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In the starch biosynthetic pathway of Poaceae plants, ADP-glucose
pyrophosphorylase (AGPase) serves as the rate-limiting enzyme that catalyzes the
conversion of glucose-1-phosphate (G1P) and ATP to ADP-glucose, the immediate
precursor for starch synthesis. Despite its fundamental role, the molecular
characteristics and regulation of AGPase in barley (Hordeum vulgare L) remain
poorly understood. This study systematically investigated the expression dynamics
during barley grain development and subunit interactions of AGPase in vitro. Our
findings revealed distinct spatiotemporal expression patterns among
AGPase, with preferential accumulation during late grain-filling stages. Co-
immunoprecipitation coupled with mass spectrometry (Co-IP/MS) demonstrated
specific physical interactions between small (AGPS) and large (AGPL) subunits,
confirming the heterotetrameric architecture of functional AGPase complexes in
barley. Enzymatic characterization showed that particular subunit combinations
(AGPS1-AGPL1 and AGPS2b-AGPL2) exhibited significantly higher catalytic activity
compared to other permutations. These results demonstrate that AGPase
expression is developmentally regulated, specific inter-subunit interactions
determine enzymatic efficiency, and optimal activity requires precise
stoichiometric assembly. The demonstrated spatiotemporal coordination of
AGPase subunits provides mechanistic insight into the control of starch
biosynthesis during the late stage of grain filling. These results also provide a
potential key target to improve barley starch synthesis and metabolism.
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1 Introduction

Barley (Hordeum vulgare L.) is a member of the Poaceae family
and is the fourth most widely cultivated cereal crop globally,
following wheat, rice, and maize in production area (Lukinac and
Jukic, 2022). Starch accounts for 55-65% of the dry weight in barley
grains and is its predominant storage carbohydrate (Jeon et al,
2010; Sahoo et al., 2023). Starch also serves as the primary feedstock
for industrial production of native starch, modified starch
derivatives, and glucose syrups (Zarski et al., 2024).

The biochemical pathway of starch synthesis in cereal
endosperm involves coordinated action of several key enzymes,
including ADP-glucose pyrophosphorylase (AGPase), granule-
bound starch synthase (GBSS), soluble starch synthases (SS),
starch branching enzymes (SBE), debranching enzymes (DBE),
and disproportionating enzymes (DPE) (Figueroa et al., 2022;
Ballicora et al., 2003).

Among these, AGPase occupies a central position as it catalyzes
the rate-limiting conversion of glucose-1-phosphate (G1P) and
ATP to ADP-glucose, the essential glucosyl donor for starch
biosynthesis (Sweetlove et al, 1999; Sun et al, 2020). Plant
AGPases typically exist as heterotetrameric complexes composed
of two large (AGP-L, ~50-55 kDa) and two small (AGP-S, ~51-54
kDa) subunits (Tuncel et al., 2014; Thorbjornsen et al., 1996), with
emerging evidence suggesting distinct functional specialization
between the subunits. The small subunit (o) contains the
catalytic core and allosteric regulatory sites (Danny et al., 1999;
Yu et al.,, 2023c). The large subunit (,) modulates enzyme activity
and stability (Huang et al, 2014; Kumar et al., 2024). Their
interaction determines grain yield potential (Hannah et al., 2012;
Kang et al., 2013).

Phylogenetic analyses reveal that AGPase subunits evolved
from a common ancestral gene, maintaining high sequence
conservation while acquiring specialized functions (Maharana
et al., 2024; Prathap and Tyagi, 2020). This evolutionary
conservation reflects the critical role of enzymes in starch
metabolism, while tissue-specific expression patterns and multiple
alternative subunits combinations also fine-tune enzyme activity
(Batra et al., 2017; Georgelis et al., 2007). In maize (Zea mays), for
instance, distinct heterotetrameric assemblies (SH2/BT2, SH2/
LeAFs, EMB5/EMBL) exhibit different kinetic properties and
regulatory responses (Sandrine et al., 2020; Yoon et al, 2021),
demonstrating how combinatorial flexibility enables plants to adapt
starch biosynthesis to developmental and environmental
requirements (Saripalli and Gupta, 2015).

Despite extensive characterization of AGPase in model cereals,
fundamental gaps remain in understanding barley AGPase,
particularly regarding the structural determinants of subunit
association, the molecular basis for combinatorial regulation, and
functional consequences of specific subunit pairings (Yang et al.,
2024; Wang et al., 2023). This study addresses these knowledge gaps
through a comprehensive analysis of barley AGPase subunits, with
particular focus on their developmental expression profiles,
interaction networks, and biochemical characterization of

different subunit combinations. Our results advance
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understanding of the molecular mechanisms governing starch
biosynthesis in barley, with potential applications for crop
improvement through targeted manipulation of AGPase
subunit cooperativity.

2 Results

2.1 Temporal dynamics of AGPase activity
and starch accumulation during grain
development

The temporal dynamics analysis of both have revealed similar
trends in these two parameters, which AGPase activity and starch
content both increase continuously with grain development
(Figures 1A, B). The observed temporal coupling between
AGPase activity and subsequent starch accumulation implies a
precursor-product relationship. Meanwhile, the correlative
analysis results also showed a high degree of correlation between
AGPase activity and starch accumulation parameters.

(Supplementary Figure 1).

2.2 Bioinformatics analysis of AGPase
subunits

According to Huang’ report, the complete set of AGPase
subunit genes from barley and related Poaceae species was
systematically identified and retrieved from the NCBI database
(Supplementary Table 1) (Huang et al., 2021). This
comprehensive dataset included three small subunit genes
(HvAGPS1, HvAGPS2a, HvAGPS2b) and two large subunit genes
(HvAGPL1, HvAGPL2), which were successfully amplified from
barley cDNA using reference sequences obtained from the barley
genome database. Sequence verification through multiple alignment
analysis confirmed 100% identity between all cloned sequences and
their corresponding reference genes, validating the fidelity of our
cloning procedures. Phylogenetic reconstruction using MEGA-X
software revealed distinct evolutionary relationships among
AGPase subunits from diverse Poaceae species (Figure 2A). The
analysis demonstrated that barley AGPase subunits cluster most
closely with their wheat orthologs, forming a well-supported clade
within the Triticeae lineage. This close phylogenetic relationship
was consistently observed for both small and large subunits. Protein
motif analysis predicted conserved structural domains across all
barley AGPase subunits. We can easily find that they all contain ten
evolutionarily conserved Motif Locations by structural mapping the
Motif Locations of different subunits, and the spatial arrangement
and linear dimensions of these Motif Locations have remaining
invariant. (Figure 2B). While the core sequence motifs were
maintained between subunit, their spatial arrangement exhibited
subunit-specific variations. The small subunits protein (HvAGPS],
HvAGPS2a, HvVAGPS2b) shared identical motif organizations,
whereas the large subunits protein (HvAGPL1, HvAGPL2)
displayed distinct but conserved motif patterns. Multiple sequence
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Developmental profiles of AGPase activity and starch accumulation in barley grains. (A) Temporal changes in AGPase activity during grain development
(5-25 days after anthesis, DAA). (B) Corresponding starch accumulation patterns during grain development. Values represent mean + SD of three
biological replicates (n=3). Lowercase letters denote statistically significant differences (one-way ANOVA with Tukey's post-hoc test, p < 0.05)

alignment of the deduced amino acid sequences revealed substantial
sequence conservation among barley AGPase subunits (Figure 2C).
The alignment showed 68-72% sequence identity between small and
large subunits, with particularly high conservation in regions
corresponding to known functional domains. This high degree of
sequence homology supports the hypothesis of common ancestral
origin for both subunit types, while the observed variations likely
contribute to their functional specialization. From the perspective of
protein structure, in the enzyme complex of HvAGPase, its small
subunit proteins are primarily responsible for catalytic function,
containing binding sites for substrates (G-1-P, ATP) and the
catalytic centers. Its catalytic core is similar to many sugar-
nucleotidyltransferases, which belongs to the glycosyltransferase
superfamily. The ATP binding site of AGPase contains a classic
sugar nucleotide-binding motif, namely a Rossmann fold (3-c-B-ot-
B) domain, corresponding to the B7-06-B8-0t7-B9 structure
(Figure 2C). The G-1-P binding site is located near the catalytic
center and adjacent to the terminal phosphate group of ATP.
Typically involving some conservative residues such as arginine,
histidine, and asparagine, they recognize and bind substrates by
forming a hydrogen-bond network with the phosphate groups and
glucosyl moiety of G-1-P. Its large subunit proteins are mainly
responsible for allosteric regulation and the primary binding sites
for effector molecules (activators and inhibitors). During the
AGPase is taken effect by conformational regulation, the main
allosteric activator is 3-phosphoglycerate (3-PGA), and the
inhibitor is inorganic phosphate (Pi). Through analyzing the
AGPase structure and co-crystallization structure of effectors
from plants like potatoes and rice, it was revealed that the large
subunit proteins provide most of the residues for the effector-
binding site (Baris et al., 2009; Maharana et al., 2024). For
example, some conservative arginine and lysine residues have
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positively charged side chains that form ionic and hydrogen
bonds with negatively charged effectors (3-PGA and Pi). The
small subunit protein contains a highly conserved B-airpin loop
(B-T-B), which directly participates in transmitting the allosteric
signal, as shown in the B2-TTT-B3 structure (Figure 2C). During
binding to Pi or absence of effectors, AGPase mainly exists in the T
(tense) state form. The subunits protein interface is relatively loose,
the catalytic center pocket is relatively closed, the substrate binding
affinity is weak, and the activity is low. After combining with 3-
PGA, the enzyme shifts towards the R (relaxed) state. The binding
of 3-PGA acts like a “molecular glue”, stabilizing the interface
between large and small subunits. The stability of the interface is
achieved through components like B-hairpin loops, which induce
conformational changes in the catalytic center, making its opening
and closing more and greatly improving catalytic efficiency (Baris
et al., 2009; Maharana et al., 2024).

2.3 Spatiotemporal expression patterns of
AGPase subunit

Quantitative real-time PCR analysis revealed distinct tissue-
specific expression profiles for all five AGPase subunits (HvAGPSI,
HvAGPS2a, HvYAGPS2b, HvAGPLI, HvAGPL2). Transcript levels in
developing grains exceeded those in roots, stems, and leaves by 15-
to 32-fold (Figure 3A). During grain development, all subunit genes
exhibited coordinated transcriptional activation, initiating at 20
DAA, peaking at 25 DAA (with 4.1- to 6.8-fold increases relative
to 20 DAA), and subsequently declining (Figure 3B). Two subunits
displayed unique early expression patterns: HYAGPSI transcripts
were detectable at 5 DAA (2.3-fold higher than other subunits),
followed by HYAGPL2 at 10 DAA (1.8-fold elevation). Western blot
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FIGURE 2

Bioinformatics characterization of barley AGPase subunits. (A) Phylogenetic analysis of AGPase subunits from major cereal crops. Species
abbreviations: Hv (Hordeum vulgare, barley), Ta (Triticum aestivum, wheat), Zm (Zea mays, maize), Os (Oryza sativa, rice). (B) Conserved motif
architecture of barley AGPase subunits. (C) Multiple sequence alignment of deduced amino acid sequences for all barley AGPase subunits.
Secondary structure elements are annotated: o (alpha-helix), B (beta-sheet), TT (turn), n (n-bridge), AA(amino acid).

analysis of protein accumulation patterns confirmed and extended
these findings (Figure 3B). The small subunits protein HvAGPS1
and HvAGPS2b reached maximal abundance at 25 DAA, while
HvAGPS2b and HvVAGPL2 proteins were first detectable at 15
DAA. In the expression of AGPase subunits in different
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nutritional tissues (roots, stems, or leaves), our results have
demonstrated that AGPS2a and AGPL2 have some expression
levels at the transcriptional level, but almost no immunoreactive
bands corresponding to AGPase subunits were detected, which may
be due to detection sensitivity limitations (Figure 3A).
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Expression profiles of AGPase subunits. (A) The expression of AGPase subunit in different tissues. The expression at the transcriptional level is based
on barley actin HYACT1 as an internal control. The actin expressed at the protein level is plant actin with a dilution of 1:10000, an antibody dilution
of 1:2000, and protein loading of 30 pg. The sizes of different subunit proteins in WB: HVAGPS1(55.33kDa); HvAGPS2a(52.03kDa); HVAGPS2b
(56.65kDa); HVAGPLL1(57.64kDa); HVAGPL2(55.44kDa). (B) The expression of AGPase subunit at different stages of grain filling development. Letters
(a-d) denote statistically distinct groups (Tukey’'s HSD test, p<0.01). Error bars represent + SD of three biological replicates.

2.4 Protein-protein interactions among

AGPase subunits

Yeast two-hybrid analysis revealed specific interaction patterns
among barley AGPase subunits, demonstrating both heterodimer
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and homodimer associations. The small subunit protein HvAGPS1

showed selective binding to the large subunit protein HvAGPLI,
while HVAGPS2b protein interacted with both HvAGPL1 and

05

HvAGPL2 protein. It was also observed to including SS-SS
interactions between HvAGPS1 and HvAGPS2b protein, and LS-
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LS interactions between HVAGPL1 and HvAGPL2 protein. These
interactions were qualitatively confirmed through growth on
selective media and o-galactosidase reporter activation in the
yeast system (Figure 4A). GST pull-down assays provided
biochemical validation of key inter-subunit interactions by
specific antibodies of AGPase subunits. The results demonstrated
that GST-tagged HvVAGPS1 specifically pulled down His-tagged
HvAGPL1, while His-tagged HVAGPS2b captured GST-tagged
HvAGPL2 (Figures 4B, C). Control experiments with GST alone
showed no detectable binding, confirming the specificity of these

10.3389/fpls.2025.1671162

interactions. All pull-down experiments were performed in
triplicate with consistent results, and bound proteins were
detected through immunoblotting with subunit-specific
antibodies. The combined results from both yeast two-hybrid and
GST pull-down approaches establish that barley AGPase subunits
form specific heteromeric complexes, with pairing observed
between HVAGPS1-HVAGPL1 and HvAGPS2b-HvAGPL2. These
interaction patterns were consistently reproducible across multiple
experimental replicates, with less than 10% variation observed
between independent trials. Furthermore, although we selected
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Protein interaction analysis of AGPase subunits. (A) Yeast two-hybrid assay demonstrating inter-subunit interactions. Control: SD/-Leu-Trp (double-
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two specific large-small subunit pairs to further validation of their
interactions, we do not rule out the potential interactions from
combinatorial pairings.

2.5 Interactions validation between AGPase
subunits

Anti-HvAGPS1 antibodies co-precipitated both HvAGPS2b
and HvVAGPLI, as confirmed by LC-MS/MS analysis with >5
unique peptides identified for each interacting protein (FDR <
1%). Reciprocal immunoprecipitation with anti-HvAGPS2b
antibodies similarly captured HvAGPS1, demonstrating
bidirectional interaction between these small subunits (Figure 5).
The mass spectrometry data showed significant enrichment of these
subunits in immunoprecipitated samples compared to control IgG
precipitations (p < 0.01, Student’s t-test). The IP-MS results
corroborated and GST pull-down assays previous findings from
yeast two-hybrid, providing further validation for the following
three key interactions: (1) HvAGPSI-HvAGPS2b small subunit
heterodimer, (2) HVAGPS1-HvAGPL1 heteromeric complex, and
(3) HvAGPS2b-HvAGPL1 interaction. All identified interactions
met stringent criteria for identification, including detection in at
least two of three biological replicates, a minimum peptide
spectrum match value of 20, and absence in negative control
samples. The complete mass spectrometry dataset, including
peptide counts and statistical confidence metrics, is provided in
Supplementary Table 2.

10.3389/fpls.2025.1671162

2.6 In vitro enzyme activity determination
of different combinations of AGPase
subunits

In vitro enzymatic assays revealed that heterodimeric complexes

consistently demonstrated greater activity than homodimeric forms

(Figures 6A, B). Notably, small subunit homodimers (particularly

HvAGPS1) retained measurable catalytic activity, while large

subunit homodimers showed minimal function. This observation

may reflect the higher structural conservation of small subunits,

which contain the essential catalytic domains. Among the various
heterodimeric combinations tested, the HvAGPS2b-HvAGPL2
complex displayed the highest specific activity, suggesting this

particular subunit pairing may represent the predominant

functional form of AGPase in barley. The enhanced activity of

heterodimeric complexes compared to homodimers supports the

biological importance of proper subunit association for optimal

enzyme function.

3 Discussion

3.1 Spatiotemporal regulation of AGPase
gene expression

Our findings demonstrate that barley AGPase subunits exhibit
strict tissue-specific expression patterns, with predominant

accumulation in developing grains and negligible expression in
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Immunoprecipitation using HYAGPS1 and HVAGPS2b antibodies. (A) The mass spectrum of HYAGPS2b and HVAGPL1 protein was screened from the
mass spectrometry results of HYAGPSL. (B) The mass spectrum of the HVAGPS1 protein was screened from the mass spectrometry results of

HVAGPS2b.
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In vitro enzymatic activity analysis of AGPase complexes. (A) Development of NADPH standard curve. (B) Determination of enzyme activity in
different combinations. The experimental information on the expression and purification of different subunit proteins is shown in Supplementary
Figure 2. Letters (a-f) denote statistically distinct groups (Tukey's HSD test, p < 0.01). Error bars represent + SD of three biological replicates.

roots, stems, and leaves. Transcriptional profiling revealed
coordinated upregulation of subunit genes during grain filling,
peaking at 25 DAA for HvAGPSI and HvAGPS2b before
subsequent decline. This temporal expression pattern differs from
related cereals, with maize AGPase activity peaking earlier (~15
DAA) (Na et al, 2018) and wheat showing maximal expression
shortly after anthesis (Fahy et al., 2018). Nevertheless, all species
demonstrate that elevated AGPase expression correlates strongly
with starch accumulation, consistent with wheat studies showing
AGPLI transcript levels directly proportional to starch synthesis
rates (Kumar et al, 2024). At the protein level, barley AGPase
subunits first became detectable at 15 DAA, reaching peak
abundance by 20 DAA - a pattern generally consistent with
transcriptional dynamics. However, we observed several notable
exceptions: HVAGPL2 maintained stable protein levels throughout
grain filling with minimal fluctuation, while protein accumulation
frequently persisted beyond transcriptional downregulation after 30
DAA, likely reflecting the greater stability of mature enzyme
complexes. When analyzing incipient the transcriptional
expression levels of grains at different developmental stages, it is
not difficult to find that early HvAGPSI and HvAGPL2 have
significant transcriptional expression levels. It is preliminarily
speculated that these early transcripts may play a regulatory or
initiatory roles in starch biosynthesis. For example, ZmAGPL2 is
stably expressed throughout grain development in maize, while
AGPS2 is specifically upregulated in the middle and late stages of
grain filling, indicating that AGPL2 may independently participate
in early complex pre assembly (Huang et al, 2011). In wheat,
TaAGPSI is continuously expressed in the early post flowering
grains, while TaAGPLI expression is lower, suggesting that AGPS!
may act as a “structural subunit” to initiate complex formation.
Therefore, we speculate that as barley belonging to the same family
as Poaceae, HYAGPSI and HvAGPL2 have similar functions and
roles in early expression. At the same time, when detecting AGPase
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activity in vivo, it was found that there was partial AGPase activity
during the early stages of endosperm development, but a
considerable lack of protein levels was observed at the same
developmental stage (Figures 1A, 4B). This may be attributed to
the partial expression of HYAGPSI and HvAGPL2, as well as the
trace expression of other subunits, which provides considerable
AGPase activity during early grain development. This partial
AGPase activity can meet the requirements of early starch
synthesis and prevent excessive accumulation of monosaccharides
in the grain (Huang et al, 2011). The observed spatiotemporal
expression patterns suggest an elaborate regulatory network
coordinating AGPase production with starch biosynthesis
demands during grain development. The persistence of AGPase
proteins beyond their transcriptional peak may represent an
adaptive mechanism to maintain starch production during late
grain filling stages.

The multi-band phenomenon observed for AGPS2b and AGPL2
in Western Blot (WB) experiments, which suggests the existence of
multiple proteins forms. The appearance of multiple bands in
AGPS2b and AGPL2 samples indicates the presence of a group of
mature and immature proteins containing transport peptides,
implying that these isoforms are localized to plastids. In previous
studies on AGPase in cereal endosperms, unlike many other plant
tissues, the majority of the AGPase activity was found to reside in the
cereal endosperm exists in the cytoplasm, while a small portion
located within plastids. In maize endosperm, the primary AGPase
enzyme activity is present in the cytoplasm, with SH2 (LSU) and BT2
(SSU) being the main cytoplasmic AGPase subunits. However, some
subunits are also transported to the plastid through plastid transport
peptides. The cytoplasmic LSU binds to the SSU precursor protein
carrying a transport peptide to form a heterodimeric complex (LSU-
SSU precursor), which is recognized by proteins on the plasma
membrane through the transport peptide and transported into the
plastid. After this complex entering the plastid, the transport peptide
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is cleaved and assembled with the LSU inside the plastid to form the
final active heterotetramer (LSU,SSU,). Therefore, this portion of
AGPase subunits is ultimately localized in the plastid stroma (Yu
et al,, 2023b; Huang et al., 2011).

3.2 Cross-reactivity between AGPase
subunit antibodies and other subunit
proteins

During preparing exogenous antibodies against AGPase
subunits, cross-reactivity between antibodies and other subtype
subtypes is a common phenomenon, particularly in graminaceous
plants. This cross-reactivity is mainly attributed to high sequence
homology among subunits and the overlap of conserved Motifs. For
example, the homologous alignment rate has 82% between
ZmAGPL2 and ZmAGPL1 in N-terminal 1-150 amino acid, and
the antibody epitope is often located in this region. Moreover, all
AGPase subunits contain 10 evolutionarily conserved motifs, and
their relative positions and lengths are strictly conserved. If the
antibody targets these regions, it is easy to cross-react with different
subtypes. Although the phenomenon of antibody cross-reactivity
between AGPase subunit proteins is difficult to handle, it also
indirectly reveals the evolutionary conservation and functional
redundancy of AGPase subunits. For example, the cross-reactivity
of ZmAGPL2 antibody with the ancestral gene ZmLSU3 supports
that the AGPase subunit of Poaceae originated from a common
ancestor. Similarly, through the phenomenon of OsAGPS2b
antibody misidentifying leaf OsAGPSI indicates functional
redundancy between these two subunits in photosynthetic
carbon allocation.

3.3 Subunit interaction dynamics of barley
AGPase

Our comprehensive in vitro characterization of AGPase subunit
association provides significant insights into the molecular
architecture of this critical enzyme complex in barley. The GST
pull-down assays validated the yeast two-hybrid results, confirming
a stable interaction between HvAGPS2b and HvAGPL2, consistent
with observations in other cereals where similar subunit
combinations form functional heterodimers (Gann et al., 2020).
However, our IP-MS analysis revealed a more complex interaction
landscape than previously recognized, identifying both heteromeric
and homomeric subunit associations. The detection of HvAGPS1-
HvAGPS2b interactions suggests potential small subunit
oligomerization, while the variable recovery of HVAGPL2 in IP-
MS experiments despite positive yeast two-hybrid results points to
context-dependent regulation of subunit hetero-oligomerization.
This discrepancy may reflect several biological realities: the
relatively low expression of HVAGPL2 transcripts compared to
other subunits, potential post-translational modifications that
modulate interaction stability (Wei et al., 2017), or the formation
of transient complexes that are challenging to capture under
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experimental conditions. The core reason is that the transient
complexes formed by HVAGPL2 protein and other subunits are
difficult to stably capture in IP (Berggird et al., 2007). Besides, the
identification of HVAGPL1 in HvAGPS2b immunoprecipitates,
despite its absence from yeast two-hybrid interactions, further
underscores the complexity of AGPase assembly and suggests that
native cellular environments may facilitate interactions not observed
in heterologous systems. These findings collectively indicate that
barley AGPase likely exists as a dynamic ensemble of complexes
whose composition may vary according to developmental stage,
subcellular localization, and metabolic demands. The demonstration
of multiple interaction patterns challenges the conventional view of
AGPase as a simple heterotetramer and suggests a more
sophisticated regulatory mechanism governing its assembly and
function in starch biosynthesis.

3.4 Functional characterization of AGPase
subunit combinations

Our investigation of AGPase enzymatic properties during grain
development revealed a distinct bell-shaped activity profile that
closely paralleled starch accumulation patterns. In vitro biochemical
characterization demonstrated significant variation in catalytic
efficiency among different subunit combinations, with
heterodimeric complexes consistently outperforming
homodimeric forms. Notably, the HvAGPS2b-HvAGPL2
heterodimer exhibited the highest specific activity, suggesting this
pairing represents the predominant functional configuration in
barley, as previously observed in other cereals (Seferoglu et al,
2016). Comparative analysis revealed that small subunit
homodimers retained measurable activity while large subunit
homodimers showed minimal catalytic function, indicating their
structural instability in isolation. These functional differences
correlate with evolutionary patterns observed at the molecular
level. Small subunits display remarkable sequence conservation
across species, reflecting stringent structural constraints required
for maintaining catalytic competence (Maharana et al., 2024). In
contrast, large subunits exhibit greater sequence variability,
consistent with their primary role in regulatory adaptation rather
than direct catalysis. Our findings support the model where proper
subunit stoichiometry and interaction geometry are critical for
optimal enzyme function - imbalances disrupt the essential
quaternary structure and impair activity (Hsu et al., 2022). The
C-terminal domains of small subunits appear particularly crucial
for complex assembly, as demonstrated by studies showing that
truncation of these regions in rice AGPS compromises enzyme
integrity (Maharana et al., 2024; Ohdan et al, 2005). These
structural-functional relationships explain why natural selection
maintains specific pairing preferences despite the combinatorial
possibilities offered by multiple subunit isoforms. Among them,
natural selection maintains the preferred pairing of AGPase
subunits. In the process of domestication or breeding, the
preference for subunit combinations is inevitably influenced. For
example, the critical combinationship of AGPL2 and AGPS2b was
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disrupted in the maize Sh2 mutant, leading to an imbalance
dysregulation of carbon source allocation in endosperm, resulting
in a 30% decrease in seed germination rate and requiring artificial
seedling cultivation (Dong et al., 2019). Conversely, Edited
promoter of OsWx gene to adapt to rice cooking preferences in
rice, resulting in an increased expression of OsAGPL2 in the
combination of OsAGPL2 and OsAGPS2b, ultimately producing
economically valuable low-amylose varieties (Maharana et al,
2024). Consequently, it can be seen that changes in AGPase
subunit combinations during domestication or breeding can
pierce limitations that natural selection cannot achieve.

4 Conclusion

This study provides a comprehensive understanding of the
molecular and functional characteristics of AGPase in barley,
revealing its critical role in starch biosynthesis. Phylogenetic analysis
confirmed the close evolutionary relationship between barley and
wheat AGPase subunits, with high sequence homology and
conserved structural motifs, suggesting shared ancestry and
functional conservation. Expression profiling demonstrated that
AGPase subunits are predominantly active during grain filling (20-
30 DAA), with protein and transcript levels peaking in synchrony,
underscoring their importance in mid-to-late grain development. In
vitro enzymatic assays revealed that heterodimeric complexes,
particularly the HvAGPS2b-HvAGPL2 combination, exhibit
significantly higher activity than homodimers, surmising this pairing
as the most catalytically efficient configuration in barley. Protein
interaction analyses, including yeast two-hybrid, GST pull-down, and
immunoprecipitation-mass spectrometry, validated both heteromeric
(HvAGPS1-HvAGPLI1, HvAGPS2b-HvAGPL2) and homomeric (SS-
SS, LS-LS) interactions, highlighting the dynamic assembly of AGPase
complexes. This also implies that AGPase likely forms different
complexes to control enzyme activity and thereby regulate starch
synthesis. These findings collectively demonstrate that barley AGPase
operates through a tightly regulated, evolutionarily conserved
interaction network, where specific subunit combinations optimize
enzymatic efficiency and drive starch accumulation during grain filling.
Based on these characteristics, molecular markers could be designed to
efficiently screen barley germplasm carrying highly active complexes
(as HVAGPS2b-HvAGPL2). Concurrently, when cultivating barley
varieties with cooking preferences, targeted editing the promoter of
HvAGPL2 gene may change the expression ratio of HYAGPL2 and
HvAGPS2b, and offer a viable strategy for low-starch or high-
starch cultivars.

5 Material and methods
5.1 Plant materials and growth conditions
The study utilized barley (Hordeum vulgare L.) cultivar ‘Damai

Kangqing 9" grown under standard field conditions at the Barley
Research Base of Sichuan Agricultural University during the 2022-
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2023 growing season. For temporal expression analysis, developing
grains were systematically collected at six key developmental stages: 5,
10, 15, 20, 25, and 30 days after anthesis (DAA), with anthesis date
determined by visual examination of spike development (Yu et al,
2023a; Huang et al,, 2011). Concurrently at 25 DAA, vegetative tissues
including roots (primary and secondary roots from 0-20 cm soil
depth), stems (second internode from apex), and leaves (fully
expanded flag leaves) were harvested for spatial expression profiling.
All samples were immediately flash-frozen in liquid nitrogen and
stored at -80°C until analysis. Three biological replicates were
collected for each time point and tissue type, with each replicate
consisting of pooled material from 10 randomly selected plants to
account for biological variability. Field management followed standard
agronomic practices for barley production in the region, including
optimal fertilization (300 kg/ha NPK 15:15:15), controlled irrigation
(maintaining 70-80% field capacity), and integrated pest management
with minimal chemical intervention.

5.2 Bioinformatics analysis

Phylogenetic reconstruction of AGPase subunit evolution was
performed using MEGA-X software (version 11.0.13) with the
following analytical parameters: (1) amino acid sequences of both
large and small AGPase subunits were retrieved from four Poaceae
species - barley, wheat (Triticum aestivum L.), rice (Oryza sativa L.),
and maize (Zea mays L.); (2) multiple sequence alignment was
conducted using the MUSCLE algorithm with default parameters;
(3) phylogenetic trees were constructed using the maximum
likelihood method with 1000 bootstrap replicates to assess node
support (Xi et al.,, 2024). For structural characterization, protein
sequences of all barley AGPase subunits were analyzed using
ESPript 3.0 to generate multiple sequence alignments with
secondary structure annotations. Furthermore, conserved motifs
were identified through the MEME online suite (version 5.5.2) with
the following search parameters: (i) maximum number of motifs set
to 10, (ii) minimum motif width of 6 residues, (iii) maximum motif
width of 50 residues, and (iv) E-value threshold of 1x107'°. All
sequence data were obtained from the NCBI protein database with
rigorous verification of annotation accuracy before analysis.

5.3 Transcript-level expression analysis via
qRT-PCR

Gene-specific primers for AGPase subunits were designed using
Primer Premier 5.0 software with the following parameters: amplicon
length 80-150 bp, melting temperature 58-62 °C, and GC content 40-
60% (Liu et al., 2023). Total RNA was extracted from various tissues
(roots, stems, leaves) and developing grains (5-30 DAA) using the
RNAprep Pure Plant Plus Kit (Cwbio), followed by DNase I treatment
to eliminate genomic DNA contamination. RNA integrity was verified
by 1.2% agarose gel electrophoresis and quantified using a NanoDrop
spectrophotometer (OD260/280 ratio >1.9). First-strand cDNA
synthesis was performed with 1 g total RNA using the HiScript III
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RT SuperMix (Cwbio) according to the manufacturer’s protocol.
Quantitative real-time PCR was conducted on a CFX96 Touch
system (Bio-Rad) with the following cycling conditions: 95 °C for 30
sec, followed by 40 cycles of 95 °C for 10 sec and 60 °C for 30 sec, using
SYBR Green Master Mix (GeneStar). Each reaction (20 uL) contained
10 ng cDNA template, 0.5 UM of each primer, and 1x SYBR Green
Master Mix. The barley B-actin gene served as the internal reference for
normalization. Three technical replicates were performed for each
biological sample (n=3), with relative expression levels calculated
using the 2-AACt method. Melting curve analysis (65-95 °C)
confirmed amplification specificity, and primer efficiencies (90-
110%) were validated through standard curves. Negative controls
(no-template and no-RT) were included in each run to ensure the
absence of contamination.

5.4 Western blot analysis

Protein samples were separated by 10% SDS-PAGE electrophoresis
(100 V, 90 min) and subsequently transferred to PVDF membranes
(0.45 um pore size) using a wet transfer apparatus (Bio-Rad) at 100 V
for 1 hour in transfer buffer (25 mM Tris, 192 mM glycine, 20%
methanol). Following transfer, membranes were briefly rinsed with
TBST buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-
20) and blocked with 5% (w/v) non-fat dry milk in TBST for 1 hour at
room temperature with gentle agitation (Shoaib et al,, 2023). After
three 5-minute washes with TBST, membranes were incubated with
primary antibodies (rabbit polyclonal anti-AGPase subunits, 1:2000
dilution in blocking buffer) for 2 hours at room temperature. Following
primary antibody incubation, membranes were washed three times (10
min each) with TBST and then probed with HRP-conjugated goat anti-
rabbit secondary antibody (1:5000 dilution in blocking bufter) for 1
hour. The primary antibody is prepared using the previously prepared
antibody, and its preparation is based on the article in Xi (Xi et al,
2024). After three final TBST washes (10 min each), protein bands were
visualized using the Sheng’er Biochemical Luminescence Kit (SB-
WB004) according to the manufacturer’s instructions, with
chemiluminescent signals captured by a CCD imaging system
(Tanon 5200). Image analysis was performed using Image] software
(NIH) with normalization to actin (mouse monoclonal anti-actin,
1:10000 dilution) as a loading control.

5.5 Co-immunoprecipitation mass
spectrometry analysis

Protein extracts from developing barley grains (25 DAA) were
pre-cleared by incubation with rabbit IgG-conjugated Protein A/G
magnetic beads (Thermo Fisher Scientific) in lysis buffer (50 mM
Tris-HCI pH 7.5, 150 mM NaCl, 1% Triton X-100, 1x protease
inhibitor cocktail) at 4 °C for 1 hour with end-over-end rotation
(Zhou et al., 2024). For immunoprecipitation, 20 UL of antibody-
conjugated beads (anti-HvAGPSI protein or anti-HvAGPS2b
protein) were added to 500 UL pre-cleared lysate (1 mg/mL total
protein) and incubated overnight at 4 °C with constant agitation.
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Beads were subsequently collected by magnetic separation and
washed three times with 0.5 mL ice-cold lysis buffer under mild
denaturing conditions (0.1% SDS). Bound proteins were eluted with
50 uL of 0.1 M glycine-HCI (pH 2.5) and immediately neutralized
with 1 M Tris-HCI (pH 8.0). Immunoprecipitation efficiency was
validated by Western blotting before MS analysis. For LC-MS/MS,
eluted proteins were precipitated using trichloroacetic acid/acetone,
reduced with 10 mM DTT, alkylated with 55 mM iodoacetamide,
and digested with trypsin (1:50 w/w) overnight at 37 °C. Peptide
mixtures were analyzed by nanoLC-MS/MS (Q Exactive HF-X,
Thermo Scientific) with a 120-min gradient (5-35% acetonitrile in
0.1% formic acid) at a flow rate of 300 nL/min. MS data were
acquired in data-dependent acquisition mode with the following
parameters: MS1 resolution 60,000, MS2 resolution 15,000, top 20
precursor ions selected for fragmentation. Protein identification and
interaction partner analysis were performed using MaxQuant
(v2.0.3.0) against the UniProt Hordeum vulgare database (release
2023_01), with false discovery rate (FDR) set to 1% at both peptide
and protein levels.

5.6 Yeast two-hybrid assay

The coding sequences of AGPase subunits (HvAGPSI,
HvAGPS2b, HvAGPL1, HvAGPL2) were cloned into either the
pGBKT?7 bait vector (DNA-binding domain) or pGADT7 prey
vector (activation domain) using standard restriction enzyme
digestion and ligation methods (Zhang et al., 2024). Yeast strain
AH109 was co-transformed with bait-prey plasmid combinations
and selected on SD/-Leu/-Trp medium to confirm successful co-
transformation. Protein-protein interactions were assessed by
plating transformants on stringent SD/-Leu/-Trp/-His/-Ade
medium supplemented with X-o-Gal, with positive interactions
indicated by colony growth and blue coloration after 5 days of
incubation at 30°C. Appropriate controls were included in all
experiments: pGBKT7-53 + pGADT7-T served as a positive
control, pGBKT7-Lam + pGADT7-T as a negative control, and
all bait constructs were tested for autoactivation by transformation
without prey vectors.

5.7 GST pull-down assay

Protein-protein interactions were validated using GST pull-
down assays with purified recombinant proteins. His-tagged
AGPase subunits (10 pg) were incubated with glutathione-
sepharose beads pre-bound to GST-fusion proteins (20 ug) in
binding buffer (50 mM Tris-HCI pH 7.5, 150 mM NaCl, 1%
Triton X-100) for 12 hours at 4°C with end-over-end rotation.
Following incubation, beads were pelleted by centrifugation (500*g,
5 min, 4°C) and washed three times with ice-cold wash buffer (0.1%
SDS binding buffer). Bound protein complexes were eluted by
boiling in 2x SDS loading buffer for 5 minutes and resolved by
12% SDS-PAGE. Proteins were transferred to PVDF membranes
using a semi-dry transfer apparatus (25 V, 30 min). Afterwards,

frontiersin.org


https://doi.org/10.3389/fpls.2025.1671162
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Cheng et al.

subjected to immunoblot analysis with mouse anti-GST (1:5,000)
and rabbit anti-His (1:3,000) primary antibodies, followed by HRP-
conjugated secondary antibodies (1:10,000). Signal detection was
performed using enhanced chemiluminescence substrate with
exposure times ranging from 30 sec to 5 min (Sambrook and
Russell, 2006; Nixon et al., 2002). Control experiments included:
(1) GST-only beads with His-tagged proteins to assess nonspecific
binding, and (2) GST-fusion proteins with non-recombinant E. coli
lysate to confirm specificity. All pull-down experiments were
performed in triplicate with consistent results (CV < 15%
between replicates). Band intensities were quantified using Image]J
software (NIH) with background subtraction.

5.8 AGPase activity and starch content

Following the method described by Nishi (Nishi et al., 2001), 0.05g
of shelled seeds were ground using a pestle and diluted in 200 uL of
equilibration buffer (pH=7.4, 50 mM HEPES, 5 mM MgCl,, and 0.5
mM EDTA) and centrifuged for clarification. The final volume is used
to calculate the activity of the Unit endosperm. Add 2 mL of HQ-A
buffer (pH=6.8, 50 mM potassium phosphate, 5 mM MgCl,, and 0.5
mM EDTA) and centrifuge at 15000*g for 5 minutes at 4°C. Take 1 mL
of supernatant and precipitate it with 45% ammonium sulfate.
Resuspend the precipitate in 200 uL of HQ-A buffer. After
resuspension, the sample was heat-treated at 60°C for 7 minutes,
cooled, and centrifuged at 15000*g for 5 minutes. The activity assay
was conducted at 37°C (incubation time of 6 minutes), and the control
reaction system included all substrate mixtures except PPi. After the
reaction was terminated, the NADPH content was measured by adding
500 UL of colorimetric mixture (pH=7.4100 mM MOPS HC], 0.1 mg/
mL BSA, 7 mM MgCl, and 0.6 mM NADP, 1 Unit of glucose-6-
phosphate dehydrogenase, 1 Unit of phosphoglucose mutase). After
centrifugation and clarification for 5 minutes, the absorbance of the
reaction solution was measured at a wavelength of 340 nm. The
generated Glc-1P content is determined by a standard curve, which is
plotted using a freshly prepared Glc-1-P complete reaction system
without enzymes. Specific activity is defined as the number of Units per
milligram of protein, where 1 Unit refers to the amount of enzyme that
catalyzes the conversion of 1 L mol substrate per minute. In vitro
experiments, a total of 30uL of purified elution mixture was added to the
equilibrium buffer in a 1:1 ratio of subunits within each combination,
calculated by Image]. The remaining steps were performed in vivo
experiments. The starch content was determined by using the total
starch measurement kit from Beijing Solaibao Technology Co., Ltd.
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