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Introduction: Accurate fruit detection under low-visibility conditions such as

fog, rain, and low illumination is crucial for intelligent orchard management and

robotic harvesting. However, most existing detection models experience

significant performance degradation in these visually challenging environments.

Methods: This study proposes a modular detection framework named Dynamic

Coding Network (DCNet), designed specifically for robust fruit detection in low-

visibility agricultural scenes. DCNet comprises four main components: a

Dynamic Feature Encoder for adaptive multi-scale feature extraction, a Global

Attention Gate for contextual modeling, a Cross-Attention Decoder for fine-

grained feature reconstruction, and an Iterative Feature Attention mechanism for

progressive feature refinement.

Results: Experiments on the LVScene4K dataset, which contains multiple fruit

categories (grape, kiwifruit, orange, pear, pomelo, persimmon, pumpkin, and

tomato) under fog, rain, low light, and occlusion conditions, demonstrate that

DCNet achieves 86.5% mean average precision and 84.2% intersection over

union. Compared with state-of-the-art methods, DCNet improves F1 by 3.4%

and IoU by 4.3%, maintaining a real-time inference speed of 28 FPS on an RTX

3090 GPU.

Discussion: The results indicate that DCNet achieves a superior balance between

detection accuracy and computational efficiency, making it well-suited for real-

time deployment in agricultural robotics. Its modular architecture also facilitates

generalization to other crops and complex agricultural environments.
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1 Introduction

In the agricultural domain, computer vision has been widely

applied, particularly in orchard management systems. Modern

harvesting robots employ advanced models for classification,

detection, and related tasks, enabling efficient yield estimation

and crop monitoring Akiva et al. (2020); Sa et al. (2016); Bargoti

and Underwood (2017); Guo et al. (2024); Wang et al. (2022);

Lehnert et al. (2016); Bac et al. (2017). However, most existing fruit

detection approaches are designed for ideal conditions, neglecting

weather-affected scenarios that significantly degrade image quality

and compromise detection accuracy. The outdoor nature of

orchards introduces further challenges for visual systems

Kamilaris and Prenafeta-Boldú (2018), as strong sunlight,

precipitation, fog, and snow often impair visibility. Dense foliage

additionally obscures fruits, creating background noise and visual

complexity. Nevertheless, fruit detection under low-visibility

outdoor conditions is essential for agricultural object detection,

and achieving high accuracy is crucial for smart agriculture.

Existing state-of-the-art models such as YOLOv7/v8, HitNet, and

Deformable DETR have demonstrated remarkable performance in

general object detection tasks. However, these frameworks are either

optimized for high-quality images or rely heavily on anchor-based

predictions and large-scale transformer backbones, which tend to

degrade under adverse conditions such as fog, rain, or low

illumination. In contrast, the proposed DCNet is specifically

designed for agricultural environments with low-visibility. Unlike

these generic detectors, DCNet integrates four tailored modules—

Dynamic Convolution, Global Attention Gate, Cross-Attention

Decoder, and Iterative Feature Attention—that collectively enable

fine-grained feature recovery and effective noise suppression. This

combination systematically addresses visibility-induced feature loss,

which has not been explicitly solved in previous fruit detection studies.

Although existing deep learning methods achieve promising results

in standard environments, low-visibility conditions in real-world

agricultural scenarios—such as insufficient lighting, haze, occlusion, or

dense fruit clustering—still significantly degrade detection performance.

The main technical gaps in current approaches are as follows:
Fron
• Feature extraction under low-visibility conditions is not

robust, often leading to missed detections or false positives.

• Existing feature fusion strategies inadequately integrate

global and local information, limiting the utilization of

multi-scale features in complex scenes.

• There is a lack of iterative feature optimization mechanisms

tailored for low-visibility conditions, resulting in

suboptimal object localization.

• Most studies lack systematic approaches to improve model

generalization across diverse complex environments.
To address these issues, this study proposes a robust fruit

detection framework that maintains high detection accuracy and

instance completeness across diverse complex environments,

providing technical support for intelligent monitoring in real-

world orchard scenarios.
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The main contributions of this work are summarized as follows:
• We propose DCNet, a novel modular detection framework

specifically designed to address low-visibility challenges in

agricultural scenarios.

• Our method incorporates multi-scale dynamic encoding for

robust feature extraction under visibility noise, enhancing

the representation of occluded or poorly illuminated fruits.

• Innovative feature fusion strategies are developed,

integrating global attention, local attention, and cross-

attention mechanisms to improve detection accuracy.

• An iterative feature fusion mechanism is employed to

optimize feature representation, significantly enhancing

object localization performance in challenging low-

visibility conditions.
The remainder of this paper is organized as follows: section 2

introduced the existing methods and related research; Section 3 presents

the proposed DCNet framework and its main components; Section 4

reports the experimental setup, results, and ablation studies; Section 5

provides further analysis and discussion of the findings; Section 6

concludes the paper and outlines directions for future research.
2 Related work

Recent years have witnessed remarkable progress in deep

learning-based object detection algorithms, which have

progressively supplanted conventional approaches. Contemporary

detection methodologies can be categorized principally into three

paradigms: anchor-based two-stage methods, anchor-based single-

stage methods, and anchor-free algorithms Zand et al. (2021);

Cheng et al. (2022); Wang et al. (2020).

Single-stage detectors, such as YOLOv7 Wang et al. (2023) and

Dynamic YOLO Li et al. (2019), perform object localization and

classification in a unified framework by directly predicting bounding

boxes and class probabilities on a dense grid, without the need for region

proposals. This design confers notable computational efficiency;

however, it may compromise detection accuracy, particularly for small

or densely packed objects, due to the limitations imposed by fixed-grid

anchors. In contrast, two-stage approaches, including R-CNN Girshick

et al. (2014), Fast R-CNNGirshick (2015), and more recent frameworks

Kang et al. (2024), decompose the detection task into a region proposal

stage followed by region-wise classification and bounding box

refinement. By leveraging hierarchical feature representations and

region-specific processing, these methods achieve superior accuracy,

albeit at the cost of increased computational complexity.

Traditional object detectors can usually achieve satisfactory

performance, but most object detection models are carried out under

ideal preconditions, such as high-quality images, which limits their

application in practice. In cases of degraded image quality, their

effectiveness may be significantly compromised. For instance, in

outdoor object detection tasks, weather conditions are key factors

that significantly affect the performance of detection models. Under

severe weather conditions (e.g., precipitation, fog, or snow), both
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human visual perception and vision-based detection systems Munir

et al. (2024); Li et al. (2018a) experience significant performance

degradation Bac et al. (2017); Lehnert et al. (2016). To address these

weather-induced challenges, substantial research efforts have yielded

multiple solution strategies, broadly classifiable into four categories:

image enhancement-based strategy Li et al. (2018b); Chen et al. (2019),

prior knowledge-integrated strategy Liu et al. (2022); Li et al. (2017);

Huang et al. (2020), unsupervised learning Chen et al. (2021); Sindagi

et al. (2020); Zhu et al. (2017); Wang et al. (2004) and knowledge

distillation-based multi-task learning methods Yang et al. (2022).

These methods aim to simultaneously learn feature representations

under various weather conditions Zhang and Patel (2018). Although

the aforementioned methods have made progress in improving object

detection performance under harsh weather conditions, several

challenges remain. First, most existing methods are optimized for

specific weather conditions, making it difficult to handle complex and

dynamic real-world environments. Second, many of these approaches

require additional data collection and annotation, which increases the

cost of system deployment.

In this paper, we proposes a novel modular framework

specifically designed to address low-visibility detection challenges,

aiming to mitigate performance degradation caused by visibility
Frontiers in Plant Science 03
noise while establishing benchmark standards for agricultural

applications. Through comprehensive analysis of low-visibility

noise interference mechanisms in feature extraction, we introduce

DCNet: a Dynamic Coding-based detection network for

agricultural scenarios. Our approach incorporates multi-scale

dynamic encoding for robust feature extraction, develops

innovative fusion strategies for global and local features, and

proposes an advanced decoder architecture integrating global

attention, local attention, and cross-attention mechanisms.

Furthermore, an iterative feature fusion mechanism is

incorporated to optimize feature representation, significantly

enhancing object localization accuracy in challenging visibility

conditions. Our proposed method achieves effective fruit

detection in challenging scenes, providing a crucial basis for

orchard management in low-visibility environments.
3 Methods

We present a novel unimodal object detection framework,

DCNet as illustrated in Figure 1, our comprehensive framework

comprises four key components: (1) a dynamic feature encoder
FIGURE 1

Architecture overview. DFE employs a visual pyramid to extract image features and generate multi-scale feature maps. It effectively retains fine-grained
local information while fusing multi-layer semantic features of the object in a coherent manner. GAG leverages the attention mechanism to dynamically
mitigate interference caused by low-visibility and enhances the response within the object region. CAD utilizes the cross-attention mechanism to capture
long-range dependencies, thereby achieving robust multi-scale information fusion. IFA facilitates cross-layer interaction between high-level semantic
features and low-level fine-grained features via an iterative optimization mechanism, with a focus on refining representations in the object area.
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https://doi.org/10.3389/fpls.2025.1670790
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2025.1670790
(DFE) for adaptive feature representation, (2) a global attention gate

(GAG) for contextual modeling, (3) a cross attention decoder

(CAD) for discriminative feature reconstruction, and (4) an

iterative feature attention (IFA) mechanism for progressive

feature refinement.
3.1 Dataset description

LVScene4K Dataset. The LVScene4K dataset, constructed for

this study, was collected at Huazhong Agricultural University.

Images were captured outdoors using a Hikvision industrial

camera by rotating around each crop at fixed angles, thus

simulating realistic orchard conditions from multiple viewpoints.

The dataset covers diverse fruit categories, including grapes, kiwi,

oranges, pears, pomelos, persimmons, pumpkins, and tomatoes. For

each crop type, between 100 and 300 images were collected,

resulting in a total of approximately 4,000 images. All images

were acquired under natural outdoor conditions with varying

illumination and partial occlusions, reflecting real-world

agricultural challenges. The final dataset contains images with a

resolution of 704 × 704 pixels.

Annotation. A two-stage annotation procedure was employed.

First, bounding boxes for fruits were manually annotated using

LabelImg. Subsequently, pixel-level instance masks were generated

by a professional annotation service provider to ensure high-quality

segmentation. This dual-annotation approach enables the dataset to

be applicable both for detection and segmentation tasks.

Environmental conditions. Our dataset covers images collected

outdoors under different daylight conditions (noon and dusk). To

further verify the reliability of the proposed method under various

low-visibility scenarios, we employed the augimg toolkit to perform

randomized data augmentation. Rain, snow, and fog—each divided

into three intensity levels—were randomly superimposed onto the

images. For instance, when “fog” is selected, the image may receive

light fog, normal fog, or heavy fog. Although the augmentation is

stochastic, all modifications obey basic natural laws: if an image

already contains over-exposure, fog will not be added, because

strong sunlight and fog rarely coexist. Following this protocol, every

augmented image carries 1–3 simultaneous low-visibility factors,

yielding 20 distinct combinations of adverse conditions in total.

After augmentation, these weather-corrupted images are labeled as

the “hard” subset, which is used to examine the model’s robustness

under extremely challenging visibility conditions.
3.2 Dynamic feature encoder

3.2.1 Multi-scale feature encoder
The Transformer architecture has achieved remarkable success

in natural language processing (NLP) and has been progressively

extended to the computer vision domain, demonstrating

considerable potential in image classification tasks. The vision

transformer (ViT) partitions an input image into a series of non-

overlapping patches, which are subsequently processed as
Frontiers in Plant Science 04
sequential tokens, thereby successfully adapting the Transformer

framework to visual tasks while achieving performance on par with

traditional convolutional neural networks (CNNs).

However, despite its superior performance in classification

tasks, ViT exhibits certain limitations in scenarios requiring

multi-scale feature representation. In contrast, the pyramid vision

transformer (PVT) Wang et al. (2021), which incorporates a

hierarchical feature pyramid structure, demonstrates exceptional

capability in computer vision tasks such as object detection. This

enhanced performance primarily stems from its effective

exploitation of multi-scale features during both the encoding and

decoding phases.

During the encoding stage, PVT employs a feature pyramid

architecture to extract multi-scale object representations from the

input image. This hierarchical encoding strategy progressively

reduces feature resolution while integrating the spatial reduction

attention (SRA) mechanism, which substantially mitigates

computational overhead. Consequently, the model maintains high

efficiency even under constrained computational resources, making

it particularly suitable for large-scale vision applications.

3.2.2 Dynamic convolution module
Under low-visibility conditions, environmental perception is

significantly impaired due to reduced visibility and substantial

variations in light intensity, which severely degrade image quality

and pose considerable challenges for object detection models.

Notably, feature importance exhibits spatial heterogeneity across

image regions. For images affected by adverse lighting conditions or

degraded by atmospheric noise, traditional convolutional

operations may fail to capture subtle feature representations. To

address this limitation, we propose the implementation of adaptive

convolutional kernels with dynamic configurations, including

variable kernel sizes, shapes, and weighted convolution outputs.

Drawing upon this conceptual framework, we introduce a DCB

module (Dynamic Convolution Module) Chen et al. (2020).

Dynamic convolution allows for more detailed extraction of local

features in an image, which is especially crucial under low-visibility

conditions. By adjusting the convolution kernels, dynamic

convolution captures key information in the image at a finer

granularity, such as object contours and textures. The dynamic

convolution module calculates weights and flexibly selects

appropriate kernels to handle images with significant differences,

optimizing for low-visibility environmental conditions. This

approach helps the model accurately locate and recognize objects,

enabling better adaptation to such environments and enhancing the

precision of image feature extraction, thus improving the model’s

ability to accurately identify objects.

As illustrated in Figure 2, the DCB module processes each input

feature map fnf g4n−1∈ RB�C� H
2n+1

� NN

2n+1 through a cascaded

architecture comprising adaptive pooling layers, fully connected

layers, and ReLU activation functions to compute attention weights.

These weights dynamically modulate both the convolutional kernel

dimensions and operation weights. The final convolutional output

is generated through a weighted fusion of multiple convolution

results, followed by batch normalization (BN) and ReLU activation.
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The resultant feature representation after dynamic convolution is

denoted as fnf g4n−1∈ RB�C� H
2n+1

� W
2n+1 .
3.3 Global attention gate

When confronted with low-visibility images, the model’s ability

to discriminate fruit objects diminishes due to a decline in image

quality. To address this challenge, we propose a learnable adaptive

GAG, a parameterizable normalization framework that enables the

model to autonomously learn noise characteristics induced by

adverse visibility conditions (e.g., low contrast and haze

occlusion) during feature decoding. This mechanism facilitates

adap t i v e pa r ame t e r ad ju s tmen t to enhance ob j e c t

discrimination performance.

Specifically, GAG architecture first applies instance

normalization to input features, followed by a sophisticated linear

combination operation between the original input and normalized

features. This process involves multiplying the original input by the

normalized result, and then element-wise adding the product to

both the normalized result and the original input. Twofold benefits

are achieved through this design: (1) effective learning of adaptive

normalized features while (2) preserving crucial details from the

original input, thereby preventing feature representation bias and

alleviating overfitting tendencies. The mathematical formulation of

GAG is expressed as Equation (1):

IN(fn) = h
fn − m(fn)
s (fn)

� �
+ e (1)

f in = fn ⊕ IN(fn)⊕ IN(fn)⊗ fn (2)

Where IN( · ) denotes instance normalization, h and e represent
learnable parameters, m( · ) and s ( · ) indicate mean and variance

operations, respectively, ⊕ and ⊗ correspond to Equation (2)

element-wise addition and multiplication, and f in
� �4

n=1∈
RB�C� H

2n+1
� W

2n+1 signifies the final output of combined features. To

further enhance object-background discrimination capability under

compromised visibility conditions and mitigate the obstructive
Frontiers in Plant Science 05
effects of precipitation elements, we incorporate a dual-attention

mechanism. First, a spatial attention module processes the features

to emphasize location-specific information. Recognizing that

different channel features exhibit varying importance under

distinct noise conditions, we subsequently employ a channel

attention mechanism to dynamically recalibrate channel-wise

feature weights during decoding. This ensures optimal utilization

of noise-specific discriminative features. The complete attention

process is formally defined as Equations (3):

f fn = f in ⊗CA(f in)⊗ SA(f in ⊗CA(f in)) (3)

Where CA( · ) and SA( · ) represent spatial and channel

attention operations respectively, ⊗ denotes element-wise

multiplication, and f fn denotes the final attended feature map.

The GAGmodule can be thought of as a two-step “adaptive lens

cleaning” process for fruit detection. First, the normalization step

works like automatically adjusting the brightness and contrast of an

image to counteract fog, shadows, or dim lighting. This ensures that

the model sees a clearer, more standardized version of the fruit

features without losing the original details. Second, the attention

mechanism acts like focusing your eyes: spatial attention highlights

“where” the fruits are in the image (locations), while channel

attention emphasizes “what kind of details” are most useful (such

as color, texture, or shape under noisy conditions). Together, these

steps allow the model to suppress irrelevant noise while preserving

and enhancing fruit-specific characteristics, just as a human

observer would adjust their vision when looking at a fruit tree in

foggy or rainy conditions.
3.4 Cross-attention-based decoder

3.4.1 Cross-attention block
Agricultural scenes with limited visibility present particularly

challenging backgrounds, demanding heightened attention to detail

for effective object detection. To address this characteristic, we propose

a dual attention mechanism comprising local attention block (LAB)

and global attention block (GAB) as illustrated in Figure 3, designed to
FIGURE 2

Illustration of dynamic feature encoder. DFE consists of two parts: PVT (obtaining multi-scale features) and DCB (enhancing the ability to extract
local features in low-visibility areas). For more details. Please refer to § 3.2.1 and § 3.2.2 for details.
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capture both localized and comprehensive feature representations,

respectively. Specifically, we introduce a Cross Attention Block that

performs cross-attention computations along both horizontal and

vertical orientations. This design enhances the model’s capacity for

multi-directional and multi-scale perception, facilitating the effective

fusion of spatial information across different scales. By capturing the

intricate relationships between fruit objects and their surrounding

environment, the CAB enables dynamic adjustment of attention

based on regional feature distributions, thereby mitigating the

adverse effects of poor weather conditions on detection performance.

CAB can be expressed as:

LAB(f tn) = Sigmoid(CBSCB(f tn)) (4)

GAB(f tn) = AvgPooling(LAB(f tn)) (5)

f LGn = Sigmoid(LAB(f tn) + GAB(f tn) + f tn) (6)

f cabn = CA(Conv(Concat(f LGn ,CCA(f tn)))) + f tn (7)

Where LAB( · ) Equation (4) denotes the Local Attention Block,

f fn
n o4

n=1
denotes the feature input to the CAB, CBSCB( · ) refers to the

cascaded “Conv-BN-SiLU-Conv-BN” layers, GAB( · ) Equation (5)

represents the Global Attention Block, AvgPooling( · ) indicates

adaptive average pooling Equation (6), f LGn
� �4

n=1 refers to the fused

feature representation of local and global features, f cabn

� �4
n=1 denotes

the feature output of the CAB, CA( · ) represents channel attention,
Frontiers in Plant Science 06
Conv( · ) refers to the convolutional layer, Concat( · ) Equation (7)

denotes concatenation along the channel dimension, and CCA( · )

represents cross attention.

Within our framework, the CAD integrates convolutional layers,

ReLU activation functions, and two sequentially stacked CABS. This

architecture progressively refines feature extraction in low-visibility

agricultural scenes, with the first CAB capturing local and global

features and the second CAB further enhancing their integration.

Through this cascaded attention mechanism, the model achieves

improved recognition of subtle object characteristics under

challenging conditions, including low contrast, high noise, and detail

degradation, ultimately leading to superior detection accuracy. The

decoding process of CAD is formulated as Equations (8):

f cn = Conv(CAB(CAB(CAB(((CRC(f fn )))))) (8)

The CAB can be viewed as a “discussion process” between

different perspectives of the same fruit image. The LAB acts like

zooming in with a magnifying glass, focusing on fine-grained details

such as fruit edges or small color changes. The GAB works like

stepping back and looking at the entire tree, capturing overall

context such as clusters of fruits or background distribution. By

combining these two perspectives, the model learns both “the

details” and “the big picture.” - Finally, the channel and

coordinate attentions act like specialists who decide which type of

information (e.g., color, texture, spatial position) is most

trustworthy under current conditions.
FIGURE 3

Illustration of the cross-attention-based decoder.
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Together, this cross-attention process enables the network to

integrate detailed local information with global context, ensuring

mo r e a c c u r a t e f r u i t d e t e c t i o n e v e n i n c l u t t e r e d

orchard environments.

3.4.2 Iterative feature attention
Following the CAD processing, each feature level generates a

corresponding coarse prediction map. These hierarchical

predictions exhibit distinct characteristics: higher-level features

encode more abstract semantic information, while lower-level

features preserve fundamental structural details such as shape and

texture. To effectively leverage this complementary information, the

coarse prediction map from higher level features is concatenated

with the subsequent level’s features, ensuring comprehensive

utilization of both semantic and low-level visual cues.

As illustrated in Figure 4, drawing inspiration from Dai et al.

(2021), we propose an IFA mechanism to systematically explore the

relationship between coarse prediction maps and adjacent feature

levels. The IFA operates across both local and global scopes,

dynamically computing attention weights based on the preceding

level’s prediction map and the current feature level. This process

directs the decoder’s focus toward object regions, thereby enhancing

the model’s discriminative capability. The IFA mechanism is

formally expressed as:

a1 = Sigmoid(LAB(f cn + f f ) + GAB(f cn + f f )) (9)

f c1n = (1 − a1)� f cn +�a1 � f f (10)

a2 = Sigmoid(LAB(f c1n + GAB(f c1n )) (11)

f cn−1 = (1 − a2)� f f + (1 − a2)� f cn (12)

Where a1 Equation (9) and a2 Equation (11) represent the

attention values obtained from two separate computations, Sigmoid

( · ) denotes the sigmoid function, LAB( · ) refers to the local

attention module, GAB( · ) represents the global attention module,

f cnf g4n=2 indicates the coarse prediction map of the decoder,
Frontiers in Plant Science 07
f cn−1f g4n=2 Equation (12) denotes the features of the next level, and

f c1n
� �4

n=1 Equation (10) represents the transitional features between

the two attention parts before and after IFA.

Beyond intra-level feature refinement, the IFA mechanism is

extended to operate across multiple iteration rounds. Starting from

the second iteration, features are progressively updated by

incorporating attention guided information from previous

iterations. This cross-iteration refinement is formulated as:

f i+1,ifa4 = IFA f i+1,f4 , f i,pre4

� �
(13)

Where f i+1,ifa4 Equation (13) denotes the feature updated after

the i + 1-th iteration of the 4th-level feature, f i+1,f4 represents the

feature before the i + 1-th iteration update of the 4th-level feature,

f i,pre4 indicates the final prediction map after the i + 1-th iteration,

and IFA( · ) refers to the Iterative Feature Attention.

Upon completing the final iteration, to preserve critical low-

level details (e.g., edges and textures), the optimized high-level

feature f c2 is upsampled and fused with the lowest-level feature f f1 .

The concatenated features are then processed by a Multi-scale

Convolution Module (MC), which employs parallel convolutional

layers of varying receptive fields to capture discriminative patterns

at multiple scales. The final prediction Fpre is derived as:

Fpre
f = MC(Concat(f f1 , up(f

c
2 ))) (14)

Where MC( · ) Equation (14) denotes the multi-scale

convo lu t i ona l fu s i on modu l e , up( · ) r ep r e s en t s the

upsampling operation.

The IFA module can be thought of as a “step-by-step polishing

process”: Imagine restoring an old photograph. The first pass

removes the obvious scratches, but some finer details are still

unclear. On the second pass, the image is enhanced further,

focusing on regions that were previously overlooked. Each new

iteration builds upon the improvements of the last, ensuring that

bo t h fine - g r a i n e d d e t a i l s a nd ov e r a l l c l a r i t y a r e

progressively optimized.

In the context of fruit detection, IFA repeatedly “revisits” the

intermediate feature maps, strengthening useful patterns (e.g., fruit
FIGURE 4

Illustration of the proposed iterative feature attention. Details can be observed more clearly upon zooming in.
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boundaries, texture cues) while filtering out background noise (e.g.,

leaves, branches). This iterative refinement leads to more robust and

accurate detection results under challenging visibility conditions.

3.4.3 Loss function
In the decoding phase of our proposed method, we employ an

iterative attention mechanism for progressive feature refinement,

where each iteration generates an intermediate feature map. To

ensure comprehensive supervision throughout this hierarchical

optimization process, our loss function incorporates both the

intermediate outputs from each iteration f i,pre
� �3

i=1 and the final

prediction map Fpre
f . Specifically, we formulate a multi-level

supervision strategy where each iterative prediction is constrained

by the loss function to maintain optimization consistency.

To effectively quantify the prediction errors and enhance the

model’s capability in detecting challenging objects, we utilize a

weighted binary cross-entropy loss Lw
BCE and a weighted

intersection-over-union loss Lw
IoU to supervise both intermediate

and final predictions. These loss functions are designed to penalize

misclassifications while emphasizing hard samples, thereby

improving model robustness. The overall prediction loss is

denoted as Lstage = Lw
BCE + Lw

IoU Equation (15).

Furthermore, to account for the varying reliability of coarse

predictions at different iterations, we introduce a weight parameter

ℓ to dynamically adjust the contribution of each intermediate

prediction, ensuring that earlier coarse predictions contribute

adaptively to the overall optimization process. The final loss

function is formally defined as:

L = Lstage(F
pre
f ,GT) +o

3

i=1
(‘� i)(Lstage(f

i,pre,GT)) (15)
4 Experimental results

4.1 Experimental settings

Current approaches for enhancing detection performance

under low-visibility conditions typically involve reconstructing
Frontiers in Plant Science 08
high-quality images from degraded inputs prior to detection.

Following this paradigm, the present study systematically

evaluates the efficacy of the proposed method through

comprehensive experiments on both “simple” and “challenging”

samples from the LVScene4K dataset. For benchmarking purposes,

we employ HITNet Hu et al. (2023) as our baseline detection

framework, representing the current state-of-the-art (SOTA) for

normal visibility conditions. To establish performance

comparisons, we integrate existing SOTA image denoising models

with this baseline, constructing a two-stage object detection pipeline

incorporating a denoising module. Furthermore, we implement

comparative evaluations using a recently proposed SOTA

semantic segmentation network specifically optimized for adverse

weather conditions, which performs binary segmentation on our

dataset. All comparative results are rigorously analyzed relative to

the performance of our proposed DCNet.

In this study, Low-Visibility Condition Detection (LVCD) is

formulated as a binary segmentation task, wherein the model

produces a binarized mask upon object identification. Accordingly,

we adopt two well-established region-based evaluation metrics

commonly used in segmentation tasks: Intersection over Union

(IoU) and the F1 score. These metrics quantitatively assess the spatial

agreement between the model’s predictions and the ground truth

annotations, providing robust performance evaluation.

DCNet maintains a moderate level of model complexity. While

the introduction of dynamic convolution and attention modules

increases the number of parameters and computational cost

compared with lightweight detectors, the overall scale of DCNet

remains significantly smaller than that of large two-stage detectors

such as Mask R-CNN. When evaluated with an input size of 704 ×

704 on an NVIDIA RTX 3090 GPU, DCNet achieves an inference

speed of approximately 20–30 FPS, which is sufficient for real-time

deployment in agricultural robotic systems. During inference, the

memory consumption remains below 4 GB, indicating that the

proposed network balances accuracy and efficiency effectively, and

can be adapted for practical field applications with potential for

further optimization on embedded platforms.

DCNet introduces only 8.7% more FLOPs than HitNet while

improving IoU by 3.4% (Table 1). On Jetson Nano, the edge FPS
TABLE 1 Performance comparison of different methods on “simple” and “difficult” samples.

Model Publications
“simple” samples “difficult” samples

IoU F1 IoU F1

A-HITNet AAAI23 0.764 0.618 0.726 0.570

B1-FFA AAAI20 0.743 0.634 0.739 0.586

B2-HDCWNet ICCV21 0.777 0.635 0.745 0.594

B3-CKT CVPR22 0.778 0.636 0.750 0.601

C1-Refign WACV23 0.759 0.656 0.721 0.574

C2-MIC CVPR23 0.769 0.639 0.749 0.596

C3-CMDA ICCV23 0.770 0.625 0.749 0.590

DCNet(Ours) 0.785 0.646 0.760 0.613
Bold values indicate the best-performing results in the corresponding metric.
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reaches 11, meeting real-time demand for agricultural robots (≥10

FPS). At the same time, we also evaluated the system’s resource

consumption and stability. In the low-load mode, the device’s CPU

and GPU usage were low, with a power consumption of 5W,

memory usage around 2GB, and the system temperature

remained around 45°C, ensuring stability during prolonged

operation. In the high-load mode, although the frame rate

decreased, the power consumption increased to 10W, and the

temperature reached 65°C, the system continued to run stably

without crashes or significant performance fluctuations. These

results verify that DCNet achieves a favorable trade-off between

accuracy and efficiency.
4.2 Experimental details

The method proposed in this paper is implemented using

PyTorch, and all experiments are conducted on an RTX 3090

GPU, with the AdamW optimizer selected for parameter

optimization. During the training phase, the total number of

epochs is set to 150, with a batch size of 8. Experimental evidence

indicates that higher resolution has a positive impact on detection

performance, and the study uses a resolution of 704 × 704 as input

during both training and testing phases. The learning rate is

initialized to 0.0001 and is reduced to one-tenth of its value every

50 epochs. Regarding the optimal number of iterations, we devised a

hyper-parameter tuning scheme to secure peak model performance

and avoid degradation caused by under- or over-fitting. On both

“easy” and “hard” subsets we varied the iteration count and

compared the final detection results. As Table 2 shows, raising

the iterations first boosts the F1, but once the number is too large

the model begins to over-fit and the F1 drops. Consequently, the

tuning experiment identifies 3 iterations as the best setting, and the

iterative loss parameter set to 0.2.Wang et al. (2024).

For reproducibility, we provide additional implementation

details of DCNet. All input images are resized to 704 × 704

before being fed into the network. Most convolutional layers

adopt a kernel size of 3 × 3, while 1 × 1 kernels are used for

channel reduction and fusion operations. Stride settings follow

common practice: the backbone (PVT-v2) applies stride-2

convolutions for downsampling at multiple stages, whereas the

dynamic convolution layers and refinement modules employ stride-

1 to preserve spatial resolution. Regarding nonlinear activation, the

network mainly uses ReLU and PReLU after convolution

operations, SiLU in iterative attention modules, and Sigmoid

functions to generate attention weights in channel and spatial
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attention submodules. This combination ensures both stable

training and expressive feature representation.
4.3 Experimental analysis

4.3.1 Quantitative analysis
Following the experimental design, this section compares the

performance of the basic detection method (A), the integrated

denoising-based detection method (B), and the semantic

segmentation method tailored for adverse weather conditions (C). To

ensure fairness in the comparison of experimental results, all methods

used for comparison followed the default settings for model training

and evaluation. As shown in Table 1, using IoU and F1 score as

evaluation metrics, the proposed method consistently outperforms in

fruit detection tasks represented by both “simple” and “difficult”

samples from the LVCD task, showing significant performance

improvements in low-visibility fruit detection compared to other

methods. We designs suitable encoding and decoding methods for

low-visibility conditions, achieving a notable performance boost over

the best object detection and combined detection methods.

Additionally, feature optimization and iterative methods tailored for

agricultural scenes provide more accurate segmentation results

compared to low-visibility segmentation methods applied in other

contexts. Furthermore, the proposed method exhibits minimal

performance degradation from simple to challenging samples,

demonstrating the robustness of the model under various conditions.

This study employs qualitative experiments to assess the

performance of models in low-visibility scenes. As demonstrated

in Figure 5, a comprehensive comparative evaluation was

conducted between the proposed methodology and multiple

baseline approaches. In comparison with the baseline HitNet, our

proposed DCNet achieves substantial enhancements in detection

accuracy, significantly mitigating the occurrence of both false

detections and missed detections. The visualization results

indicate that integrating HitNet with various denoising models

leads to noticeable performance improvements compared to using

HitNet alone. This enhancement indirectly verifies the effectiveness

of the denoising module in low-visibility environments.

While existing semantic segmentation approaches tailored for

low-visibility conditions have shown promising performance, their

generalized design often constrains their applicability in the

intricate contexts of agricultural environments. In contrast, the

method proposed in this study achieves a marked reduction in false

positives and demonstrates robust performance in accurately

detecting fruit targets, even under severe visual degradation. As

evidenced by the comparative results, our approach consistently

surpasses traditional unimodal methods, underscoring its enhanced

adaptability and efficacy in handling the challenging visibility

conditions frequently encountered in agricultural scenes.
4.3.2 Ablation study
To investigate the effectiveness of the DCNet network, we

conducted ablation studies on each of the introduced modules using

the LVScene4K dataset. The detailed results are presented in Table 3.
TABLE 2 Results of the experiment on the optimal number of iterations.

Sample F1
Iteration

1 2 3 4 5

Easy Score 0.720 0.781 0.785 0.777 0.768

Hard Score 0.691 0.759 0.760 0.757 0.725
Bold values indicate the best-performing results in the corresponding metric.
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As shown in Table 3, regardless of which module is removed, the

model’s performance degrades on both simple and difficult samples.

Among the difficult samples, the removal of the GAG module leads to

themost significant decline in performance. This indirectly demonstrates

that GAG effectively mitigates interference caused by low-visibility and

enhances the model’s focus on object regions. For simple samples, CAD

has the most substantial impact on the results, highlighting its

mechanism of fusing local and global features for accurately locating

objects in complex scenarios, thereby significantly improving the

detection of fruit objects under conditions of low-visibility.
5 Discussion

To align more closely with the difficulties and challenges present

in real-world agricultural scenarios, this study conducted an

effectiveness evaluation on the LVScene4K dataset specifically
Frontiers in Plant Science 10
designed for low-visibility object detection. This dataset includes

low-visibility images caused by outdoor factors such as exposure,

rain, snow, and fog. Experimental results demonstrate that the

proposed DCNet surpasses the baseline model in both detection

accuracy and robustness, particularly in challenging samples.

Through an in-depth analysis of the roles of each component of the

model, it was found that the improved global attention mechanism

GAG significantly enhances the detection effect of objects under low-

visibility conditions, especially regarding performance on difficult

samples within the dataset. Compared to the missed detections and

false positives observed in the previous object detection model HitNet,

the proposed DCNet markedly enhances object feature representation

and improves the model’s noise suppression capability in low-visibility

scenes by refining the global attention mechanism. The model’s

superior performance under low-visibility provides strong support

for its practical application.

Considering the practical application requirements, where both

detection accuracy and real-time performance are critical,

subsequent research will focus on enhancing the model’s real-

time performance by reducing its scale and increasing detection

speed, ensuring it better meets actual needs and contributes to fruit

object detection in low-visibility agricultural scenarios.

Furthermore, most existing agricultural object detection studies

are conducted under ideal conditions, assuming high-quality

images. However, detection under low-visibility remains relatively

unexplored. Although this study has analyzed low-visibility

conditions in detail, it is acknowledged that real-world

agricultural scenarios often present additional challenges beyond

those considered here. Future research will aim to enrich the

understanding of difficulties and challenges brought about by

diverse outdoor conditions to fruit object detection.
TABLE 3 Ablation study of our DCNet. “w/o” indicates that this module
is removed.

Model
“simple” samples “difficult” samples

IoU F1 IoU F1 IoU F1 IoU F1

w/o DFE 0.767 0.622 0.749 0.599

w/o GAG 0.750 0.601 0.710 0.551

w/o CAD 0.742 0.590 0.735 0.581

w/o IFA 0.768 0.623 0.756 0.607

DCNet 0.785 0.646 0.760 0.613
Bold values indicate the best-performing results in the corresponding metric.
FIGURE 5

Qualitative comparison of fruit detection results under low-visibility conditions. White regions indicate predicted fruit masks, while black regions
denote background.
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While all experiments in this study were conducted on the

LVScene4K dataset, the proposed DCNet framework is not dataset-

specific. Its modular design—particularly the use of dynamic

convolution and multi-level attention mechanisms—enables

robust feature extraction and noise suppression across diverse

visibility-degraded environments. We expect that DCNet can

generalize to more another crops and agricultural datasets, as the

underlying challenges of occlusion, low contrast, and illumination

variability are common across these scenarios. Future work will

explicitly validate DCNet on additional publicly available datasets to

further strengthen claims regarding generalization.
6 Conclusions

This study addresses the challenge of fruit object detection under

low-visibility conditions, which is crucial for intelligent orchard

management and robotic harvesting. We propose a dynamic coding-

based detection network (DCNet) that integrates a dynamic feature

encoder, a global attention gate, an iterative feature attention module,

and a cross-attention decoder. These components work together to

effectively address feature degradation, background clutter, and fine-

grained detail preservation in challenging agricultural environments.

Experimental results on the LVScene4K dataset, which includes

multiple fruit categories (grapes, kiwis, oranges, pears, pomelos,

persimmons, pumpkins, and tomatoes) captured under fog, rain, low

light, and occlusion conditions, demonstrate that DCNet achieves an

86.5% mean average precision and 84.2% intersection over union.

Compared with state-of-the-art baselines, DCNet improves the F1 by

3.4% and IoU by 4.3% while maintaining an inference speed of 28 FPS

on an RTX 3090 GPU. These results not only prove that DCNet

provides a superior balance between accuracy and efficiency but also

show its potential for practical applications.

Our research contributions lie in the development of a novel

framework that achieves efficient and accurate detection in complex

agricultural environments. The design of DCNet considers the special

challenges of low-visibility conditions and provides solutions through

its innovative modular structure. Furthermore, our experimental

results indicate that DCNet has better generalization capabilities

when dealing with diverse agricultural scenarios, which is

significant for the automation and precision of smart agriculture.

Future work will explore the integration of more heterogeneous

data sources to further enhance the model’s generalization capabilities

and applicability. Additionally, with advancements in technology, we

plan to explore more advanced data augmentation and simulation

techniques to improve themodel’s adaptability and robustness. Overall,

this study provides a promising direction for future automation and

intelligent applications under broader conditions.
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Kamilaris, A., and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A
survey. Comput. Electron. Agric. 147, 70–90. doi: 10.1016/j.compag.2018.02.016

Kang, J., Yang, H., and Kim, H. (2024). Simplifying two-stage detectors for on-device
inference in remote sensing. ArXiv abs/2404.07405. arXiv:2404.07405.

Lehnert, C., Sa, I., McCool, C., Upcroft, B., and Perez, T. (2016). “Sweet pepper pose
detection and grasping for automated crop harvesting,” in 2016 IEEE international
conference on robotics and automation (ICRA). 2428–2434 (Piscataway, NJ, USA:
IEEE).

Li, B., Peng, X., Wang, Z., Xu, J., and Feng, D. (2017). “Aod-net: All-in-one dehazing
network,” in Proceedings of the IEEE international conference on computer vision.
Piscataway, NJ, USA: IEEE 4770–4778.
Frontiers in Plant Science 12
Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., et al. (2018a). Benchmarking
single-image dehazing and beyond. IEEE Trans. Image Process. 28, 492–505.
doi: 10.1109/TIP.2018.2867951

Li, R., Pan, J., Li, Z., and Tang, J. (2018b). “Single image dehazing via conditional
generative adversarial network,” in Proceedings of the IEEE conference on computer
vision and pattern recognition. Piscataway, NJ, USA: IEEE 8202–8211.

Li, S., Yang, L., Huang, J., Hua, X.-S., and Zhang, L. (2019). “Dynamic anchor feature
selection for single-shot object detection,” in Proceedings of the IEEE/CVF international
conference on computer vision. Piscataway, NJ, USA: IEEE 6609–6618.

Liu, W., Ren, G., Yu, R., Guo, S., Zhu, J., and Zhang, L. (2022). “Image-adaptive yolo for
object detection in adverse weather conditions,” in Proceedings of the AAAI conference on
artificial intelligence Palo Alto, CA, USA: AAAI Press, Vol. 36. 1792–1800.

Munir, A., Siddiqui, A. J., Anwar, S., El-Maleh, A., Khan, A. H., and Rehman, A.
(2024). Impact of adverse weather and image distortions on vision-based uav detection:
A performance evaluation of deep learning models. Drones 8, 638. doi: 10.3390/
drones8110638

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., and McCool, C. (2016). Deepfruits: A
fruit detection system using deep neural networks. Sensors 16(8), 1222. doi: 10.3390/
s16081222

Sindagi, V. A., Oza, P., Yasarla, R., and Patel, V. M. (2020). “Prior-based domain
adaptive object detection for hazy and rainy conditions,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XIV 16. 763–780 (Berlin/Heidelberg, Germany: Springer International Publishing).

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023). “Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. Piscataway, NJ, USA:
IEEE 7464–7475.

Wang, G., Tian, B., Ai, Y., Xu, T., Chen, L., and Cao, D. (2020). Centernet3d:an
anchor free object detector for autonomous driving.

Wang, W., Xie, E., Li, X., Fan, D. P., Song, K., Liang, D., et al. (2021). Pyramid vision
transformer:A versatile backbone for dense prediction without convolutions. In
Proceedings of the IEEE/CVF international conference on computer vision. 568–578.

Wang, L., Yang, J., Zhang, Y., Wang, F., and Zheng, F. (2024). “Depth-aware
concealed crop detection in dense agricultural scenes,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA:
IEEE 17201–17211.

Wang, X., Kang, H., Zhou, H., Au, W., and Chen, C. (2022). Geometry-aware fruit
grasping estimation for robotic harvesting in apple orchards. Comput. Electron. Agric.
193, 106716. doi: 10.1016/j.compag.2022.106716

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE Trans. image Process. 13,
600–612. doi: 10.1109/TIP.2003.819861

Yang, C., Huang, Z., and Wang, N. (2022). “Querydet: Cascaded sparse query for
accelerating high-resolution small object detection,” in Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition. Piscataway, NJ, USA: IEEE
13668–13677.

Zand, M., Etemad, A., and Greenspan, M. (2021). Oriented bounding boxes for small
and freely rotated objects. IEEE Trans. Geosci. Remote Sens. 60, 1–15. doi: 10.1109/
TGRS.2021.3076050

Zhang, H., and Patel, V. M. (2018). “Densely connected pyramid dehazing network,”
in Proceedings of the IEEE conference on computer vision and pattern recognition.
Piscataway, NJ, USA: IEEE 3194–3203.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
international conference on computer vision. Piscataway, NJ, USA: IEEE 2223–2232.
frontiersin.org

https://doi.org/10.1002/rob.21709
https://doi.org/10.1109/TGRS.2022.3183022
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1016/j.compag.2024.109014
https://doi.org/10.1109/TPAMI.2020.2977911
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1109/TIP.2018.2867951
https://doi.org/10.3390/drones8110638
https://doi.org/10.3390/drones8110638
https://doi.org/10.3390/s16081222
https://doi.org/10.3390/s16081222
https://doi.org/10.1016/j.compag.2022.106716
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TGRS.2021.3076050
https://doi.org/10.1109/TGRS.2021.3076050
https://doi.org/10.3389/fpls.2025.1670790
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Dynamic coding network for robust fruit detection in low-visibility agricultural scenes
	1 Introduction
	2 Related work
	3 Methods
	3.1 Dataset description
	3.2 Dynamic feature encoder
	3.2.1 Multi-scale feature encoder
	3.2.2 Dynamic convolution module

	3.3 Global attention gate
	3.4 Cross-attention-based decoder
	3.4.1 Cross-attention block
	3.4.2 Iterative feature attention
	3.4.3 Loss function


	4 Experimental results
	4.1 Experimental settings
	4.2 Experimental details
	4.3 Experimental analysis
	4.3.1 Quantitative analysis
	4.3.2 Ablation study


	5 Discussion
	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


