP@0.5:0.95, i.e., an
enhancement of 1.3 percentage points compared to the baseline value of
80.3%. The optimized model delivers considerable efficiency gains, with model
size reduced by 25.0% from 19.2 MB to 14.4 MB and computational cost
decreased by 20.2% from 21.3 to 17.0 GFlops. Comparative analysis has
confirmed that YOLO-Citrus performs better than other models in terms of
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comprehensive detection capability. These performance enhancements validate
the model’s effectiveness in real-world orchard conditions, offering practical
solutions for early disease detection, precision treatment, and yield protection in

citrus cultivation.
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1 Introduction

The citrus industry, one of the most prominent fruit sectors,
performs a pivotal function within the overarching framework of
the contemporary agricultural economy (Dananjayan et al., 2022).
It is not only a key component of people’s daily diet but also a
significant source of income for farmers. Nevertheless, current
citrus cultivation is commonly threatened by various diseases,
including citrus canker, Huanglongbing (HLB), rust, and
melanose. These diseases cause significant yield and fruit quality
reductions, which in turn lead to substantial economic losses for
growers (Abdulridha et al, 2019). In recent years, it has been
reported that citrus diseases result in huge global losses. With
citrus canker, growers report losses exceeding 1 billion USD
annually in China, while the diseases also cause yield reduction
exceeding 50% in certain regions of Brazil. HLB is prevalent in Asia
and the Americas and is a constant threat to lemon and sweet
orange cultivations (Ali et al., 2023). Out of all major diseases, citrus
canker causes loss of leaves, early fruit detachment, twig dieback,
and heavy blemishing of the citrus fruit, while HLB causes plugging
of the nutrient transport, root decline, canopy dieback, and huge
decreases in both the yield and quality of the fruit (Cifuentes-
Arenas et al., 2022). The leaves of citrus serve as the primary sites
for disease occurrence. Therefore, the early detection and accurate
identification of these diseases are very important for their effective
prevention and control. Conventional methods used for the
detection of plant leaf diseases are based on manual inspection
and observation of lesions on leaves (Barbedo, 2016). As the
production scale increases, these methods become time-
consuming and more sensitive to various external conditions such
as weather and environmental factors, which result in low accuracy
and efficiency (Ferentinos, 2018). To solve these problems,
intelligent detection techniques based on computer vision and
deep learning are employed to enhance the precision and
effectiveness of citrus disease detection (Kamilaris and
PrenafetaBoldu’, 2018).

Recent advancements in computer vision and deep learning
technologies have led to significant breakthroughs in leaf disease
detection. These developments suggest automated identification of
disease types, early-stage symptom recognition, and large-scale
monitoring of plant health conditions (Wang et al., 2022).
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Convolutional neural network (CNN)-based object detectors are
mainly classified into two types: two-stage and single-stage
detectors (Luo et al, 2024). Two-stage detectors have gained
significant interest owing to their superior performance in terms
of precision and stability. For example, Alruwaili et al. (2022)
proposed a real-time Faster Region Convolutional Neural
Network (RTF-RCNN) model, which takes advantage of both
static images and real-time video streams to detect leaf diseases in
tomato plants. The RTF-RCNN model has obtained good
performance for both detection accuracy and robustness
compared to AlexNet and CNN models. Although two-stage
detectors achieve high accuracy for leaf disease detection, these
detectors are time-consuming during inference and resource-
consuming, making them impractical for real-time applications
that require fast response, such as orchards. Compared to two-
stage detectors, single-stage detectors such as YOLO are more
applicable to these tasks (Mo and Wei, 2024; Li et al., 2022; Xue
et al., 2023; Gao et al.,, 2024; Zhang et al,, 2022; Khan et al., 2025)
because they have faster inference speed and can still achieve
relatively good performance. For instance, Zhu et al. (2025)
designed CBACA-YOLOV5 by integrating multiple attention and
upsampling modules into YOLOV5s. Specifically, they applied the
convolutional block attention module (CBAM), coordinate
attention (CA), and the CARAFE upsampling module to enhance
the detection of small, asymmetric, and occluded disease features in
citrus leaves. The enhanced model is beneficial for feature
extraction and fusion and can be applied in real-time intelligent
agricultural robots. Therefore, single-stage detectors are more
applicable to real-time detection applications in dynamic orchards.

Inevitably, the complexity of deep learning models gradually
rises, and higher demands for computational resources and storage
space emerge, which will be limited in practice. Therefore, it is
necessary to optimize the lightweight design of YOLO models to
improve their applications in limited resources, such as edge devices
and mobile phones. For instance, Li et al. (2023) applied the
GhostNet backbone and depthwise separable convolution instead
of the backbone of YOLOv4, which greatly reduced the
computational complexity and model parameters. The
optimization model proposed in their method has a fast inference
speed and low computational overhead, which is suitable for real-
time deployment in tea-picking robots. Lyu et al. (2023) also
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optimized the YOLOSCL model for detecting citrus psyllids based
on YOLOvV5s. By compressing the network and lowering the
parameters, the model obtains higher detection accuracy and can
be mounted on the Jetson AGX Xavier edge computing platform.
The lightweight design of the aforementioned models plays a crucial
role in enhancing deployment efficiency and reducing
computational resource demands (Han et al, 2022; Zeng et al,
2023; Cui et al., 2023). However, how to balance detection accuracy
with computational efficiency while maintaining a lightweight
design remains an open challenge.

Moreover, the Intersection over Union (IoU) metric used in the
YOLO series is based solely on the geometric overlap of bounding
boxes, which constrains its sensitivity in lesion localization (Li et al.,
20245 Ji et al, 2023). This limitation is especially evident under
conditions of leaf occlusion or blurred lesion boundaries, such as
the diffuse margins observed in canker disease lesions. As a result,
the model becomes susceptible to missed detections and localization
drift. Consequently, there is an urgent need to introduce methods
such as dynamic shape constraints or edge feature enhancement to
improve localization accuracy and robustness in complex scenarios
(Abulizi et al., 2024).

To address the aforementioned technical challenges, this study
proposes YOLO-Citrus, a lightweight and improved model based
on the YOLOvl1ls architecture. It is designed to enhance citrus
disease detection in complex orchard environments characterized
by uneven lighting, dense foliage occlusion, overlapping fruits, and
varying background conditions. The core innovations of our
proposed approach are outlined as follows:

+ Data augmentation and expansion: The data enhancement
tools provided by the Roboflow platform are utilized to
perform processing operations, including image rotation,
scaling, flipping, and brightness adjustment, on the
acquired images of diseased citrus leaves. The augmented
data improve the generalization and robustness of the target
detection model, enabling it to be applied to
various datasets.

e (C3K2-STA (C3K2-Star-Triplet Attention) module: To
enhance feature extraction capability and reduce
computational complexity, the C3K2-STA module is
designed by integrating the Star Block structure and the
Triplet Attention mechanism into the C3K2 architecture.
This module improves the inference performance of C3K2,
reduces redundant computation, and enhances the
effectiveness of feature representation.

* ADown module: The ADown module is designed as a
downsampling component in the proposed model.
Average pooling and max pooling are combined with the
ADown module to extract global and local features.
Meanwhile, background and edge information are
enhanced by feature segmentation and concatenation of
the ADown module. In addition to that, the ADown
module can also greatly reduce the number of parameters
and computational complexity and improve the inference
efficiency of the model.
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* Wise-Inner-MPDIoU: To improve the accuracy and
stability of bounding box regression, a novel loss function
named Wise-Inner-MPDIoU is introduced as a
replacement for the original Complete Intersection over
Union (CIoU) loss in YOLOv11. This loss function adopts
the weighting strategy of Weighted IoU (WIoU) and the
corner distance constraint of MPDIoU. To improve the
localization of the bounding box more accurately, an inner
product distance constraint is introduced. By allocating
different weights in different situations, Wise-Inner-
MPDIoU highlights key bounding boxes and minimizes
the impact of position deviation. Meanwhile, the distance
between predicted boxes and ground truth boxes is also
minimized. The object localization capability of the model
is greatly improved, and the convergence rate in a complex
agricultural scene is greatly accelerated.

2 Dataset description
2.1 Data acquisition

The dataset for citrus disease detection in this study is mainly
collected from the citrus orchard experimental base of South China
Agricultural University (Guangzhou, Guangdong Province, China).
It covers various disease types such as canker, Huanglongbing, rust,
and melanose. Some representative images from the dataset are
displayed in Figure 1. Data collection is carried out from June to
December. In the process of taking images, both mirrorless
interchangeable-lens cameras (Canon R8) and handheld cameras
(iPhone 15 Plus) are employed as the shooting equipment. The
shooting distance is controlled between 30 and 100 cm to capture
the characteristics of citrus diseases. The main shooting
environment is natural light on sunny days, and the shooting
time is chosen between 10:00-11:30 a.m. and 2:30-4:00 p.m. In
these two time periods, the lighting is relatively stable, which
reduces the impact of intense illumination conditions and makes
the image quality more similar for subsequent enhancement and
processing tasks.

2.2 Data preprocessing

The annotation process is conducted using the LabelImg tool to
label the regions affected by citrus diseases, which ensures the
precise representation of both the location and category of each
disease in every image. Then, the annotated data are randomly
divided into training, validation, and test sets in an 8:1:1 ratio,
which consist of 1,046, 131, and 131 images, respectively. In order to
increase the diversity of the data and make the model more robust,
data augmentation techniques are applied to the dataset. These
methods convert images into grayscale to simulate different lighting
conditions and adjust the brightness to simulate varying light
intensities. In addition, Cutout is adopted to cover some areas of

frontiersin.org


https://doi.org/10.3389/fpls.2025.1668036
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Feng et al.

10.3389/fpls.2025.1668036

FIGURE 1

Some representative samples of our dataset. (A) Canker, (B) HLB, (C) rust, and (D) melanose. HLB, Huanglongbing.

the image randomly so as to make the model more adaptable to the
absence of information. Additionally, noise is added to make the
model more robust to interference, and random hue augmentation
is used to increase the diversity of color change. The effect of image
enhancement on the dataset via the image enhancement techniques
is illustrated in Figure 2. All images are uniformly resized to 640 x
640 pixels to meet the input specifications of the YOLO model and
ensure consistency across the dataset. After applying the
aforementioned data augmentation methods, the original 1,308
images are expanded to a total of 3,808 images. Specifically, the
number of samples per category increased to 1,026 for canker, 882
for HLB, 714 for rust, and 711 for melanose. These augmentations
greatly improve the diversity of the dataset and enhance the ability
to identify diseases in various imaging conditions (Lin et al., 2025;
Al-Masni et al., 2018).

3 Method
3.1 The YOLOvV11 network structure

YOLOVI1 is a newly developed and efficient object detection
algorithm introduced by the Ultralytics team. This version inherits
the excellent characteristics of the YOLO series algorithms. It is
applicable in scenes with high requirements of precision and real-
timeness (Khanam and Hussain, 2024). Compared to YOLOVS,
YOLOvV11 introduces several improvements. In particular, the C2f
module is substituted by the C3K2 module, which enhances feature
extraction by adjusting the convolutional layer configuration and
incorporating a more efficient cross-stage feature interaction
mechanism. Furthermore, a C2PSA module is appended after the
SPPF module and connected to the backbone network of YOLOv11,
which improves the ability to integrate multi-scale features. In the
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detection head, YOLOv11 keeps the anchor-free idea of YOLOVS
and introduces a dynamic gradient allocation module. By adjusting
the loss weights of classification and regression adaptively, the
contradiction between target localization and classification in
involved scenes is alleviated. The structure of the whole network
of YOLOv11 is shown in Figure 3.

3.2 Overview of our network

To accurately detect citrus leaf diseases in complicated
agricultural scenarios with low computational costs, this paper
presents an extension of the YOLOvI1 algorithm, named YOLO-
Citrus. By designing the C3K2-STA module, the ADown
downsampling strategy (Tong et al., 2024), and the Wise-Inner-
MPDIoU loss function (Tong et al., 2023; Zhang et al., 2023; Ma
and Xu, 2023), YOLO-Citrus overcomes the multiple challenges
existing in agricultural scenarios, such as leaf occlusion, tiny disease
spot detection, and complicated background disturbance. In
particular, as for the C3K2-STA module, it integrates dynamic
receptive field modulation with a cross-dimensional attention
mechanism to strengthen the discrimination of leaf texture
features and disease edge characteristics. The ADown module
utilizes the two-mode pooling strategy and axial feature
reorganization to preserve delicate disease information and
reduce computational cost. Moreover, the Wise-inner-MPDIoU
loss function enhances the localization accuracy of irregularly
shaped leaf lesions by introducing geometric constraints and a
dynamic weight strategy. For orchards with overlapping leaves,
non-uniform brightness, and environmental noise scenarios,
YOLO-Citrus can extract effective leaf features in real-time and
conduct disease pattern analysis. The global structure of YOLO-
Citrus is displayed in Figure 4.
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FIGURE 2

Effect of image enhancement on dataset. (A) Original, (B) grayscale, (C) brightness, (D) noise, (E) hue, and (F) cutout.

3.3 C3K2-STA

To address the limitation of neural networks in feature
extraction while keeping the network lightweight, the C3k2-STA
module is proposed. Not only can the module improve the inference
performance of the model, but it could also decrease the number of
model parameters and computation greatly. Specifically, the Triplet
Attention mechanism (Misra et al., 2021) is incorporated into the
Star Block of the StarNet (Ma et al., 2024) framework to form the
Star-Triplet Attention, as illustrated in Figure 5. Finally, this
designed block replaces the original BottleNeck module in C3.

As shown in Figure 6, Triplet Attention has three parallel
branches. The first two branches are designed to capture the
cross-dimensional interactions between channel C and spatial
dimensions H and W. In the third branch, the input features are
first processed through Zpooling, which is followed by the
convolution layer, and finally, spatial attention weights are
computed using the Sigmoid activation function. The output of
these three branches is summed up to get the final attention map.
Triplet Attention could reduce the information loss by modeling the
interaction in different dimensions (channel height, channel width,
and spatial dimensions) and then aggregation (Park et al., 2023). It
can improve feature representation by mining specific parts while
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reducing the computational cost and error as little as possible
without compromising too much.

The feature processing flow of the Star-Triplet Attention block
is as follows. First, the input feature F is processed by a depthwise
separable convolution to obtain the intermediate feature x. Then,
x is transformed through two different branches. In the first
branch, a convolution operation with ReLU activation and then
batch normalization are applied to obtain fr(x). In the second
branch, convolution and batch normalization are directly
employed to obtain fo(x). Subsequently, the outputs of these two
branches are then combined through element-wise multiplication
to generate the feature representation z, which is then input into
the Triplet Attention mechanism to enhance the feature
expression capabilities across channels and spatial dimensions to
generate z'. Then, z’ is processed by convolution and batch
normalization to compute the new feature v. Finally, v is
processed by a depthwise separable convolution, and element-
wise addition is added to the original input feature F to form the
final output y. The entire process integrates the depthwise
separable convolution, the Triplet Attention mechanism, and
residual connections to effectively enhance feature extraction
capability and overall model performance. The calculation
formulas are provided in Equations 1-7.
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Here, F represents the input feature, which is the output of the
initial feature processing. The operation fpuc(-) denotes the
depthwise separable convolution. The term fc(x) represents the
operation of convolution followed by batch normalization, and fz
(x) indicates the convolution operation with a ReLU activation
function, followed by batch normalization. z represents the
elementwise multiplication of two branches, and TA(-) signifies
the triplet attention mechanism. y indicates the final output that
incorporates a residual connection.

Figure 7 illustrates the architecture diagram of the C3K2-STA
module. This module utilizes Star Blocks for star operations and
discards the original bottleneck structure. As such, it reduces
redundant computations and the model size. Moreover, Star
Blocks can obtain high-dimensional feature spaces from low-
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dimensional space inputs, which significantly enhances the ability
to extract leaf disease features. By integrating the Triplet Attention
mechanism and modeling multi-dimensional interactions (i.e.,
channels, spaces, and positions in parallel), this module
simultaneously improves recognition performance while
maintaining lightweight computation.

3.4 ADown

The ADown module (Figure 8) is a significant innovation in
YOLOVY, introducing an efficient downsampling mechanism that
enhances network depth and complexity without substantially
increasing the number of parameters. This module combines
average pooling and max pooling operations, which capture the
global information, and the latter highlights local features (Zhang
et al., 2024). Specifically, the input feature map undergoes average
pooling and is then divided into two parts along the channel
dimension. One part is directly convolved, while the other
undergoes max pooling followed by convolution. At last, two
feature maps are concatenated as the final output. Since the
ADown module can extract both background information and
edge information at the same time, it is applicable to leaf disease
detection. In contrast, the network structure of YOLOv11 mainly
relies on the Convolution-BatchNormScale (CBS) module for the
downsampling. Although it can also realize effective feature
extraction and non-linear transformation, many parameters bring
more computational cost. Despite the kernel size, stride, and
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The YOLO-Citrus network architecture.

padding of this module being reasonably set, it still affects the
inference cost. To alleviate the above problem, the CBS module in
the backbone and neck of the model is replaced with the ADown
module, which reduces computational cost and
improves performance.

3.5 Wise-lnner-MPDIloU

In object detection, the core objective of bounding box
regression is to optimize the predicted boxes so as to closely align
with the ground truth (GT) annotations (He et al., 2019). The IoU
has emerged as a widely adopted metric for evaluating the accuracy
of these predictions (Rezatofighi et al., 2019). This metric assesses
the degree of matching between the predicted box and the true box
by computing the ratio of their intersection area to their union area.
The mathematical formulation is given in Equation 8.
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(@)

where B, and B, represent the area of the predicted bounding
box and the ground truth bounding box, respectively. However,
YOLOvV11 adopts the CIoU loss for regression due to its obvious
limitations when the loss presents multi-factor improvements on
the performance of the bounding box (Feng and Jin, 2024).
Specifically, when the width-to-height ratio of the predicted box
is linearly proportional to that of the ground truth box, the width-
to-height ratio penalty (expressed as a relative value) in CloU
becomes ineffective, resulting in slower convergence. In addition,
the inverse trigonometric function used in CloU leads to high
computational cost during training, which may degrade the
overall efficiency.

In response to these limitations, this study attempts to alleviate
these issues by designing the Wise-Inner-MPDIoU loss function.
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FIGURE 5
The Star-Triplet Attention block.

Differing from previous loss functions, the Wise-Inner-MPDIoU
loss function combines a dynamic weighting strategy of WIoU,
geometric precision of MPDIoU, and inner region sensitivity of
Inner-IoU in a synergistic way. WIoU adopts a non-monotonic
focusing way and adaptive gradient allocation to alleviate the
harmful gradient from outliers and dynamically weigh
overlapping areas to reduce the deviation of position (Du et al,
2023). The Inner-IoU component enhances localization accuracy by
prioritizing internal overlap quality through a minimum-area
normalization strategy. It replaces the union area used in IoU in
previous methods with the smaller area of the two bounding boxes,
which enhances the sensitivity to small targets or occluded targets.
MPDIoU further improves the method by enforcing exact corner-
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point alignment between predicted and ground truth boxes, which
solves the convergence delay problem brought by the aspect ratio
dependencies of CIoU (Cao et al., 2024).

WIoU v3 is chosen as the preferred variant in this study to
extend the distance-attention framework of WIoU v1 with a non-
monotonic focusing coefficient () and lower gradient gains due to
the low quality of the samples. By computing a distance-based
weight Ry, to modulate the IoU loss, the formulation of WIoU is
defined in Equations 9-11.

LIOU =1-1IoU (9)

(x - xgt)z +(y _ygt)z
RWIDU = eXp < Wgz +H§ (10)
Lwrou,, = Rwiou * Liou (11)

For the predicted bounding box, x and y denote the predicted
values of the center coordinates, while x4 and yg represent the
center coordinates of the true bounding box. Furthermore, W, and
H, indicate the widths and heights, respectively, of the minimum
enclosing rectangle in the anchor box and the target box. By
designing Lj,y, the anchor box of poor quality can be enhanced.
When Ry, is used in distance measurement, it can suppress the
attention of anchor boxes of high quality and alleviate the over-
dependence on centroid distance (Xiong et al., 2024). The formula
definition of WIoU v3 is given in Equations 12-14.

*

= LIiUU [SS [0) +oo)

B (12)
ToU
__ B
Y= B3 (13)
Lwiou,, = YLwiou, (14)

where B is the outlier value that represents the anchor box’s
description degree of goodness. In other words, the larger outlier
value f represents the worse quality of anchor boxes. The
hyperparameters o and 9, together with outlier degree f3, are used
to determine the non-monotonic focusing coefficient . The
coefficient y can decrease the competitiveness of good samples
and, at the same time, weaken the harmful gradients caused by
poor samples. Therefore, WIoU v3 can non-monotonically and
dynamically focus on the ordinary samples and improve the
generalization ability and the overall performance of the model.

Inner-IoU is designed to enhance localization accuracy by
optimizing the overlapping area of the predicted box and the
ground truth box (Ding et al., 2019). Since the minimum area is
used as the normalization denominator, the loss function is more
sensitive to the alignment of the target’s internal structure. The
formula is shown in Equation 15.

[BNB,|

 min (!BP (15)

LInner—IoU =1

>

B))
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TABLE 1 Hardware and software configuration used in the experiment.

Software and hardware Version or model

Operating system Ubuntu 22.04 LTS

CPU Intel 8360Y

GPU 2 x NVIDIA GeForce RTX 4090
Display memory 48G

CUDA 11.8

PyTorch version 2.0.1

Python version 3.9.19

Software PyCharm 2020.3

where B, and B, are the areas of the predicted bounding box and
the ground truth bounding box, respectively. |B, N Bl is the
intersection area between B, and B,, and min(|B,|,|B,) is the smaller
one between |B,| and |B,|. By substituting the union area (conventional
in traditional IoU) with the minimum area as the denominator, Inner-
IoU significantly enhances sensitivity to small objects and occluded
scenarios. Even a slight shift in the position of the predicted box will
result in a large change in the minimum-area denominator, which
encourages more accurate bounding box localization.

MPDIoU incorporates the distance between matching corner
points of the predicted and true bounding boxes. As a result, it
facilitates more precise geometric alignment during training. This
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module has been shown to enhance the accuracy of regionalization
by integrating the corner distance concept into the intersection over
union. The mathematical formulation is expressed in Equation 16.

dt

d3
7+
w? + h?

AR (1o

LMPDIOU =1-IoU+

where d; and d, indicate the distances between the top-left and
bottom-right corner coordinates of the ground truth bounding box
and the predicted bounding box, respectively. w and / represent the
width and height, respectively, of the final output feature map of the
network. By taking into account the positional discrepancies of the
corner points between the predicted and ground truth bounding
boxes, MPDIoU guides the model to adjust the positions of the
bounding boxes with greater accuracy, thus improving the stability
of target localization.

The formula for Wise-Inner-MPDIoU is expressed in Equation 17.

di + d?
LWise—Inner—MPDIoU = (1 - WIOUV3) + l‘l : le + h22

|B,NB|
tha <1_min (|B,], [B)

Here, A, and A, are used to adjust the weight contributions of

17)

different constraint terms. This fusion strategy enables Wise-Inner-
MPDIoU to jointly evaluate the spatial alignment and positional
discrepancies between predicted and ground truth bounding boxes
more effectively. It mitigates the overemphasis on both high-quality
anchor boxes (with low localization loss) and low-quality anchor
boxes (with high localization loss), thereby facilitating the
optimization of moderately performing anchor boxes. This
approach ensures convergence speed while effectively boosting the
precision of object bounding box regression.

4 Analysis and interpretation of
experimental results

4.1 Experimental platform

The experiments are carried out on a server with the following
hardware and software configurations: two RTX 4090 GPUs with a
total of 48 GB GPU memory and an Intel 8360Y CPU. The platform
is equipped with Ubuntu 22.04 LTS, CUDA 11.8, Python 3.9.19,
PyTorch 2.0.1, and PyCharm 2020.3. The specific configuration is
shown in Table 1.

During the training phase, the YOLO-Citrus model adopts
transfer learning to accelerate the training speed. Specifically, the
number of training epochs is set to 200 with a batch size of 16, and
the Stochastic Gradient Descent (SGD) optimizer is employed. The
remaining parameters are set to the default configuration of the
official YOLOv11s model. Moreover, an early stopping strategy is
implemented, which terminates the training process if the model’s
performance fails to improve after 100 epochs.
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TABLE 2 Performance comparison of YOLOv11 models.

Model mAP@O0.5 (%)  Size (MB) GFlops
YOLOvlin 93.0 5.5 63
YOLOvl11s 95.2 19.2 213
YOLOv1im 96.5 40.5 67.7
YOLOv11l 96.1 51.2 86.6
YOLOv11x 95.9 114.4 194.4

4.2 The assessment metrics for the
network model

This study evaluates the performance of citrus disease detection
using the following metrics: model size, Giga Floating Point
Operations per Second (GFlops), precision, recall, F1 score,
average precision (AP), and mean average precision (mAP).
These parameters are widely used in object detection methods to
characterize the citrus disease detection accuracy. The definitions of
these parameters are shown in Equations 18-22.

Precisi Lk (18)
recision = —————
TP + FP
TP
Recall = ———— 1
call = 5N (19)
Fle2 x Prec'is.ion - Recall (20)
Precision + Recall
1
AP = / (Precision - Recall) dRecall (21)
Jo
1N
mAP = — VAP, (22)
NZH

where TP (True Positive) is the number of diseased leaves that are
detected by the model. FP (False Positive) occurs when a healthy leaf or a
leaf with a different disease is incorrectly classified as having the target
disease. FN (False Negative) represents the diseased leaves that the model
fails to identify. Higher Precision implies more accurate judgments made
by the model. Recall is the ratio of actual positive samples that are
identified by the model. The F1 score is a metric that integrates precision
and recall into a weighted average. AP gives an overall idea of the
model’s performance by calculating precision for all the values of recall.
mAP represents the average of AP over all the diseases, an overall
measurement of the model’s capability of detecting different diseases.
Thus, all these metrics give an overall idea of the model’s performance.

4.3 Performance analysis of the benchmark
model

For the performance analysis of various YOLOv11 models for
citrus leaf disease, a test is performed for each YOLOv11 on the

Frontiers in Plant Science

11

10.3389/fpls.2025.1668036

constructed dataset. The test results are shown in Table 2. From the
test results, it can be found that there are obvious differences in
terms of model size and computational efficiency among the
YOLOv11 variants. If balance is made between model size,
computational efficiency, and detection accuracy, YOLOvl1s gets
the best performance. Its model size is 19.2 MB, computational load
is 21.3 GFlops, and mAP@0.5 is 95.2%. YOLOv11n has the smallest
model size of 5.5 MB and the smallest computational load of 6.3
GFlops, and its mAP®@0.5 is 93.0%, which is significantly lower than
that of YOLOv11s. YOLOv11m achieves the highest mAP@0.5 with
96.5%, but its model size is 40.5 MB and the computational load is
67.7 GFlops, approximately 2.1 times and 3.2 times, respectively,
higher than those of YOLOv11s. This leads to a substantial increase
in resource requirements. The mAP@0.5 values of YOLOv11l and
YOLOvlIx are 96.1% and 95.9%, respectively. However, their
model sizes are 51.2 MB and 114.4 MB, and their computational
loads are 86.6 and 194.4 GFlops, respectively. These are
approximately 2.7 and 6.0 times, and 4.1 and 9.1 times greater
than those of YOLOv11s, respectively, indicating lower efficiency.
Therefore, based on the balanced consideration of model efficiency
and detection performance, this study selects YOLOv1ls as the
benchmark model for object detection tasks. It can still maintain a
high detection accuracy, while its model size and computational
requirements are smaller. As such, it is suitable for efficient
deployment in practical applications.

4.4 Analysis of the ablation experimental
results

As shown in Table 3, all these parts are beneficial to the final
performance of YOLOvlls. The baseline model (using only
YOLOv11s) attains a mAP@0.5 of 95.2% and a mAP@0.5:0.95 of
80.2%, with a model size of 19.2 MB and a computing cost of 21.3
GFlops. When the C3K2-STA module is added individually, nAP@
0.5 is enhanced to 95.7%, while mAP@0.5:0.95 is improved to
81.1%. Model size and computation cost are decreased slightly. It
means that the C3K2-STA module can boost both detection
accuracy and model efficiency at the same time. The ADown
module can decrease model complexity dramatically while
maintaining detection accuracy. Following the incorporation of
the ADown module, mAP@0.5 persists at 95.7%, while mAP@
0.5:0.95 ascends to 81%, accompanied by a substantial decline in
model size and computation to 15.4 MB and 17.2 GFlops,
respectively. When C3K2-STA and ADown are applied
simultaneously, mAP@0.5 is decreased slightly to 95.6%, while
mAP@0.5:0.95 is further improved to 81.8%. Model size and
computation are decreased to 14.4 MB and 17.0 GFlops. It means
that C3K2-STA and ADown have a synergistic effect on improving
detection accuracy and decreasing model complexity. By combining
the Wise-Inner-MPDIoU loss function with the C3K2-STA and
ADown modules, mAP@0.5 improves in both cases, enhancing the
model’s performance at lower IoU thresholds. In summary, the
individual or combined use of the C3K2-STA, ADown, and Wise-
Inner-MPDIoU modules can effectively boost the detection

frontiersin.org


https://doi.org/10.3389/fpls.2025.1668036
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Feng et al.

TABLE 3 Ablation experimental results.

10.3389/fpls.2025.1668036

YOLOv1ls C3K2-STA ADown Wise-Inner-MPDIoU mAP@O0.5 (%) mAP@O0.5:0.95 (%) Size (MB) GFlops
v v X X 95.7 81.1 18.2 21.1
v X v X 95.7 81.0 154 17.2
v v v X 95.6 81.8 14.4 17.0
v v X v 96.0 80.8 18.2 21.1
v X v v 95.9 80.7 15.4 17.2
v v v v 96.6 81.6 14.4 17.0
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FIGURE 9

P-R curves and mAP@O.5 results of the improved YOLOv11ls model under different configurations.

accuracy and model efficiency of YOLOvlls. In particular, when
integrating the C3K2-STA, ADown, and Wise-Inner-MPDIoU
modules together, mAP@0.5 is improved to 96.6%, while mAP@
0.5:0.95 is improved to 81.6%. Model size and computation are
decreased to 14.4 MB and 17.0 GFlops, respectively. This approach
has been shown to significantly reduce model complexity and
computational requirements while maintaining high levels of
performance. Consequently, these modules are instrumental in
enhancing the citrus disease recognition model proposed in this
study. Figure 9 compares the P-R curves and mAP@0.5 results of
the enhanced YOLOv1ls model under different configurations,
highlighting the impact of our proposed modifications.

4.5 Performance evaluation of the YOLO-
Citrus model

To further analyze the overall effect of YOLO-Citrus in multi-class
citrus disease recognition, a normalized confusion matrix is constructed
based on the test set. Additionally, the F1 score curve is utilized to
further assess the overall performance of the model. The corresponding
visualization results are presented in Figure 10, which illustrates the
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classification accuracy across four major disease categories as well as the
variation of F1 score under different confidence thresholds.

As shown in Figure 10, the normalized diagonal accuracies of
the four main disease categories are 0.92, 0.96, 0.93, and 0.97. This
indicates that there is little misclassification between categories and
that YOLO-Citrus has stable recognition performance. When the
confidence threshold is 0.413, the weighted average F1 score is 0.94.
This also indicates that YOLO-Citrus can achieve a balanced overall
precision and recall.

From the above analysis, it can be seen that there is still a low
misclassification rate in most categories and that YOLO-Citrus
performs well in the category of concern, which indicates that
YOLO-Citrus has strong practical application potential. Although
there are still some false positives and false negatives in most
categories, YOLO-Citrus has a high overall detection performance
and can meet the practical application requirements of intelligent
diagnostic systems. In some cases, there may be misclassifications
between categories. These misclassifications are caused by the fact
that the visual appearance of different disease symptoms is not
significantly different. This type of confusion is biologically
plausible and may affect the timeliness of early diagnosis and
treatment in real-world applications.
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TABLE 4 Comparative experimental results.

Model Precision (%) Recall (%) mAP@O0.5 (%) mAP@O0.5:0.95 (%) Size (MB) Parameters GFlops
RT-DETR-R50 93.1 89 93.9 79.5 82.0 41,942,904 125.6
YOLOV3-Tiny 93.1 89.7 94.0 74.8 19.2 9,512,080 14.3

YOLOvV5s 93.6 89.2 95.0 77.6 15.9 7,815,164 18.7

YOLOv6s 93.9 84.8 93.3 74.0 322 15,976,924 42.8

YOLOvS8s 94.5 91.5 95.7 80.8 19.9 9,829,212 234

YOLOvV9s 94.1 87.3 94.2 77.4 13.3 6,195,196 221

YOLOv10s 922 88.5 94.4 75.2 16.5 7,219,548 214
YOLOvlls 95.0 91.1 95.2 80.3 19.2 9,414,348 21.3
YOLO-Citrus 95.1 93.0 96.6 81.6 14.4 6,947,156 17.0

Therefore, YOLO-Citrus has excellent overall performance,
strong class-wise recognition ability, and strong reliability, which
provide effective technical support for the early detection and
intelligent management of citrus diseases.

4.6 The comparative analysis mainstream
object detection models

This subsection presents a comparative analysis of several
mainstream object detection models, including RT-DETR-R50,
YOLOv3-Tiny, YOLOv5s, YOLOv6s, YOLOv8s, YOLOV9s,
YOLOV10s, YOLOv11s, and YOLO-Citrus. The specific outcomes
are collectively illustrated in Table 4, as well as in Figure 11.

Table 4 shows the precision, recall, mAP@0.5, mAP@0.5:0.95,
model size, number of parameters, and computational load of these
models. The results indicate that YOLO-Citrus outperforms the
other models across multiple evaluation metrics. YOLO-Citrus gets
mAP@0.5 of 96.6% and mAP@0.5:0.95 of 81.6%; meanwhile, the
model size is only 14.4 MB, and the computational load is only 17.0
GFlops. It shows that YOLO-Citrus has good lightweight
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characteristics in addition to high accuracy, which is suitable for
deployment on a device with limited resources.

RT-DETR-R50 gets a mAP@0.5 of 93.9% and a mAP@0.5:0.95
of 79.5%. However, it needs 41.94M parameters and 125.6 GFlops,
which are much more than those of YOLO-Citrus. Despite this
higher resource consumption, its detection accuracy is still lower.
YOLOV3-Tiny achieves a mAP@0.5 of 94.0%, and YOLOv10s
reaches 94.4%, both of which are respectively 2.6% and 2.2%
lower than those of YOLO-Citrus’s 96.6%. Their recall rates are
respectively 89.7% and 88.5%, which are 3.3% and 4.5% lower than
those of YOLO-Citrus’s 93.0%. YOLOv6s has a mAP@0.5 of 93.3%,
3.3% lower than that of YOLO-Citrus, but its computational load of
42.8 GFlops and parameter count of 15.98M are 2.52 times and 2.3
times those of YOLO-Citrus, respectively. YOLOv8s obtains a
mAP@0.5 of 95.7%, which is a 0.7% improvement compared with
that of YOLOV5s. In addition, YOLOv8s gets a mAP@0.5:0.95 of
80.8%, which is a 3.2% improvement compared with that of
YOLOv5s. However, its model size is 19.9 MB and its
computation load is 23.4 GFlops, which are respectively 38.2%
and 37.6% larger than those of YOLO-Citrus. YOLO-Citrus
achieves a mAP@0.5 of 96.6% with 6.95M parameters, reducing
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Detection results of the P-R curve and mAP@O0.5 curve of mainstream object detection algorithms.

the parameter count of the original YOLOv1ls by 26.2% (from
9.41M) and improving the accuracy by 1.4%. Those results reach
the best balance in terms of detection accuracy, amount, and
computation load.

As shown in Figure 11, the P-R curve of YOLO-Citrus always
converges to the upper-right corner closer than other models, which
means that YOLO-Citrus is better than other models in terms of the
precision-recall curve. Furthermore, YOLO-Citrus obtains the
highest mAP@0.5 among all models, which is also evidence that
YOLO-Citrus is the best. In addition, as displayed in Figure 12, the
detection results of other models on some test images are displayed,
where the red boxes represent the false detections and green boxes
represent the missed detections. These test images are derived from
our dataset and encompass several prevalent citrus leaf diseases,
including canker, rust, Huanglongbing, and melanose. YOLO-
Citrus has fewer localization errors and missed targets than other
models, which shows that YOLO-Citrus is more robust in
practical applications.

4.7 Model deployment experiments

Finally, YOLO-Citrus is run on an NVIDIA Jetson Orin Nano 8
GB edge device, with 40 TOPS computing power. The device runs
on the JetPack 6.1 software platform and uses TensorRT technology
for acceleration, with the model optimized using FP16 precision to
enhance inference efficiency. During the deployment, image data
are collected using a Hikvision DS-E11 camera, and the detection
results are visualized in real time on the 15-inch touch screen to
construct an integrated visual inspection system, as shown in
Figure 13. As shown in the experimental results, the inference
speed of the model can remain at a relatively stable level of 51.5 FPS,
and the standard deviation is very small. Most of the images are
finished within 18.4 ms, which shows the real-time performance of
the model. These results show that YOLO-Citrus can run in a
resource-constrained edge environment efficiently and stably. The
real-time disease detection system has been constructed and
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implemented on citrus orchards, providing evidence to support
timely decision-making in intelligent agriculture.

5 Conclusions

This paper presents the YOLO-Citrus network model designed
for intelligent detection of citrus leaf diseases. Through the
realization of automatic disease identification and early warning,
a large part of the citrus cultivation management process, the
intelligence of the next step is significantly promoted, and the
yield and quality of citrus fruits are improved at the same time.

Specifically, three novel technical components are introduced
into the YOLO-Citrus model. First, the dynamically enhanced
C3K2-STA module merges Star Block’s dynamic receptive fields
with Triplet Attention’s cross-dimensional attention mechanism.
Second, the computationally efficient ADown downsampling
strategy integrates dual-path pooling with axial feature
reorganization. Third, the geometrically optimized Wise-Inner-
MPDIoU loss function implements dynamic weight allocation
with inner-product distance metrics.

The experimental results verify the superiority of the model.
YOLO-Citrus achieves a mAP@0.5 of 96.6%, which is an
improvement of 1.4 percentage points compared with the baseline
YOLOvl1ls. Additionally, it attains a mAP@0.5:0.95 of 81.6%,
surpassing the YOLOvlls benchmark of 80.3%. Detailed
comparison with other state-of-the-art models, such as YOLOv5s,
YOLOV8s, and YOLOV11s, on evaluation metrics, shows that YOLO-
Citrus outperforms other models in terms of detection performance.

Remarkably, without sacrificing outstanding detection
accuracy, YOLO-Citrus obtains significant improvements on both
computational efficiency and model compactness. The architecture
achieves a 26.2% reduction in parameters (6.9M), a 20.2% decrease
in computational cost (17.0 GFlops), and compresses the model size
by 25.0% to 14.4 MB, compared to the 19.2 MB baseline. These
optimizations provide significant advantages for deployment in
resource-constrained agricultural environments.
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FIGURE 13
Edge platform configuration and testing outcomes.
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To verify its practical usability, YOLO-Citrus is deployed on a
Jetson Orin Nano edge device. The maximum FPS is 51.5 with low
latency (18.4 ms per image) and steady state, which means that
YOLO-Citrus can be used for real-time on-site detection without
depending on high infrastructure. Thus, farmers can obtain
feedback in the field immediately and take corresponding actions
in time to prevent the disease from spreading further, which helps
reduce pesticide misuse, lower costs, and improve yield through
more informed decision-making.

In summary, YOLO-Citrus establishes new performance standards
for disease detection models while delivering practical solutions for
intelligent citrus disease management. This research not only
contributes a high-precision, efficient lightweight detection framework
covering multiple major citrus diseases, including canker, rust,
melanose, and HLB, but also demonstrates its real-world agricultural
applications. Considering the severe economic and agronomic impacts
of diseases such as HLB, real-time, leaf-level detection frameworks like
YOLO-Citrus offer promising tools for early diagnosis and effective
management in citrus orchards. Future investigations will focus on
enhancing environmental adaptability and extending the model’s
capabilities to other crop disease detection scenarios, thereby
broadening the technology’s impact and applicability.
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