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Introduction: The germination rate of rice seed is a critical indicator in
agricultural research and production, directly influencing crop yield and quality.
Traditional assessment methods based on manual visual inspection are often
time-consuming, labor-intensive, and prone to subjectivity. Existing automated
approaches, while helpful, typically suffer from limitations such as rigid
germination standards, strict imaging requirements, and difficulties in handling
the small size, dense arrangement, and variable radicle lengths of rice seeds.
Methods: To address these challenges, we present SeedRuler, a versatile, web-
based application designed to improve the accuracy, efficiency, and usability of
rice seed germination analysis. SeedRuler integrates three core components:
SeedRuler-IP, a traditional image processing-based module; SeedRuler-YOLO, a
deep learning model built on YOLOV5 for high-precision object detection; and
SeedRuler-SAM, which leverages the Segment Anything Model (SAM) for fine-
grained seed segmentation. A dataset of 1,200 rice seed images was collected
and manually annotated to train and evaluate the system. An interactive module
enables users to flexibly define germination standards based on specific
experimental needs.

Results: SeedRuler-YOLO achieved a mean average precision (mAP) of 0.955
and a mean absolute error (MAE) of 0.110, demonstrating strong detection
accuracy. Both SeedRuler-IP and SeedRuler-SAM support interactive
germination standard customization, enhancing adaptability across diverse use
cases. In addition, SeedRuler incorporates an automated seed size measurement
function developed in our prior work, enabling efficient extraction of seed length
and width from each image. The entire analysis pipeline is optimized for speed,
delivering germination results in under 30 seconds per image.

Conclusions: SeedRuler overcomes key limitations of existing methods by
combining classical image processing with advanced deep learning models,
offering accurate, scalable, and user-friendly germination analysis. Its flexible
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standard-setting and automated measurement features further enhance usability
for both researchers and agricultural practitioners. SeedRuler represents a
significant advancement in rice seed phenotyping, supporting more informed
decision-making in seed selection, breeding, and crop management.
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object detection

1 Introduction

The seed plays an indispensable role in agricultural production
as a primary source of sustenance for humans (Zhao et al., 2023b;
Rajalakshmi et al, 2024). The germination rate of seeds is an
important factor in evaluating their quality and performance
(Genze et al.,, 2020). Accurate and efficient assessment of
germination rate is crucial for both crop genetic studies and
breeding. Crop breeders utilize germination rate data to
determine the optimal environment for seed germination, which
greatly impacts seed storage and agriculture production (Colmer
et al,, 2020). In addition, with the accurate phenotyping of the
germination rate of a genetic population, researchers can identify
causal genes responsible for seed germination rate, thereby
accelerating the breeding process (Pouvreau et al., 2013;
Khoenkaw, 2016; Zhou et al., 2017).

In seed testing, the germination rate represents the percentage
of seeds with protruding radicles among the total number of seeds
tested under appropriate conditions and over a specified period of
time (Urena et al, 2001; Chai et al., 2018). Typically, the
germination rate is manually recorded by an experienced
technician upon visual inspection of the Petri dishes for
germinated seeds. However, this manual counting the number of
germinating seeds is a time-consuming and error-prone task due to
the small size of the seeds and the minimal color contrast between
the seed coat and the radicle (Braguy et al., 2021), thereby limiting
the frequency, scale, and accuracy of experiments.

In recent years, the field of germination tests has witnessed the
application of computer vision and machine learning techniques.
An example is the use of the k-nearest neighbors to analyze images
of diverse germination phenotypes (Awty-Carroll et al, 2018).
Joosen et al. (2010) developed a software package GERMINATOR
(Joosen et al., 2010) that employs Image]J, an open-source program,
to determine Arabidopsis germination rates. Additionally, a
computer vision germination system has been developed to
determine the different categories of seeds during imbibition and
germination (ElMasry et al, 2019). Furthermore, researchers
performed high-throughput seed germination screening using 3D
printed hole arrays along with image analysis software Image Pro
Plus (Chai et al., 2018). Also, some researchers used threshold and

maximum likelihood methods to evaluate the germination of
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pepper seeds (Chaivivatrakul, 2020). However, it is important to
highlight that conventional image analysis methods may not be
well-suited for conducting large-scale germination tests. This is
primarily because manual parameter adjustments, such as
threshold, can greatly affect their performance.

Unlike traditional image analysis methods, deep learning is
capable of learning and extracting features and semantic
information from images to identify, classify, and locate objects
more effectively (Wei et al., 2024; Yao et al,, 2024; Sangjan et al,
2025). For example, SeedQuant (Braguy et al, 2021) measures
stimulant and inhibitor activity on root parasitic seeds using deep
learning. Deep learning has been employed by researchers to predict
germination rates for various plants, including tomatoes, peppers,
barley, corn, and parasitic plants (Dheeraj and Chand, 2025; Maleki
et al., 2025; Rezaei et al., 2025; Waseem et al., 2025). It should be
noted, however, that the methods mentioned above all necessitate
an interval between seeds, which is not convenient for practical
purposes. YOLO-r (Zhao et al., 2023a) utilizes a convolutional
neural network to assess the germination status of rice seeds, even
when they are in contact with each other. However, a limitation is
that users cannot manually customize the germination standards.

To address these issues, we developed a web-based platform
called SeedRuler, which incorporates three methods: SeedRuler-
YOLO, SeedRuler-SAM, and SeedRuler-IP. SeedRuler-YOLO is
based on the object detection algorithm YOLOvV5 (Redmon et al.,
2016), which has demonstrated high accuracy and speed in various
applications, including remote sensing detection (Adli et al.,, 2025),
fruit detection (Tang et al., 2025), and pest detection (Wang et al.,
2025). SeedRuler-SAM utilizes the Segment Anything Model
(SAM) (Kirillov et al, 2023) for seed and radicle segmentation
and calculates the ratio of their areas. SeedRuler-IP is based on
image processing techniques. Both SeedRuler-SAM and SeedRuler-
IP provide interactive functionality that enhances user flexibility
and adaptability in selecting a germination standard. SeedRuler
consists of the following functions: acquiring rice seed images,
accurately positioning the seeds within the images, determining
the germination status of each seed, and generating outputs of seed
numbers and germination rates for all the captured images.
Notably, SeedRuler allows rice seeds to be in contact with each
other during image capture, enabling users to swiftly capture images
and analyze rice seed germination with convenience.
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The decision to implement SeedRuler as a web-based platform
was driven by several practical considerations. First, a browser-
accessible system removes the need for users to install additional
software or maintain specific computing environments, which is
especially useful for agricultural researchers with limited technical
expertise. Second, the web-based architecture allows for centralized
updates, consistent user experiences, and easier integration with
cloud-based storage and processing resources. Compared with
standalone desktop applications or mobile apps, a web platform
enables better scalability, supports high-throughput batch
processing, and allows cross-platform compatibility. Moreover,
for users without stable internet access, we also provide an offline
version with the same functionalities to ensure wide applicability.

Unlike existing tools, SeedRuler supports both fixed and
customizable germination standards through a hybrid framework
that integrates deep learning and interactive segmentation, offering
greater adaptability across varied seed conditions. Each module in
SeedRuler is designed to serve distinct application scenarios: SeedRuler-
IP is suitable for low-computing-power environments or situations
where internet access is limited; SeedRuler-YOLO offers high-speed
and high-accuracy detection ideal for routine large-scale analysis; and
SeedRuler-SAM supports fine-grained customization of germination
standards, making it especially useful for detailed research or biological
studies with specific phenotyping needs.

Despite these advantages, we acknowledge that SeedRuler, in its
current version, does not offer fine-grained control over advanced
algorithmic parameters. For instance, users cannot adjust low-level
YOLOvV5 model settings, segment-specific thresholds, or fine-tune
detection sensitivity beyond the default interface options. This design
prioritizes ease of use and accessibility over expert-level customization.
Furthermore, while the image acquisition box ensures consistent image
quality, the system’s performance may degrade when analyzing images
captured under uncontrolled lighting or complex backgrounds. These
limitations are discussed further in the Discussion section, and we plan
to address them in future updates.

In conclusion, SeedRuler can perform large-scale rice seed
germination phenotyping and holds potential applications in seed
genetic studies and agricultural production due to its high accuracy,
speed, affordability, and user-friendly interface. SeedRuler is available
for free (http://www.xhhuanglab.cn/tool/SeedRuler.html) and is
compatible with Windows, MacOS, and Linux operating systems.

2 Materials and methods

2.1 Materials

The rice sources used in this study were obtained from indica and
japonica varieties in the field conducted by Shanghai Normal
University (Xuehui Huang Lab). This population of rice seeds
exhibits a broad range of phenotypic variation among different lines.

In the germination experiment, 30-60 full-grained seeds were
randomly selected from each rice cob and transferred to Petri
dishes. Next, add the appropriate amount of distilled water to
each Petri dish (to prevent water evaporation, seal the Petri dish
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with plastic wrap). Subsequently, the petri dish was positioned in a
25°C constant temperature incubator for dark culture. Finally, seed
images were obtained by photographing germinating seeds. In this
study, all seeds were acquired through the image acquisition box
between October 2020 and September 2021.

2.2 Data set generation

To reduce interference from factors such as camera lens
distortion and external lighting, we have specially designed an
image acquisition box. The acquisition box is equipped with an
internal light source and the focal length of the camera is fixed,
which ensures excellent image quality.

The image acquisition box consists of three main components:
the camera, the box body, and the light source. The camera has a
focal length of 2.8-12mm and a resolution of 1920x1080. The
rectangular box body has dimensions of 30cmx30cmx15cm. The
inner wall of the box body is made of highly reflective granular
fabric, which allows the light to be diffused evenly. Circular LED
lights beneath the image acquisition port serve as the light source. A
ring-shaped LED light source is located on top of the box. The light
source casts its illumination onto the top of the box, which is then
reflected by both the top and side walls, resulting in the generation
of diffuse light at the bottom of the box.

In the imaging process, the seed-containing Petri dish is placed
under the camera in the image acquisition box and photographed,
resulting in a 1920x1080 image which is stored in the computer as a
JPEG file. It takes at most half a minute to capture one seed image
using the image acquisition box. A technician can capture 1,000
images in a single day if he shoots continuously for eight hours.
Hence, the use of an image acquisition box (Additional File 1:
Supplementary Figure S1) can greatly improve the efficiency of the
shooting process.

To ensure the diversity of the dataset, we collected 1200 seed
images with a total of 4,4660 seeds. Each image contains
approximately 30-60 seeds. The images contain seeds of varying
size, shape, and color, along with impurities like branch stalks,
fragmented leaves, and rice awns. Additionally, the distribution of
seeds in the image is sparsely distributed.

After acquiring the images, the technician used Labellmg to
label each seed with a rectangular box and define its category. Here,
the seed categories include germinated and ungerminated seeds that
are labeled with “yes” and “no”, respectively, and the labeling results
are shown in Additional File 1: Supplementary Figure S2. The
dataset is then randomly split into training and test sets, ensuring an
8:2 ratio. The training and test sets consist of 960 and 240 images,
respectively, for training and testing the model.

2.3 Algorithm
2.3.1 SeedRuler-IP

SeedRuler-IP assesses seed germination rate using a classical
image processing pipeline, consisting of color-based segmentation,
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morphological refinement, seed counting, and radicle identification.
The workflow is illustrated in Figure 1. First, k-means clustering is
applied to the input image to separate seeds from the background
(a, b), followed by the removal of noisy connected regions (c). The
area curve of the connected regions is then used to determine the
number and size of seeds (d). Pixels exceeding preset RGB
thresholds are classified as radicles, and abnormally large or small
radicles are filtered out (e, f). Finally, the user adjusts a scrollbar to
set the radicle length threshold, and the system calculates the
germination rate accordingly (g). Below are the detailed steps.

2.3.1.1 Preprocessing and seed segmentation

To reduce noise and enhance edge information, a Gaussian
filter with a kernel size of 3x3 is first applied to the input image.
Then, each pixel’s RGB values (R, G, B) are transformed into two
new features:

fi=R-B, f,=G-B (1)

This transformation enhances the contrast between seed coat
pixels (typically yellowish, with high R and G) and background or
radicle pixels (typically dark or white, with balanced RGB). These

a. Input image

k-means

Seed segmentation

b. Seed segmentation result

10.3389/fpls.2025.1671998

two features are used as input for K-means clustering with the
following settings:

i. Number of clusters: k=2.
ii. Initial cluster centers: (0, 0) and (30, 30).

iii. Stopping criterion: clustering terminates when cluster
centers converge.

Let the resulting two clusters be C; and C,, where C; (higher
feature values) corresponds to seed coat pixels, and C, (lower
feature values) corresponds to background and radicle.

2.3.1.2 Morphological refinement and seed region
extraction

Seed pixels from C; are grouped into connected components.
Morphological operations are applied to remove small noise regions
with area<200 pixels. Let the set of remaining connected
components be {R;}Y;, with area {s;}. These areas are sorted in
ascending order. To estimate the average single-seed area s, a
difference-based stability check is performed. Starting from the

second component, we compute:

c. Remove noisy seed-connected regions

d. Seed number

Sopt =

m
s,
i=1
m

103 s 7 9 113w o9 B s
Connected regions

Count seed number

Connected region area curve

e. Radicle segmentation result

Germination rate

FIGURE 1

f. Remove oversized or undersized radicles

M‘

N =

s

Si
Sopt

i

—— > Individual seed area s,,, ————» Seed number N

g. Germination rate assessment result

Select germination
standard

Flow chart for SeedRuler-IP. First, the k-means clustering algorithm is employed on the input image to separate seeds from the background (A, B)
Then, noisy seed-connected regions are eliminated (C). Subsequently, the area curve of the connected regions is utilized to determine the individual
seed area and the number of seeds (D). Next, pixels with R, G, and B values exceeding a threshold are classified as radicles, while excessively large or
small radicles are removed. Finally (E, F), the user interacts by adjusting a scrollbar to determine the radicle length standard, resulting in the

germination rate of the input image (G)
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Aj = siq =S (2)

The region is considered stable when A; < 30 for at least two
consecutive components. All components before the first unstable
region are used to compute:

1 m
Sopt = EESi (3)

i=1

where m is the number of stable components. The total number

| =] @

Sopt

of seeds is estimated as:

t
N, =Y
i=1

2.3.1.3 Radicle detection and germination assessment

Pixels in cluster C, with R>160, G>160, and B>160 are classified
as radicle candidates. These pixels are further grouped into
connected regions, and morphological filtering is applied to
remove extremely small or large areas.

To assess germination, SeedRuler-IP allows the user to
interactively set a germination threshold Tg using a graphical
scrollbar. For example, if T,=100, all radicle regions with
area>100 are considered as germinated. The final germination
rate is calculated as:

N,
Germination rate = —- (5)
N

where N, represents the number of germinated seeds.

2.3.2 SeedRuler-YOLO

In recent years, significant progress has been achieved in object
detection research (Viola and Jones, 2001; Su et al., 2017). The
YOLO model (Redmon and Farhadi, 2017) is capable of localizing
and categorizing objects of different sizes, i.e., marking them with a
minimum external rectangle and assigning them a category. In this
study, we developed high-precision and high-efficiency software for
evaluating rice seed germination rate based on the YOLOv5 model.

YOLOV5 has three parts: input, backbone, and head (Additional
File 1: Supplementary Figure S3). The head includes the neck and
detection. The input layer has a 640x640x3 image. We utilized four
different versions of YOLOv5, namely YOLOv5s, YOLOv5m,
YOLOVS5I, and YOLOv5x. The four versions have similar network
structures, with an increase in network depth and the number of
convolutional kernels in proportion to the version, subsequently
improving network performance, but at the cost of reduced running
speed. The network structures of the four versions are detailed in
Additional File 1: Supplementary Table S1. We trained and tested
these four models to compare their seed germination detection
results. It is necessary to balance the accuracy and speed of the
model to achieve satisfactory results (Sindagi and Patel, 2018).

As a first step, rice seeds were placed in Petri dishes for germination
culture. The seed images were then acquired using an image acquisition
box. Afterward, germinated and ungerminated seeds were labeled using
Labellmg software, resulting in the creation of a seed image dataset.
Finally, four YOLOV5 network structures were trained to obtain the

Frontiers in Plant Science

10.3389/fpls.2025.1671998

corresponding automatic seed detection models. The experimental
flow chart, depicted in Figure 2, illustrates the process. During the
data collection stage, rice seeds were placed in Petri dishes for
germination experiments (a), and an image acquisition box was
specifically developed to capture high-quality digital photographs of
the samples (b). The Petri dish was positioned directly under the
camera to obtain clear top-view images (c). Each seed in the image was
then annotated by an experienced technician using a minimum
external rectangle via Labellmg software, with both OG/UOG and
TG/UTG germination standards applied (d). Four YOLOv5 model
variants—YOLOV5s, YOLOv5m, YOLOvVS], and YOLOv5x—were
trained using the labeled datasets (e). After training, the models were
used to detect germinated seeds in new images (f, g), and their
performance was evaluated by comparing predictions against ground
truth annotations (h).

To obtain an accurate rice seed detection model, we established
two seed germination standards to label seeds for different radicle
lengths: (1) OG/UOG. A germinated seed (OG, where ‘O’
represents one mm) has a radicle length greater than 1mm, while
an ungerminated seed (UOG) does not. (2) TG/UTG. A germinated
seed (TG, where “T” represents two mm) has a radicle length greater
than 2mm, while an ungerminated seed (UTG) does not. The
radicle length of each seed was assessed by trained technicians to
determine if it exceeded Imm or 2mm. Our experiments indicated
that the OG/UOG standard defined germination lengths that were
too short, potentially leading to mislabeling. In the TG/UTG
standard, the radicle length is defined as 2mm, which facilitates
determining whether seeds are germinating and ensures accurate
labeling. Following the annotation of all seed images, we obtained
two seed image datasets corresponding to OG/UOG and TG/UTG
germination standards, respectively. Then, four network models,
YOLOvV5s, YOLOv5m, YOLOV5L, and YOLOV5x, were trained.

To ensure reproducibility, the training process of the YOLOV5
models was configured as follows: the input image size was set to
640640, batch size to 64, and the optimizer used was SGD. The initial
learning rate was 0.01, and the training was set to run for a maximum
of 300 epochs. An early stopping mechanism was applied, where
training would terminate if the loss did not decrease for 50 consecutive
epochs. No additional data augmentation techniques were applied
beyond the default YOLOV5 pipeline.

2.3.3 SeedRuler-SAM

To address the limitation of rigid germination criteria in
traditional models, we introduce SeedRuler-SAM, a semi-
automatic segmentation-based module that allows for interactive
customization of germination standards based on radicle length.
The method combines the detection capability of SeedRuler-YOLO
with the segmentation precision of the Segment Anything Model
(SAM), enabling fine-grained and flexible germination assessment.

The SeedRuler-SAM process consists of the following steps:

2.3.3.1 Initial detection

SeedRuler-YOLO is first used to detect all visually germinated
seeds in the input image. Each detected object is enclosed in a
bounding box.
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Flow chart for SeedRuler-YOLO. During the data collection phase, seeds to be germinated were placed in Petri dishes for germination experiments
(A). Meanwhile, we developed an image acquisition box specifically designed for capturing high-quality digital photographs (B). Next, we placed the
Petri dish containing the germinating rice seeds directly under the camera of the image acquisition box to take a picture (C). Next, each germinated
or ungerminated seed in the image was labeled by an experienced technician, i.e. the seeds were marked with a minimum external rectangle using
Labellmg software (D). Here, two germination standards, OG/UOG and TG/UTG, were used respectively. Afterward, we trained four network
structures, YOLOV5s, YOLOv5Sm, YOLOVSL, and YOLOV5Xx (E). Following the training of each of the four network models, new images were input to
detect germinated seeds (F, G). Finally, the model performance was evaluated by comparing the detection results with ground truth (H).

2.3.3.2 Interactive standard setting

The user interactively selects one seed in the image as the
reference seed, which serves as the germination benchmark. The
SAM algorithm is then applied to segment this reference seed,
separating the radicle and seed body.

2.3.3.3 Segmentation and ratio calculation

For each seed within its bounding box, SAM is used again to
perform segmentation. Given that the radicle is typically white in
color, the segmented region is divided into two parts:

* Pixels with R, G, and B values greater than a threshold (e.g.,
100) are considered radicle pixels.
* The remaining pixels are treated as seed body.

The area ratio r is computed as the area of the radicle divided by
the total area of the segmented seed. Similarly, for the reference
seed, a ratio ry is calculated. If r > ro, the seed is classified as
germinated; otherwise, it is non-germinated.
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2.3.3.4 Output and reporting

The germination status of all seeds is compiled, and the final
results are exported in Excel format, including the total number of
germinated seeds and the germination rate.

Figure 3 illustrates the full experimental flow of SeedRuler-SAM.
After YOLO-based detection (a, b), the user selects a reference seed (c).
SAM is then applied to segment all seeds and radicles (d), and the
germination standard is computed from the reference seed (e). Finally,
the germination status is determined and reported (f).

2.4 Implementation and functional
modules of the SeedRuler web server

SeedRuler is a comprehensive rice seed germination analysis
platform that integrates both an online web server and an offline
software package. It is designed to provide high-performance, user-
friendly, and flexible germination detection capabilities for
agricultural research and seed phenotyping.
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Experimental flow chart for SeedRuler-SAM. First, utilize SeedRuler-YOLO for germination detection in the input image (A, B). Then, users
interactively select the reference seed (C). Next, use the Segment Anything Model (SAM) to segment the seeds and radicle within the bounding box
(D). Afterward, employ SAM to separate the reference seed from the background and calculate the ratio of sprout area to seed area, denoted as rq
(E). Finally, evaluate the germination rate of the input image using radicle reference values and output the germination rates for each image in an

Excel file format (F).

2.4.1 System architecture

The web server is developed using the Layui framework for the
user interface, in combination with Bootstrap to enhance frontend
responsiveness. On the backend, the system is developed using
Spring, Spring MVC, and MyBatis, ensuring robust and efficient
data processing. MySQL is used as the database management
system to ensure reliable and concurrent access to stored data.
The server operates on Tomcat and is deployed on a Linux
operating system equipped with Intel Xeon E5-2680 v4
processors and RTX 3060 GPUs, allowing for high-throughput
processing and real-time response to user requests.

In addition to the web server, we provide an offline software
package that supports the same functionalities and is built using
PyQt5 for cross-platform GUI development. All algorithms and
models are implemented in Python 3.8, with dependencies
including PyTorch, NumPy, Pillow, and others. The offline
software is compatible with Windows, macOS, and Linux. Users
can download the package, along with a comprehensive user
manual, from http://www.xhhuanglab.cn/tool/SeedRuler.html.
This manual includes detailed operational procedures for using
each module, instructions for environment setup (including CUDA
10.1 support), and guidance for batch processing, seed selection,
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and result export. These resources are intended to ensure
reproducibility and facilitate adoption by other researchers.

2.4.2 Functional modules and workflow

As illustrated in Figure 5, the SeedRuler platform supports a
complete workflow for rice seed germination evaluation. The
process begins with the selection of plump rice seeds, which are
placed in Petri dishes for germination experiments. An image
acquisition box is then used to capture high-quality images of the
Petri dishes (Figure 5A).

Seed images can be acquired in one of two ways: “Batch Upload”,
which allows users to upload multiple images at once, or “Photograph”,
which uses a computer’s built-in or external camera to capture images
directly (Figure 5B). Once images are uploaded, users can choose from
three available germination detection algorithms:

* SeedRuler-IP (Figure 5C): Based on traditional image
processing, this module allows users to adjust the
germination threshold using a graphical slider.

* SeedRuler-YOLO (Figure 5D): A deep learning-based
module utilizing YOLOvV5, which offers TG/UTG and
OG/UOG detection modes.
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Estimate the germinated seed number of five images (I1, 12, 13, 14, I5) using SeedRuler-SAM under three germination standards.

* SeedRuler-SAM (Figure 5E): Built on the Segment
Anything Model (SAM), this module enables users to
interactively select a seed as a germination reference
standard using mouse input.

All three modules generate annotated output images and
calculate germination rates for each processed image. Users can
view results by selecting the “Germination” option in the “Data”
menu. Detection results can be exported individually or in batches
to Excel (XLS) files, which include key information such as seed
name, germinated seed count, total number of seeds, and
germination rate (Figure 5F).

2.4.3 Additional functionalities

To further support seed phenotyping tasks, SeedRuler includes
an automated seed size measurement function (Zhao et al., 2023a),
which enables rapid extraction of seed length and width from each
image. This feature is seamlessly integrated into the detection
pipeline and is particularly useful for combining germination rate
analysis with morphological trait assessment.
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3 Results
3.1 Evaluation indicators

Next, we need to run the completed training YOLOvV5 model on
the test image set for statistics and analysis. Here, we use mAP and
MAE to evaluate the results Equations 6-17 present the details of
the algorithm.

The average precision (mAP) is a significant evaluation metric
utilized to assess the performance of the model (Huang et al., 2020).
Before proceeding with the evaluation, it is essential to provide clear
definitions for true positive (TP), false positive (FP), and false
negative (FN).

TP: It refers to the situation where the IoU value between the
predicted bounding box and the ground truth bounding
box is higher than the specified threshold.

FP: It denotes the scenario where the IoU value between the
predicted bounding box and the ground truth bounding
box is lower than the specified threshold.
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FIGURE 5

Functional Modules of the SeedRuler Web Server. Rice seed germination evaluation with SeedRuler involves selecting full seeds, placing them in
Petri dishes, and capturing images with an image acquisition box (A). SeedRuler offers two methods for acquiring seed images: “Batch Upload” and
“Photograph” (B). Three detection algorithms, SeedRuler-I1P, SeedRuler-YOLO, and SeedRuler-SAM, analyze the images to generate detection results
and germination rates (C—E). The user-friendly interface allows graphical manipulation and quick export of detection results to tables, including seed
name, germination counts, and rates (F).

FN: It refers to the situation where the ground truth exists, where P and R are Precision and Recall, respectively.
indicating the presence of an object, but the model fails to
predict any bounding box for that object. MmAP = ATP 9)

Based on the above definition, we can calculate the precision
and recall: where k represents the number of classes.
In addition, we used MAE to evaluate the results:

. TP
Precision = TP+ FP (6) LM ,
AE = L obsbizy) (10)
TP M5 Vi
Recall = —— (7)
TP + FN )

And mAP is defined as follows: mAE = ﬁ;AEi (11)
b /1 PRIR ®) where M denoFes .the number of images, .yi T;lenotes the ground
0 truth value for the ith image, denotes the prediction of the model for
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the ith image, N denotes the class number, and AE; denotes the AE
value of the ith class object.

In addition to mAP and MAE, we also adopted four commonly
used evaluation metrics to assess the segmentation performance of
different models: Dice coefficient (Dice), Intersection over Union
(IoU), Pixel Accuracy (PA), and False Positive Rate (FPR).

The Dice coefticient measures the overlap between the predicted
segmentation and the ground truth. It is defined as:

2x TP

Dice=—————
2 x TP+ FP + FN

(12)

where TP denotes the number of true positive pixels, FP is the
number of false positives, and FN is the number of false negatives.

The Intersection over Union (IoU), also known as the Jaccard
index, evaluates the ratio between the intersection and the union of
the predicted region and the ground truth region. It is given by:

P

IoU=———
TP + FP + EN

(13)

The Pixel Accuracy (PA) represents the proportion of correctly
classified pixels over the total number of pixels in the image. It is
calculated as:

3 TP+ TN
" TP+ TN +FP +EN

PA (14)
where TN refers to the number of true negative pixels.
The False Positive Rate (FPR) indicates the proportion of
background pixels that are incorrectly predicted as foreground. It
is defined as:

FP

FPT = ————
FP+ TN

(15)

10.3389/fpls.2025.1671998

3.2 Evaluation of SeedRuler-IP

To assess the effectiveness of SeedRuler-IP, we conducted
experiments on 60 seed germination images. These images
exhibited variations in terms of rice varieties, seed number,
radicle length, and lighting conditions (Additional File 1:
Supplementary Figure 54). Figure 6 presents the absolute error of
germination rates for the 60 images, where a germination standard
of 0.4 was chosen for the analysis. It should be noted that the
germination standard is defined as an area ratio between the radicle
and its seed body. The specific formula for the area ratio is as
follows:

or
Area ratio = — (16)
s

where r and s represent the area of the connected region
belonging to the radicle or seed body, respectively. From Figure 6,
it can be observed that except for five images with absolute errors
greater than or equal to 5%, the absolute errors for the remaining
images were below 4%, which demonstrates the superiority of
SeedRuler in accurately estimating germination rate.

3.3 Evaluation of SeedRuler-YOLO

To evaluate the capability of YOLOV5 in identifying germinated
or ungerminated seeds, we developed an image acquisition box to
capture high-quality images. Also, we compared the model
performance under different germination standards. Our
experiments revealed that different germination standards do
impact the performance of the model to some extent. We
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Absolute error of germination rate for 60 images.
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categorized the seed images using two standards, OG/UOG and
TG/UTG, and obtained two datasets as a result. Consequently, we
compared the performance of the models trained on these
two datasets.

Figure 7 compares the detection performance of four YOLOv5
models under the OG/UOG germination standard. Panel (a) shows
a representative image of germinated seeds, while (b) and (c)
compare the ground truth annotations (left) with the YOLOv5m
prediction results (right), where germinated seeds are marked with
red boxes and ungerminated ones with green boxes. Panels (d), (e),
and (f) present the evaluation metrics—mAP@0.5, mAP@0.5:0.95,
and MAE—calculated from 240 test images using four YOLOvV5
models (YOLOv5s, YOLOv5m, YOLOv5], and YOLOv5x). The
results are reported to three decimal places, and error bars
indicate the standard deviation, reflecting the consistency and
reliability of each model’s performance.

Initially, we exploited the image acquisition box to capture
images. Next, an OG/UOG germination standard is defined, i.e.
seeds with radicle lengths greater than 1mm are considered to have
germinated, otherwise, they have not (Figures 7A-C). As
demonstrated in Figures 7D, E, YOLOv5m exhibited a mAP@0.5
of 0.935 and a mAPO0.5:0.95 of 0.783, while YOLOvV5I showcased a
mAP@0.5 of 0.934 and a mAP0.5:0.95 of 0.788. Furthermore, the
average detection times of YOLOv5s, YOLOv5m, YOLOV5], and
YOLOV5x were recorded as 4 ms, 8.6 ms, 15 ms, and 30 ms per
image, respectively. Additionally, in terms of MAE, the MAE values
of YOLOv5m and YOLOV5! were lower than those of the other 2
models. Therefore, YOLOv5m and YOLOVS5I are more suitable for
germination experiments due to their accuracy and detection speed.
Figure 7F illustrates that the MAE values of all four models are
larger than 0.2 for ungerminated seeds. This outcome can be
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attributed to the lmm germination standard being relatively
short, leading to the misidentification of ungerminated seeds
as germinated.

To further assess the agreement between predicted and ground-
truth germination counts under the OG/UOG standard, we
computed the relative error (RE) for each test image as follows:

|Prediction — Ground Truth)|

E =
R Ground Truth

% 100 % (17)

Across the 240 test images, the average relative error was 6.3%
for germinated seeds and 8.7% for ungerminated seeds using the
YOLOv5m model, which achieved the best trade-off between speed
and accuracy. These results indicate that the prediction is generally
close to the ground truth.

To confirm whether there is a statistically significant difference
between predicted and true counts, we conducted a paired t-test
comparing the predicted and manually annotated germination rates
across all test images. The p-value obtained was 0.31 (p > 0.05),
indicating no statistically significant difference between the two.
This supports the conclusion that the model’s output is consistent
with human annotation under the OG/UOG standard.

To address these issues, we proposed a new seed germination
standard TG/UTG, which considers seed radicle length greater than
2mm as an indicator of germination. As part of our experiments, we
re-labeled the input images according to TG/UTG and evaluated
the performance of the model. The model performance under the
TG/UTG germination standard is shown in Figure 8. Panel (a)
displays a representative image of germinated seeds, while (b) and
(c) compare the ground truth annotations (left) with the predictions
of the YOLOv5m model (right), where red boxes denote germinated
seeds and green boxes denote ungerminated seeds. Panels (d), (e),
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and (f) present the evaluation metrics—mAP@0.5, mAP@0.5:0.95,
and MAE—calculated on 240 test images using four YOLOvV5
model variants (YOLOvV5s, YOLOv5m, YOLOv5], YOLOv5x). All
results are reported with three decimal places, and error bars
indicate the standard deviation, highlighting the performance
stability of each model under the TG/UTG standard.

Upon adopting the TG/UTG germination standard, all four
models have improved in mAP and MAE. In comparison with the
results depicted in Figure 7D, the mAP@0.5 values of the four
models (Figure 8D) improved by 0.012, 0.015, 0.020, and 0.020,
respectively, while the MAE values (Figure 8F) decreased by 0.066,
0.048, 0.046, and 0.065, respectively. As shown in Figure 8F, all four
models for ungerminated seeds have MAE values below 0.08mm.
The main reason is that the germination standard of 2mm improves
the distinction between germinated and ungerminated seeds,
resulting in more accurate seed labeling.

To evaluate the accuracy of SeedRuler-YOLO, we conducted the
following experiments. Firstly, the seeds were categorized into two
types according to their germination speed: fast and slow
germination. For the seeds with fast germination speed, after the
seeds were placed in the constant temperature incubator, we
measured the germination rate at 48 hours and 60 hours,
respectively. For the seeds with slow germination speed, the
measured time was set to 60 hours and 72 hours, respectively.

The selection of 48h, 60h, and 72h as germination time points was
based on both biological and experimental considerations. These time
intervals reflect distinct phases of rice seed germination, during which
phenotypic variation becomes increasingly pronounced. This variation
is conducive to capturing diverse germination behaviors and enables
the identification of genes associated with stage-specific germination
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traits. Furthermore, this time frame was adopted by a recent high-
impact Science study (Wei et al., 2024), which explored the genetic
architecture of rice using over 18,000 lines. By following this
standardized time scheme, our results gain both scientific rigor and
comparability with large-scale genomic studies.

Table 1 presents the results of measuring the germination rate
for rice seeds of different six varieties: from “Type0’ to “Type5’. It can
be seen from Table I that, for seeds of six different varieties,
SeedRuler-YOLO can accurately count the number of seeds. In
addition, the relative error of the predicted germination rate
predominantly falls within +0.1. From Additional File I:
Supplementary Figure S5, we can observe that as the germination
time increases and the germination degree becomes more
pronounced, the accuracy of the germination rate also increases.

A closer examination of Table 1 reveals how changes in seed
morphology over time influence detection accuracy. For fast-
germinating varieties such as Type0 and Type2, the relative error
at 60 hours is lower than at 48 hours, indicating improved detection
performance as radicle elongation becomes more prominent. Typel
shows zero error at both time points, suggesting that for some lines
with early and uniform germination, SeedRuler-YOLO can achieve
high accuracy even at 48 hours. For slow-germinating varieties such
as Type3, Type4, and Type5, detection at 60 hours and 72 hours
yields accurate results, with relative errors at or close to zero.
Notably, Type4 and Type5 exhibit zero error across both 60h and
72h, while Type3 shows comparable performance at both time
points. These observations confirm that increased radicle visibility
over time enhances the model’s ability to distinguish germinated
seeds, and that SeedRuler-YOLO maintains robust performance
across different germination dynamics.
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TABLE 1 The evaluation results of SeedRuler-YOLO.

Germination time

Hybrid 48 hours 60 hours 72 hours
fype Parameter
Automatic Manual Relative Automatic Manual Relative Automatic Manual Relative
count count error count count (Slddelg count count (Sldelg
No. of germinated seeds 22 20 -0.1 25 24 -0.04
No. of ungerminated seeds 12 14 0.14 9 10 0.10
TypeO
No. of seeds 34 34 0 34 34 0
Germination rate 0.6471 0.5882 -0.10 0.7353 0.7059 -0.04
No. of germinated seeds 43 43 0 43 43 0
No. of ungerminated seeds 0 0 0 0 0 0
Typel
No. of seeds 43 43 0 43 43 0
Germination rate 1 1 0 1 1 0
No. of germinated seeds 25 23 -0.09 36 36 0
No. of ungerminated seeds 15 17 0.12 4 4 0
Type2
No. of seeds 40 40 0 40 40 0
Germination rate 0.625 0.575 -0.09 0.9 0.9 0
No. of germinated seeds 25 24 -0.04 32 31 -0.03
No. of ungerminated seeds 9 10 0.10 2 3 0.33
Type3
No. of seeds 34 34 0 34 34 0
Germination rate 0.7353 0.7059 -0.04 0.9412 0.9118 -0.03
No. of germinated seeds 34 34 0 37 37 0
No. of ungerminated seeds 3 3 0 0 0 0
Type4
No. of seeds 37 37 0 37 37 0
Germination rate 0.9189 0.9189 0 1 1 0
No. of germinated seeds 23 23 0 29 29 0
No. of ungerminated seeds 13 13 0 7 7 0
Type5
No. of seeds 36 36 0 36 36 0
Germination rate 0.6389 0.6389 0 0.8056 0.8056 0
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3.4 Evaluation of SeedRuler-SAM

To further validate the segmentation performance of SeedRuler-
SAM, we conducted a comparative experiment using two
mainstream image segmentation models: Mask-RCNN (He et al.,
2017) and UNet (Ronneberger et al., 2015). A subset of 100 test
images was randomly selected, and all three methods were
evaluated under the same conditions using four standard metrics:
Dice, IoU, PA, and FPR.

As shown in Table 2, SeedRuler-SAM achieved the best
performance across all metrics, with a Dice of 0.942, IoU of
0.841, PA of 0.916, and a FPR of only 0.011. In contrast, UNet
achieved moderate results (Dice = 0.799, IoU = 0.697), and Mask-
0.723, IoU =
0.571). These results demonstrate the superior segmentation

RCNN showed relatively lower accuracy (Dice =
accuracy and reliability of SeedRuler-SAM in rice seed and radicle
segmentation tasks.

To verify the effectiveness of SeedRuler-SAM, we conducted
germination assessment experiments on five images (Additional
File 1: Supplementary Figure 56). Additionally, three seed images
with varying radicle lengths were selected as germination reference
standards (Additional File 1: Supplementary Figure S7), referred to
as Criteria 1, Criteria 2, and Criteria 3, respectively. The assessment
results, displayed in Figure 4, showcased a maximum deviation of
only 2 units between the estimated values by SeedRuler-SAM and
the ground truth. This outcome underscores the high accuracy and
reliability of SeedRuler-SAM in estimating the germination rate.

4 Discussion

In this study, we developed a high-throughput phenotyping web
server SeedRuler for the assessment of rice seed germination rate (Li
et al.,, 2024b; Yao et al,, 2024; Liu et al,, 2025). SeedRuler utilizes
deep learning and image processing technology for phenotyping
seeds, which can provide large amounts of reliable data on time,
reduce time and labor costs, and improve work efficiency.

Our experiments have highlighted the influence of several
factors on the model performance: (1) Fast-germinating seeds
exhibit a longer radicle during the specified germination period,
resulting in a larger radicle area than the seed area (Additional File
1: Supplementary Figure S8A); (2) Denser seed distribution within
the image increases the overlap of the manually labeled boxes
(Additional File 1: Supplementary Figure S8B). SeedRuler has
demonstrated its ability to mitigate the impact of these two
factors on the model performance.

TABLE 2 The metric values of the three algorithms.

Dice? loUt PAt FPR{
Mask-RCNN | 0.7230.083 ‘ 0.571£0.097 = 0.661£0.122 | 0.096+0.015
UNet 0.79920.115 ‘ 0.697+0.146  0.942+0.032 | 0.108+0.104

SeedRuler-SAM = 0.942+0.021

0.841+£0.043  0.916+0.024 = 0.011+0.005

1 means higher is better; | means lower is better.
Bold values indicate best performance.
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The image acquisition box was designed with a light source for
capturing seed images (Additional File 1: Supplementary Figure S1),
thereby improving the quality of the images, as well as allowing us
to conduct experiments at any time of day, regardless of external
environmental factors such as time and location. Experimental
results indicate that image quality affects the performance of
SeedRuler-YOLO. We have improved mAP@0.5 by 4-8% as well
as mAP@0.5:0.95 by 10-30% and reduced MAE by 1-6% with our
image acquisition box when compared to taking photos with a cell
phone in natural light (Additional File 1: Supplementary Table 52)
(Li et al., 2024c; Padmanabhan et al., 2025).

Additionally, we labeled the images with two different
germination standards, OG/UOG and TG/UTG, to create two
separate seed image datasets and trained the model individually
for each case. Comparative analysis revealed that the choice of
germination standard has a notable impact on model performance.
When using the OG/UOG standard (Imm radicle length), the
radicle is often too short to be clearly visible, resulting in higher
labeling ambiguity and mediocre model performance. In contrast,
adopting the TG/UTG standard (2mm radicle length) significantly
improves model performance, reducing MAE by 4-7% (Klasen
et al., 2025).

This effect is further illustrated by the performance results
shown in Figures 7 and 8. Figure 7 shows that under the OG/
UOG standard, all four YOLOv5 models achieved lower mAP and
higher MAE, particularly for ungerminated seeds. Figure 8
demonstrates that switching to the TG/UTG standard leads to a
clear improvement in both mAP and MAE across models. Among
them, YOLOv5m consistently achieves the best balance between
accuracy and speed. These figures emphasize the importance of
selecting a biologically meaningful and visually distinguishable
germination threshold.

Furthermore, we compared the results of identifying different
varieties of rice seeds at various stages (over 48, 60, and 72 hours) of
germination (Additional File 1: Supplementary Figure S5). The
diverse shapes of the seeds including oval, oblate, oblong, among
others, and varying seed coat colors such as yellow, black, red, etc.,
were considered. In addition, some seeds also featured rice awns
while others did not. The experiments showed that the relative
errors in the germination rate were within 0.1 for each image
obtained using SeedRuler, and the errors in the number of
germinated while errors in the counts of germinated and non-
germinated within 0-2 seeds.

In addition, we have equipped SeedRuler-YOLO with a fixed
germination standard, while SeedRuler-IP and SeedRuler-SAM
offer users the option to define their own germination standards.
SeedRuler-IP is based on image processing and offers the advantage
that, if future updates are required, it eliminates the need for
substantial manual annotation and training efforts. SeedRuler-
SAM performs precise segmentation on the bounding boxes
obtained from SeedRuler-YOLO using SAM, which is a pre-
trained model that can be directly applied. Therefore, during the
training of the SeedRuler model, only the YOLOv5 model needs to
be trained. Table 3 presents a comprehensive comparison of the
characteristics of these three methods.
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SeedRuler is well-suited for the following different scenarios: (1)
Seeds come in a variety of shapes and colors (Additional File 1:
Supplementary Figure S9); (2) Radicles vary in length (Additional
File 1: Supplementary Figure S9); (3) Petri dishes contain water
droplets and reflections (Additional File 1: Supplementary Figure
S10); (4) Seed images contain impurities such as rice awn and
branch stalks (Additional File 1: Supplementary Figure S10). In
summary, SeedRuler minimizes human intervention, offers ease and
speed of use, and significantly improves work efficiency. Beyond the
aforementioned capabilities, our future plans for SeedRuler encompass
the integration of additional functionalities, including the detection of
rice seed setting rate and chalkiness (Guo et al., 2021; Wang et al., 2022;
Cai et al,, 2024; Li et al,, 2024a). These enhancements aim to augment
and enrich the overall functionality of SeedRuler.

In addition, SeedRuler has demonstrated strong scalability and
usability in practical applications. The platform supports both web-
based and offline deployment, enabling flexible usage across various
operating environments. The web server is capable of concurrent
processing through GPU acceleration and MySQL-based data
management, while the offline version supports cross-platform
operation (Windows, macOS, Linux) with a graphical user
interface developed in PyQt5. The user-friendly interface includes
intuitive modules for image upload, germination detection, and
result export, which reduces the technical barrier for end users.
Furthermore, batch processing capabilities and customizable
germination standards enhance its adaptability to large-scale
phenotyping projects. These features collectively support our
claims regarding the scalability and usability of SeedRuler.

It is important to note that the training and evaluation in this study
were conducted using seed images captured with a standardized
imaging box under consistent lighting and background conditions.
While this setup ensures high image quality and stable model
performance, it may limit the generalizability of the system when
applied to images acquired in uncontrolled environments, such as
those taken with mobile phones under natural light or varying
backgrounds. To overcome this limitation, we recommend that users
ensure sufficient and uniform lighting and reduce background noise

TABLE 3 Comparison of the characteristics of three methods:
SeedRuler-IP, SeedRuler-YOLO, and SeedRuler-SAM.

SeedRuler- SeedRuler- SeedRuler-
Methods P Y
OLO SAM
K-means,
Methodology morphological YOLOV5 SAM
operations
Supervised learning X v A
Train the model X v X
Mobile phone v 4 4
Dark background v v v
Seeds in contact v v v
Customized v y Y

germination standard

“\’ refers to able, ‘X’ refers to unable, and ‘/\” is partial.
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during image acquisition. Additionally, retraining the YOLO model or
fine-tuning the parameters using their own image datasets can help
improve the robustness and adaptability of SeedRuler to diverse
usage scenarios.

To further evaluate the performance of SeedRuler-YOLO against
existing tools, we conducted a benchmarking experiment using
SeedQuant (Braguy et al, 2021), a deep learning-based seed
germination analysis tool. We randomly selected 10 groups from the
test set, with each group consisting of 20 seed images. For each image,
we calculated the germination rate using both SeedQuant and
SeedRuler-YOLO, and then computed the absolute error between the
predicted and ground truth germination rates. The average and
standard deviation of the absolute errors were calculated for each
group. The results, summarized in Table 4, show that SeedRuler-YOLO
consistently achieved lower mean absolute errors across all groups. The
overall average absolute error of SeedRuler-YOLO was 0.040+0.037,
compared to 0.106+0.095 for SeedQuant, demonstrating superior
accuracy and robustness. These results confirm that SeedRuler-
YOLO outperforms SeedQuant in terms of precision and reliability
under the same experimental conditions.

This robustness can be attributed, in part, to the diversity of the
training dataset. The rice resources used in this study were derived
from nine genetically diverse populations cultivated in the
experimental field of Shanghai Normal University (Xuehui Huang
Lab). These seeds exhibit substantial phenotypic variation in grain
morphology, including differences in length, shape, and color. As a
result, the constructed dataset covers a wide range of genotypes and
visual characteristics. This diversity enables the trained SeedRuler-
YOLO model to generalize well across various seed types and
accurately detect germinated seeds regardless of morphological
differences such as seed shape or radicle length and color. Moreover,
since all images were collected using a standardized imaging box with a
uniform background and consistent lighting conditions, the influence
of background variation on model performance is minimized.
However, in non-standard environments with complex or
inconsistent backgrounds, the model’s detection accuracy may be

TABLE 4 Germination rate error comparison between SeedQuant and
SeedRuler-YOLO.

Rice group SeedQuant SeedRuler-YOLO
1 0.065+0.037 0.024+0.022
2 0.13120.141 0.044+0.059
3 0.093+0.092 0.045+0.043
4 0.121%0.131 0.054+0.033
5 0.077+0.053 0.052+0.036
6 0.114%0.076 0.034+0.040
7 0.14120.121 0.034+0.036
8 0.07520.057 0.0630.040
9 0.162+0.102 0.023+0.012
10 0.083+0.069 0.0310.029

Total 0.10620.095 0.040£0.037

frontiersin.org


https://doi.org/10.3389/fpls.2025.1671998
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Hou et al.

affected. Therefore, we recommend retraining or fine-tuning the model
when applying it to datasets acquired under different
imaging conditions.

To address the concern regarding error handling and
robustness, we conducted additional experiments using six
representative images that simulate various complex or extreme
scenarios commonly encountered in practical seed germination
tests. These scenarios include: (1) shadows and mirrored seed
placements, (2) severe seed overlapping and contact, (3) seeds
with awns, (4) seeds with elongated radicles, (5) background text
interference, and (6) entangled radicles and awns.

As shown in Additional File 1: Supplementary Figure S11,
SeedRuler-YOLO consistently achieved accurate detection results
across all conditions. Germinated seeds were correctly identified
and marked with cyan boxes, while non-germinated seeds were
marked with blue boxes. These results demonstrate the model’s
robustness in handling occlusion, deformation, noise interference,
and morphological complexity. The performance under such
scenarios indicates that SeedRuler-YOLO possesses strong
adaptability and stability, minimizing missegmentation and
omission rates even in extreme cases. This robustness is crucial
for ensuring reliability in real-world germination analysis tasks.

Despite SeedRuler’s user-friendly design and strong performance
under controlled conditions, several limitations remain that may
impact its broader applicability. Notably, the current system abstracts
away most algorithm-level configurations, which limits expert users
from tailoring detection models or segmentation thresholds to
specialized datasets or experimental goals. While this design choice
facilitates ease of adoption, it may restrict flexibility in advanced
research scenarios that require fine-tuned control over detection
sensitivity or model behavior.

Additionally, although the image acquisition box helps standardize
lighting and imaging angles, the platform’s performance may decline
when analyzing images taken under natural light, complex
backgrounds, or with varying camera devices—conditions often
encountered in field-based or decentralized experiments. This
sensitivity to imaging conditions highlights the need for more robust
pre-processing pipelines or adaptive models in future versions.

Moreover, SeedRuler does not currently support advanced
automation features such as scheduled batch analysis, task queue
management, or background processing. These capabilities are
commonly found in platforms like Transmission or gBittorrent and
are particularly valuable in high-throughput phenotyping workflows.
Incorporating such features would enhance the platform’s scalability
and usability in large-scale or unattended processing environments.

5 Conclusion

In this study, we developed and validated SeedRuler, a web-based,
high-throughput platform for assessing rice seed germination. By
integrating three complementary modules—SeedRuler-YOLO (deep
learning-based detection), SeedRuler-SAM (interactive segmentation
using the Segment Anything Model), and SeedRuler-IP (traditional
image processing)—the system offers high accuracy, flexibility, and
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broad usability. SeedRuler can be accessed at (http://
www.xhhuanglab.cn/tool/SeedRuler.html).

Extensive experiments demonstrated that SeedRuler-YOLO
achieved a mean average precision (mAP@0.5) of 0.955 and a
mean absolute error (MAE) of 0.110. Meanwhile, SeedRuler-SAM
outperformed baseline segmentation models in terms of Dice and
IoU. Importantly, the platform supports both fixed and user-
defined germination standards, batch processing, and cross-
platform deployment (online and offline), making it accessible to
a wide range of users.

Despite its strong performance, SeedRuler has limitations, such as
the lack of advanced automation features (e.g., task scheduling and
background processing) and sensitivity to image quality in
uncontrolled environments. These issues will be addressed in future
versions through improved pre-processing, parameter customization,
and automation tools.

Overall, SeedRuler fills a critical gap in current seed
phenotyping tools by offering an intuitive yet powerful solution
for germination analysis. It is expected to accelerate breeding
programs, facilitate genetic research, and contribute to the
broader advancement of Al-driven agricultural technologies.
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