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YOLO-Citrus: a lightweight and
efficient model for citrus leaf
disease detection in complex
agricultural environments
Wanmei Feng, Junyu Liu, Zhen Li* and Shilei Lyu

College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural
University, Guangzhou, China
Accurate and efficient detection of citrus leaf diseases is crucial for ensuring the

quality and yield of global citrus production. However, many existing agricultural

disease detection methods face significant challenges, including overlapping leaf

occlusion, difficulty in identifying small lesions, and interference from complex

backgrounds. These limitations often lead to reduced accuracy and efficiency of

object detection. Moreover, current models generally necessitate significant

computational resources and possess substantial model sizes, which restrict

their practical applicability and operational convenience. To tackle these issues,

this study presents a novel model named YOLO-Citrus. It is a lightweight and

efficient YOLOv11-based model designed to enhance the precision of detection

while simultaneously minimizing computational expenses and the size of the

model. This makes it more suitable for practical agricultural applications. The

proposed solution incorporates three major innovations: the C3K2-STA module,

the ADown module, and the Wise-Inner-MPDIoU loss function. In particular,

YOLO-Citrus utilizes Star-Triplet Attention by embedding Triplet Attention into

the Star Block to enhance bottleneck performance in C3K2-STA. It also adopts

the ADown module as a lightweight and effective downsampling strategy and

introduces the Wise-Inner-MPDIoU loss to facilitate optimized bounding box

regression and enhanced detection accuracy. These advancements enable high

detection accuracy with substantially reduced computational requirements. The

experimental results demonstrate that YOLO-Citrus attains 96.6% mAP@0.5,

representing an improvement of 1.4 percentage points over the YOLOv11s

baseline (95.2%). Furthermore, it reaches 81.6% mAP@0.5:0.95, i.e., an

enhancement of 1.3 percentage points compared to the baseline value of

80.3%. The optimized model delivers considerable efficiency gains, with model

size reduced by 25.0% from 19.2 MB to 14.4 MB and computational cost

decreased by 20.2% from 21.3 to 17.0 GFlops. Comparative analysis has

confirmed that YOLO-Citrus performs better than other models in terms of
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comprehensive detection capability. These performance enhancements validate

the model’s effectiveness in real-world orchard conditions, offering practical

solutions for early disease detection, precision treatment, and yield protection in

citrus cultivation.
KEYWORDS
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1 Introduction

The citrus industry, one of the most prominent fruit sectors,

performs a pivotal function within the overarching framework of

the contemporary agricultural economy (Dananjayan et al., 2022).

It is not only a key component of people’s daily diet but also a

significant source of income for farmers. Nevertheless, current

citrus cultivation is commonly threatened by various diseases,

including citrus canker, Huanglongbing (HLB), rust, and

melanose. These diseases cause significant yield and fruit quality

reductions, which in turn lead to substantial economic losses for

growers (Abdulridha et al., 2019). In recent years, it has been

reported that citrus diseases result in huge global losses. With

citrus canker, growers report losses exceeding 1 billion USD

annually in China, while the diseases also cause yield reduction

exceeding 50% in certain regions of Brazil. HLB is prevalent in Asia

and the Americas and is a constant threat to lemon and sweet

orange cultivations (Ali et al., 2023). Out of all major diseases, citrus

canker causes loss of leaves, early fruit detachment, twig dieback,

and heavy blemishing of the citrus fruit, while HLB causes plugging

of the nutrient transport, root decline, canopy dieback, and huge

decreases in both the yield and quality of the fruit (Cifuentes-

Arenas et al., 2022). The leaves of citrus serve as the primary sites

for disease occurrence. Therefore, the early detection and accurate

identification of these diseases are very important for their effective

prevention and control. Conventional methods used for the

detection of plant leaf diseases are based on manual inspection

and observation of lesions on leaves (Barbedo, 2016). As the

production scale increases, these methods become time-

consuming and more sensitive to various external conditions such

as weather and environmental factors, which result in low accuracy

and efficiency (Ferentinos, 2018). To solve these problems,

intelligent detection techniques based on computer vision and

deep learning are employed to enhance the precision and

effectiveness of citrus disease detection (Kamilaris and

PrenafetaBoldu´, 2018).

Recent advancements in computer vision and deep learning

technologies have led to significant breakthroughs in leaf disease

detection. These developments suggest automated identification of

disease types, early-stage symptom recognition, and large-scale

monitoring of plant health conditions (Wang et al., 2022).
02
Convolutional neural network (CNN)-based object detectors are

mainly classified into two types: two-stage and single-stage

detectors (Luo et al., 2024). Two-stage detectors have gained

significant interest owing to their superior performance in terms

of precision and stability. For example, Alruwaili et al. (2022)

proposed a real-time Faster Region Convolutional Neural

Network (RTF-RCNN) model, which takes advantage of both

static images and real-time video streams to detect leaf diseases in

tomato plants. The RTF-RCNN model has obtained good

performance for both detection accuracy and robustness

compared to AlexNet and CNN models. Although two-stage

detectors achieve high accuracy for leaf disease detection, these

detectors are time-consuming during inference and resource-

consuming, making them impractical for real-time applications

that require fast response, such as orchards. Compared to two-

stage detectors, single-stage detectors such as YOLO are more

applicable to these tasks (Mo and Wei, 2024; Li et al., 2022; Xue

et al., 2023; Gao et al., 2024; Zhang et al., 2022; Khan et al., 2025)

because they have faster inference speed and can still achieve

relatively good performance. For instance, Zhu et al. (2025)

designed CBACA-YOLOv5 by integrating multiple attention and

upsampling modules into YOLOv5s. Specifically, they applied the

convolutional block attention module (CBAM), coordinate

attention (CA), and the CARAFE upsampling module to enhance

the detection of small, asymmetric, and occluded disease features in

citrus leaves. The enhanced model is beneficial for feature

extraction and fusion and can be applied in real-time intelligent

agricultural robots. Therefore, single-stage detectors are more

applicable to real-time detection applications in dynamic orchards.

Inevitably, the complexity of deep learning models gradually

rises, and higher demands for computational resources and storage

space emerge, which will be limited in practice. Therefore, it is

necessary to optimize the lightweight design of YOLO models to

improve their applications in limited resources, such as edge devices

and mobile phones. For instance, Li et al. (2023) applied the

GhostNet backbone and depthwise separable convolution instead

of the backbone of YOLOv4, which greatly reduced the

computational complexity and model parameters. The

optimization model proposed in their method has a fast inference

speed and low computational overhead, which is suitable for real-

time deployment in tea-picking robots. Lyu et al. (2023) also
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optimized the YOLOSCL model for detecting citrus psyllids based

on YOLOv5s. By compressing the network and lowering the

parameters, the model obtains higher detection accuracy and can

be mounted on the Jetson AGX Xavier edge computing platform.

The lightweight design of the aforementioned models plays a crucial

role in enhancing deployment efficiency and reducing

computational resource demands (Han et al., 2022; Zeng et al.,

2023; Cui et al., 2023). However, how to balance detection accuracy

with computational efficiency while maintaining a lightweight

design remains an open challenge.

Moreover, the Intersection over Union (IoU) metric used in the

YOLO series is based solely on the geometric overlap of bounding

boxes, which constrains its sensitivity in lesion localization (Li et al.,

2024; Ji et al., 2023). This limitation is especially evident under

conditions of leaf occlusion or blurred lesion boundaries, such as

the diffuse margins observed in canker disease lesions. As a result,

the model becomes susceptible to missed detections and localization

drift. Consequently, there is an urgent need to introduce methods

such as dynamic shape constraints or edge feature enhancement to

improve localization accuracy and robustness in complex scenarios

(Abulizi et al., 2024).

To address the aforementioned technical challenges, this study

proposes YOLO-Citrus, a lightweight and improved model based

on the YOLOv11s architecture. It is designed to enhance citrus

disease detection in complex orchard environments characterized

by uneven lighting, dense foliage occlusion, overlapping fruits, and

varying background conditions. The core innovations of our

proposed approach are outlined as follows:
Fron
• Data augmentation and expansion: The data enhancement

tools provided by the Roboflow platform are utilized to

perform processing operations, including image rotation,

scaling, flipping, and brightness adjustment, on the

acquired images of diseased citrus leaves. The augmented

data improve the generalization and robustness of the target

detect ion model , enabl ing i t to be appl ied to

various datasets.

• C3K2-STA (C3K2-Star-Triplet Attention) module: To

enhance feature extraction capability and reduce

computational complexity, the C3K2-STA module is

designed by integrating the Star Block structure and the

Triplet Attention mechanism into the C3K2 architecture.

This module improves the inference performance of C3K2,

reduces redundant computation, and enhances the

effectiveness of feature representation.

• ADown module: The ADown module is designed as a

downsampling component in the proposed model.

Average pooling and max pooling are combined with the

ADown module to extract global and local features.

Meanwhile, background and edge information are

enhanced by feature segmentation and concatenation of

the ADown module. In addition to that, the ADown

module can also greatly reduce the number of parameters

and computational complexity and improve the inference

efficiency of the model.
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• Wise-Inner-MPDIoU: To improve the accuracy and

stability of bounding box regression, a novel loss function

named Wise-Inner-MPDIoU is introduced as a

replacement for the original Complete Intersection over

Union (CIoU) loss in YOLOv11. This loss function adopts

the weighting strategy of Weighted IoU (WIoU) and the

corner distance constraint of MPDIoU. To improve the

localization of the bounding box more accurately, an inner

product distance constraint is introduced. By allocating

different weights in different situations, Wise-Inner-

MPDIoU highlights key bounding boxes and minimizes

the impact of position deviation. Meanwhile, the distance

between predicted boxes and ground truth boxes is also

minimized. The object localization capability of the model

is greatly improved, and the convergence rate in a complex

agricultural scene is greatly accelerated.
2 Dataset description

2.1 Data acquisition

The dataset for citrus disease detection in this study is mainly

collected from the citrus orchard experimental base of South China

Agricultural University (Guangzhou, Guangdong Province, China).

It covers various disease types such as canker, Huanglongbing, rust,

and melanose. Some representative images from the dataset are

displayed in Figure 1. Data collection is carried out from June to

December. In the process of taking images, both mirrorless

interchangeable-lens cameras (Canon R8) and handheld cameras

(iPhone 15 Plus) are employed as the shooting equipment. The

shooting distance is controlled between 30 and 100 cm to capture

the characteristics of citrus diseases. The main shooting

environment is natural light on sunny days, and the shooting

time is chosen between 10:00–11:30 a.m. and 2:30–4:00 p.m. In

these two time periods, the lighting is relatively stable, which

reduces the impact of intense illumination conditions and makes

the image quality more similar for subsequent enhancement and

processing tasks.
2.2 Data preprocessing

The annotation process is conducted using the LabelImg tool to

label the regions affected by citrus diseases, which ensures the

precise representation of both the location and category of each

disease in every image. Then, the annotated data are randomly

divided into training, validation, and test sets in an 8:1:1 ratio,

which consist of 1,046, 131, and 131 images, respectively. In order to

increase the diversity of the data and make the model more robust,

data augmentation techniques are applied to the dataset. These

methods convert images into grayscale to simulate different lighting

conditions and adjust the brightness to simulate varying light

intensities. In addition, Cutout is adopted to cover some areas of
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the image randomly so as to make the model more adaptable to the

absence of information. Additionally, noise is added to make the

model more robust to interference, and random hue augmentation

is used to increase the diversity of color change. The effect of image

enhancement on the dataset via the image enhancement techniques

is illustrated in Figure 2. All images are uniformly resized to 640 ×

640 pixels to meet the input specifications of the YOLO model and

ensure consistency across the dataset. After applying the

aforementioned data augmentation methods, the original 1,308

images are expanded to a total of 3,808 images. Specifically, the

number of samples per category increased to 1,026 for canker, 882

for HLB, 714 for rust, and 711 for melanose. These augmentations

greatly improve the diversity of the dataset and enhance the ability

to identify diseases in various imaging conditions (Lin et al., 2025;

Al-Masni et al., 2018).
3 Method

3.1 The YOLOv11 network structure

YOLOv11 is a newly developed and efficient object detection

algorithm introduced by the Ultralytics team. This version inherits

the excellent characteristics of the YOLO series algorithms. It is

applicable in scenes with high requirements of precision and real-

timeness (Khanam and Hussain, 2024). Compared to YOLOv8,

YOLOv11 introduces several improvements. In particular, the C2f

module is substituted by the C3K2 module, which enhances feature

extraction by adjusting the convolutional layer configuration and

incorporating a more efficient cross-stage feature interaction

mechanism. Furthermore, a C2PSA module is appended after the

SPPF module and connected to the backbone network of YOLOv11,

which improves the ability to integrate multi-scale features. In the
Frontiers in Plant Science 04
detection head, YOLOv11 keeps the anchor-free idea of YOLOv8

and introduces a dynamic gradient allocation module. By adjusting

the loss weights of classification and regression adaptively, the

contradiction between target localization and classification in

involved scenes is alleviated. The structure of the whole network

of YOLOv11 is shown in Figure 3.
3.2 Overview of our network

To accurately detect citrus leaf diseases in complicated

agricultural scenarios with low computational costs, this paper

presents an extension of the YOLOv11 algorithm, named YOLO-

Citrus. By designing the C3K2-STA module, the ADown

downsampling strategy (Tong et al., 2024), and the Wise-Inner-

MPDIoU loss function (Tong et al., 2023; Zhang et al., 2023; Ma

and Xu, 2023), YOLO-Citrus overcomes the multiple challenges

existing in agricultural scenarios, such as leaf occlusion, tiny disease

spot detection, and complicated background disturbance. In

particular, as for the C3K2-STA module, it integrates dynamic

receptive field modulation with a cross-dimensional attention

mechanism to strengthen the discrimination of leaf texture

features and disease edge characteristics. The ADown module

utilizes the two-mode pooling strategy and axial feature

reorganization to preserve delicate disease information and

reduce computational cost. Moreover, the Wise-inner-MPDIoU

loss function enhances the localization accuracy of irregularly

shaped leaf lesions by introducing geometric constraints and a

dynamic weight strategy. For orchards with overlapping leaves,

non-uniform brightness, and environmental noise scenarios,

YOLO-Citrus can extract effective leaf features in real-time and

conduct disease pattern analysis. The global structure of YOLO-

Citrus is displayed in Figure 4.
FIGURE 1

Some representative samples of our dataset. (A) Canker, (B) HLB, (C) rust, and (D) melanose. HLB, Huanglongbing.
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3.3 C3K2-STA

To address the limitation of neural networks in feature

extraction while keeping the network lightweight, the C3k2-STA

module is proposed. Not only can the module improve the inference

performance of the model, but it could also decrease the number of

model parameters and computation greatly. Specifically, the Triplet

Attention mechanism (Misra et al., 2021) is incorporated into the

Star Block of the StarNet (Ma et al., 2024) framework to form the

Star-Triplet Attention, as illustrated in Figure 5. Finally, this

designed block replaces the original BottleNeck module in C3.

As shown in Figure 6, Triplet Attention has three parallel

branches. The first two branches are designed to capture the

cross-dimensional interactions between channel C and spatial

dimensions H and W. In the third branch, the input features are

first processed through Zpooling, which is followed by the

convolution layer, and finally, spatial attention weights are

computed using the Sigmoid activation function. The output of

these three branches is summed up to get the final attention map.

Triplet Attention could reduce the information loss by modeling the

interaction in different dimensions (channel height, channel width,

and spatial dimensions) and then aggregation (Park et al., 2023). It

can improve feature representation by mining specific parts while
Frontiers in Plant Science 05
reducing the computational cost and error as little as possible

without compromising too much.

The feature processing flow of the Star-Triplet Attention block

is as follows. First, the input feature F is processed by a depthwise

separable convolution to obtain the intermediate feature x. Then,

x is transformed through two different branches. In the first

branch, a convolution operation with ReLU activation and then

batch normalization are applied to obtain fR(x). In the second

branch, convolution and batch normalization are directly

employed to obtain fC(x). Subsequently, the outputs of these two

branches are then combined through element-wise multiplication

to generate the feature representation z, which is then input into

the Triplet Attention mechanism to enhance the feature

expression capabilities across channels and spatial dimensions to

generate z′. Then, z′ is processed by convolution and batch

normalization to compute the new feature v. Finally, v is

processed by a depthwise separable convolution, and element-

wise addition is added to the original input feature F to form the

final output y. The entire process integrates the depthwise

separable convolution, the Triplet Attention mechanism, and

residual connections to effectively enhance feature extraction

capability and overall model performance. The calculation

formulas are provided in Equations 1–7.
FIGURE 2

Effect of image enhancement on dataset. (A) Original, (B) grayscale, (C) brightness, (D) noise, (E) hue, and (F) cutout.
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x = fDWC(F) (1)

fR(x) = BN(ReLU(Conv(x))) (2)

fC(x) = BN(Conv(x)) (3)

z = fR(x) · fC(x) (4)

z0 = TA(z) (5)

v = fC(z
0) (6)

y = F + fDWC(v) (7)

Here, F represents the input feature, which is the output of the

initial feature processing. The operation fDWC(·) denotes the

depthwise separable convolution. The term fC(x) represents the

operation of convolution followed by batch normalization, and fR
(x) indicates the convolution operation with a ReLU activation

function, followed by batch normalization. z represents the

elementwise multiplication of two branches, and TA(·) signifies

the triplet attention mechanism. y indicates the final output that

incorporates a residual connection.

Figure 7 illustrates the architecture diagram of the C3K2-STA

module. This module utilizes Star Blocks for star operations and

discards the original bottleneck structure. As such, it reduces

redundant computations and the model size. Moreover, Star

Blocks can obtain high-dimensional feature spaces from low-
Frontiers in Plant Science 06
dimensional space inputs, which significantly enhances the ability

to extract leaf disease features. By integrating the Triplet Attention

mechanism and modeling multi-dimensional interactions (i.e.,

channels, spaces, and positions in parallel), this module

simultaneously improves recognition performance while

maintaining lightweight computation.
3.4 ADown

The ADown module (Figure 8) is a significant innovation in

YOLOv9, introducing an efficient downsampling mechanism that

enhances network depth and complexity without substantially

increasing the number of parameters. This module combines

average pooling and max pooling operations, which capture the

global information, and the latter highlights local features (Zhang

et al., 2024). Specifically, the input feature map undergoes average

pooling and is then divided into two parts along the channel

dimension. One part is directly convolved, while the other

undergoes max pooling followed by convolution. At last, two

feature maps are concatenated as the final output. Since the

ADown module can extract both background information and

edge information at the same time, it is applicable to leaf disease

detection. In contrast, the network structure of YOLOv11 mainly

relies on the Convolution-BatchNormScale (CBS) module for the

downsampling. Although it can also realize effective feature

extraction and non-linear transformation, many parameters bring

more computational cost. Despite the kernel size, stride, and
FIGURE 3

The YOLOv11 network architecture.
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padding of this module being reasonably set, it still affects the

inference cost. To alleviate the above problem, the CBS module in

the backbone and neck of the model is replaced with the ADown

modu l e , w h i c h r e d u c e s c ompu t a t i o n a l c o s t a n d

improves performance.
3.5 Wise-Inner-MPDIoU

In object detection, the core objective of bounding box

regression is to optimize the predicted boxes so as to closely align

with the ground truth (GT) annotations (He et al., 2019). The IoU

has emerged as a widely adopted metric for evaluating the accuracy

of these predictions (Rezatofighi et al., 2019). This metric assesses

the degree of matching between the predicted box and the true box

by computing the ratio of their intersection area to their union area.

The mathematical formulation is given in Equation 8.
Frontiers in Plant Science 07
IoU =
Bp∩Bg

�� ��
Bp∪Bg

�� �� (8)

where Bp and Bg represent the area of the predicted bounding

box and the ground truth bounding box, respectively. However,

YOLOv11 adopts the CIoU loss for regression due to its obvious

limitations when the loss presents multi-factor improvements on

the performance of the bounding box (Feng and Jin, 2024).

Specifically, when the width-to-height ratio of the predicted box

is linearly proportional to that of the ground truth box, the width-

to-height ratio penalty (expressed as a relative value) in CIoU

becomes ineffective, resulting in slower convergence. In addition,

the inverse trigonometric function used in CIoU leads to high

computational cost during training, which may degrade the

overall efficiency.

In response to these limitations, this study attempts to alleviate

these issues by designing the Wise-Inner-MPDIoU loss function.
FIGURE 4

The YOLO-Citrus network architecture.
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Differing from previous loss functions, the Wise-Inner-MPDIoU

loss function combines a dynamic weighting strategy of WIoU,

geometric precision of MPDIoU, and inner region sensitivity of

Inner-IoU in a synergistic way. WIoU adopts a non-monotonic

focusing way and adaptive gradient allocation to alleviate the

harmful gradient from outliers and dynamically weigh

overlapping areas to reduce the deviation of position (Du et al.,

2023). The Inner-IoU component enhances localization accuracy by

prioritizing internal overlap quality through a minimum-area

normalization strategy. It replaces the union area used in IoU in

previous methods with the smaller area of the two bounding boxes,

which enhances the sensitivity to small targets or occluded targets.

MPDIoU further improves the method by enforcing exact corner-
Frontiers in Plant Science 08
point alignment between predicted and ground truth boxes, which

solves the convergence delay problem brought by the aspect ratio

dependencies of CIoU (Cao et al., 2024).

WIoU v3 is chosen as the preferred variant in this study to

extend the distance-attention framework of WIoU v1 with a non-

monotonic focusing coefficient (g) and lower gradient gains due to

the low quality of the samples. By computing a distance-based

weight RWIoU to modulate the IoU loss, the formulation of WIoU is

defined in Equations 9–11.

LIoU = 1 − IoU (9)

RWIoU = exp 
(x − xgt)

2 + (y − ygt)
2

W2
g + H2

g

 !
(10)

LWIoUv1
= RWIoU ∗ LIoU (11)

For the predicted bounding box, x and y denote the predicted

values of the center coordinates, while xgt and ygt represent the

center coordinates of the true bounding box. Furthermore, Wg and

Hg indicate the widths and heights, respectively, of the minimum

enclosing rectangle in the anchor box and the target box. By

designing LIoU, the anchor box of poor quality can be enhanced.

When RWIoU is used in distance measurement, it can suppress the

attention of anchor boxes of high quality and alleviate the over-

dependence on centroid distance (Xiong et al., 2024). The formula

definition of WIoU v3 is given in Equations 12–14.

b =
L*IoU
LIoU

∈ ½0, +∞) (12)

g =
b

dab − d
(13)

LWIoUv3
= g LWIoUv1

(14)

where b is the outlier value that represents the anchor box’s

description degree of goodness. In other words, the larger outlier

value b represents the worse quality of anchor boxes. The

hyperparameters a and d, together with outlier degree b, are used
to determine the non-monotonic focusing coefficient g. The

coefficient g can decrease the competitiveness of good samples

and, at the same time, weaken the harmful gradients caused by

poor samples. Therefore, WIoU v3 can non-monotonically and

dynamically focus on the ordinary samples and improve the

generalization ability and the overall performance of the model.

Inner-IoU is designed to enhance localization accuracy by

optimizing the overlapping area of the predicted box and the

ground truth box (Ding et al., 2019). Since the minimum area is

used as the normalization denominator, the loss function is more

sensitive to the alignment of the target’s internal structure. The

formula is shown in Equation 15.

LInner−IoU = 1 −
Bp∩Bg

�� ��
min   ( Bp

�� ��, Bg

�� ��) (15)
FIGURE 5

The Star-Triplet Attention block.
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FIGURE 6

The Triplet Attention module.
FIGURE 7

C3K2-STA module.
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where Bp and Bg are the areas of the predicted bounding box and

the ground truth bounding box, respectively. |Bp ∩ Bg| is the

intersection area between Bp and Bg, and min(|Bp|,|Bg|) is the smaller

one between |Bp| and |Bg|. By substituting the union area (conventional

in traditional IoU) with the minimum area as the denominator, Inner-

IoU significantly enhances sensitivity to small objects and occluded

scenarios. Even a slight shift in the position of the predicted box will

result in a large change in the minimum-area denominator, which

encourages more accurate bounding box localization.

MPDIoU incorporates the distance between matching corner

points of the predicted and true bounding boxes. As a result, it

facilitates more precise geometric alignment during training. This
Frontiers in Plant Science 10
module has been shown to enhance the accuracy of regionalization

by integrating the corner distance concept into the intersection over

union. The mathematical formulation is expressed in Equation 16.

LMPDIoU = 1 − IoU +
d21

w2 + h2
+

d22
w2 + h2

(16)

where d1 and d2 indicate the distances between the top-left and

bottom-right corner coordinates of the ground truth bounding box

and the predicted bounding box, respectively. w and h represent the

width and height, respectively, of the final output feature map of the

network. By taking into account the positional discrepancies of the

corner points between the predicted and ground truth bounding

boxes, MPDIoU guides the model to adjust the positions of the

bounding boxes with greater accuracy, thus improving the stability

of target localization.

The formula forWise-Inner-MPDIoU is expressed in Equation 17.

LWise−Inner−MPDIoU = (1 −WIoUv3) + l1 ·
d21 + d22
w2 + h2

+ l2 · 1 −
Bp∩Bg

�� ��
min   ( Bp

�� ��, Bg

�� ��)
 !

(17)

Here, l1 and l2 are used to adjust the weight contributions of

different constraint terms. This fusion strategy enables Wise-Inner-

MPDIoU to jointly evaluate the spatial alignment and positional

discrepancies between predicted and ground truth bounding boxes

more effectively. It mitigates the overemphasis on both high-quality

anchor boxes (with low localization loss) and low-quality anchor

boxes (with high localization loss), thereby facilitating the

optimization of moderately performing anchor boxes. This

approach ensures convergence speed while effectively boosting the

precision of object bounding box regression.
4 Analysis and interpretation of
experimental results

4.1 Experimental platform

The experiments are carried out on a server with the following

hardware and software configurations: two RTX 4090 GPUs with a

total of 48 GB GPUmemory and an Intel 8360Y CPU. The platform

is equipped with Ubuntu 22.04 LTS, CUDA 11.8, Python 3.9.19,

PyTorch 2.0.1, and PyCharm 2020.3. The specific configuration is

shown in Table 1.

During the training phase, the YOLO-Citrus model adopts

transfer learning to accelerate the training speed. Specifically, the

number of training epochs is set to 200 with a batch size of 16, and

the Stochastic Gradient Descent (SGD) optimizer is employed. The

remaining parameters are set to the default configuration of the

official YOLOv11s model. Moreover, an early stopping strategy is

implemented, which terminates the training process if the model’s

performance fails to improve after 100 epochs.
FIGURE 8

ADown module.
TABLE 1 Hardware and software configuration used in the experiment.

Software and hardware Version or model

Operating system Ubuntu 22.04 LTS

CPU Intel 8360Y

GPU 2 × NVIDIA GeForce RTX 4090

Display memory 48G

CUDA 11.8

PyTorch version 2.0.1

Python version 3.9.19

Software PyCharm 2020.3
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4.2 The assessment metrics for the
network model

This study evaluates the performance of citrus disease detection

using the following metrics: model size, Giga Floating Point

Operations per Second (GFlops), precision, recall, F1 score,

average precision (AP), and mean average precision (mAP).

These parameters are widely used in object detection methods to

characterize the citrus disease detection accuracy. The definitions of

these parameters are shown in Equations 18–22.

Precision  =  
TP

TP   +   FP
(18)

Recall   =  
TP

TP   +   FN
(19)

F1 = 2  � Precision  ·  Recall
Precision  +  Recall

(20)

AP   =
Z 1

0
(Precision · Recall)   dRecall (21)

mAP =
1
No

N

i=1
APi (22)

where TP (True Positive) is the number of diseased leaves that are

detected by themodel. FP (False Positive) occurs when a healthy leaf or a

leaf with a different disease is incorrectly classified as having the target

disease. FN (False Negative) represents the diseased leaves that themodel

fails to identify. Higher Precision implies more accurate judgmentsmade

by the model. Recall is the ratio of actual positive samples that are

identified by the model. The F1 score is a metric that integrates precision

and recall into a weighted average. AP gives an overall idea of the

model’s performance by calculating precision for all the values of recall.

mAP represents the average of AP over all the diseases, an overall

measurement of the model’s capability of detecting different diseases.

Thus, all these metrics give an overall idea of the model’s performance.
4.3 Performance analysis of the benchmark
model

For the performance analysis of various YOLOv11 models for

citrus leaf disease, a test is performed for each YOLOv11 on the
Frontiers in Plant Science 11
constructed dataset. The test results are shown in Table 2. From the

test results, it can be found that there are obvious differences in

terms of model size and computational efficiency among the

YOLOv11 variants. If balance is made between model size,

computational efficiency, and detection accuracy, YOLOv11s gets

the best performance. Its model size is 19.2 MB, computational load

is 21.3 GFlops, and mAP@0.5 is 95.2%. YOLOv11n has the smallest

model size of 5.5 MB and the smallest computational load of 6.3

GFlops, and its mAP@0.5 is 93.0%, which is significantly lower than

that of YOLOv11s. YOLOv11m achieves the highest mAP@0.5 with

96.5%, but its model size is 40.5 MB and the computational load is

67.7 GFlops, approximately 2.1 times and 3.2 times, respectively,

higher than those of YOLOv11s. This leads to a substantial increase

in resource requirements. The mAP@0.5 values of YOLOv11l and

YOLOv11x are 96.1% and 95.9%, respectively. However, their

model sizes are 51.2 MB and 114.4 MB, and their computational

loads are 86.6 and 194.4 GFlops, respectively. These are

approximately 2.7 and 6.0 times, and 4.1 and 9.1 times greater

than those of YOLOv11s, respectively, indicating lower efficiency.

Therefore, based on the balanced consideration of model efficiency

and detection performance, this study selects YOLOv11s as the

benchmark model for object detection tasks. It can still maintain a

high detection accuracy, while its model size and computational

requirements are smaller. As such, it is suitable for efficient

deployment in practical applications.
4.4 Analysis of the ablation experimental
results

As shown in Table 3, all these parts are beneficial to the final

performance of YOLOv11s. The baseline model (using only

YOLOv11s) attains a mAP@0.5 of 95.2% and a mAP@0.5:0.95 of

80.2%, with a model size of 19.2 MB and a computing cost of 21.3

GFlops. When the C3K2-STA module is added individually, mAP@

0.5 is enhanced to 95.7%, while mAP@0.5:0.95 is improved to

81.1%. Model size and computation cost are decreased slightly. It

means that the C3K2-STA module can boost both detection

accuracy and model efficiency at the same time. The ADown

module can decrease model complexity dramatically while

maintaining detection accuracy. Following the incorporation of

the ADown module, mAP@0.5 persists at 95.7%, while mAP@

0.5:0.95 ascends to 81%, accompanied by a substantial decline in

model size and computation to 15.4 MB and 17.2 GFlops,

respectively. When C3K2-STA and ADown are applied

simultaneously, mAP@0.5 is decreased slightly to 95.6%, while

mAP@0.5:0.95 is further improved to 81.8%. Model size and

computation are decreased to 14.4 MB and 17.0 GFlops. It means

that C3K2-STA and ADown have a synergistic effect on improving

detection accuracy and decreasing model complexity. By combining

the Wise-Inner-MPDIoU loss function with the C3K2-STA and

ADown modules, mAP@0.5 improves in both cases, enhancing the

model’s performance at lower IoU thresholds. In summary, the

individual or combined use of the C3K2-STA, ADown, and Wise-

Inner-MPDIoU modules can effectively boost the detection
TABLE 2 Performance comparison of YOLOv11 models.

Model mAP@0.5 (%) Size (MB) GFlops

YOLOv11n 93.0 5.5 6.3

YOLOv11s 95.2 19.2 21.3

YOLOv11m 96.5 40.5 67.7

YOLOv11l 96.1 51.2 86.6

YOLOv11x 95.9 114.4 194.4
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accuracy and model efficiency of YOLOv11s. In particular, when

integrating the C3K2-STA, ADown, and Wise-Inner-MPDIoU

modules together, mAP@0.5 is improved to 96.6%, while mAP@

0.5:0.95 is improved to 81.6%. Model size and computation are

decreased to 14.4 MB and 17.0 GFlops, respectively. This approach

has been shown to significantly reduce model complexity and

computational requirements while maintaining high levels of

performance. Consequently, these modules are instrumental in

enhancing the citrus disease recognition model proposed in this

study. Figure 9 compares the P–R curves and mAP@0.5 results of

the enhanced YOLOv11s model under different configurations,

highlighting the impact of our proposed modifications.
4.5 Performance evaluation of the YOLO-
Citrus model

To further analyze the overall effect of YOLO-Citrus in multi-class

citrus disease recognition, a normalized confusion matrix is constructed

based on the test set. Additionally, the F1 score curve is utilized to

further assess the overall performance of the model. The corresponding

visualization results are presented in Figure 10, which illustrates the
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classification accuracy across four major disease categories as well as the

variation of F1 score under different confidence thresholds.

As shown in Figure 10, the normalized diagonal accuracies of

the four main disease categories are 0.92, 0.96, 0.93, and 0.97. This

indicates that there is little misclassification between categories and

that YOLO-Citrus has stable recognition performance. When the

confidence threshold is 0.413, the weighted average F1 score is 0.94.

This also indicates that YOLO-Citrus can achieve a balanced overall

precision and recall.

From the above analysis, it can be seen that there is still a low

misclassification rate in most categories and that YOLO-Citrus

performs well in the category of concern, which indicates that

YOLO-Citrus has strong practical application potential. Although

there are still some false positives and false negatives in most

categories, YOLO-Citrus has a high overall detection performance

and can meet the practical application requirements of intelligent

diagnostic systems. In some cases, there may be misclassifications

between categories. These misclassifications are caused by the fact

that the visual appearance of different disease symptoms is not

significantly different. This type of confusion is biologically

plausible and may affect the timeliness of early diagnosis and

treatment in real-world applications.
TABLE 3 Ablation experimental results.

YOLOv11s C3K2-STA ADown Wise-Inner-MPDIoU mAP@0.5 (%) mAP@0.5:0.95 (%) Size (MB) GFlops

✓ × × × 95.2 80.2 19.2 21.3

✓ ✓ × × 95.7 81.1 18.2 21.1

✓ × ✓ × 95.7 81.0 15.4 17.2

✓ ✓ ✓ × 95.6 81.8 14.4 17.0

✓ ✓ × ✓ 96.0 80.8 18.2 21.1

✓ × ✓ ✓ 95.9 80.7 15.4 17.2

✓ ✓ ✓ ✓ 96.6 81.6 14.4 17.0
FIGURE 9

P–R curves and mAP@0.5 results of the improved YOLOv11s model under different configurations.
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Therefore, YOLO-Citrus has excellent overall performance,

strong class-wise recognition ability, and strong reliability, which

provide effective technical support for the early detection and

intelligent management of citrus diseases.
4.6 The comparative analysis mainstream
object detection models

This subsection presents a comparative analysis of several

mainstream object detection models, including RT-DETR-R50,

YOLOv3-Tiny, YOLOv5s, YOLOv6s, YOLOv8s, YOLOv9s,

YOLOv10s, YOLOv11s, and YOLO-Citrus. The specific outcomes

are collectively illustrated in Table 4, as well as in Figure 11.

Table 4 shows the precision, recall, mAP@0.5, mAP@0.5:0.95,

model size, number of parameters, and computational load of these

models. The results indicate that YOLO-Citrus outperforms the

other models across multiple evaluation metrics. YOLO-Citrus gets

mAP@0.5 of 96.6% and mAP@0.5:0.95 of 81.6%; meanwhile, the

model size is only 14.4 MB, and the computational load is only 17.0

GFlops. It shows that YOLO-Citrus has good lightweight
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characteristics in addition to high accuracy, which is suitable for

deployment on a device with limited resources.

RT-DETR-R50 gets a mAP@0.5 of 93.9% and a mAP@0.5:0.95

of 79.5%. However, it needs 41.94M parameters and 125.6 GFlops,

which are much more than those of YOLO-Citrus. Despite this

higher resource consumption, its detection accuracy is still lower.

YOLOv3-Tiny achieves a mAP@0.5 of 94.0%, and YOLOv10s

reaches 94.4%, both of which are respectively 2.6% and 2.2%

lower than those of YOLO-Citrus’s 96.6%. Their recall rates are

respectively 89.7% and 88.5%, which are 3.3% and 4.5% lower than

those of YOLO-Citrus’s 93.0%. YOLOv6s has a mAP@0.5 of 93.3%,

3.3% lower than that of YOLO-Citrus, but its computational load of

42.8 GFlops and parameter count of 15.98M are 2.52 times and 2.3

times those of YOLO-Citrus, respectively. YOLOv8s obtains a

mAP@0.5 of 95.7%, which is a 0.7% improvement compared with

that of YOLOv5s. In addition, YOLOv8s gets a mAP@0.5:0.95 of

80.8%, which is a 3.2% improvement compared with that of

YOLOv5s. However, its model size is 19.9 MB and its

computation load is 23.4 GFlops, which are respectively 38.2%

and 37.6% larger than those of YOLO-Citrus. YOLO-Citrus

achieves a mAP@0.5 of 96.6% with 6.95M parameters, reducing
FIGURE 10

(A) Normalized confusion matrix and (B) F1-confidence curve of the YOLO-Citrus model under different configurations.
TABLE 4 Comparative experimental results.

Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) Size (MB) Parameters GFlops

RT-DETR-R50 93.1 89 93.9 79.5 82.0 41,942,904 125.6

YOLOv3-Tiny 93.1 89.7 94.0 74.8 19.2 9,512,080 14.3

YOLOv5s 93.6 89.2 95.0 77.6 15.9 7,815,164 18.7

YOLOv6s 93.9 84.8 93.3 74.0 32.2 15,976,924 42.8

YOLOv8s 94.5 91.5 95.7 80.8 19.9 9,829,212 23.4

YOLOv9s 94.1 87.3 94.2 77.4 13.3 6,195,196 22.1

YOLOv10s 92.2 88.5 94.4 75.2 16.5 7,219,548 21.4

YOLOv11s 95.0 91.1 95.2 80.3 19.2 9,414,348 21.3

YOLO-Citrus 95.1 93.0 96.6 81.6 14.4 6,947,156 17.0
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the parameter count of the original YOLOv11s by 26.2% (from

9.41M) and improving the accuracy by 1.4%. Those results reach

the best balance in terms of detection accuracy, amount, and

computation load.

As shown in Figure 11, the P–R curve of YOLO-Citrus always

converges to the upper-right corner closer than other models, which

means that YOLO-Citrus is better than other models in terms of the

precision–recall curve. Furthermore, YOLO-Citrus obtains the

highest mAP@0.5 among all models, which is also evidence that

YOLO-Citrus is the best. In addition, as displayed in Figure 12, the

detection results of other models on some test images are displayed,

where the red boxes represent the false detections and green boxes

represent the missed detections. These test images are derived from

our dataset and encompass several prevalent citrus leaf diseases,

including canker, rust, Huanglongbing, and melanose. YOLO-

Citrus has fewer localization errors and missed targets than other

models, which shows that YOLO-Citrus is more robust in

practical applications.
4.7 Model deployment experiments

Finally, YOLO-Citrus is run on an NVIDIA Jetson Orin Nano 8

GB edge device, with 40 TOPS computing power. The device runs

on the JetPack 6.1 software platform and uses TensorRT technology

for acceleration, with the model optimized using FP16 precision to

enhance inference efficiency. During the deployment, image data

are collected using a Hikvision DS-E11 camera, and the detection

results are visualized in real time on the 15-inch touch screen to

construct an integrated visual inspection system, as shown in

Figure 13. As shown in the experimental results, the inference

speed of the model can remain at a relatively stable level of 51.5 FPS,

and the standard deviation is very small. Most of the images are

finished within 18.4 ms, which shows the real-time performance of

the model. These results show that YOLO-Citrus can run in a

resource-constrained edge environment efficiently and stably. The

real-time disease detection system has been constructed and
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implemented on citrus orchards, providing evidence to support

timely decision-making in intelligent agriculture.
5 Conclusions

This paper presents the YOLO-Citrus network model designed

for intelligent detection of citrus leaf diseases. Through the

realization of automatic disease identification and early warning,

a large part of the citrus cultivation management process, the

intelligence of the next step is significantly promoted, and the

yield and quality of citrus fruits are improved at the same time.

Specifically, three novel technical components are introduced

into the YOLO-Citrus model. First, the dynamically enhanced

C3K2-STA module merges Star Block’s dynamic receptive fields

with Triplet Attention’s cross-dimensional attention mechanism.

Second, the computationally efficient ADown downsampling

strategy integrates dual-path pooling with axial feature

reorganization. Third, the geometrically optimized Wise-Inner-

MPDIoU loss function implements dynamic weight allocation

with inner-product distance metrics.

The experimental results verify the superiority of the model.

YOLO-Citrus achieves a mAP@0.5 of 96.6%, which is an

improvement of 1.4 percentage points compared with the baseline

YOLOv11s. Additionally, it attains a mAP@0.5:0.95 of 81.6%,

surpassing the YOLOv11s benchmark of 80.3%. Detailed

comparison with other state-of-the-art models, such as YOLOv5s,

YOLOv8s, and YOLOv11s, on evaluation metrics, shows that YOLO-

Citrus outperforms other models in terms of detection performance.

Remarkably, without sacrificing outstanding detection

accuracy, YOLO-Citrus obtains significant improvements on both

computational efficiency and model compactness. The architecture

achieves a 26.2% reduction in parameters (6.9M), a 20.2% decrease

in computational cost (17.0 GFlops), and compresses the model size

by 25.0% to 14.4 MB, compared to the 19.2 MB baseline. These

optimizations provide significant advantages for deployment in

resource-constrained agricultural environments.
FIGURE 11

Detection results of the P–R curve and mAP@0.5 curve of mainstream object detection algorithms.
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FIGURE 12

Test results of different models on test images. Red boxes indicate false detections, and green boxes indicate missed detections.
FIGURE 13

Edge platform configuration and testing outcomes.
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To verify its practical usability, YOLO-Citrus is deployed on a

Jetson Orin Nano edge device. The maximum FPS is 51.5 with low

latency (18.4 ms per image) and steady state, which means that

YOLO-Citrus can be used for real-time on-site detection without

depending on high infrastructure. Thus, farmers can obtain

feedback in the field immediately and take corresponding actions

in time to prevent the disease from spreading further, which helps

reduce pesticide misuse, lower costs, and improve yield through

more informed decision-making.

In summary, YOLO-Citrus establishes new performance standards

for disease detection models while delivering practical solutions for

intelligent citrus disease management. This research not only

contributes a high-precision, efficient lightweight detection framework

covering multiple major citrus diseases, including canker, rust,

melanose, and HLB, but also demonstrates its real-world agricultural

applications. Considering the severe economic and agronomic impacts

of diseases such as HLB, real-time, leaf-level detection frameworks like

YOLO-Citrus offer promising tools for early diagnosis and effective

management in citrus orchards. Future investigations will focus on

enhancing environmental adaptability and extending the model’s

capabilities to other crop disease detection scenarios, thereby

broadening the technology’s impact and applicability.
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