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Introduction: Accurate fruit detection under low-visibility conditions such as
fog, rain, and low illumination is crucial for intelligent orchard management and
robotic harvesting. However, most existing detection models experience
significant performance degradation in these visually challenging environments.
Methods: This study proposes a modular detection framework named Dynamic
Coding Network (DCNet), designed specifically for robust fruit detection in low-
visibility agricultural scenes. DCNet comprises four main components: a
Dynamic Feature Encoder for adaptive multi-scale feature extraction, a Global
Attention Gate for contextual modeling, a Cross-Attention Decoder for fine-
grained feature reconstruction, and an Iterative Feature Attention mechanism for
progressive feature refinement.

Results: Experiments on the LVScene4K dataset, which contains multiple fruit
categories (grape, kiwifruit, orange, pear, pomelo, persimmon, pumpkin, and
tomato) under fog, rain, low light, and occlusion conditions, demonstrate that
DCNet achieves 86.5% mean average precision and 84.2% intersection over
union. Compared with state-of-the-art methods, DCNet improves F1 by 3.4%
and loU by 4.3%, maintaining a real-time inference speed of 28 FPS on an RTX
3090 GPU.

Discussion: The results indicate that DCNet achieves a superior balance between
detection accuracy and computational efficiency, making it well-suited for real-
time deployment in agricultural robotics. Its modular architecture also facilitates
generalization to other crops and complex agricultural environments.
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1 Introduction

In the agricultural domain, computer vision has been widely
applied, particularly in orchard management systems. Modern
harvesting robots employ advanced models for classification,
detection, and related tasks, enabling efficient yield estimation
and crop monitoring Akiva et al. (2020); Sa et al. (2016); Bargoti
and Underwood (2017); Guo et al. (2024); Wang et al. (2022);
Lehnert et al. (2016); Bac et al. (2017). However, most existing fruit
detection approaches are designed for ideal conditions, neglecting
weather-affected scenarios that significantly degrade image quality
and compromise detection accuracy. The outdoor nature of
orchards introduces further challenges for visual systems
Kamilaris and Prenafeta-Boldt (2018), as strong sunlight,
precipitation, fog, and snow often impair visibility. Dense foliage
additionally obscures fruits, creating background noise and visual
complexity. Nevertheless, fruit detection under low-visibility
outdoor conditions is essential for agricultural object detection,
and achieving high accuracy is crucial for smart agriculture.

Existing state-of-the-art models such as YOLOv7/v8, HitNet, and
Deformable DETR have demonstrated remarkable performance in
general object detection tasks. However, these frameworks are either
optimized for high-quality images or rely heavily on anchor-based
predictions and large-scale transformer backbones, which tend to
degrade under adverse conditions such as fog, rain, or low
illumination. In contrast, the proposed DCNet is specifically
designed for agricultural environments with low-visibility. Unlike
these generic detectors, DCNet integrates four tailored modules—
Dynamic Convolution, Global Attention Gate, Cross-Attention
Decoder, and Iterative Feature Attention—that collectively enable
fine-grained feature recovery and effective noise suppression. This
combination systematically addresses visibility-induced feature loss,
which has not been explicitly solved in previous fruit detection studies.

Although existing deep learning methods achieve promising results
in standard environments, low-visibility conditions in real-world
agricultural scenarios—such as insufficient lighting, haze, occlusion, or
dense fruit clustering—still significantly degrade detection performance.
The main technical gaps in current approaches are as follows:

* Feature extraction under low-visibility conditions is not
robust, often leading to missed detections or false positives.

» Existing feature fusion strategies inadequately integrate
global and local information, limiting the utilization of
multi-scale features in complex scenes.

* There is a lack of iterative feature optimization mechanisms
tailored for low-visibility conditions, resulting in
suboptimal object localization.

*  Most studies lack systematic approaches to improve model
generalization across diverse complex environments.

To address these issues, this study proposes a robust fruit
detection framework that maintains high detection accuracy and
instance completeness across diverse complex environments,
providing technical support for intelligent monitoring in real-
world orchard scenarios.
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The main contributions of this work are summarized as follows:

*  We propose DCNet, a novel modular detection framework
specifically designed to address low-visibility challenges in
agricultural scenarios.

*  Our method incorporates multi-scale dynamic encoding for
robust feature extraction under visibility noise, enhancing
the representation of occluded or poorly illuminated fruits.

* Innovative feature fusion strategies are developed,
integrating global attention, local attention, and cross-
attention mechanisms to improve detection accuracy.

* An iterative feature fusion mechanism is employed to
optimize feature representation, significantly enhancing
object localization performance in challenging low-
visibility conditions.

The remainder of this paper is organized as follows: section 2
introduced the existing methods and related research; Section 3 presents
the proposed DCNet framework and its main components; Section 4
reports the experimental setup, results, and ablation studies; Section 5
provides further analysis and discussion of the findings; Section 6
concludes the paper and outlines directions for future research.

2 Related work

Recent years have witnessed remarkable progress in deep
learning-based object detection algorithms, which have
progressively supplanted conventional approaches. Contemporary
detection methodologies can be categorized principally into three
paradigms: anchor-based two-stage methods, anchor-based single-
stage methods, and anchor-free algorithms Zand et al. (2021);
Cheng et al. (2022); Wang et al. (2020).

Single-stage detectors, such as YOLOv7 Wang et al. (2023) and
Dynamic YOLO Li et al. (2019), perform object localization and
classification in a unified framework by directly predicting bounding
boxes and class probabilities on a dense grid, without the need for region
proposals. This design confers notable computational efficiency;
however, it may compromise detection accuracy, particularly for small
or densely packed objects, due to the limitations imposed by fixed-grid
anchors. In contrast, two-stage approaches, including R-CNN Girshick
et al. (2014), Fast R-CNN Girshick (2015), and more recent frameworks
Kang et al. (2024), decompose the detection task into a region proposal
stage followed by region-wise classification and bounding box
refinement. By leveraging hierarchical feature representations and
region-specific processing, these methods achieve superior accuracy,
albeit at the cost of increased computational complexity.

Traditional object detectors can usually achieve satisfactory
performance, but most object detection models are carried out under
ideal preconditions, such as high-quality images, which limits their
application in practice. In cases of degraded image quality, their
effectiveness may be significantly compromised. For instance, in
outdoor object detection tasks, weather conditions are key factors
that significantly affect the performance of detection models. Under
severe weather conditions (e.g., precipitation, fog, or snow), both
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human visual perception and vision-based detection systems Munir
et al. (2024); Li et al. (2018a) experience significant performance
degradation Bac et al. (2017); Lehnert et al. (2016). To address these
weather-induced challenges, substantial research efforts have yielded
multiple solution strategies, broadly classifiable into four categories:
image enhancement-based strategy Li et al. (2018b); Chen et al. (2019),
prior knowledge-integrated strategy Liu et al. (2022); Li et al. (2017);
Huang et al. (2020), unsupervised learning Chen et al. (2021); Sindagi
et al. (2020); Zhu et al. (2017); Wang et al. (2004) and knowledge
distillation-based multi-task learning methods Yang et al. (2022).

These methods aim to simultaneously learn feature representations
under various weather conditions Zhang and Patel (2018). Although
the aforementioned methods have made progress in improving object
detection performance under harsh weather conditions, several
challenges remain. First, most existing methods are optimized for
specific weather conditions, making it difficult to handle complex and
dynamic real-world environments. Second, many of these approaches
require additional data collection and annotation, which increases the
cost of system deployment.

In this paper, we proposes a novel modular framework
specifically designed to address low-visibility detection challenges,
aiming to mitigate performance degradation caused by visibility

10.3389/fpls.2025.1670790

noise while establishing benchmark standards for agricultural
applications. Through comprehensive analysis of low-visibility
noise interference mechanisms in feature extraction, we introduce
DCNet: a Dynamic Coding-based detection network for
agricultural scenarios. Our approach incorporates multi-scale
dynamic encoding for robust feature extraction, develops
innovative fusion strategies for global and local features, and
proposes an advanced decoder architecture integrating global
attention, local attention, and cross-attention mechanisms.
Furthermore, an iterative feature fusion mechanism is
incorporated to optimize feature representation, significantly
enhancing object localization accuracy in challenging visibility
conditions. Our proposed method achieves effective fruit
detection in challenging scenes, providing a crucial basis for
orchard management in low-visibility environments.

3 Methods

We present a novel unimodal object detection framework,
DCNet as illustrated in Figure 1, our comprehensive framework
comprises four key components: (1) a dynamic feature encoder
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Architecture overview. DFE employs a visual pyramid to extract image features and generate multi-scale feature maps. It effectively retains fine-grained
local information while fusing multi-layer semantic features of the object in a coherent manner. GAG leverages the attention mechanism to dynamically
mitigate interference caused by low-visibility and enhances the response within the object region. CAD utilizes the cross-attention mechanism to capture
long-range dependencies, thereby achieving robust multi-scale information fusion. IFA facilitates cross-layer interaction between high-level semantic
features and low-level fine-grained features via an iterative optimization mechanism, with a focus on refining representations in the object area
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(DEFE) for adaptive feature representation, (2) a global attention gate
(GAG) for contextual modeling, (3) a cross attention decoder
(CAD) for discriminative feature reconstruction, and (4) an
iterative feature attention (IFA) mechanism for progressive
feature refinement.

3.1 Dataset description

LVScene4K Dataset. The LVScene4K dataset, constructed for
this study, was collected at Huazhong Agricultural University.
Images were captured outdoors using a Hikvision industrial
camera by rotating around each crop at fixed angles, thus
simulating realistic orchard conditions from multiple viewpoints.
The dataset covers diverse fruit categories, including grapes, kiwi,
oranges, pears, pomelos, persimmons, pumpkins, and tomatoes. For
each crop type, between 100 and 300 images were collected,
resulting in a total of approximately 4,000 images. All images
were acquired under natural outdoor conditions with varying
illumination and partial occlusions, reflecting real-world
agricultural challenges. The final dataset contains images with a
resolution of 704 x 704 pixels.

Annotation. A two-stage annotation procedure was employed.
First, bounding boxes for fruits were manually annotated using
LabelImg. Subsequently, pixel-level instance masks were generated
by a professional annotation service provider to ensure high-quality
segmentation. This dual-annotation approach enables the dataset to
be applicable both for detection and segmentation tasks.

Environmental conditions. Our dataset covers images collected
outdoors under different daylight conditions (noon and dusk). To
further verify the reliability of the proposed method under various
low-visibility scenarios, we employed the augimg toolkit to perform
randomized data augmentation. Rain, snow, and fog—each divided
into three intensity levels—were randomly superimposed onto the
images. For instance, when “fog” is selected, the image may receive
light fog, normal fog, or heavy fog. Although the augmentation is
stochastic, all modifications obey basic natural laws: if an image
already contains over-exposure, fog will not be added, because
strong sunlight and fog rarely coexist. Following this protocol, every
augmented image carries 1-3 simultaneous low-visibility factors,
yielding 20 distinct combinations of adverse conditions in total.
After augmentation, these weather-corrupted images are labeled as
the “hard” subset, which is used to examine the model’s robustness
under extremely challenging visibility conditions.

3.2 Dynamic feature encoder

3.2.1 Multi-scale feature encoder

The Transformer architecture has achieved remarkable success
in natural language processing (NLP) and has been progressively
extended to the computer vision domain, demonstrating
considerable potential in image classification tasks. The vision
transformer (ViT) partitions an input image into a series of non-
overlapping patches, which are subsequently processed as
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sequential tokens, thereby successfully adapting the Transformer
framework to visual tasks while achieving performance on par with
traditional convolutional neural networks (CNNs).

However, despite its superior performance in classification
tasks, ViT exhibits certain limitations in scenarios requiring
multi-scale feature representation. In contrast, the pyramid vision
transformer (PVT) Wang et al. (2021), which incorporates a
hierarchical feature pyramid structure, demonstrates exceptional
capability in computer vision tasks such as object detection. This
enhanced performance primarily stems from its effective
exploitation of multi-scale features during both the encoding and
decoding phases.

During the encoding stage, PVT employs a feature pyramid
architecture to extract multi-scale object representations from the
input image. This hierarchical encoding strategy progressively
reduces feature resolution while integrating the spatial reduction
attention (SRA) mechanism, which substantially mitigates
computational overhead. Consequently, the model maintains high
efficiency even under constrained computational resources, making
it particularly suitable for large-scale vision applications.

3.2.2 Dynamic convolution module

Under low-visibility conditions, environmental perception is
significantly impaired due to reduced visibility and substantial
variations in light intensity, which severely degrade image quality
and pose considerable challenges for object detection models.
Notably, feature importance exhibits spatial heterogeneity across
image regions. For images affected by adverse lighting conditions or
degraded by atmospheric noise, traditional convolutional
operations may fail to capture subtle feature representations. To
address this limitation, we propose the implementation of adaptive
convolutional kernels with dynamic configurations, including
variable kernel sizes, shapes, and weighted convolution outputs.
Drawing upon this conceptual framework, we introduce a DCB
module (Dynamic Convolution Module) Chen et al. (2020).
Dynamic convolution allows for more detailed extraction of local
features in an image, which is especially crucial under low-visibility
conditions. By adjusting the convolution kernels, dynamic
convolution captures key information in the image at a finer
granularity, such as object contours and textures. The dynamic
convolution module calculates weights and flexibly selects
appropriate kernels to handle images with significant differences,
optimizing for low-visibility environmental conditions. This
approach helps the model accurately locate and recognize objects,
enabling better adaptation to such environments and enhancing the
precision of image feature extraction, thus improving the model’s
ability to accurately identify objects.

As illustrated in Figure 2, the DCB module processes each input
feature map {f,}n1S RO

architecture comprising adaptive pooling layers, fully connected

"> through a cascaded

layers, and ReLU activation functions to compute attention weights.
These weights dynamically modulate both the convolutional kernel
dimensions and operation weights. The final convolutional output
is generated through a weighted fusion of multiple convolution
results, followed by batch normalization (BN) and ReLU activation.
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[llustration of dynamic feature encoder. DFE consists of two parts: PVT (obtaining multi-scale features) and DCB (enhancing the ability to extract
local features in low-visibility areas). For more details. Please refer to § 3.2.1 and § 3.2.2 for details.

The resultant feature representation after dynamic convolution is
B Cx—_x W
denoted as {f, }5_,E R @ et

3.3 Global attention gate

When confronted with low-visibility images, the model’s ability
to discriminate fruit objects diminishes due to a decline in image
quality. To address this challenge, we propose a learnable adaptive
GAG, a parameterizable normalization framework that enables the
model to autonomously learn noise characteristics induced by
adverse visibility conditions (e.g., low contrast and haze
occlusion) during feature decoding. This mechanism facilitates
adaptive parameter adjustment to enhance object
discrimination performance.

Specifically, GAG architecture first applies instance
normalization to input features, followed by a sophisticated linear
combination operation between the original input and normalized
features. This process involves multiplying the original input by the
normalized result, and then element-wise adding the product to
both the normalized result and the original input. Twofold benefits
are achieved through this design: (1) effective learning of adaptive
normalized features while (2) preserving crucial details from the
original input, thereby preventing feature representation bias and
alleviating overfitting tendencies. The mathematical formulation of
GAG is expressed as Equation (1):

IN(f,) = n(f;i(";n(')f”)) y: (1)

fi=f, ® IN(f,) ® IN(f,) ®f, @)

Where IN( - ) denotes instance normalization, 1) and € represent
learnable parameters, u( -) and o(-) indicate mean and variance
operations, respectively, @ and ® correspond to Equation (2)
element-wise addition and multiplication, and {f,’,'}izle
RE*CxarirxgT signifies the final output of combined features. To
further enhance object-background discrimination capability under

compromised visibility conditions and mitigate the obstructive
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effects of precipitation elements, we incorporate a dual-attention
mechanism. First, a spatial attention module processes the features
to emphasize location-specific information. Recognizing that
different channel features exhibit varying importance under
distinct noise conditions, we subsequently employ a channel
attention mechanism to dynamically recalibrate channel-wise
feature weights during decoding. This ensures optimal utilization
of noise-specific discriminative features. The complete attention
process is formally defined as Equations (3):

fl =1 ® CA(f) ® SA(f} ® CA(f})) 3)

Where CA(-) and SA(-) represent spatial and channel
attention operations respectively, ® denotes element-wise
multiplication, and f,{ denotes the final attended feature map.

The GAG module can be thought of as a two-step “adaptive lens
cleaning” process for fruit detection. First, the normalization step
works like automatically adjusting the brightness and contrast of an
image to counteract fog, shadows, or dim lighting. This ensures that
the model sees a clearer, more standardized version of the fruit
features without losing the original details. Second, the attention
mechanism acts like focusing your eyes: spatial attention highlights
“where” the fruits are in the image (locations), while channel
attention emphasizes “what kind of details” are most useful (such
as color, texture, or shape under noisy conditions). Together, these
steps allow the model to suppress irrelevant noise while preserving
and enhancing fruit-specific characteristics, just as a human
observer would adjust their vision when looking at a fruit tree in
foggy or rainy conditions.

3.4 Cross-attention-based decoder

3.4.1 Cross-attention block

Agricultural scenes with limited visibility present particularly
challenging backgrounds, demanding heightened attention to detail
for effective object detection. To address this characteristic, we propose
a dual attention mechanism comprising local attention block (LAB)
and global attention block (GAB) as illustrated in Figure 3, designed to
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[llustration of the cross-attention-based decoder.

capture both localized and comprehensive feature representations,
respectively. Specifically, we introduce a Cross Attention Block that
performs cross-attention computations along both horizontal and
vertical orientations. This design enhances the model’s capacity for
multi-directional and multi-scale perception, facilitating the effective
fusion of spatial information across different scales. By capturing the
intricate relationships between fruit objects and their surrounding
environment, the CAB enables dynamic adjustment of attention
based on regional feature distributions, thereby mitigating the
adverse effects of poor weather conditions on detection performance.

CAB can be expressed as:

LAB(f}) = Sigmoid(CBSCB(f})) 4)
GAB(f!) = AvgPooling(LAB(f")) )

fE = Sigmoid(LAB(f!) + GAB(f}) + f}) (6)
£ = CA(Conv(Concat(fL%, CCA(f!)))) + f* )

Where LAB( -) Equation (4) denotes the Local Attention Block,
{ ff } denotes the feature input to the CAB, CBSCB( - ) refers to the
cascaded ‘Conv-BN-SiLU-Conv-BN” layers, GAB( -) Equation (5)
represents the Global Attention Block, AvgPooling(-) indicates
adaptive average pooling Equation (6), {f; }n , refers to the fused
feature representation of local and global features, { f,f“b}nzl denotes
the feature output of the CAB, CA(-) represents channel attention,
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Conv( -) refers to the convolutional layer, Concat( -) Equation (7)
denotes concatenation along the channel dimension, and CCA(-)
represents cross attention.

Within our framework, the CAD integrates convolutional layers,
ReLU activation functions, and two sequentially stacked CABS. This
architecture progressively refines feature extraction in low-visibility
agricultural scenes, with the first CAB capturing local and global
features and the second CAB further enhancing their integration.
Through this cascaded attention mechanism, the model achieves
improved recognition of subtle object characteristics under
challenging conditions, including low contrast, high noise, and detail
degradation, ultimately leading to superior detection accuracy. The
decoding process of CAD is formulated as Equations (8):

fi = Conv(CAB(CAB(CAB(((CRC(f]))))) @®)

The CAB can be viewed as a “discussion process” between
different perspectives of the same fruit image. The LAB acts like
zooming in with a magnifying glass, focusing on fine-grained details
such as fruit edges or small color changes. The GAB works like
stepping back and looking at the entire tree, capturing overall
context such as clusters of fruits or background distribution. By
combining these two perspectives, the model learns both “the
details”
coordinate attentions act like specialists who decide which type of

and “the big picture.” - Finally, the channel and

information (e.g., color, texture, spatial position) is most
trustworthy under current conditions.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1670790
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Lu et al.

Together, this cross-attention process enables the network to
integrate detailed local information with global context, ensuring
more accurate fruit detection even in cluttered

orchard environments.

3.4.2 lterative feature attention

Following the CAD processing, each feature level generates a
corresponding coarse prediction map. These hierarchical
predictions exhibit distinct characteristics: higher-level features
encode more abstract semantic information, while lower-level
features preserve fundamental structural details such as shape and
texture. To effectively leverage this complementary information, the
coarse prediction map from higher level features is concatenated
with the subsequent level’s features, ensuring comprehensive
utilization of both semantic and low-level visual cues.

As illustrated in Figure 4, drawing inspiration from Dai et al.
(2021), we propose an IFA mechanism to systematically explore the
relationship between coarse prediction maps and adjacent feature
levels. The IFA operates across both local and global scopes,
dynamically computing attention weights based on the preceding
level’s prediction map and the current feature level. This process
directs the decoder’s focus toward object regions, thereby enhancing
the model’s discriminative capability. The IFA mechanism is

formally expressed as:

oy = Sigmoid(LAB(f¢ + f') + GAB(fS + f1)) 9)
fh=(1—oy) x f+ xoy x f (10)

o, = Sigmoid(LAB(f¢' + GAB(f:")) (11)
fia= =) x fl+(1-0n) x fy (12)

Where oy Equation (9) and o, Equation (11) represent the
attention values obtained from two separate computations, Sigmoid
(+) denotes the sigmoid function, LAB(-) refers to the local
attention module, GAB( - ) represents the global attention module,
{f&}%_, indicates the coarse prediction map of the decoder,

10.3389/fpls.2025.1670790

{f¢.1}a_y Equation (12) denotes the features of the next level, and
{m }i:l Equation (10) represents the transitional features between
the two attention parts before and after IFA.

Beyond intra-level feature refinement, the IFA mechanism is
extended to operate across multiple iteration rounds. Starting from
the second iteration, features are progressively updated by
incorporating attention guided information from previous
iterations. This cross-iteration refinement is formulated as:

S < IBA (1) (13)

Where fi*"% Equation (13) denotes the feature updated after
the i+ 1-th iteration of the 4th-level feature, f;ﬂ’f represents the
feature before the i + 1-th iteration update of the 4th-level feature,
£ indicates the final prediction map after the i + 1-th iteration,
and IFA( - ) refers to the Iterative Feature Attention.

Upon completing the final iteration, to preserve critical low-
level details (e.g., edges and textures), the optimized high-level
feature f; is upsampled and fused with the lowest-level feature flf .
The concatenated features are then processed by a Multi-scale
Convolution Module (MC), which employs parallel convolutional
layers of varying receptive fields to capture discriminative patterns
at multiple scales. The final prediction FP™ is derived as:

(14)

FPre = MC(Concat(flf, up(f3)))

!

Where MC(-) Equation (14) denotes the multi-scale
convolutional fusion module, up(-) represents the
upsampling operation.

The IFA module can be thought of as a “step-by-step polishing
process”: Imagine restoring an old photograph. The first pass
removes the obvious scratches, but some finer details are still
unclear. On the second pass, the image is enhanced further,
focusing on regions that were previously overlooked. Each new
iteration builds upon the improvements of the last, ensuring that
both fine-grained details and overall clarity are
progressively optimized.

In the context of fruit detection, IFA repeatedly “revisits” the
intermediate feature maps, strengthening useful patterns (e.g., fruit
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FIGURE 4

lllustration of the proposed iterative feature attention. Details can be observed more clearly upon zooming in.
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boundaries, texture cues) while filtering out background noise (e.g.,
leaves, branches). This iterative refinement leads to more robust and
accurate detection results under challenging visibility conditions.

3.4.3 Loss function

In the decoding phase of our proposed method, we employ an
iterative attention mechanism for progressive feature refinement,
where each iteration generates an intermediate feature map. To
ensure comprehensive supervision throughout this hierarchical
optimization process, our loss function incorporates both the
intermediate outputs from each iteration {fi’l"e}f=1 and the final
prediction map Ffpre. Specifically, we formulate a multi-level
supervision strategy where each iterative prediction is constrained
by the loss function to maintain optimization consistency.

To effectively quantify the prediction errors and enhance the
model’s capability in detecting challenging objects, we utilize a
weighted binary cross-entropy loss L and a weighted
intersection-over-union loss L{,;, to supervise both intermediate
and final predictions. These loss functions are designed to penalize
misclassifications while emphasizing hard samples, thereby
improving model robustness. The overall prediction loss is
denoted as Ly, = Licp + Lioy Equation (15).

Furthermore, to account for the varying reliability of coarse
predictions at different iterations, we introduce a weight parameter
¢ to dynamically adjust the contribution of each intermediate
prediction, ensuring that earlier coarse predictions contribute
adaptively to the overall optimization process. The final loss
function is formally defined as:

3 .
L= Loage (B, GT) + 20 % )(Lyagel /7, GT)) (15
i=1

4 Experimental results
4.1 Experimental settings

Current approaches for enhancing detection performance
under low-visibility conditions typically involve reconstructing

10.3389/fpls.2025.1670790

high-quality images from degraded inputs prior to detection.
Following this paradigm, the present study systematically
evaluates the efficacy of the proposed method through
comprehensive experiments on both “simple” and “challenging”
samples from the LVScene4K dataset. For benchmarking purposes,
we employ HITNet Hu et al. (2023) as our baseline detection
framework, representing the current state-of-the-art (SOTA) for
normal visibility conditions. To establish performance
comparisons, we integrate existing SOTA image denoising models
with this baseline, constructing a two-stage object detection pipeline
incorporating a denoising module. Furthermore, we implement
comparative evaluations using a recently proposed SOTA
semantic segmentation network specifically optimized for adverse
weather conditions, which performs binary segmentation on our
dataset. All comparative results are rigorously analyzed relative to
the performance of our proposed DCNet.

In this study, Low-Visibility Condition Detection (LVCD) is
formulated as a binary segmentation task, wherein the model
produces a binarized mask upon object identification. Accordingly,
we adopt two well-established region-based evaluation metrics
commonly used in segmentation tasks: Intersection over Union
(IoU) and the F; score. These metrics quantitatively assess the spatial
agreement between the model’s predictions and the ground truth
annotations, providing robust performance evaluation.

DCNet maintains a moderate level of model complexity. While
the introduction of dynamic convolution and attention modules
increases the number of parameters and computational cost
compared with lightweight detectors, the overall scale of DCNet
remains significantly smaller than that of large two-stage detectors
such as Mask R-CNN. When evaluated with an input size of 704 x
704 on an NVIDIA RTX 3090 GPU, DCNet achieves an inference
speed of approximately 20-30 FPS, which is sufficient for real-time
deployment in agricultural robotic systems. During inference, the
memory consumption remains below 4 GB, indicating that the
proposed network balances accuracy and efficiency effectively, and
can be adapted for practical field applications with potential for
further optimization on embedded platforms.

DCNet introduces only 8.7% more FLOPs than HitNet while
improving IoU by 3.4% (Table 1). On Jetson Nano, the edge FPS

TABLE 1 Performance comparison of different methods on “simple” and “difficult” samples.

“simple” samples

Publications

“difficult” samples

loU Fy loU F1
A-HITNet AAAI23 0.764 0.618 0.726 0.570
BI-FFA AAAI20 0.743 0.634 0.739 0.586
B2-HDCWNet ICCV21 0.777 0.635 0.745 0.594
B3-CKT CVPR22 0.778 0.636 0.750 0.601
C1-Refign WACV23 0.759 0.656 0.721 0.574
C2-MIC CVPR23 0.769 0.639 0.749 0.596
C3-CMDA ICCV23 0.770 0.625 0.749 0.590
DCNet(Ours) 0.785 0.646 0.760 0.613

Bold values indicate the best-performing results in the corresponding metric.
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reaches 11, meeting real-time demand for agricultural robots (=10
FPS). At the same time, we also evaluated the system’s resource
consumption and stability. In the low-load mode, the device’s CPU
and GPU usage were low, with a power consumption of 5W,
memory usage around 2GB, and the system temperature
remained around 45°C, ensuring stability during prolonged
operation. In the high-load mode, although the frame rate
decreased, the power consumption increased to 10W, and the
temperature reached 65°C, the system continued to run stably
without crashes or significant performance fluctuations. These
results verify that DCNet achieves a favorable trade-off between
accuracy and efficiency.

4.2 Experimental details

The method proposed in this paper is implemented using
PyTorch, and all experiments are conducted on an RTX 3090
GPU, with the AdamW optimizer selected for parameter
optimization. During the training phase, the total number of
epochs is set to 150, with a batch size of 8. Experimental evidence
indicates that higher resolution has a positive impact on detection
performance, and the study uses a resolution of 704 x 704 as input
during both training and testing phases. The learning rate is
initialized to 0.0001 and is reduced to one-tenth of its value every
50 epochs. Regarding the optimal number of iterations, we devised a
hyper-parameter tuning scheme to secure peak model performance
and avoid degradation caused by under- or over-fitting. On both
“easy” and “hard” subsets we varied the iteration count and
compared the final detection results. As Table 2 shows, raising
the iterations first boosts the F1, but once the number is too large
the model begins to over-fit and the F1 drops. Consequently, the
tuning experiment identifies 3 iterations as the best setting, and the
iterative loss parameter set to 0.2.Wang et al. (2024).

For reproducibility, we provide additional implementation
details of DCNet. All input images are resized to 704 x 704
before being fed into the network. Most convolutional layers
adopt a kernel size of 3 x 3, while 1 x 1 kernels are used for
channel reduction and fusion operations. Stride settings follow
common practice: the backbone (PVT-v2) applies stride-2
convolutions for downsampling at multiple stages, whereas the
dynamic convolution layers and refinement modules employ stride-
1 to preserve spatial resolution. Regarding nonlinear activation, the
network mainly uses ReLU and PReLU after convolution
operations, SiLU in iterative attention modules, and Sigmoid
functions to generate attention weights in channel and spatial

TABLE 2 Results of the experiment on the optimal number of iterations.

Iteration
3
Easy Score 0.720 0.781 0.785 0.777 0.768
Hard Score 0.691 0.759 0.760 0.757 0.725

Bold values indicate the best-performing results in the corresponding metric.
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attention submodules. This combination ensures both stable
training and expressive feature representation.

4.3 Experimental analysis

4.3.1 Quantitative analysis

Following the experimental design, this section compares the
performance of the basic detection method (A), the integrated
denoising-based detection method (B), and the semantic
segmentation method tailored for adverse weather conditions (C). To
ensure fairness in the comparison of experimental results, all methods
used for comparison followed the default settings for model training
and evaluation. As shown in Table 1, using IoU and F1 score as
evaluation metrics, the proposed method consistently outperforms in
fruit detection tasks represented by both “simple” and “difficult”
samples from the LVCD task, showing significant performance
improvements in low-visibility fruit detection compared to other
methods. We designs suitable encoding and decoding methods for
low-visibility conditions, achieving a notable performance boost over
the best object detection and combined detection methods.
Additionally, feature optimization and iterative methods tailored for
agricultural scenes provide more accurate segmentation results
compared to low-visibility segmentation methods applied in other
contexts. Furthermore, the proposed method exhibits minimal
performance degradation from simple to challenging samples,
demonstrating the robustness of the model under various conditions.

This study employs qualitative experiments to assess the
performance of models in low-visibility scenes. As demonstrated
in Figure 5, a comprehensive comparative evaluation was
conducted between the proposed methodology and multiple
baseline approaches. In comparison with the baseline HitNet, our
proposed DCNet achieves substantial enhancements in detection
accuracy, significantly mitigating the occurrence of both false
detections and missed detections. The visualization results
indicate that integrating HitNet with various denoising models
leads to noticeable performance improvements compared to using
HitNet alone. This enhancement indirectly verifies the effectiveness
of the denoising module in low-visibility environments.

While existing semantic segmentation approaches tailored for
low-visibility conditions have shown promising performance, their
generalized design often constrains their applicability in the
intricate contexts of agricultural environments. In contrast, the
method proposed in this study achieves a marked reduction in false
positives and demonstrates robust performance in accurately
detecting fruit targets, even under severe visual degradation. As
evidenced by the comparative results, our approach consistently
surpasses traditional unimodal methods, underscoring its enhanced
adaptability and efficacy in handling the challenging visibility
conditions frequently encountered in agricultural scenes.

4.3.2 Ablation study

To investigate the effectiveness of the DCNet network, we
conducted ablation studies on each of the introduced modules using
the LVScene4K dataset. The detailed results are presented in Table 3.
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FIGURE 5

HITNet
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CMDA FFA+HITNet CKT+HITNet

Quialitative comparison of fruit detection results under low-visibility conditions. White regions indicate predicted fruit masks, while black regions

denote background.

As shown in , regardless of which module is removed, the
model’s performance degrades on both simple and difficult samples.
Among the difficult samples, the removal of the GAG module leads to
the most significant decline in performance. This indirectly demonstrates
that GAG effectively mitigates interference caused by low-visibility and
enhances the model’s focus on object regions. For simple samples, CAD
has the most substantial impact on the results, highlighting its
mechanism of fusing local and global features for accurately locating
objects in complex scenarios, thereby significantly improving the

detection of fruit objects under conditions of low-visibility.

To align more closely with the difficulties and challenges present
in real-world agricultural scenarios, this study conducted an
effectiveness evaluation on the LVScene4K dataset specifically

TABLE 3 Ablation study of our DCNet. “w/o" indicates that this module
is removed.

M “simple” samples “difficult” samples

w/o DFE 0.767 0.622 0.749 0.599
w/o GAG 0.750 0.601 0.710 0.551
w/o CAD 0.742 0.590 0.735 0.581
w/o IFA 0.768 0.623 0.756 0.607
DCNet 0.785 0.646 0.760 0.613

Bold values indicate the best-performing results in the corresponding metric.

Frontiers in

designed for low-visibility object detection. This dataset includes
low-visibility images caused by outdoor factors such as exposure,
rain, snow, and fog. Experimental results demonstrate that the
proposed DCNet surpasses the baseline model in both detection
accuracy and robustness, particularly in challenging samples.

Through an in-depth analysis of the roles of each component of the
model, it was found that the improved global attention mechanism
GAG significantly enhances the detection effect of objects under low-
visibility conditions, especially regarding performance on difficult
samples within the dataset. Compared to the missed detections and
false positives observed in the previous object detection model HitNet,
the proposed DCNet markedly enhances object feature representation
and improves the model’s noise suppression capability in low-visibility
scenes by refining the global attention mechanism. The model’s
superior performance under low-visibility provides strong support
for its practical application.

Considering the practical application requirements, where both
detection accuracy and real-time performance are critical,
subsequent research will focus on enhancing the model’s real-
time performance by reducing its scale and increasing detection
speed, ensuring it better meets actual needs and contributes to fruit
object detection in low-visibility agricultural scenarios.

Furthermore, most existing agricultural object detection studies
are conducted under ideal conditions, assuming high-quality
images. However, detection under low-visibility remains relatively
unexplored. Although this study has analyzed low-visibility
conditions in detail, it is acknowledged that real-world
agricultural scenarios often present additional challenges beyond
those considered here. Future research will aim to enrich the
understanding of difficulties and challenges brought about by
diverse outdoor conditions to fruit object detection.
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While all experiments in this study were conducted on the
LVScene4K dataset, the proposed DCNet framework is not dataset-
specific. Its modular design—particularly the use of dynamic
convolution and multi-level attention mechanisms—enables
robust feature extraction and noise suppression across diverse
visibility-degraded environments. We expect that DCNet can
generalize to more another crops and agricultural datasets, as the
underlying challenges of occlusion, low contrast, and illumination
variability are common across these scenarios. Future work will
explicitly validate DCNet on additional publicly available datasets to
further strengthen claims regarding generalization.

6 Conclusions

This study addresses the challenge of fruit object detection under
low-visibility conditions, which is crucial for intelligent orchard
management and robotic harvesting. We propose a dynamic coding-
based detection network (DCNet) that integrates a dynamic feature
encoder, a global attention gate, an iterative feature attention module,
and a cross-attention decoder. These components work together to
effectively address feature degradation, background clutter, and fine-
grained detail preservation in challenging agricultural environments.

Experimental results on the LVScene4K dataset, which includes
multiple fruit categories (grapes, kiwis, oranges, pears, pomelos,
persimmons, pumpkins, and tomatoes) captured under fog, rain, low
light, and occlusion conditions, demonstrate that DCNet achieves an
86.5% mean average precision and 84.2% intersection over union.
Compared with state-of-the-art baselines, DCNet improves the F1 by
3.4% and IoU by 4.3% while maintaining an inference speed of 28 FPS
on an RTX 3090 GPU. These results not only prove that DCNet
provides a superior balance between accuracy and efficiency but also
show its potential for practical applications.

Our research contributions lie in the development of a novel
framework that achieves efficient and accurate detection in complex
agricultural environments. The design of DCNet considers the special
challenges of low-visibility conditions and provides solutions through
its innovative modular structure. Furthermore, our experimental
results indicate that DCNet has better generalization capabilities
when dealing with diverse agricultural scenarios, which is
significant for the automation and precision of smart agriculture.

Future work will explore the integration of more heterogeneous
data sources to further enhance the model’s generalization capabilities
and applicability. Additionally, with advancements in technology, we
plan to explore more advanced data augmentation and simulation
techniques to improve the model’s adaptability and robustness. Overall,
this study provides a promising direction for future automation and
intelligent applications under broader conditions.
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