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Introduction: As a major food crop, accurate detection and counting of wheat

ears in the field are of great significance for yield estimation. Aiming at the

problems of low detection accuracy and large computational load of existing

detection and counting methods in complex farmland environments, this study

proposes a lightweight wheat ear detection model, YOLOv11-EDS.

Methods: First, the Dysample dynamic upsampling operator is introduced to

optimize the upsampling process of feature maps and enhance feature

information transmission. Second, the Direction-aware Oriented Efficient

Channel Attention mechanism is introduced to make the model focus more

on key features and improve the ability to capture wheat ear features. Finally, the

Slim-Neck module is introduced to optimize the feature fusion structure and

enhance the model’s processing capability for features of different scales.

Results: Experimental results show that the performance of the improved

YOLOv11-EDS model is significantly improved on the global wheat ear dataset.

The precision is increased by 2.0 percentage points, the recall by 3.5 percentage

points, mAP@0.5 by 1.5 percentage points, and mAP@0.5:0.95 by 2.5percentage

points compared with the baseline model YOLOv11. Meanwhile, the model

parameters are reduced to 2.5 M, and the floating-point operations are

reduced to 5.8 G, which are 0. 1 M and 0.5 G lower than the baseline model,

respectively, achieving dual optimization of accuracy and efficiency. The model

still demonstrates excellent detection performance on a self-built iPhone-view

wheat ear datasets, fully verifying its robustness and environmental adaptability.

Discussion: This study provides an efficient solution for the automated analysis of

wheat phenotypic parameters in complex farmland environments, which is of

great value for promoting the development of smart agriculture.
KEYWORDS
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1 Introduction

Wheat is one of the most important food crops globally (Cai

et al., 2019), its stable yield and secure supply are directly related to

global food security (Wen et al., 2022). Accurate and efficient

detection and counting of wheat ears are of great significance for

wheat yield estimation and the development of precision agriculture

(Zhang et al., 2007). In terms of yield estimation, the number of ears

is a key factor determining yield, and its precise counting results can

provide a scientific basis for quantitative yield evaluation, thereby

supporting grain reserve decisions and market supply-demand

regulation (Liu T. et al., 2017; Wang D. et al., 2021). In precision

agriculture, detection and counting data can provide decision

support for precision fertilization, irrigation, etc., improving

resource utilization efficiency and reducing waste and pollution.

However, traditional manual counting methods are not only time-

consuming and labor-intensive but also their results are easily

affected by factors such as subjective experience and fatigue,

making it difficult to meet the needs of large-scale agricultural

production for data timeliness and consistency (Jin et al., 2017;

Xiong et al., 2019). Therefore, developing efficient and accurate

automated detection and counting technologies for wheat ears is of

great practical significance for promoting the development of

smart agriculture.

In recent years, with the rapid development of computer vision and

deep learning technologies, object detection techniques have been

increasingly applied in the agricultural field (Zhu et al., 2016; Yuan

et al., 2022). Among them, object detection algorithms based on

Convolutional Neural Networks have become a research hotspot in

the field of wheat ear detection due to their ability of automatic feature

learning (Alzubaidi et al., 2021). These algorithms can automatically

learn features from images to achieve accurate target recognition and

localization. In the field of wheat ear detection, many scholars have

attempted to use various object detection algorithms, such as RCNN

(Bharati and Pramanik, 2020), Faster-RCNN (Liu B. et al., 2017),

Mask-RCNN (Lin et al., 2020), and the YOLO series (Vijayakumar and

Vairavasundaram, 2024). For example, He et al. (He et al., 2020)

improved the YOLOv4 network structure, re-clustered anchors using

the k-means algorithm, and proposed a robust wheat ear detection

method suitable for natural scenes, which relies on UAV for detection.

Khaki et al. (Khaki et al., 2022) developed a WheatNet detection

network for wheat ear counting, which significantly reduced model

parameters compared to other methods. Wang et al. (Wang Y. et al.,

2021) addressed occlusion and overlap issues in wheat ear counting by

proposing an improved EfficientDet-D0 model, achieving a counting

error rate of only 5.8%. Sun et al. (Sun et al., 2022) constructed a

lightweight Wheat Detection Network (WDN) for precise wheat ear

detection and counting, with an inference time of 25 ms. Zhou et al.

(Zhou et al., 2022) proposed a Multi-Window Swin Transformer

network to solve the problem of low detection accuracy under

complex field conditions. Bhagat et al. (Bhagat et al., 2021)

introduced a lightweight WheatNet-Lite structure, reducing

parameters by 54.2M compared to YOLOv3. Shi et al. (Shi et al.,

2023) developed an improved lightweight method (YOLOv5s-T) with

a model size of only 9. 1M and 2.3 ms reduced inference time. Zang
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et al. (Zang et al., 2022) integrated an improved attention mechanism

into YOLOv5s, achieving 71.61% accuracy in wheat ear counting. Ye

et al. (Ye et al., 2023) proposed a lightweight WheatLFANet, achieving

an average precision (AP) of 0.9 for complex field wheat ears. Shen

et al. (Shen et al., 2023) developed a YOLOv5s-based lightweight

method using ShuffleNetV2 for feature extraction, introducing

lightweight upsampling to maintain accuracy, with a model weight

of 2.9MB. Meng et al. (Meng et al., 2023) proposed YOLOv7-MA,

which enhanced feature extraction via convolutional block attention

modules and micro-scale detection layers, maintaining high accuracy

during both filling and maturity stages.

Despite certain progress in existing studies, limitations remain

in complex farmland scenarios. On the one hand, overlapping and

occlusion of dense wheat ears, as well as interference from similar

backgrounds, easily lead to missed detections or false detections by

models, especially insufficient capability to capture small-sized or

irregularly shaped ears. On the other hand, some lightweight

models sacrifice the depth of feature extraction to control

computational load, resulting in reduced robustness in practical

environments such as light changes and image blurriness, which

makes them unable to meet the real-time detection requirements of

field mobile devices. Therefore, how to improve the model’s ability

to capture features of wheat ears and resist interference in complex

scenarios while ensuring its lightweight nature remains an urgent

problem to be solved.

To address the above issues, this paper proposes a wheat ear

detection and counting method based on YOLOv11-EDS, which

achieves dual improvements in accuracy and efficiency through

collaborative optimization of multiple modules. Firstly, the

Direction-aware Oriented Efficient Channel Attention mechanism

is introduced into the neck network to adaptively enhance the

weights of key feature channels of wheat ears, thereby improving

the model’s ability to distinguish between targets and backgrounds.

Meanwhile, the Dysample upsampling operator is used to replace

traditional methods, which preserves more detailed information

during the magnification of feature maps and enhances the ability to

capture small-sized and dense wheat ears. In addition, the Slim-

Neck module is introduced to optimize the feature fusion layer,

which streamlines network parameters and reduces computational

load while improving the efficiency of feature transmission. The

improved model can achieve accurate detection and counting of

wheat ears in complex farmland environments, and its lightweight

design allows it to be deployed on field mobile devices. This

provides efficient technical support for wheat yield estimation and

field management, and promotes the intelligent upgrading of

agricultural production.
2 Materials and methods

2.1 Dataset construction

2.1.1 Global wheat head detection dataset 2021
In this study, the Global Wheat Head Detection Dataset 2021

was selected as the benchmark data source (David et al., 2021).
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Jointly constructed by international agricultural research

institutions, this dataset comprises field images captured from

major wheat-producing regions across 12 countries/regions,

including Europe, Asia, and North America. It contains 6,422

RGB images with a resolution of 1024×1024 pixels, accompanied

by 275,187 corresponding bounding box annotations. A subset was

constructed by selecting 1,140 images from the GWHD 2021

dataset. The sampling strategy was designed to maximize the

visual diversity and complexity of the dataset, ensuring the

model’s adaptability to complex field environments. Selection was

based on quantifiable features derived from image content itself,

with emphasis on achieving broad variation in key parameters such

as wheat ear density, scale, occlusion level, and lighting conditions

to enhance the model’s generalization capability and robustness.

The sampling strategy and detailed label distribution metrics of the

subset are presented in Table 1, and representative examples of

wheat ear images are shown in Figure 1.

2.1.2 Self-built iPhone-perspective wheat ear
dataset

This dataset was collected at the Comprehensive Experimental

Base of Shandong Academy of Agricultural Sciences (117°1’E, 36°
Frontiers in Plant Science 03
7’N) in strict accordance with standardized protocols: image

collection was conducted during the wheat filling stage (May 7,

2025) and maturity stage (May 27, 2025) respectively. During the

collection process, an iPhone device was used for shooting with

fixed parameters: the camera height was uniformly set to 1.2 meters

above the ground, and the shooting depression angle was

maintained at 15°; the target variety was Jimai 44; each image

corresponded to a 1m² standard sampling area to ensure spatial

scale consistency. The obtained original images have a resolution of

4284×5712 pixels. Considering the requirements and limitations of

model training on computing resources, preprocessing was

performed on the collected images. The images were uniformly

cropped to 1024×1024 pixels, and images with blur and distortion

exceeding the thresholds were excluded according to image quality

evaluation standards.After screening, 31 wheat images from the

milk stage and 25 from the ripening stage were finally collected.
2.2 Data annotation

The Labelme annotation tool was employed to perform

rectangular bounding box annotation on the Global Wheat Head
FIGURE 1

Some example images.
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Detection Dataset. Annotated files were saved in JSON format and

subsequently converted into TXT format (required for model

training), totaling 40,535 labels. During annotation, the category

label for wheat ears was defined as “wheat”. Post-annotation, the

dataset was partitioned into training, validation, and test sets

following an 8:1:1 ratio. Partial annotated images are illustrated

in Figure 2.
2.3 YOLO-EDS

YOLOv11, developed by Ultralytics, represents a state-of-the-

art real-time object detection model (He et al., 2025). Building upon

the core technical framework of the YOLO series, the model

achieves comprehensive enhancements in both detection accuracy

and efficiency through systematic architectural innovations and

performance optimizations. The network architecture of

YOLOv11 comprises three key modules: the Backbone, Neck, and
Frontiers in Plant Science 04
Head. These modules closely collaborate and complement each

other, enabling object detection via cross-module information

interaction (Khanam and Hussain, 2024).While YOLOv11 can

detect wheat ears in field scenarios, complex field environments,

plant occlusions, and diverse wheat ear morphologies cause

conventional feature extraction and fusion methods to struggle in

capturing critical features. In particular, the features of small-sized

wheat ears are easily overlooked by the network, leading to limited

detection accuracy. To address these issues, this study proposes a

lightweight network model improved from YOLOv11, termed

YOLOv11-EDS, whose structure is illustrated in Figure 3.

When an original-resolution field wheat ear image is input,

YOLOv11-EDS employs the following improvement strategies for

image processing. First, the Dysample upsampling operator is

incorporated to better preserve image details while enlarging the

feature map, enabling clear presentation of small-scale wheat ear

features. Next, the Efficient Channel Attention mechanism is added

to allow the model to adaptively focus on key features, effectively

suppressing background interference from wheat stalks and leaves

during feature extraction, and accurately capturing important

feature information of wheat ears across multiple scales. Then,

the Slim-Neck module is used to replace the feature fusion layer,

realizing long-range feature interaction and local feature interaction

for each pixel in the image, and optimizing feature fusion

and transmission.
2.3.1 Dysample
In the task of field wheat ear detection, optimizing the

upsampling stage is crucial to effectively address the challenges of

complex field environments, morphological differences of wheat

ears, and scale variations. This study introduces the Dysample
FIGURE 2

Some examples of annotated images.
TABLE 1 Subset sampling strategy and label distribution metrics.

Metric Details

Total images 1,140

Total annotated
ears

40,535

Mean ears per
image

35 ± 12 (SD)

Density
distribution

10–20 ears: 18%; 21–40 ears: 52%; 41–60 ears: 23%; >60
ears: 7%

Sampling criteria
Based on visual diversity (density, scale, occlusion,
lighting)
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dynamic upsampling operator to improve the effect of multi-scale

feature fusion and enhance the model’s detection capability for

wheat ears of different scales.

The Dysample operator (Guo et al., 2024; Lin et al., 2024;

Abulizi et al., 2025), drawing on the concept of deformable

convolutions, breaks through traditional kernel-based methods. It

can dynamically learn the sampling offset for each position based on

the semantic distribution of the input feature map, thereby enabling

more flexible feature upsampling. Unlike traditional upsampling

operators that rely on fixed sampling patterns, the Dysample

operator dynamically adjusts the sampling positions according to

the content of the input feature map. Taking the PyTorch

framework as an example, Dysample mainly adopts point

sampling, which not only improves resource utilization efficiency

but also simplifies the operator implementation process, providing

technical guarantees for the real-time requirements of the detection

models. The structure of Dysample is shown in Figure 4.

Compared with traditional upsampling methods, the Dysample

operator exhibits significant advantages. Traditional upsampling

methods tend to lose important detail information when restoring
Frontiers in Plant Science 05
feature map resolution, resulting in feature blurring. In contrast, the

Dysample operator can adaptively adjust the sampling positions

according to the content of the input feature map, enabling better

capture of detailed information in the feature map. In field wheat

ear detection scenarios, where wheat ears vary in shape, size, and

posture, the Dysample operator can adapt to these variations by

learning offsets, allowing sampling points to accurately extract

wheat ear features. This enhances the model’s robustness in

different environments and improves detection accuracy

and stability.

In this study, the Dysample upsampling operator was applied to

the Neck network of YOLOv11. The core function of the Neck

network is to fuse feature information across different scales,

providing richer and more accurate feature representations for

subsequent object detection. In the traditional YOLOv11 Neck

network, upsampling operations often use methods such as

bilinear interpolation, which easily lead to feature information

loss. During the feature fusion process in the Neck network, this

study replaced the original upsampling method with the Dysample

upsampling operator. Specifically, when upsampling low-resolution
FIGURE 4

DySample structure diagram.
FIGURE 3

The network structure of YOLOv11-EDS.
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feature maps to the same size as high-resolution feature maps, the

Dysample operator is used for upsampling, thereby better

preserving the detail information in low-resolution feature maps

and improving the feature fusion effect. During model training, the

parameters of the Dysample operator were optimized together with

other parameters of YOLOv11. Through the backpropagation

algorithm, the model can automatically learn appropriate

sampling offsets, enabling the Dysample operator to better adapt

to the characteristics of field wheat ear detection tasks.

2.3.2 Direction-aware oriented efficient channel
attention

Field wheat ear detection faces numerous challenges. Wheat

ears grow in a long strip shape, with dense arrangement, inclined

distribution, and mutual occlusion between ears. Traditional feature

extraction methods struggle to specifically capture the directional

features of wheat ears, such as growth angles and row arrangement

directions, which makes the model prone to confusing targets with

the background in complex scenarios, leading to false detections or

missed detections of inclined wheat ears. The ordinary convolution

operations in the YOLOv11 basic framework lack selective attention

to direction-sensitive features, while the conventional ECA

attention mechanism (Jiang et al., 2025; Qiong et al., 2025; Wang

et al., 2020), although capable of learning channel dependencies

through one-dimensional convolution, does not consider the spatial

direction information of features, making it difficult to adapt to the

morphological characteristics of wheat ears.

In view of this, this study proposes a direction-aware Oriented

ECA attention mechanism. On the basis of retaining the efficiency

of ECA, a direction feature decomposition and fusion strategy is

introduced to enhance the model’s ability to capture the directional

features of wheat ears. This mechanism first performs direction

feature separation. Aiming at the horizontal and vertical

distribution characteristics of wheat ears, two adaptive pooling

operations are used to extract direction-sensitive features:

horizontal direction pooling (avg_pool_h) compresses the width

dimension of the feature map (AdaptiveAvgPool2d((None, 1))),

retains the spatial distribution information in the height direction,

and focuses on capturing the morphological features of wheat ears

in the vertical dimension, such as ear length and inclination angle;

vertical direction pooling (avg_pool_v) compresses the height

dimension of the feature map (AdaptiveAvgPool2d((1, None))),

retains the spatial distribution information in the width direction,

and focuses on capturing the arrangement features of wheat ears in

the horizontal dimension, such as row spacing and density.

Next, direction-dependent learning is carried out. The

separated horizontal and vertical features are respectively

subjected to one-dimensional convolution (conv_h and conv_v)

to learn the feature dependencies within the directions: after

dimension reorganization ([bh, 1, c]), the horizontal direction

features capture the feature correlation at different height

positions through one-dimensional convolution, enhancing the

contour perception of inclined wheat ears; after dimension

reorganization ([bw, 1, c]), the vertical direction features capture

the feature correlation at different width positions through one-
Frontiers in Plant Science 06
dimensional convolution, enhancing the ability to distinguish rows

and columns of dense wheat ears.

Finally, direction attention fusion is performed. The attention

weights of the horizontal and vertical directions (attn_h and attn_v)

are element-wise added, and after Sigmoid activation, the final

direction-channel joint attention map is generated. This attention

map can not only adaptively adjust the channel weights, inheriting

the efficiency of ECA, but also through the differential allocation of

spatial direction weights, make the model prioritize attention to

wheat ear regions with significant direction features, such as ears

with matching inclination angles and continuous ear rows in

dense arrangements.

Through the above design, the direction-aware Oriented ECA

mechanism realizes the joint modeling of “channel importance” and

“direction significance” of wheat ears. It not only avoids the neglect

of spatial information by traditional channel attention, but also

specifically optimizes the feature extraction ability for long strip and

directional targets, providing more discriminative wheat ear feature

representations for the subsequent detection head.

2.3.3 Slim-neck
Traditional YOLOv11’s feature fusion layer fuses multi-scale

features through simple concatenation or summation, failing to

fully model cross-scale feature correlation. This approach is prone

to causing key information loss, affecting target localization and

classification capabilities. Meanwhile, its high computational cost

and parameter count increase training time, storage burden, and

may induce overfitting. To address these issues, this study employs

the lightweight Slim-Neck module to reconstruct feature interaction

paths, reducing model parameters while enhancing cross-scale

aggregation of wheat ear features.

The core of the Slim-Neck (Li et al., 2022; Li et al., 2024; Huang

et al., 2025) module lies in introducing an attention mechanism to

adaptively weight feature maps of different scales, enabling the

model to focus on important features and enhance feature

representation. Attention sub-modules are established for each

feature scale, which analyze channel and spatial dimensions to

calculate feature weights and perform weighted fusion, effectively

suppressing noise, highlighting key features, and improving wheat

ear detection and recognition capabilities. Furthermore, this

module adopts cross-scale feature interaction technology,

designing special connections and convolution operations to

establish multiple cross-scale connection paths between feature

maps of different scales. This realizes bidirectional flow and

complementarity between shallow and deep features, fully

leveraging the advantages of features at different scales to improve

the model’s detection performance for wheat ears of varying sizes

and shapes.

GSConv is a novel lightweight convolutional structure, whose

structure is shown in Figure 5. It integrates standard convolution

with depthwise convolution, a fusion approach that reduces

redundant calculations in convolution operations and optimizes

the data processing flow. This integration thereby significantly

improves the convergence speed during the model training phase

and the real-time response capability during the inference phase,
frontiersin.org
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enabling the model to complete object recognition tasks with higher

efficiency while ensuring recognition accuracy.
2.4 Evaluation metrics

To test the improvement effects of this study, evaluation metrics

such as Precision (P), Recall (R), and mean Average Precision

(mAP) were used to assess the model performance. These metrics

are defined in Equations 1-3 as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

mAP =
1
no

n

i=1

Z 1

0
P(R)d(R) (3)

TP (True Positive) refers to the number of wheat ears correctly

classified, i.e., the samples that are actually wheat ears and

accurately detected by the model.

FN (False Negative) denotes the number of wheat ears

misclassified, i.e., the samples that are actually wheat ears but

missed (undetected) by the model.

FP (False Positive) represents the number of background

regions incorrectly classified, i.e., the samples that are actually

background but misidentified as wheat ears by the model.

AP (Average Precision) is the area under the precision-recall

curve for the wheat ear category, quantifying the detection accuracy

for single-category targets. Since wheat ears are the only detection

target in this study, mAP (mean Average Precision) is equivalent to

the AP value of this category. Specifically, mAP is typically the mean

of AP values across all categories, but when only one category exists,

its calculation simplifies to the AP of that single category.

In addition, when evaluating model performance, parameters

(Params) and floating - point operations (FLOPs) are also

important indicators. Parameters (Params) are static indicators

representing the number of parameters contained in the model
Frontiers in Plant Science 07
structure. They are determined before model training, usually

measured in M (millions). The number of parameters reflects the

size and complexity of the model. Floating - point operations

(FLOPs), on the other hand, are dynamic indicators referring to

the number of floating - point operations performed by the model

during operation, mostly measured in G (gigabytes). Their values

will vary with factors such as the size of the input data and the

model’s inference process. Clearly distinguishing between these two

indicators is of great significance for accurately evaluating the

model’s computational resource requirements and performance.
3 Results and analysis

3.1 Experimental environment and
parameter settings

The operational environment configuration for this study is as

follows: the operating system is Windows 11, the PU is Intel(R)

Core(TM) i7-14700KF, the GPU is NVIDIA GeForce RTX 4060 Ti

with a video memory capacity of 8GB, and the RAM is 16GB. The

deep learning framework used in the experiment is PyTorch

(Version 2.5.0), CUDA (Version 12.4), and Python (Version 3.

10), with the programming environment being PyCharm. The basic

parameters set for the experiments are as follows: the input image

size is 640×640, the learning rate is 0.01, the batch size is 8, and the

number of iterations (epochs) is set to 100.
3.2 Comparative experiments of different
attention mechanisms

To improve key performance indicators such as model

precision and recall, this study added four advanced attention

mechanisms—CA (Ma et al., 2025), GAM (Li et al., 2023), CBAM

(Woo et al., 2018), and OrientedECA—to the original YOLOv11

model for comparative detection performance experiments. The

specific experimental results of different attention mechanisms are

shown in Table 2. The results demonstrate that OrientedECA
FIGURE 5

GSConv structure.
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achieves the highest precision and recall without increasing model

parameters or computational complexity, balancing model accuracy

improvement and computational resource consumption.
3.3 Ablation experiments

To verify the improvement effects of various modifications in

the YOLO v11-EDS network on model performance, multiple

groups of ablation experiments were designed. The experimental

results are detailed in Table 3.

As shown in Table 3, the introduction of Dysample and

SlimNeck modules improved precision by 1.3 percentage points,

recall by 2.3 percentage points, mAP@0.5 by 1.5 percentage points,

and mAP@0.5:0.95 by 1.6 percentage points. Meanwhile, model

parameters were reduced by 0. 1M and floating-point operations

(FLOPs) by 0.5G, indicating that these two modules enhance

detection accuracy while achieving model lightweighting. When

the OrientedECA and SlimNeck modules are introduced, the recall

rate increases by 3.0 percentage points and mAP0.5:0.95 rises by 1.4

percentage points, which shows that OrientedECA enhances the

adaptability to the morphology and growth angle of wheat ears by

introducing the direction-aware mechanism, making feature

extraction more in line with the target morphological

characteristics, and especially improving the target recall effect in

complex scenarios. When the OrientedECA and Dysample modules

are added, the precision increases by 1.6 percentage points and

mAP0.5 goes up by 1.4 percentage points, verifying that Dysample

has the ability to retain detailed information during the feature map

magnification process, and it forms a synergy with the direction-

aware mechanism of OrientedECA, significantly improving the

detection accuracy. When all three improved modules were used

simultaneously, the model achieved optimal performance: precision

increased by 2.0 percentage points, recall by 3.5 percentage points,

mAP@0.5 by 1.5 percentage points, and mAP@0.5:0.95 by 2.5

percentage points. With parameters and FLOPs of 2.5M and

5.8G, respectively, the model reduced parameters by 0.1M and

FLOPs by 0.5G compared to the baseline, achieving dual

optimization of detection accuracy and inference efficiency.

Experimental results show that all three proposed improvements

effectively enhance model performance. The OrientedECA

attention mechanism and Dysample upsampling operator

significantly improve detection accuracy, while the SlimNeck

module achieves model lightweighting while optimizing feature

fusion and transmission. Their combination significantly
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improves the detection accuracy and inference efficiency of

YOLOv11 for wheat ears in complex farmland environments,

verifying the effectiveness and complementarity of each

improved module.
3.4 Heatmap visualization

Heatmap visualization serves as an important intuitive means to

present the model’s learning process and analysis results.With the aid

of HiResCAM heatmaps, it is possible to clearly gain insight into the

model’s sensitive regions to input data and its internal operation

mechanisms. As shown in Figure 6, taking an image from the wheat

ear dataset as an example, the heatmap generated by the YOLOv11

baseline model shows that the heat values in some wheat ear regions

are relatively low, reflecting that the model does not pay sufficient

attention to these ears. In contrast, the heatmap of the improved

YOLOv11-EDS significantly enhances the focusing ability on wheat

ear targets, with heat distribution showing a higher degree offit to the

actual ear regions. This indicates that the improved model can extract

more discriminative target features from input information, enabling

more accurate detection of wheat ears under complex backgrounds. It

effectively enhances the capability to capture ear targets, reduces

potential missed detections, and fully demonstrates the advantages of

the improved model in terms of robustness and generalization ability.

The model can more efficiently focus on key target regions of wheat

ears, thereby optimizing detection performance.
3.5 Comparative experiments of different
algorithms

To compare the detection performance of the improved model

with current mainstream object detection models for wheat ears,

algorithms including Faster-RCNN (Sun et al., 2018), RT-DETR

(Kong et al., 2024), RetinaNet (Wang et al., 2019), SSD (Liu et al.,

2016), YOLOv5 (Tan et al., 2025), YOLOv8 (Li et al., 2024), and

YOLOv11 (Khanam and Hussain, 2024) were used to train and test

on the wheat ear dataset.

Table 4 systematically compares the core performance

indicators of different models in the wheat - ear detection task.

The baseline model YOLOv11 demonstrates excellent

comprehensive performance: with a precision of 91.1%, a recall of

89.8%, and an mAP@0.5 as high as 95.3%, it only requires 2.6M

parameters and 6.3G floating - point operations. The performance
TABLE 2 Performance comparison of different attention mechanisms.

Attention mechanism P/% R/% mAP@0.5/% mAP@0.5:0.95/% Params/M FLOPs/G

CA 91.6 90 95.2 53.6 2.6 6.3

GAM 90.5 90.4 95.7 52.7 4.2 7.6

CBAM 90.9 90.5 95.8 53. 1 2.6 6.4

OrientedECA 92. 2 91.6 95.9 53.6 2.6 6.3
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of this model is significantly better than that of traditional detection

models. Its mAP@0.5 is 16.8 percentage points higher than the

78.5% of Faster - RCNN, while the number of parameters is reduced

by 34.1M and the computational load is reduced by 189.3G. Among

the YOLO series, the detection accuracy of YOLOv11 is also

leading. Its mAP@0.5 is approximately 1.9 percentage points

higher than the 93.4% of YOLOv5 and approximately 1.0

percentage point higher than the 94.3% of YOLOv8.

The improved model YOLOv11 - EDS proposed in this paper

achieves all - round performance breakthroughs: the precision is

increased to 93.1%, the recall is increased to 93.3%, and the mAP@

0.5 reaches 96.8%. The three key indicators are improved by 2.0, 3.5,

and 1.5 percentage points respectively compared with the baseline

model. In terms of model efficiency, the number of parameters is

reduced to 2.5M, and the computational amount is compressed to

5.8G, achieving the simultaneous optimization of accuracy and

efficiency. Horizontal comparison shows that the detection accuracy

of this model significantly leads the mainstream detection

frameworks: it is 12.6 percentage points higher than RetinaNet,

15.5 percentage points higher than RT - DETR, and also maintains a

clear advantage in the YOLO series - 3.4 percentage points higher

than YOLOv5 and 2.5 percentage points higher than YOLOv8.

The experimental verification shows that through the

innovative feature - fusion architecture and lightweight design,

YOLOv11 - EDS achieves higher wheat - ear detection accuracy
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in complex field scenarios while maintaining high - efficiency

computing characteristics, providing an advanced solution with

both high accuracy and low energy consumption for smart

agriculture applications.

Figure 7 presents a comparison of the performance of different

models in detecting wheat ears in the field. Here, red rectangles

represent the prediction boxes of the models, yellow rectangles

mark the wheat ears missed by the models, and white rectangles

indicate the wheat ears falsely detected by the models. It can be

clearly seen from the figure that when wheat ears are highly similar

to the complex background in terms of color and texture, YOLOv5

shows multiple yellow missed detection boxes in dense wheat ear

areas. In particular, its ability to capture small-sized wheat ears is

obviously insufficient, which fully reflects its weak ability to

distinguish similar backgrounds. Although the detection

performance of YOLOv8 and YOLOv11 has improved to some

extent, there are still a small number of yellow missed detection

boxes and white redundant boxes, which are mainly concentrated in

areas where wheat ears overlap or are occluded. The YOLOv11-EDS

proposed in this paper significantly reduces the number of missed

detections. Especially in scenarios where wheat ears are densely

arranged and the background is complex, it can still accurately

distinguish the target from the background by virtue of efficient

feature extraction capability, which strongly verifies the

effectiveness of the improvement strategy.
FIGURE 6

Visualization results of wheat ear image heatmap. (A) Original image; (B) YOLOv11; (C) YOLOv11-EDS.
TABLE 3 Ablation study results of different improvement methods.

OrientedECA Dysample SlimNeck P/% R/% mAP@0.5/% mAP@0.5:0.95/% Params/M FLOPs/G

× × × 91. 1 89.8 95.3 52.8 2.6 6.3

× ✓ ✓ 92.4 92. 1 96.8 54.4 2.5 5.8

✓ × ✓ 91.5 92.8 96.7 54.2 2.5 5.8

✓ ✓ × 92.7 92.6 96.7 54.4 2.6 6.3

✓ ✓ ✓ 93.1 93.3 96.8 55.3 2.5 5.8
√indicates the use of this module; × indicates that the module is not used.
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3.6 Counting performance analysis

Figure 8 presents a comparative analysis of wheat ear counting

performance by different models under three complex

environments: strong light, low light, and blurry conditions. In
Frontiers in Plant Science 10
the figure, bounding boxes annotate detected wheat ears, with

manual counting results used as ground truth references.

Low-light environment: The ground truth count by manual

counting was 51 wheat ears. Faster-RCNN, limited by low feature

extraction efficiency, predicted 43 ears with 8 missed detections;

YOLOv5 and YOLOv8 predicted 46 and 48 ears, with 5 and 3

missed detections, respectively; the baseline YOLOv11 predicted 48

ears with 3 misses; the improved YOLOv11-EDS, through enhanced

feature extraction, predicted 49 ears with only 2 misses, showing the

closest result to the ground truth.

Blurry environment: The manual counting ground truth was 31

ears. Faster-RCNN predicted 27 ears with 4 misses; both YOLOv5

and YOLOv8 predicted 28 ears with 3 misses each; YOLOv11

predicted 29 ears with 2 misses; YOLOv11-EDS accurately

identified all targets, with the predicted count matching the

ground truth—significantly outperforming other models.

Strong-light environment: The manual counting ground truth

was 32 ears. Faster-RCNN, constrained by shallow feature

extraction, predicted 26 ears with 6 misses; YOLOv5 predicted 29

ears with 3 misses; YOLOv8 and YOLOv11 predicted 30 ears with 2

misses each; YOLOv11-EDS predicted 31 ears with only 1 miss,

exhibiting the smallest counting error.
FIGURE 7

Comparison of detection performance of different models. (A) Original image; (B) Faster-RCNN; (C) YOLOv5; (D) YOLOv8; (E) YOLOv11; (F) YOLOv11-EDS.
The red rectangular box represents the model prediction box, the yellow rectangular box represents wheat ears missed by the model, and the white
rectangular boxes represent the redundant boxes generated by the model.
TABLE 4 Experimental results of different models.

Model
P/
%

R/
%

mAP@0.5/
%

Params/
M

FLOPs/
G

Faster-RCNN 76.3 81.2 78.5 36.7 195.6

RT-DETR 84.7 76.2 81.3 21.3 57.8

RetinaNet 85.3 81.5 84.2 35.3 241.4

SSD 80.4 79.6 80.1 26.5 92.3

YOLOv5 90.3 88.6 93.4 7.0 15.8

YOLOv8 91.2 89.5 94.3 3.0 8.1

YOLOv11 91.1 89.8 95.3 2.6 6.3

YOLOv11-
EDS

93.1 93.3 96.8 2.5 5.8
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Comprehensive experimental results show that YOLOv11-EDS,

through multi-module collaborative optimization, effectively

enhances the robustness of wheat ear detection in complex

environments and demonstrates significant advantages in

counting accuracy.
3.7 Model robustness validation on custom
dataset

To verify the effectiveness of the method proposed in this study,

the YOLOv11-EDS model trained on the global wheat ear dataset

was subjected to a robustness test using a self-built iPhone-

perspective wheat ear dataset. Figure 9 presents the visualization

results of detection performance of different models on the self -

built wheat ear dataset. Two typical images from the grouting stage

and two from the maturity stage were selected to verify the

robustness of the models. In terms of detection performance,

RetinaNet showed a certain number of missed detections when

dealing with wheat ears in complex scenarios, and its localization

accuracy decreased especially in regions with densely arranged

wheat ears or low color contrast. YOLOv11 exhibited a certain

improvement compared with RetinaNet, being able to detect more

wheat ear targets, but there is still room for improvement in the

detection of small and occluded targets.

In contrast, relying on its unique architectural design and multi

- scale feature fusion capability, YOLOv11 - EDS performed

excellently in complex scenarios at different growth stages.

Whether for plump wheat ears in the grouting stage or for the

situation of reduced color contrast in the maturity stage, the model
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could locate and identify wheat ears relatively accurately, with the

red prediction boxes highly fitting the main bodies of the wheat

ears. Missed detections were mainly concentrated in extremely

occluded regions, which indicates that YOLOv11 - EDS has good

environmental adaptability and robustness in wheat ear

detection tasks.

To further comprehensively evaluate the model performance,

this study conducted a comparative analysis of three models,

namely RetinaNet, YOLOv11, and YOLOv11-EDS, as shown in

Figure 9. The evaluation adopted three indicators: mean absolute

error (MAE), root mean squared error (RMSE), and coefficient of

determination (R²). Among them, MAE reflects the average

deviation degree between predicted values and true values, RMSE

characterizes the dispersion of prediction results, and R² measures

the goodness of fit of the trend line. All models were trained and

tested on a self-built wheat ear dataset from an iPhone perspective,

and the results are shown in Table 5.

The analysis indicates that the YOLOv11-EDS model

performed optimally in all indicators: it had the lowest MAE

(2.67), the smallest RMSE (3.87), and the highest R² (0.95), which

suggests that this model has the smallest prediction error, the most

stable results, and the best goodness of fit. In contrast, all indicators

of RetinaNet were relatively inferior, indicating that it has obvious

limitations in processing wheat ear data from an iPhone

perspective. Although YOLOv11 was superior to RetinaNet, there

were still gaps with YOLOv11-EDS in terms of accuracy and

goodness of fit. Overall, YOLOv11-EDS showed excellent

performance stability in the wheat ear detection task from an

iPhone perspective, providing a reliable technical basis for

subsequent wheat ear phenotypic analysis and breeding evaluation.
FIGURE 8

Comparison of counting performance of different models. (A) Low-light; (B) Strong-light; (C) Blurry; (a) Original images; (b) Ground truth; (c) Faster-
RCNN; (d) YOLOv5; (e) YOLOv8; (f) YOLOv11; (g) YOLOv11-EDS.
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To further validate the counting accuracy of YOLOv11-EDS, this

study randomly selected 30 representative samples from the dataset

for in-depth analysis. To ensure the reliability and scientific rigor of

the manual counting validation, a standardized verification process

and evaluation criteria were established. The counting task was

independently performed by three researchers with backgrounds in

agronomy, all of whom received unified standardized training prior
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to the experiment. The training covered the identification of

morphological characteristics of wheat ears at different growth

stages and counting rules under complex conditions (such as

occlusion and overlapping). The specific rules were as follows: (1)

Occlusion handling rule: Only targets with a visible proportion

exceeding 40% that could be unambiguously identified as

independent ears were counted; targets that could not be reliably

identified were excluded. (2) Overlapping and clustering rule: When

multiple wheat ears overlapped but were distinguishable by contour,

they were counted separately; if the ears were tightly clustered and

could not be reliably separated, the entire cluster was counted as one

unit. All counters independently completed the counting of all 30

images without knowledge of each other’s results, and the final

manual counting ground truth was obtained by averaging the

results from the three counters. The consistency of counting was
FIGURE 9

Detection visualization of self-built wheat ear dataset. (A)Original images; (B) RetinaNet; (C) YOLOv11; (D) YOLOv11-EDS; (a) Grouting period; (b) Maturity
period. The red rectangular box represents the model prediction box, the yellow rectangular box represents wheat ears missed by the model.
TABLE 5 Comparison of counting performance metrics across models.

Model MAE RMSE R²

RetinaNet 4.25 6.23 0.88

YOLOv11 3.68 4.96 0.92

YOLOv11-EDS 2.67 3.87 0.95
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quantitatively evaluated using the intraclass correlation coefficient

(ICC = 0.962), which confirmed the high reliability of the manual

ground truth. Based on the above standardized manual annotation

results, the detection results of the YOLOv11-EDS and YOLOv11

models were quantitatively compared against the manual ground

truth, as shown in Figure 10.

The YOLOv11-EDS model achieved a coefficient of

determination (R²) of 0.954 between predicted and true values,

with all data points closely distributed along the y=x reference line,

visually confirming a strong agreement. In contrast, the original

YOLOv11 model yielded an R² value of 0.898, with data points

exhibiting a more scattered distribution. The experimental results

demonstrate that the counting error of YOLOv11-EDS remains

within an acceptable range even in complex field scenarios. Its

robustness supports the requirement for automated wheat ear

detection in the field, thereby providing a reliable technical

foundation for yield estimation in precision agriculture Figure 11 is

a Bland - Altman analysis plot of the consistency between the model

and manual annotations in wheat ear counting. The horizontal axis is

“Average Wheat Ear Count (Manual + Algorithm)/2”, which is the

average value of manual counts and model counts; the vertical axis is

“Difference (Algorithm - Manual)”, that is, the difference between the

model count and the manual count. The black dashed lines represent

the limits of agreement (95% LoA), with an upper limit of 2.70 and a

lower limit of -5.50, meaning that 95% of the data points should fall

between these two lines. The light - blue translucent area corresponds
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to the 95% limits of agreement range, in which the scatter points are

distributed. As can be seen from the figure, most of the scatter points

are within the limits of agreement, and there is no obvious

distribution trend, indicating that the counting results of the

improved model YOLOv11 - EDS and manual annotations have

good consistency in the wheat ear counting task. The model

performance is relatively reliable, and it can count the number of

wheat ears relatively accurately.
3.8 Occlusion robustness test

To validate the model’s performance under complex

environments with varying lighting conditions and occlusion

scenarios, we selected multiple sets of representative images from

both public and self-built datasets. These images cover different

lighting conditions such as low light, strong light, and normal light,

and include moderate to severe occlusion phenomena. Figure 12A

shows the original images, while Figures 12B, C present the

detection results of YOLOv11 and YOLOv11-EDS, respectively,

where (a) represents low light, (b) strong light, and (c) normal light.

Red bounding boxes indicate the targets predicted by the models,

and yellow elliptical boxes mark the missed wheat ears.

The experimental results demonstrate that under different

lighting conditions and significant occlusion, YOLOv11 exhibited

a considerable number of missed detections, as evidenced by the
FIGURE 10

Scatter plot of predicted vs. true values of YOLOv11-EDS on the iPhone-view wheat ear dataset.
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notable quantity of yellow elliptical boxes. In contrast, YOLOv11-

EDS significantly reduced the number of missed detections across

all lighting conditions, demonstrating superior adaptability to both

lighting variations and occlusion. Furthermore, the improved

model maintained strong detection performance for overlapping

wheat ears, with only occasional missed detections in extreme

occlusion cases (such as wheat ears obscured by leaves by more

than 60%). These results verify that YOLOv11-ETS retains strong

detection reliability even in complex occlusion scenarios, indicating

that the proposed improvement strategies in this study effectively

enhance the model’s occlusion robustness.
4 Discussion and conclusions

Accurate detection and counting of wheat ears are pivotal for

wheat yield estimation and agricultural production management.

To address challenges in complex field environments, this study

proposes the YOLOv11-EDS model by refining YOLOv11, tailored

for efficient wheat ear detection and counting.
Fron
1. Specifically, three key improvements were implemented: the

Dysample dynamic upsampling operator was introduced to

adaptively adjust the upsampling process based on diverse
tiers in Plant Science 14
image features, enhancing feature map information

transmission and strengthening the model’s capability to

capture multi-scale wheat ear features. Additionally,

Incorporated is the specially designed the Direction-aware

Oriented Efficient Channel Attention (OrientedECA)

module, which enhances adaptability to the morphology

and growth angle of wheat ears by introducing a direction-

aware mechanism, making feature extraction more in line

with the target morphological characteristics. While guiding

the model to focus on representative feature channels and

adaptively reweighting channel-wise features, it strengthens

the learning of key directional features of wheat ears. Finally,

the Slim-Neck module was integrated to optimize the feature

fusion structure, enabling more efficient integration of cross-

layer feature information and boosting detection

performance in complex scenarios.

2. Experimental results demonstrated significant performance

advancements of YOLOv11-EDS: in terms of detection

accuracy, P increased by 2.0 percentage points, R

improved by 3.5 percentage points, mAP@0.5 rose by 1.5

percentage points, and mAP@0.5:0.95 climbed by 2.5

percentage points compared to the baseline YOLOv11,

showcasing superior target recognition and recall

capabilities. Concurrently, the model achieved effective
FIGURE 11

Bland - Altman analysis plot.
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Fron
lightweight optimization: parameter count was reduced to

2.5 M, and computational complexity (FLOPs) dropped to

5.8 G, ensuring robust detection performance while

enabling deployment on resource-constrained devices.

3. Compared with other mainstream detection networks,

YOLOv11-EDS exhibited superior comprehensive

performance in detection accuracy, miss detection rate,

and computational efficiency. Robustness testing on a

self-built wheat ear dataset (captured from an iPhone

perspective) confirmed stable detection performance

under complex field conditions, providing reliable

technical support for subsequent wheat yield estimation
tiers in Plant Science 15
and promoting the intelligent transformation of

agricultural production management. Future work will

focus on optimizing the model’s adaptability to complex

scenarios such as extreme occlusion, with particular

emphasis on exploring the incorporation of explicit

occlusion-handling mechanisms—such as partial

convolution or attention modules—to further enhance its

perception and recognition performance under occluded

conditions. Meanwhile, we will investigate multimodal data

fusion strategies to improve detection robustness and

facilitate its wider application in intelligent wheat

production systems.
FIGURE 12

Detection results comparison between YOLOv11 and YOLOv11-EDS under occlusion conditions. (A) Original images; (B) YOLOv11; (C) YOLOv11-
EDS; (a) Low light; (b) Strong light; (c) Normal light. Note: Red rectangles represent model prediction boxes, and yellow ellipses represent wheat ears
missed by the model.
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