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Introduction: The germination rate of rice seed is a critical indicator in

agricultural research and production, directly influencing crop yield and quality.

Traditional assessment methods based on manual visual inspection are often

time-consuming, labor-intensive, and prone to subjectivity. Existing automated

approaches, while helpful, typically suffer from limitations such as rigid

germination standards, strict imaging requirements, and difficulties in handling

the small size, dense arrangement, and variable radicle lengths of rice seeds.

Methods: To address these challenges, we present SeedRuler, a versatile, web-

based application designed to improve the accuracy, efficiency, and usability of

rice seed germination analysis. SeedRuler integrates three core components:

SeedRuler-IP, a traditional image processing-based module; SeedRuler-YOLO, a

deep learning model built on YOLOv5 for high-precision object detection; and

SeedRuler-SAM, which leverages the Segment Anything Model (SAM) for fine-

grained seed segmentation. A dataset of 1,200 rice seed images was collected

and manually annotated to train and evaluate the system. An interactive module

enables users to flexibly define germination standards based on specific

experimental needs.

Results: SeedRuler-YOLO achieved a mean average precision (mAP) of 0.955

and a mean absolute error (MAE) of 0.110, demonstrating strong detection

accuracy. Both SeedRuler-IP and SeedRuler-SAM support interactive

germination standard customization, enhancing adaptability across diverse use

cases. In addition, SeedRuler incorporates an automated seed size measurement

function developed in our prior work, enabling efficient extraction of seed length

and width from each image. The entire analysis pipeline is optimized for speed,

delivering germination results in under 30 seconds per image.

Conclusions: SeedRuler overcomes key limitations of existing methods by

combining classical image processing with advanced deep learning models,

offering accurate, scalable, and user-friendly germination analysis. Its flexible
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1671998/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1671998/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1671998/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1671998/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1671998&domain=pdf&date_stamp=2025-10-13
mailto:ming@shnu.edu.cn
https://doi.org/10.3389/fpls.2025.1671998
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1671998
https://www.frontiersin.org/journals/plant-science


Hou et al. 10.3389/fpls.2025.1671998

Frontiers in Plant Science
standard-setting and automatedmeasurement features further enhance usability

for both researchers and agricultural practitioners. SeedRuler represents a

significant advancement in rice seed phenotyping, supporting more informed

decision-making in seed selection, breeding, and crop management.
KEYWORDS

germination rate, germination standard, deep learning, image processing,
object detection
1 Introduction

The seed plays an indispensable role in agricultural production

as a primary source of sustenance for humans (Zhao et al., 2023b;

Rajalakshmi et al., 2024). The germination rate of seeds is an

important factor in evaluating their quality and performance

(Genze et al., 2020). Accurate and efficient assessment of

germination rate is crucial for both crop genetic studies and

breeding. Crop breeders utilize germination rate data to

determine the optimal environment for seed germination, which

greatly impacts seed storage and agriculture production (Colmer

et al., 2020). In addition, with the accurate phenotyping of the

germination rate of a genetic population, researchers can identify

causal genes responsible for seed germination rate, thereby

accelerating the breeding process (Pouvreau et al., 2013;

Khoenkaw, 2016; Zhou et al., 2017).

In seed testing, the germination rate represents the percentage

of seeds with protruding radicles among the total number of seeds

tested under appropriate conditions and over a specified period of

time (Urena et al., 2001; Chai et al., 2018). Typically, the

germination rate is manually recorded by an experienced

technician upon visual inspection of the Petri dishes for

germinated seeds. However, this manual counting the number of

germinating seeds is a time-consuming and error-prone task due to

the small size of the seeds and the minimal color contrast between

the seed coat and the radicle (Braguy et al., 2021), thereby limiting

the frequency, scale, and accuracy of experiments.

In recent years, the field of germination tests has witnessed the

application of computer vision and machine learning techniques.

An example is the use of the k-nearest neighbors to analyze images

of diverse germination phenotypes (Awty-Carroll et al., 2018).

Joosen et al. (2010) developed a software package GERMINATOR

(Joosen et al., 2010) that employs ImageJ, an open-source program,

to determine Arabidopsis germination rates. Additionally, a

computer vision germination system has been developed to

determine the different categories of seeds during imbibition and

germination (ElMasry et al., 2019). Furthermore, researchers

performed high-throughput seed germination screening using 3D

printed hole arrays along with image analysis software Image Pro

Plus (Chai et al., 2018). Also, some researchers used threshold and

maximum likelihood methods to evaluate the germination of
02
pepper seeds (Chaivivatrakul, 2020). However, it is important to

highlight that conventional image analysis methods may not be

well-suited for conducting large-scale germination tests. This is

primarily because manual parameter adjustments, such as

threshold, can greatly affect their performance.

Unlike traditional image analysis methods, deep learning is

capable of learning and extracting features and semantic

information from images to identify, classify, and locate objects

more effectively (Wei et al., 2024; Yao et al., 2024; Sangjan et al.,

2025). For example, SeedQuant (Braguy et al., 2021) measures

stimulant and inhibitor activity on root parasitic seeds using deep

learning. Deep learning has been employed by researchers to predict

germination rates for various plants, including tomatoes, peppers,

barley, corn, and parasitic plants (Dheeraj and Chand, 2025; Maleki

et al., 2025; Rezaei et al., 2025; Waseem et al., 2025). It should be

noted, however, that the methods mentioned above all necessitate

an interval between seeds, which is not convenient for practical

purposes. YOLO-r (Zhao et al., 2023a) utilizes a convolutional

neural network to assess the germination status of rice seeds, even

when they are in contact with each other. However, a limitation is

that users cannot manually customize the germination standards.

To address these issues, we developed a web-based platform

called SeedRuler, which incorporates three methods: SeedRuler-

YOLO, SeedRuler-SAM, and SeedRuler-IP. SeedRuler-YOLO is

based on the object detection algorithm YOLOv5 (Redmon et al.,

2016), which has demonstrated high accuracy and speed in various

applications, including remote sensing detection (Adli et al., 2025),

fruit detection (Tang et al., 2025), and pest detection (Wang et al.,

2025). SeedRuler-SAM utilizes the Segment Anything Model

(SAM) (Kirillov et al., 2023) for seed and radicle segmentation

and calculates the ratio of their areas. SeedRuler-IP is based on

image processing techniques. Both SeedRuler-SAM and SeedRuler-

IP provide interactive functionality that enhances user flexibility

and adaptability in selecting a germination standard. SeedRuler

consists of the following functions: acquiring rice seed images,

accurately positioning the seeds within the images, determining

the germination status of each seed, and generating outputs of seed

numbers and germination rates for all the captured images.

Notably, SeedRuler allows rice seeds to be in contact with each

other during image capture, enabling users to swiftly capture images

and analyze rice seed germination with convenience.
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The decision to implement SeedRuler as a web-based platform

was driven by several practical considerations. First, a browser-

accessible system removes the need for users to install additional

software or maintain specific computing environments, which is

especially useful for agricultural researchers with limited technical

expertise. Second, the web-based architecture allows for centralized

updates, consistent user experiences, and easier integration with

cloud-based storage and processing resources. Compared with

standalone desktop applications or mobile apps, a web platform

enables better scalability, supports high-throughput batch

processing, and allows cross-platform compatibility. Moreover,

for users without stable internet access, we also provide an offline

version with the same functionalities to ensure wide applicability.

Unlike existing tools, SeedRuler supports both fixed and

customizable germination standards through a hybrid framework

that integrates deep learning and interactive segmentation, offering

greater adaptability across varied seed conditions. Each module in

SeedRuler is designed to serve distinct application scenarios: SeedRuler-

IP is suitable for low-computing-power environments or situations

where internet access is limited; SeedRuler-YOLO offers high-speed

and high-accuracy detection ideal for routine large-scale analysis; and

SeedRuler-SAM supports fine-grained customization of germination

standards, making it especially useful for detailed research or biological

studies with specific phenotyping needs.

Despite these advantages, we acknowledge that SeedRuler, in its

current version, does not offer fine-grained control over advanced

algorithmic parameters. For instance, users cannot adjust low-level

YOLOv5 model settings, segment-specific thresholds, or fine-tune

detection sensitivity beyond the default interface options. This design

prioritizes ease of use and accessibility over expert-level customization.

Furthermore, while the image acquisition box ensures consistent image

quality, the system’s performance may degrade when analyzing images

captured under uncontrolled lighting or complex backgrounds. These

limitations are discussed further in the Discussion section, and we plan

to address them in future updates.

In conclusion, SeedRuler can perform large-scale rice seed

germination phenotyping and holds potential applications in seed

genetic studies and agricultural production due to its high accuracy,

speed, affordability, and user-friendly interface. SeedRuler is available

for free (http://www.xhhuanglab.cn/tool/SeedRuler.html) and is

compatible with Windows, MacOS, and Linux operating systems.
2 Materials and methods

2.1 Materials

The rice sources used in this study were obtained from indica and

japonica varieties in the field conducted by Shanghai Normal

University (Xuehui Huang Lab). This population of rice seeds

exhibits a broad range of phenotypic variation among different lines.

In the germination experiment, 30–60 full-grained seeds were

randomly selected from each rice cob and transferred to Petri

dishes. Next, add the appropriate amount of distilled water to

each Petri dish (to prevent water evaporation, seal the Petri dish
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with plastic wrap). Subsequently, the petri dish was positioned in a

25°C constant temperature incubator for dark culture. Finally, seed

images were obtained by photographing germinating seeds. In this

study, all seeds were acquired through the image acquisition box

between October 2020 and September 2021.
2.2 Data set generation

To reduce interference from factors such as camera lens

distortion and external lighting, we have specially designed an

image acquisition box. The acquisition box is equipped with an

internal light source and the focal length of the camera is fixed,

which ensures excellent image quality.

The image acquisition box consists of three main components:

the camera, the box body, and the light source. The camera has a

focal length of 2.8-12mm and a resolution of 1920×1080. The

rectangular box body has dimensions of 30cm×30cm×15cm. The

inner wall of the box body is made of highly reflective granular

fabric, which allows the light to be diffused evenly. Circular LED

lights beneath the image acquisition port serve as the light source. A

ring-shaped LED light source is located on top of the box. The light

source casts its illumination onto the top of the box, which is then

reflected by both the top and side walls, resulting in the generation

of diffuse light at the bottom of the box.

In the imaging process, the seed-containing Petri dish is placed

under the camera in the image acquisition box and photographed,

resulting in a 1920×1080 image which is stored in the computer as a

JPEG file. It takes at most half a minute to capture one seed image

using the image acquisition box. A technician can capture 1,000

images in a single day if he shoots continuously for eight hours.

Hence, the use of an image acquisition box (Additional File 1:

Supplementary Figure S1) can greatly improve the efficiency of the

shooting process.

To ensure the diversity of the dataset, we collected 1200 seed

images with a total of 4,4660 seeds. Each image contains

approximately 30–60 seeds. The images contain seeds of varying

size, shape, and color, along with impurities like branch stalks,

fragmented leaves, and rice awns. Additionally, the distribution of

seeds in the image is sparsely distributed.

After acquiring the images, the technician used LabelImg to

label each seed with a rectangular box and define its category. Here,

the seed categories include germinated and ungerminated seeds that

are labeled with “yes” and “no”, respectively, and the labeling results

are shown in Additional File 1: Supplementary Figure S2. The

dataset is then randomly split into training and test sets, ensuring an

8:2 ratio. The training and test sets consist of 960 and 240 images,

respectively, for training and testing the model.
2.3 Algorithm

2.3.1 SeedRuler-IP
SeedRuler-IP assesses seed germination rate using a classical

image processing pipeline, consisting of color-based segmentation,
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morphological refinement, seed counting, and radicle identification.

The workflow is illustrated in Figure 1. First, k-means clustering is

applied to the input image to separate seeds from the background

(a, b), followed by the removal of noisy connected regions (c). The

area curve of the connected regions is then used to determine the

number and size of seeds (d). Pixels exceeding preset RGB

thresholds are classified as radicles, and abnormally large or small

radicles are filtered out (e, f). Finally, the user adjusts a scrollbar to

set the radicle length threshold, and the system calculates the

germination rate accordingly (g). Below are the detailed steps.

2.3.1.1 Preprocessing and seed segmentation

To reduce noise and enhance edge information, a Gaussian

filter with a kernel size of 3×3 is first applied to the input image.

Then, each pixel’s RGB values (R, G, B) are transformed into two

new features:

f1 = R − B,    f2 = G − B (1)

This transformation enhances the contrast between seed coat

pixels (typically yellowish, with high R and G) and background or

radicle pixels (typically dark or white, with balanced RGB). These
Frontiers in Plant Science 04
two features are used as input for K-means clustering with the

following settings:
i. Number of clusters: k=2.

ii. Initial cluster centers: (0, 0) and (30, 30).

iii. Stopping criterion: clustering terminates when cluster

centers converge.
Let the resulting two clusters be C1 and C2, where C1 (higher

feature values) corresponds to seed coat pixels, and C2 (lower

feature values) corresponds to background and radicle.

2.3.1.2 Morphological refinement and seed region
extraction

Seed pixels from C1 are grouped into connected components.

Morphological operations are applied to remove small noise regions

with area<200 pixels. Let the set of remaining connected

components be Rif gNi=1, with area sif g. These areas are sorted in

ascending order. To estimate the average single-seed area sopt, a

difference-based stability check is performed. Starting from the

second component, we compute:
FIGURE 1

Flow chart for SeedRuler-IP. First, the k-means clustering algorithm is employed on the input image to separate seeds from the background (A, B).
Then, noisy seed-connected regions are eliminated (C). Subsequently, the area curve of the connected regions is utilized to determine the individual
seed area and the number of seeds (D). Next, pixels with R, G, and B values exceeding a threshold are classified as radicles, while excessively large or
small radicles are removed. Finally (E, F), the user interacts by adjusting a scrollbar to determine the radicle length standard, resulting in the
germination rate of the input image (G).
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Di = si+1 − si (2)

The region is considered stable when Di < 30 for at least two

consecutive components. All components before the first unstable

region are used to compute:

sopt =
1
mo

m

i=1
si (3)

where m is the number of stable components. The total number

of seeds is estimated as:

Ns =o
t

i=1
⌊ si

sopt
⌋ (4)
2.3.1.3 Radicle detection and germination assessment

Pixels in cluster C2 with R>160, G>160, and B>160 are classified

as radicle candidates. These pixels are further grouped into

connected regions, and morphological filtering is applied to

remove extremely small or large areas.

To assess germination, SeedRuler-IP allows the user to

interactively set a germination threshold Tg using a graphical

scrollbar. For example, if Tg=100, all radicle regions with

area>100 are considered as germinated. The final germination

rate is calculated as:

Germination rate ¼ Nr

Ns
(5)

where Nr represents the number of germinated seeds.

2.3.2 SeedRuler-YOLO
In recent years, significant progress has been achieved in object

detection research (Viola and Jones, 2001; Su et al., 2017). The

YOLO model (Redmon and Farhadi, 2017) is capable of localizing

and categorizing objects of different sizes, i.e., marking them with a

minimum external rectangle and assigning them a category. In this

study, we developed high-precision and high-efficiency software for

evaluating rice seed germination rate based on the YOLOv5 model.

YOLOv5 has three parts: input, backbone, and head (Additional

File 1: Supplementary Figure S3). The head includes the neck and

detection. The input layer has a 640×640×3 image. We utilized four

different versions of YOLOv5, namely YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x. The four versions have similar network

structures, with an increase in network depth and the number of

convolutional kernels in proportion to the version, subsequently

improving network performance, but at the cost of reduced running

speed. The network structures of the four versions are detailed in

Additional File 1: Supplementary Table S1. We trained and tested

these four models to compare their seed germination detection

results. It is necessary to balance the accuracy and speed of the

model to achieve satisfactory results (Sindagi and Patel, 2018).

As a first step, rice seeds were placed in Petri dishes for germination

culture. The seed images were then acquired using an image acquisition

box. Afterward, germinated and ungerminated seeds were labeled using

LabelImg software, resulting in the creation of a seed image dataset.

Finally, four YOLOv5 network structures were trained to obtain the
Frontiers in Plant Science 05
corresponding automatic seed detection models. The experimental

flow chart, depicted in Figure 2, illustrates the process. During the

data collection stage, rice seeds were placed in Petri dishes for

germination experiments (a), and an image acquisition box was

specifically developed to capture high-quality digital photographs of

the samples (b). The Petri dish was positioned directly under the

camera to obtain clear top-view images (c). Each seed in the image was

then annotated by an experienced technician using a minimum

external rectangle via LabelImg software, with both OG/UOG and

TG/UTG germination standards applied (d). Four YOLOv5 model

variants—YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x—were

trained using the labeled datasets (e). After training, the models were

used to detect germinated seeds in new images (f, g), and their

performance was evaluated by comparing predictions against ground

truth annotations (h).

To obtain an accurate rice seed detection model, we established

two seed germination standards to label seeds for different radicle

lengths: (1) OG/UOG. A germinated seed (OG, where ‘O’

represents one mm) has a radicle length greater than 1mm, while

an ungerminated seed (UOG) does not. (2) TG/UTG. A germinated

seed (TG, where ‘T’ represents two mm) has a radicle length greater

than 2mm, while an ungerminated seed (UTG) does not. The

radicle length of each seed was assessed by trained technicians to

determine if it exceeded 1mm or 2mm. Our experiments indicated

that the OG/UOG standard defined germination lengths that were

too short, potentially leading to mislabeling. In the TG/UTG

standard, the radicle length is defined as 2mm, which facilitates

determining whether seeds are germinating and ensures accurate

labeling. Following the annotation of all seed images, we obtained

two seed image datasets corresponding to OG/UOG and TG/UTG

germination standards, respectively. Then, four network models,

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, were trained.

To ensure reproducibility, the training process of the YOLOv5

models was configured as follows: the input image size was set to

640×640, batch size to 64, and the optimizer used was SGD. The initial

learning rate was 0.01, and the training was set to run for a maximum

of 300 epochs. An early stopping mechanism was applied, where

training would terminate if the loss did not decrease for 50 consecutive

epochs. No additional data augmentation techniques were applied

beyond the default YOLOv5 pipeline.

2.3.3 SeedRuler-SAM
To address the limitation of rigid germination criteria in

traditional models, we introduce SeedRuler-SAM, a semi-

automatic segmentation-based module that allows for interactive

customization of germination standards based on radicle length.

The method combines the detection capability of SeedRuler-YOLO

with the segmentation precision of the Segment Anything Model

(SAM), enabling fine-grained and flexible germination assessment.

The SeedRuler-SAM process consists of the following steps:

2.3.3.1 Initial detection

SeedRuler-YOLO is first used to detect all visually germinated

seeds in the input image. Each detected object is enclosed in a

bounding box.
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2.3.3.2 Interactive standard setting

The user interactively selects one seed in the image as the

reference seed, which serves as the germination benchmark. The

SAM algorithm is then applied to segment this reference seed,

separating the radicle and seed body.

2.3.3.3 Segmentation and ratio calculation

For each seed within its bounding box, SAM is used again to

perform segmentation. Given that the radicle is typically white in

color, the segmented region is divided into two parts:
Fron
• Pixels with R, G, and B values greater than a threshold (e.g.,

100) are considered radicle pixels.

• The remaining pixels are treated as seed body.
The area ratio r is computed as the area of the radicle divided by

the total area of the segmented seed. Similarly, for the reference

seed, a ratio r0 is calculated. If r ≥ r0, the seed is classified as

germinated; otherwise, it is non-germinated.
tiers in Plant Science 06
2.3.3.4 Output and reporting

The germination status of all seeds is compiled, and the final

results are exported in Excel format, including the total number of

germinated seeds and the germination rate.

Figure 3 illustrates the full experimental flow of SeedRuler-SAM.

After YOLO-based detection (a, b), the user selects a reference seed (c).

SAM is then applied to segment all seeds and radicles (d), and the

germination standard is computed from the reference seed (e). Finally,

the germination status is determined and reported (f).
2.4 Implementation and functional
modules of the SeedRuler web server

SeedRuler is a comprehensive rice seed germination analysis

platform that integrates both an online web server and an offline

software package. It is designed to provide high-performance, user-

friendly, and flexible germination detection capabilities for

agricultural research and seed phenotyping.
FIGURE 2

Flow chart for SeedRuler-YOLO. During the data collection phase, seeds to be germinated were placed in Petri dishes for germination experiments
(A). Meanwhile, we developed an image acquisition box specifically designed for capturing high-quality digital photographs (B). Next, we placed the
Petri dish containing the germinating rice seeds directly under the camera of the image acquisition box to take a picture (C). Next, each germinated
or ungerminated seed in the image was labeled by an experienced technician, i.e. the seeds were marked with a minimum external rectangle using
LabelImg software (D). Here, two germination standards, OG/UOG and TG/UTG, were used respectively. Afterward, we trained four network
structures, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x (E). Following the training of each of the four network models, new images were input to
detect germinated seeds (F, G). Finally, the model performance was evaluated by comparing the detection results with ground truth (H).
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2.4.1 System architecture
The web server is developed using the Layui framework for the

user interface, in combination with Bootstrap to enhance frontend

responsiveness. On the backend, the system is developed using

Spring, Spring MVC, and MyBatis, ensuring robust and efficient

data processing. MySQL is used as the database management

system to ensure reliable and concurrent access to stored data.

The server operates on Tomcat and is deployed on a Linux

operating system equipped with Intel Xeon E5–2680 v4

processors and RTX 3060 GPUs, allowing for high-throughput

processing and real-time response to user requests.

In addition to the web server, we provide an offline software

package that supports the same functionalities and is built using

PyQt5 for cross-platform GUI development. All algorithms and

models are implemented in Python 3.8, with dependencies

including PyTorch, NumPy, Pillow, and others. The offline

software is compatible with Windows, macOS, and Linux. Users

can download the package, along with a comprehensive user

manual, from http://www.xhhuanglab.cn/tool/SeedRuler.html.

This manual includes detailed operational procedures for using

each module, instructions for environment setup (including CUDA

10.1 support), and guidance for batch processing, seed selection,
Frontiers in Plant Science 07
and result export. These resources are intended to ensure

reproducibility and facilitate adoption by other researchers.

2.4.2 Functional modules and workflow
As illustrated in Figure 5, the SeedRuler platform supports a

complete workflow for rice seed germination evaluation. The

process begins with the selection of plump rice seeds, which are

placed in Petri dishes for germination experiments. An image

acquisition box is then used to capture high-quality images of the

Petri dishes (Figure 5A).

Seed images can be acquired in one of two ways: “Batch Upload”,

which allows users to uploadmultiple images at once, or “Photograph”,

which uses a computer’s built-in or external camera to capture images

directly (Figure 5B). Once images are uploaded, users can choose from

three available germination detection algorithms:
• SeedRuler-IP (Figure 5C): Based on traditional image

processing, this module allows users to adjust the

germination threshold using a graphical slider.

• SeedRuler-YOLO (Figure 5D): A deep learning-based

module utilizing YOLOv5, which offers TG/UTG and

OG/UOG detection modes.
FIGURE 3

Experimental flow chart for SeedRuler-SAM. First, utilize SeedRuler-YOLO for germination detection in the input image (A, B). Then, users
interactively select the reference seed (C). Next, use the Segment Anything Model (SAM) to segment the seeds and radicle within the bounding box
(D). Afterward, employ SAM to separate the reference seed from the background and calculate the ratio of sprout area to seed area, denoted as r0
(E). Finally, evaluate the germination rate of the input image using radicle reference values and output the germination rates for each image in an
Excel file format (F).
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Fron
• SeedRuler-SAM (Figure 5E): Built on the Segment

Anything Model (SAM), this module enables users to

interactively select a seed as a germination reference

standard using mouse input.
All three modules generate annotated output images and

calculate germination rates for each processed image. Users can

view results by selecting the “Germination” option in the “Data”

menu. Detection results can be exported individually or in batches

to Excel (XLS) files, which include key information such as seed

name, germinated seed count, total number of seeds, and

germination rate (Figure 5F).

2.4.3 Additional functionalities
To further support seed phenotyping tasks, SeedRuler includes

an automated seed size measurement function (Zhao et al., 2023a),

which enables rapid extraction of seed length and width from each

image. This feature is seamlessly integrated into the detection

pipeline and is particularly useful for combining germination rate

analysis with morphological trait assessment.
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3 Results

3.1 Evaluation indicators

Next, we need to run the completed training YOLOv5 model on

the test image set for statistics and analysis. Here, we use mAP and

MAE to evaluate the results Equations 6–17 present the details of

the algorithm.

The average precision (mAP) is a significant evaluation metric

utilized to assess the performance of the model (Huang et al., 2020).

Before proceeding with the evaluation, it is essential to provide clear

definitions for true positive (TP), false positive (FP), and false

negative (FN).
TP: It refers to the situation where the IoU value between the

predicted bounding box and the ground truth bounding

box is higher than the specified threshold.

FP: It denotes the scenario where the IoU value between the

predicted bounding box and the ground truth bounding

box is lower than the specified threshold.
frontiersin.o
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FN: It refers to the situation where the ground truth exists,

indicating the presence of an object, but the model fails to

predict any bounding box for that object.

Based on the above definition, we can calculate the precision

and recall:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

And mAP is defined as follows:

AP =
Z 1

0
P(R)dR (8)
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where P and R are Precision and Recall, respectively.

mAP =
AP
k

(9)

where k represents the number of classes.

In addition, we used MAE to evaluate the results:

AE =
1
Mo

M

i=1

abs(yi − y
0
i)

yi
(10)

mAE =
1
No

N

i=1
AEi (11)

where M denotes the number of images, yi denotes the ground

truth value for the ith image, denotes the prediction of the model for
FIGURE 5

Functional Modules of the SeedRuler Web Server. Rice seed germination evaluation with SeedRuler involves selecting full seeds, placing them in
Petri dishes, and capturing images with an image acquisition box (A). SeedRuler offers two methods for acquiring seed images: “Batch Upload” and
“Photograph” (B). Three detection algorithms, SeedRuler-IP, SeedRuler-YOLO, and SeedRuler-SAM, analyze the images to generate detection results
and germination rates (C–E). The user-friendly interface allows graphical manipulation and quick export of detection results to tables, including seed
name, germination counts, and rates (F).
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the ith image, N denotes the class number, and AEi denotes the AE

value of the ith class object.

In addition to mAP and MAE, we also adopted four commonly

used evaluation metrics to assess the segmentation performance of

different models: Dice coefficient (Dice), Intersection over Union

(IoU), Pixel Accuracy (PA), and False Positive Rate (FPR).

The Dice coefficient measures the overlap between the predicted

segmentation and the ground truth. It is defined as:

Dice =
2� TP

2� TP + FP + FN
(12)

where TP denotes the number of true positive pixels, FP is the

number of false positives, and FN is the number of false negatives.

The Intersection over Union (IoU), also known as the Jaccard

index, evaluates the ratio between the intersection and the union of

the predicted region and the ground truth region. It is given by:

IoU =
TP

TP + FP + FN
(13)

The Pixel Accuracy (PA) represents the proportion of correctly

classified pixels over the total number of pixels in the image. It is

calculated as:

PA =
TP + TN

TP + TN + FP + FN
(14)

where TN refers to the number of true negative pixels.

The False Positive Rate (FPR) indicates the proportion of

background pixels that are incorrectly predicted as foreground. It

is defined as:

FPT =
FP

FP + TN
(15)
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3.2 Evaluation of SeedRuler-IP

To assess the effectiveness of SeedRuler-IP, we conducted

experiments on 60 seed germination images. These images

exhibited variations in terms of rice varieties, seed number,

radicle length, and lighting conditions (Additional File 1:

Supplementary Figure S4). Figure 6 presents the absolute error of

germination rates for the 60 images, where a germination standard

of 0.4 was chosen for the analysis. It should be noted that the

germination standard is defined as an area ratio between the radicle

and its seed body. The specific formula for the area ratio is as

follows:

Area ratio =
r
s

(16)

where r and s represent the area of the connected region

belonging to the radicle or seed body, respectively. From Figure 6,

it can be observed that except for five images with absolute errors

greater than or equal to 5%, the absolute errors for the remaining

images were below 4%, which demonstrates the superiority of

SeedRuler in accurately estimating germination rate.
3.3 Evaluation of SeedRuler-YOLO

To evaluate the capability of YOLOv5 in identifying germinated

or ungerminated seeds, we developed an image acquisition box to

capture high-quality images. Also, we compared the model

performance under different germination standards. Our

experiments revealed that different germination standards do

impact the performance of the model to some extent. We
FIGURE 6

Absolute error of germination rate for 60 images.
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categorized the seed images using two standards, OG/UOG and

TG/UTG, and obtained two datasets as a result. Consequently, we

compared the performance of the models trained on these

two datasets.

Figure 7 compares the detection performance of four YOLOv5

models under the OG/UOG germination standard. Panel (a) shows

a representative image of germinated seeds, while (b) and (c)

compare the ground truth annotations (left) with the YOLOv5m

prediction results (right), where germinated seeds are marked with

red boxes and ungerminated ones with green boxes. Panels (d), (e),

and (f) present the evaluation metrics—mAP@0.5, mAP@0.5:0.95,

and MAE—calculated from 240 test images using four YOLOv5

models (YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x). The

results are reported to three decimal places, and error bars

indicate the standard deviation, reflecting the consistency and

reliability of each model’s performance.

Initially, we exploited the image acquisition box to capture

images. Next, an OG/UOG germination standard is defined, i.e.

seeds with radicle lengths greater than 1mm are considered to have

germinated, otherwise, they have not (Figures 7A–C). As

demonstrated in Figures 7D, E, YOLOv5m exhibited a mAP@0.5

of 0.935 and a mAP0.5:0.95 of 0.783, while YOLOv5l showcased a

mAP@0.5 of 0.934 and a mAP0.5:0.95 of 0.788. Furthermore, the

average detection times of YOLOv5s, YOLOv5m, YOLOv5l, and

YOLOv5x were recorded as 4 ms, 8.6 ms, 15 ms, and 30 ms per

image, respectively. Additionally, in terms of MAE, the MAE values

of YOLOv5m and YOLOv5l were lower than those of the other 2

models. Therefore, YOLOv5m and YOLOv5l are more suitable for

germination experiments due to their accuracy and detection speed.

Figure 7F illustrates that the MAE values of all four models are

larger than 0.2 for ungerminated seeds. This outcome can be
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attributed to the 1mm germination standard being relatively

short, leading to the misidentification of ungerminated seeds

as germinated.

To further assess the agreement between predicted and ground-

truth germination counts under the OG/UOG standard, we

computed the relative error (RE) for each test image as follows:

RE =
Prediction − Ground Truthj j

Ground Truth
� 100% (17)

Across the 240 test images, the average relative error was 6.3%

for germinated seeds and 8.7% for ungerminated seeds using the

YOLOv5m model, which achieved the best trade-off between speed

and accuracy. These results indicate that the prediction is generally

close to the ground truth.

To confirm whether there is a statistically significant difference

between predicted and true counts, we conducted a paired t-test

comparing the predicted and manually annotated germination rates

across all test images. The p-value obtained was 0.31 (p > 0.05),

indicating no statistically significant difference between the two.

This supports the conclusion that the model’s output is consistent

with human annotation under the OG/UOG standard.

To address these issues, we proposed a new seed germination

standard TG/UTG, which considers seed radicle length greater than

2mm as an indicator of germination. As part of our experiments, we

re-labeled the input images according to TG/UTG and evaluated

the performance of the model. The model performance under the

TG/UTG germination standard is shown in Figure 8. Panel (a)

displays a representative image of germinated seeds, while (b) and

(c) compare the ground truth annotations (left) with the predictions

of the YOLOv5mmodel (right), where red boxes denote germinated

seeds and green boxes denote ungerminated seeds. Panels (d), (e),
FIGURE 7

Model performance evaluation under the OG/UOG standard. (A) is a germinated seed image. The rectangular boxes in (B, C) indicate the ground
truth (left) and the predicted results of YOLOv5m (right), where the red boxes indicate the germinated seeds and the green boxes indicate the
ungerminated seeds. (D–F) represent the mAP@0.5, mAP@0.5:0.95, and MAE values obtained from testing 240 seed images using four YOLOv5
models (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x), respectively (three decimal places are preserved), where error bars represent standard deviation.
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and (f) present the evaluation metrics—mAP@0.5, mAP@0.5:0.95,

and MAE—calculated on 240 test images using four YOLOv5

model variants (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x). All

results are reported with three decimal places, and error bars

indicate the standard deviation, highlighting the performance

stability of each model under the TG/UTG standard.

Upon adopting the TG/UTG germination standard, all four

models have improved in mAP and MAE. In comparison with the

results depicted in Figure 7D, the mAP@0.5 values of the four

models (Figure 8D) improved by 0.012, 0.015, 0.020, and 0.020,

respectively, while the MAE values (Figure 8F) decreased by 0.066,

0.048, 0.046, and 0.065, respectively. As shown in Figure 8F, all four

models for ungerminated seeds have MAE values below 0.08mm.

The main reason is that the germination standard of 2mm improves

the distinction between germinated and ungerminated seeds,

resulting in more accurate seed labeling.

To evaluate the accuracy of SeedRuler-YOLO, we conducted the

following experiments. Firstly, the seeds were categorized into two

types according to their germination speed: fast and slow

germination. For the seeds with fast germination speed, after the

seeds were placed in the constant temperature incubator, we

measured the germination rate at 48 hours and 60 hours,

respectively. For the seeds with slow germination speed, the

measured time was set to 60 hours and 72 hours, respectively.

The selection of 48h, 60h, and 72h as germination time points was

based on both biological and experimental considerations. These time

intervals reflect distinct phases of rice seed germination, during which

phenotypic variation becomes increasingly pronounced. This variation

is conducive to capturing diverse germination behaviors and enables

the identification of genes associated with stage-specific germination
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traits. Furthermore, this time frame was adopted by a recent high-

impact Science study (Wei et al., 2024), which explored the genetic

architecture of rice using over 18,000 lines. By following this

standardized time scheme, our results gain both scientific rigor and

comparability with large-scale genomic studies.

Table 1 presents the results of measuring the germination rate

for rice seeds of different six varieties: from ‘Type0’ to ‘Type5’. It can

be seen from Table 1 that, for seeds of six different varieties,

SeedRuler-YOLO can accurately count the number of seeds. In

addition, the relative error of the predicted germination rate

predominantly falls within ±0.1. From Additional File 1:

Supplementary Figure S5, we can observe that as the germination

time increases and the germination degree becomes more

pronounced, the accuracy of the germination rate also increases.

A closer examination of Table 1 reveals how changes in seed

morphology over time influence detection accuracy. For fast-

germinating varieties such as Type0 and Type2, the relative error

at 60 hours is lower than at 48 hours, indicating improved detection

performance as radicle elongation becomes more prominent. Type1

shows zero error at both time points, suggesting that for some lines

with early and uniform germination, SeedRuler-YOLO can achieve

high accuracy even at 48 hours. For slow-germinating varieties such

as Type3, Type4, and Type5, detection at 60 hours and 72 hours

yields accurate results, with relative errors at or close to zero.

Notably, Type4 and Type5 exhibit zero error across both 60h and

72h, while Type3 shows comparable performance at both time

points. These observations confirm that increased radicle visibility

over time enhances the model’s ability to distinguish germinated

seeds, and that SeedRuler-YOLO maintains robust performance

across different germination dynamics.
FIGURE 8

Model performance evaluation under the TG/UTG standard. (A) is a germinated seed image. The rectangular boxes in (B, C) indicate the ground
truth (left) and the predicted results of YOLOv5m (right), where the red boxes indicate the germinated seeds and the green boxes indicate the
ungerminated seeds. (D–F) represent the mAP@0.5, mAP@0.5:0.95, and MAE values obtained from testing 240 seed images using four YOLOv5
models (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x), respectively (three decimal places are preserved), where error bar represents standard deviation.
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TABLE 1 The evaluation results of SeedRuler-YOLO.
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Hybrid
type

Parameter
48 hours 60 hours

Automatic
count

Manual
count

Relative
error

Automatic
count

Manual
count

R

Type0

No. of germinated seeds 22 20 -0.1 25 24

No. of ungerminated seeds 12 14 0.14 9 10

No. of seeds 34 34 0 34 34

Germination rate 0.6471 0.5882 -0.10 0.7353 0.7059

Type1

No. of germinated seeds 43 43 0 43 43

No. of ungerminated seeds 0 0 0 0 0

No. of seeds 43 43 0 43 43

Germination rate 1 1 0 1 1

Type2

No. of germinated seeds 25 23 -0.09 36 36

No. of ungerminated seeds 15 17 0.12 4 4

No. of seeds 40 40 0 40 40

Germination rate 0.625 0.575 -0.09 0.9 0.9

Type3

No. of germinated seeds 25 24

No. of ungerminated seeds 9 10

No. of seeds 34 34

Germination rate 0.7353 0.7059

Type4

No. of germinated seeds 34 34

No. of ungerminated seeds 3 3

No. of seeds 37 37

Germination rate 0.9189 0.9189

Type5

No. of germinated seeds 23 23

No. of ungerminated seeds 13 13

No. of seeds 36 36

Germination rate 0.6389 0.6389
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3.4 Evaluation of SeedRuler-SAM

To further validate the segmentation performance of SeedRuler-

SAM, we conducted a comparative experiment using two

mainstream image segmentation models: Mask-RCNN (He et al.,

2017) and UNet (Ronneberger et al., 2015). A subset of 100 test

images was randomly selected, and all three methods were

evaluated under the same conditions using four standard metrics:

Dice, IoU, PA, and FPR.

As shown in Table 2, SeedRuler-SAM achieved the best

performance across all metrics, with a Dice of 0.942, IoU of

0.841, PA of 0.916, and a FPR of only 0.011. In contrast, UNet

achieved moderate results (Dice = 0.799, IoU = 0.697), and Mask-

RCNN showed relatively lower accuracy (Dice = 0.723, IoU =

0.571). These results demonstrate the superior segmentation

accuracy and reliability of SeedRuler-SAM in rice seed and radicle

segmentation tasks.

To verify the effectiveness of SeedRuler-SAM, we conducted

germination assessment experiments on five images (Additional

File 1: Supplementary Figure S6). Additionally, three seed images

with varying radicle lengths were selected as germination reference

standards (Additional File 1: Supplementary Figure S7), referred to

as Criteria 1, Criteria 2, and Criteria 3, respectively. The assessment

results, displayed in Figure 4, showcased a maximum deviation of

only 2 units between the estimated values by SeedRuler-SAM and

the ground truth. This outcome underscores the high accuracy and

reliability of SeedRuler-SAM in estimating the germination rate.
4 Discussion

In this study, we developed a high-throughput phenotyping web

server SeedRuler for the assessment of rice seed germination rate (Li

et al., 2024b; Yao et al., 2024; Liu et al., 2025). SeedRuler utilizes

deep learning and image processing technology for phenotyping

seeds, which can provide large amounts of reliable data on time,

reduce time and labor costs, and improve work efficiency.

Our experiments have highlighted the influence of several

factors on the model performance: (1) Fast-germinating seeds

exhibit a longer radicle during the specified germination period,

resulting in a larger radicle area than the seed area (Additional File

1: Supplementary Figure S8A); (2) Denser seed distribution within

the image increases the overlap of the manually labeled boxes

(Additional File 1: Supplementary Figure S8B). SeedRuler has

demonstrated its ability to mitigate the impact of these two

factors on the model performance.
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The image acquisition box was designed with a light source for

capturing seed images (Additional File 1: Supplementary Figure S1),

thereby improving the quality of the images, as well as allowing us

to conduct experiments at any time of day, regardless of external

environmental factors such as time and location. Experimental

results indicate that image quality affects the performance of

SeedRuler-YOLO. We have improved mAP@0.5 by 4-8% as well

as mAP@0.5:0.95 by 10-30% and reduced MAE by 1-6% with our

image acquisition box when compared to taking photos with a cell

phone in natural light (Additional File 1: Supplementary Table S2)

(Li et al., 2024c; Padmanabhan et al., 2025).

Additionally, we labeled the images with two different

germination standards, OG/UOG and TG/UTG, to create two

separate seed image datasets and trained the model individually

for each case. Comparative analysis revealed that the choice of

germination standard has a notable impact on model performance.

When using the OG/UOG standard (1mm radicle length), the

radicle is often too short to be clearly visible, resulting in higher

labeling ambiguity and mediocre model performance. In contrast,

adopting the TG/UTG standard (2mm radicle length) significantly

improves model performance, reducing MAE by 4–7% (Klasen

et al., 2025).

This effect is further illustrated by the performance results

shown in Figures 7 and 8. Figure 7 shows that under the OG/

UOG standard, all four YOLOv5 models achieved lower mAP and

higher MAE, particularly for ungerminated seeds. Figure 8

demonstrates that switching to the TG/UTG standard leads to a

clear improvement in both mAP and MAE across models. Among

them, YOLOv5m consistently achieves the best balance between

accuracy and speed. These figures emphasize the importance of

selecting a biologically meaningful and visually distinguishable

germination threshold.

Furthermore, we compared the results of identifying different

varieties of rice seeds at various stages (over 48, 60, and 72 hours) of

germination (Additional File 1: Supplementary Figure S5). The

diverse shapes of the seeds including oval, oblate, oblong, among

others, and varying seed coat colors such as yellow, black, red, etc.,

were considered. In addition, some seeds also featured rice awns

while others did not. The experiments showed that the relative

errors in the germination rate were within 0.1 for each image

obtained using SeedRuler, and the errors in the number of

germinated while errors in the counts of germinated and non-

germinated within 0–2 seeds.

In addition, we have equipped SeedRuler-YOLO with a fixed

germination standard, while SeedRuler-IP and SeedRuler-SAM

offer users the option to define their own germination standards.

SeedRuler-IP is based on image processing and offers the advantage

that, if future updates are required, it eliminates the need for

substantial manual annotation and training efforts. SeedRuler-

SAM performs precise segmentation on the bounding boxes

obtained from SeedRuler-YOLO using SAM, which is a pre-

trained model that can be directly applied. Therefore, during the

training of the SeedRuler model, only the YOLOv5 model needs to

be trained. Table 3 presents a comprehensive comparison of the

characteristics of these three methods.
TABLE 2 The metric values of the three algorithms.

Dice↑ IoU↑ PA↑ FPR↓

Mask-RCNN 0.723±0.083 0.571±0.097 0.661±0.122 0.096±0.015

UNet 0.799±0.115 0.697±0.146 0.942±0.032 0.108±0.104

SeedRuler-SAM 0.942±0.021 0.841±0.043 0.916±0.024 0.011±0.005
↑ means higher is better; ↓ means lower is better.
Bold values indicate best performance.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1671998
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hou et al. 10.3389/fpls.2025.1671998
SeedRuler is well-suited for the following different scenarios: (1)

Seeds come in a variety of shapes and colors (Additional File 1:

Supplementary Figure S9); (2) Radicles vary in length (Additional

File 1: Supplementary Figure S9); (3) Petri dishes contain water

droplets and reflections (Additional File 1: Supplementary Figure

S10); (4) Seed images contain impurities such as rice awn and

branch stalks (Additional File 1: Supplementary Figure S10). In

summary, SeedRuler minimizes human intervention, offers ease and

speed of use, and significantly improves work efficiency. Beyond the

aforementioned capabilities, our future plans for SeedRuler encompass

the integration of additional functionalities, including the detection of

rice seed setting rate and chalkiness (Guo et al., 2021;Wang et al., 2022;

Cai et al., 2024; Li et al., 2024a). These enhancements aim to augment

and enrich the overall functionality of SeedRuler.

In addition, SeedRuler has demonstrated strong scalability and

usability in practical applications. The platform supports both web-

based and offline deployment, enabling flexible usage across various

operating environments. The web server is capable of concurrent

processing through GPU acceleration and MySQL-based data

management, while the offline version supports cross-platform

operation (Windows, macOS, Linux) with a graphical user

interface developed in PyQt5. The user-friendly interface includes

intuitive modules for image upload, germination detection, and

result export, which reduces the technical barrier for end users.

Furthermore, batch processing capabilities and customizable

germination standards enhance its adaptability to large-scale

phenotyping projects. These features collectively support our

claims regarding the scalability and usability of SeedRuler.

It is important to note that the training and evaluation in this study

were conducted using seed images captured with a standardized

imaging box under consistent lighting and background conditions.

While this setup ensures high image quality and stable model

performance, it may limit the generalizability of the system when

applied to images acquired in uncontrolled environments, such as

those taken with mobile phones under natural light or varying

backgrounds. To overcome this limitation, we recommend that users

ensure sufficient and uniform lighting and reduce background noise
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during image acquisition. Additionally, retraining the YOLO model or

fine-tuning the parameters using their own image datasets can help

improve the robustness and adaptability of SeedRuler to diverse

usage scenarios.

To further evaluate the performance of SeedRuler-YOLO against

existing tools, we conducted a benchmarking experiment using

SeedQuant (Braguy et al., 2021), a deep learning-based seed

germination analysis tool. We randomly selected 10 groups from the

test set, with each group consisting of 20 seed images. For each image,

we calculated the germination rate using both SeedQuant and

SeedRuler-YOLO, and then computed the absolute error between the

predicted and ground truth germination rates. The average and

standard deviation of the absolute errors were calculated for each

group. The results, summarized in Table 4, show that SeedRuler-YOLO

consistently achieved lower mean absolute errors across all groups. The

overall average absolute error of SeedRuler-YOLO was 0.040±0.037,

compared to 0.106±0.095 for SeedQuant, demonstrating superior

accuracy and robustness. These results confirm that SeedRuler-

YOLO outperforms SeedQuant in terms of precision and reliability

under the same experimental conditions.

This robustness can be attributed, in part, to the diversity of the

training dataset. The rice resources used in this study were derived

from nine genetically diverse populations cultivated in the

experimental field of Shanghai Normal University (Xuehui Huang

Lab). These seeds exhibit substantial phenotypic variation in grain

morphology, including differences in length, shape, and color. As a

result, the constructed dataset covers a wide range of genotypes and

visual characteristics. This diversity enables the trained SeedRuler-

YOLO model to generalize well across various seed types and

accurately detect germinated seeds regardless of morphological

differences such as seed shape or radicle length and color. Moreover,

since all images were collected using a standardized imaging box with a

uniform background and consistent lighting conditions, the influence

of background variation on model performance is minimized.

However, in non-standard environments with complex or

inconsistent backgrounds, the model’s detection accuracy may be
TABLE 3 Comparison of the characteristics of three methods:
SeedRuler-IP, SeedRuler-YOLO, and SeedRuler-SAM.

Methods
SeedRuler-

IP
SeedRuler-

YOLO
SeedRuler-

SAM

Methodology
K-means,

morphological
operations

YOLOv5 SAM

Supervised learning × ✓ △

Train the model × ✓ ×

Mobile phone ✓ ✓ ✓

Dark background ✓ ✓ ✓

Seeds in contact ✓ ✓ ✓

Customized
germination standard

✓ × ✓
‘√’ refers to able, ‘×’ refers to unable, and ‘△’ is partial.
TABLE 4 Germination rate error comparison between SeedQuant and
SeedRuler-YOLO.

Rice group SeedQuant SeedRuler-YOLO

1 0.065±0.037 0.024±0.022

2 0.131±0.141 0.044±0.059

3 0.093±0.092 0.045±0.043

4 0.121±0.131 0.054±0.033

5 0.077±0.053 0.052±0.036

6 0.114±0.076 0.034±0.040

7 0.141±0.121 0.034±0.036

8 0.075±0.057 0.063±0.040

9 0.162±0.102 0.023±0.012

10 0.083±0.069 0.031±0.029

Total 0.106±0.095 0.040±0.037
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affected. Therefore, we recommend retraining or fine-tuning the model

when applying it to datasets acquired under different

imaging conditions.

To address the concern regarding error handling and

robustness, we conducted additional experiments using six

representative images that simulate various complex or extreme

scenarios commonly encountered in practical seed germination

tests. These scenarios include: (1) shadows and mirrored seed

placements, (2) severe seed overlapping and contact, (3) seeds

with awns, (4) seeds with elongated radicles, (5) background text

interference, and (6) entangled radicles and awns.

As shown in Additional File 1: Supplementary Figure S11,

SeedRuler-YOLO consistently achieved accurate detection results

across all conditions. Germinated seeds were correctly identified

and marked with cyan boxes, while non-germinated seeds were

marked with blue boxes. These results demonstrate the model’s

robustness in handling occlusion, deformation, noise interference,

and morphological complexity. The performance under such

scenarios indicates that SeedRuler-YOLO possesses strong

adaptability and stability, minimizing missegmentation and

omission rates even in extreme cases. This robustness is crucial

for ensuring reliability in real-world germination analysis tasks.

Despite SeedRuler’s user-friendly design and strong performance

under controlled conditions, several limitations remain that may

impact its broader applicability. Notably, the current system abstracts

away most algorithm-level configurations, which limits expert users

from tailoring detection models or segmentation thresholds to

specialized datasets or experimental goals. While this design choice

facilitates ease of adoption, it may restrict flexibility in advanced

research scenarios that require fine-tuned control over detection

sensitivity or model behavior.

Additionally, although the image acquisition box helps standardize

lighting and imaging angles, the platform’s performance may decline

when analyzing images taken under natural light, complex

backgrounds, or with varying camera devices—conditions often

encountered in field-based or decentralized experiments. This

sensitivity to imaging conditions highlights the need for more robust

pre-processing pipelines or adaptive models in future versions.

Moreover, SeedRuler does not currently support advanced

automation features such as scheduled batch analysis, task queue

management, or background processing. These capabilities are

commonly found in platforms like Transmission or qBittorrent and

are particularly valuable in high-throughput phenotyping workflows.

Incorporating such features would enhance the platform’s scalability

and usability in large-scale or unattended processing environments.
5 Conclusion

In this study, we developed and validated SeedRuler, a web-based,

high-throughput platform for assessing rice seed germination. By

integrating three complementary modules—SeedRuler-YOLO (deep

learning-based detection), SeedRuler-SAM (interactive segmentation

using the Segment Anything Model), and SeedRuler-IP (traditional

image processing)—the system offers high accuracy, flexibility, and
Frontiers in Plant Science 16
broad usability. SeedRuler can be accessed at (http://

www.xhhuanglab.cn/tool/SeedRuler.html).

Extensive experiments demonstrated that SeedRuler-YOLO

achieved a mean average precision (mAP@0.5) of 0.955 and a

mean absolute error (MAE) of 0.110. Meanwhile, SeedRuler-SAM

outperformed baseline segmentation models in terms of Dice and

IoU. Importantly, the platform supports both fixed and user-

defined germination standards, batch processing, and cross-

platform deployment (online and offline), making it accessible to

a wide range of users.

Despite its strong performance, SeedRuler has limitations, such as

the lack of advanced automation features (e.g., task scheduling and

background processing) and sensitivity to image quality in

uncontrolled environments. These issues will be addressed in future

versions through improved pre-processing, parameter customization,

and automation tools.

Overall, SeedRuler fills a critical gap in current seed

phenotyping tools by offering an intuitive yet powerful solution

for germination analysis. It is expected to accelerate breeding

programs, facilitate genetic research, and contribute to the

broader advancement of AI-driven agricultural technologies.
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