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Introduction: As a major food crop, accurate detection and counting of wheat
ears in the field are of great significance for yield estimation. Aiming at the
problems of low detection accuracy and large computational load of existing
detection and counting methods in complex farmland environments, this study
proposes a lightweight wheat ear detection model, YOLOv11-EDS.

Methods: First, the Dysample dynamic upsampling operator is introduced to
optimize the upsampling process of feature maps and enhance feature
information transmission. Second, the Direction-aware Oriented Efficient
Channel Attention mechanism is introduced to make the model focus more
on key features and improve the ability to capture wheat ear features. Finally, the
Slim-Neck module is introduced to optimize the feature fusion structure and
enhance the model's processing capability for features of different scales.
Results: Experimental results show that the performance of the improved
YOLOV11-EDS model is significantly improved on the global wheat ear dataset.
The precision is increased by 2.0 percentage points, the recall by 3.5 percentage
points, mMAP@O0.5 by 1.5 percentage points, and mAP@0.5:0.95 by 2.5percentage
points compared with the baseline model YOLOv1l. Meanwhile, the model
parameters are reduced to 2.5 M, and the floating-point operations are
reduced to 5.8 G, which are 0. 1 M and 0.5 G lower than the baseline model,
respectively, achieving dual optimization of accuracy and efficiency. The model
still demonstrates excellent detection performance on a self-built iPhone-view
wheat ear datasets, fully verifying its robustness and environmental adaptability.
Discussion: This study provides an efficient solution for the automated analysis of
wheat phenotypic parameters in complex farmland environments, which is of
great value for promoting the development of smart agriculture.
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1 Introduction

Wheat is one of the most important food crops globally (Cai
et al, 2019), its stable yield and secure supply are directly related to
global food security (Wen et al., 2022). Accurate and efficient
detection and counting of wheat ears are of great significance for
wheat yield estimation and the development of precision agriculture
(Zhang et al., 2007). In terms of yield estimation, the number of ears
is a key factor determining yield, and its precise counting results can
provide a scientific basis for quantitative yield evaluation, thereby
supporting grain reserve decisions and market supply-demand
regulation (Liu T. et al., 2017; Wang D. et al,, 2021). In precision
agriculture, detection and counting data can provide decision
support for precision fertilization, irrigation, etc., improving
resource utilization efficiency and reducing waste and pollution.
However, traditional manual counting methods are not only time-
consuming and labor-intensive but also their results are easily
affected by factors such as subjective experience and fatigue,
making it difficult to meet the needs of large-scale agricultural
production for data timeliness and consistency (Jin et al., 2017;
Xiong et al, 2019). Therefore, developing efficient and accurate
automated detection and counting technologies for wheat ears is of
great practical significance for promoting the development of
smart agriculture.

In recent years, with the rapid development of computer vision and
deep learning technologies, object detection techniques have been
increasingly applied in the agricultural field (Zhu et al., 2016; Yuan
et al, 2022). Among them, object detection algorithms based on
Convolutional Neural Networks have become a research hotspot in
the field of wheat ear detection due to their ability of automatic feature
learning (Alzubaidi et al,, 2021). These algorithms can automatically
learn features from images to achieve accurate target recognition and
localization. In the field of wheat ear detection, many scholars have
attempted to use various object detection algorithms, such as RCNN
(Bharati and Pramanik, 2020), Faster-RCNN (Liu B. et al., 2017),
Mask-RCNN (Lin et al., 2020), and the YOLO series (Vijayakumar and
Vairavasundaram, 2024). For example, He et al. (He et al, 2020)
improved the YOLOv4 network structure, re-clustered anchors using
the k-means algorithm, and proposed a robust wheat ear detection
method suitable for natural scenes, which relies on UAV for detection.
Khaki et al. (Khaki et al, 2022) developed a WheatNet detection
network for wheat ear counting, which significantly reduced model
parameters compared to other methods. Wang et al. (Wang Y. et al,
2021) addressed occlusion and overlap issues in wheat ear counting by
proposing an improved EfficientDet-D0 model, achieving a counting
error rate of only 5.8%. Sun et al. (Sun et al., 2022) constructed a
lightweight Wheat Detection Network (WDN) for precise wheat ear
detection and counting, with an inference time of 25 ms. Zhou et al.
(Zhou et al,, 2022) proposed a Multi-Window Swin Transformer
network to solve the problem of low detection accuracy under
complex field conditions. Bhagat et al. (Bhagat et al., 2021)
introduced a lightweight WheatNet-Lite structure, reducing
parameters by 54.2M compared to YOLOv3. Shi et al. (Shi et al,
2023) developed an improved lightweight method (YOLOV5s-T) with
a model size of only 9. 1M and 2.3 ms reduced inference time. Zang
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et al. (Zang et al,, 2022) integrated an improved attention mechanism
into YOLOV5s, achieving 71.61% accuracy in wheat ear counting. Ye
etal. (Ye et al, 2023) proposed a lightweight WheatLFANet, achieving
an average precision (AP) of 0.9 for complex field wheat ears. Shen
et al. (Shen et al, 2023) developed a YOLOv5s-based lightweight
method using ShuffleNetV2 for feature extraction, introducing
lightweight upsampling to maintain accuracy, with a model weight
of 29MB. Meng et al. (Meng et al, 2023) proposed YOLOvV7-MA,
which enhanced feature extraction via convolutional block attention
modules and micro-scale detection layers, maintaining high accuracy
during both filling and maturity stages.

Despite certain progress in existing studies, limitations remain
in complex farmland scenarios. On the one hand, overlapping and
occlusion of dense wheat ears, as well as interference from similar
backgrounds, easily lead to missed detections or false detections by
models, especially insufficient capability to capture small-sized or
irregularly shaped ears. On the other hand, some lightweight
models sacrifice the depth of feature extraction to control
computational load, resulting in reduced robustness in practical
environments such as light changes and image blurriness, which
makes them unable to meet the real-time detection requirements of
field mobile devices. Therefore, how to improve the model’s ability
to capture features of wheat ears and resist interference in complex
scenarios while ensuring its lightweight nature remains an urgent
problem to be solved.

To address the above issues, this paper proposes a wheat ear
detection and counting method based on YOLOv11-EDS, which
achieves dual improvements in accuracy and efficiency through
collaborative optimization of multiple modules. Firstly, the
Direction-aware Oriented Efficient Channel Attention mechanism
is introduced into the neck network to adaptively enhance the
weights of key feature channels of wheat ears, thereby improving
the model’s ability to distinguish between targets and backgrounds.
Meanwhile, the Dysample upsampling operator is used to replace
traditional methods, which preserves more detailed information
during the magnification of feature maps and enhances the ability to
capture small-sized and dense wheat ears. In addition, the Slim-
Neck module is introduced to optimize the feature fusion layer,
which streamlines network parameters and reduces computational
load while improving the efficiency of feature transmission. The
improved model can achieve accurate detection and counting of
wheat ears in complex farmland environments, and its lightweight
design allows it to be deployed on field mobile devices. This
provides efficient technical support for wheat yield estimation and
field management, and promotes the intelligent upgrading of
agricultural production.

2 Materials and methods
2.1 Dataset construction
2.1.1 Global wheat head detection dataset 2021

In this study, the Global Wheat Head Detection Dataset 2021
was selected as the benchmark data source (David et al.,, 2021).
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Jointly constructed by international agricultural research
institutions, this dataset comprises field images captured from
major wheat-producing regions across 12 countries/regions,
including Europe, Asia, and North America. It contains 6,422
RGB images with a resolution of 1024x1024 pixels, accompanied
by 275,187 corresponding bounding box annotations. A subset was
constructed by selecting 1,140 images from the GWHD 2021
dataset. The sampling strategy was designed to maximize the
visual diversity and complexity of the dataset, ensuring the
model’s adaptability to complex field environments. Selection was
based on quantifiable features derived from image content itself,
with emphasis on achieving broad variation in key parameters such
as wheat ear density, scale, occlusion level, and lighting conditions
to enhance the model’s generalization capability and robustness.
The sampling strategy and detailed label distribution metrics of the
subset are presented in Table 1, and representative examples of
wheat ear images are shown in Figure 1.

2.1.2 Self-built iPhone-perspective wheat ear
dataset

This dataset was collected at the Comprehensive Experimental
Base of Shandong Academy of Agricultural Sciences (117°1’E, 36°

10.3389/fpls.2025.1672425

7’N) in strict accordance with standardized protocols: image
collection was conducted during the wheat filling stage (May 7,
2025) and maturity stage (May 27, 2025) respectively. During the
collection process, an iPhone device was used for shooting with
fixed parameters: the camera height was uniformly set to 1.2 meters
above the ground, and the shooting depression angle was
maintained at 15°% the target variety was Jimai 44; each image
corresponded to a 1m? standard sampling area to ensure spatial
scale consistency. The obtained original images have a resolution of
4284x5712 pixels. Considering the requirements and limitations of
model training on computing resources, preprocessing was
performed on the collected images. The images were uniformly
cropped to 1024x1024 pixels, and images with blur and distortion
exceeding the thresholds were excluded according to image quality
evaluation standards.After screening, 31 wheat images from the
milk stage and 25 from the ripening stage were finally collected.

2.2 Data annotation

The Labelme annotation tool was employed to perform
rectangular bounding box annotation on the Global Wheat Head

FIGURE 1
Some example images.
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TABLE 1 Subset sampling strategy and label distribution metrics.

Metric Details

Total images 1,140
Total annotated
40,535
ears
Mean ears per
: P 35 £ 12 (SD)
image
Density 10-20 ears: 18%; 21-40 ears: 52%; 41-60 ears: 23%; >60
distribution ears: 7%

Based on visual diversity (density, scale, occlusion,

Sampling criteria lighting)

Detection Dataset. Annotated files were saved in JSON format and
subsequently converted into TXT format (required for model
training), totaling 40,535 labels. During annotation, the category
label for wheat ears was defined as “wheat”. Post-annotation, the
dataset was partitioned into training, validation, and test sets
following an 8:1:1 ratio. Partial annotated images are illustrated
in Figure 2.

2.3 YOLO-EDS

YOLOV11, developed by Ultralytics, represents a state-of-the-
art real-time object detection model (He et al., 2025). Building upon
the core technical framework of the YOLO series, the model
achieves comprehensive enhancements in both detection accuracy
and efficiency through systematic architectural innovations and
performance optimizations. The network architecture of
YOLOVI11 comprises three key modules: the Backbone, Neck, and

10.3389/fpls.2025.1672425

Head. These modules closely collaborate and complement each
other, enabling object detection via cross-module information
interaction (Khanam and Hussain, 2024).While YOLOv11 can
detect wheat ears in field scenarios, complex field environments,
plant occlusions, and diverse wheat ear morphologies cause
conventional feature extraction and fusion methods to struggle in
capturing critical features. In particular, the features of small-sized
wheat ears are easily overlooked by the network, leading to limited
detection accuracy. To address these issues, this study proposes a
lightweight network model improved from YOLOvl11, termed
YOLOV11-EDS, whose structure is illustrated in Figure 3.

When an original-resolution field wheat ear image is input,
YOLOV11-EDS employs the following improvement strategies for
image processing. First, the Dysample upsampling operator is
incorporated to better preserve image details while enlarging the
feature map, enabling clear presentation of small-scale wheat ear
features. Next, the Efficient Channel Attention mechanism is added
to allow the model to adaptively focus on key features, effectively
suppressing background interference from wheat stalks and leaves
during feature extraction, and accurately capturing important
feature information of wheat ears across multiple scales. Then,
the Slim-Neck module is used to replace the feature fusion layer,
realizing long-range feature interaction and local feature interaction
for each pixel in the image, and optimizing feature fusion
and transmission.

2.3.1 Dysample

In the task of field wheat ear detection, optimizing the
upsampling stage is crucial to effectively address the challenges of
complex field environments, morphological differences of wheat
ears, and scale variations. This study introduces the Dysample

FIGURE 2
Some examples of annotated images.
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FIGURE 3
The network structure of YOLOv11-EDS.

dynamic upsampling operator to improve the effect of multi-scale
feature fusion and enhance the model’s detection capability for
wheat ears of different scales.

The Dysample operator (Guo et al, 2024; Lin et al, 2024;
Abulizi et al.,, 2025), drawing on the concept of deformable
convolutions, breaks through traditional kernel-based methods. It
can dynamically learn the sampling offset for each position based on
the semantic distribution of the input feature map, thereby enabling
more flexible feature upsampling. Unlike traditional upsampling
operators that rely on fixed sampling patterns, the Dysample
operator dynamically adjusts the sampling positions according to
the content of the input feature map. Taking the PyTorch
framework as an example, Dysample mainly adopts point
sampling, which not only improves resource utilization efficiency
but also simplifies the operator implementation process, providing
technical guarantees for the real-time requirements of the detection
models. The structure of Dysample is shown in Figure 4.

Compared with traditional upsampling methods, the Dysample
operator exhibits significant advantages. Traditional upsampling
methods tend to lose important detail information when restoring

sH

li Sampling Point Generator —————

H o X

WIC

feature map resolution, resulting in feature blurring. In contrast, the
Dysample operator can adaptively adjust the sampling positions
according to the content of the input feature map, enabling better
capture of detailed information in the feature map. In field wheat
ear detection scenarios, where wheat ears vary in shape, size, and
posture, the Dysample operator can adapt to these variations by
learning offsets, allowing sampling points to accurately extract
wheat ear features. This enhances the model’s robustness in
different environments and improves detection accuracy
and stability.

In this study, the Dysample upsampling operator was applied to
the Neck network of YOLOv11. The core function of the Neck
network is to fuse feature information across different scales,
providing richer and more accurate feature representations for
subsequent object detection. In the traditional YOLOv11 Neck
network, upsampling operations often use methods such as
bilinear interpolation, which easily lead to feature information
loss. During the feature fusion process in the Neck network, this
study replaced the original upsampling method with the Dysample
upsampling operator. Specifically, when upsampling low-resolution
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2g

sW sH
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FIGURE 4
DySample structure diagram.
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feature maps to the same size as high-resolution feature maps, the
Dysample operator is used for upsampling, thereby better
preserving the detail information in low-resolution feature maps
and improving the feature fusion effect. During model training, the
parameters of the Dysample operator were optimized together with
other parameters of YOLOv1l. Through the backpropagation
algorithm, the model can automatically learn appropriate
sampling offsets, enabling the Dysample operator to better adapt
to the characteristics of field wheat ear detection tasks.

2.3.2 Direction-aware oriented efficient channel
attention

Field wheat ear detection faces numerous challenges. Wheat
ears grow in a long strip shape, with dense arrangement, inclined
distribution, and mutual occlusion between ears. Traditional feature
extraction methods struggle to specifically capture the directional
features of wheat ears, such as growth angles and row arrangement
directions, which makes the model prone to confusing targets with
the background in complex scenarios, leading to false detections or
missed detections of inclined wheat ears. The ordinary convolution
operations in the YOLOV11 basic framework lack selective attention
to direction-sensitive features, while the conventional ECA
attention mechanism (Jiang et al., 2025; Qiong et al., 2025; Wang
et al., 2020), although capable of learning channel dependencies
through one-dimensional convolution, does not consider the spatial
direction information of features, making it difficult to adapt to the
morphological characteristics of wheat ears.

In view of this, this study proposes a direction-aware Oriented
ECA attention mechanism. On the basis of retaining the efficiency
of ECA, a direction feature decomposition and fusion strategy is
introduced to enhance the model’s ability to capture the directional
features of wheat ears. This mechanism first performs direction
feature separation. Aiming at the horizontal and vertical
distribution characteristics of wheat ears, two adaptive pooling
operations are used to extract direction-sensitive features:
horizontal direction pooling (avg_pool_h) compresses the width
dimension of the feature map (AdaptiveAvgPool2d((None, 1))),
retains the spatial distribution information in the height direction,
and focuses on capturing the morphological features of wheat ears
in the vertical dimension, such as ear length and inclination angle;
vertical direction pooling (avg_pool_v) compresses the height
dimension of the feature map (AdaptiveAvgPool2d((1, None))),
retains the spatial distribution information in the width direction,
and focuses on capturing the arrangement features of wheat ears in
the horizontal dimension, such as row spacing and density.

Next, direction-dependent learning is carried out. The
separated horizontal and vertical features are respectively
subjected to one-dimensional convolution (conv_h and conv_v)
to learn the feature dependencies within the directions: after
dimension reorganization ([bh, 1, c]), the horizontal direction
features capture the feature correlation at different height
positions through one-dimensional convolution, enhancing the
contour perception of inclined wheat ears; after dimension
reorganization ([bw, 1, c]), the vertical direction features capture
the feature correlation at different width positions through one-
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dimensional convolution, enhancing the ability to distinguish rows
and columns of dense wheat ears.

Finally, direction attention fusion is performed. The attention
weights of the horizontal and vertical directions (attn_h and attn_v)
are element-wise added, and after Sigmoid activation, the final
direction-channel joint attention map is generated. This attention
map can not only adaptively adjust the channel weights, inheriting
the efficiency of ECA, but also through the differential allocation of
spatial direction weights, make the model prioritize attention to
wheat ear regions with significant direction features, such as ears
with matching inclination angles and continuous ear rows in
dense arrangements.

Through the above design, the direction-aware Oriented ECA
mechanism realizes the joint modeling of “channel importance” and
“direction significance” of wheat ears. It not only avoids the neglect
of spatial information by traditional channel attention, but also
specifically optimizes the feature extraction ability for long strip and
directional targets, providing more discriminative wheat ear feature
representations for the subsequent detection head.

2.3.3 Slim-neck

Traditional YOLOV11’s feature fusion layer fuses multi-scale
features through simple concatenation or summation, failing to
fully model cross-scale feature correlation. This approach is prone
to causing key information loss, affecting target localization and
classification capabilities. Meanwhile, its high computational cost
and parameter count increase training time, storage burden, and
may induce overfitting. To address these issues, this study employs
the lightweight Slim-Neck module to reconstruct feature interaction
paths, reducing model parameters while enhancing cross-scale
aggregation of wheat ear features.

The core of the Slim-Neck (Li et al., 2022; Li et al., 2024; Huang
et al., 2025) module lies in introducing an attention mechanism to
adaptively weight feature maps of different scales, enabling the
model to focus on important features and enhance feature
representation. Attention sub-modules are established for each
feature scale, which analyze channel and spatial dimensions to
calculate feature weights and perform weighted fusion, effectively
suppressing noise, highlighting key features, and improving wheat
ear detection and recognition capabilities. Furthermore, this
module adopts cross-scale feature interaction technology,
designing special connections and convolution operations to
establish multiple cross-scale connection paths between feature
maps of different scales. This realizes bidirectional flow and
complementarity between shallow and deep features, fully
leveraging the advantages of features at different scales to improve
the model’s detection performance for wheat ears of varying sizes
and shapes.

GSConv is a novel lightweight convolutional structure, whose
structure is shown in Figure 5. It integrates standard convolution
with depthwise convolution, a fusion approach that reduces
redundant calculations in convolution operations and optimizes
the data processing flow. This integration thereby significantly
improves the convergence speed during the model training phase
and the real-time response capability during the inference phase,
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enabling the model to complete object recognition tasks with higher
efficiency while ensuring recognition accuracy.

2.4 Evaluation metrics

To test the improvement effects of this study, evaluation metrics
such as Precision (P), Recall (R), and mean Average Precision
(mAP) were used to assess the model performance. These metrics
are defined in Equations 1-3 as follows:

TP

P=— (1)
TP + FP

TP
R= TP + FN &)

1o 1
mAP = —2 P(R)d(R) (3)

niz1Jo

TP (True Positive) refers to the number of wheat ears correctly
classified, i.e., the samples that are actually wheat ears and
accurately detected by the model.

FN (False Negative) denotes the number of wheat ears
misclassified, ie., the samples that are actually wheat ears but
missed (undetected) by the model.

FP (False Positive) represents the number of background
regions incorrectly classified, ie., the samples that are actually
background but misidentified as wheat ears by the model.

AP (Average Precision) is the area under the precision-recall
curve for the wheat ear category, quantifying the detection accuracy
for single-category targets. Since wheat ears are the only detection
target in this study, mAP (mean Average Precision) is equivalent to
the AP value of this category. Specifically, mAP is typically the mean
of AP values across all categories, but when only one category exists,
its calculation simplifies to the AP of that single category.

In addition, when evaluating model performance, parameters
(Params) and floating - point operations (FLOPs) are also
important indicators. Parameters (Params) are static indicators

representing the number of parameters contained in the model

C2/2 channels

—p» Conv —»

v

10.3389/fpls.2025.1672425

structure. They are determined before model training, usually
measured in M (millions). The number of parameters reflects the
size and complexity of the model. Floating - point operations
(FLOPs), on the other hand, are dynamic indicators referring to
the number of floating - point operations performed by the model
during operation, mostly measured in G (gigabytes). Their values
will vary with factors such as the size of the input data and the
model’s inference process. Clearly distinguishing between these two
indicators is of great significance for accurately evaluating the
model’s computational resource requirements and performance.

3 Results and analysis

3.1 Experimental environment and
parameter settings

The operational environment configuration for this study is as
follows: the operating system is Windows 11, the PU is Intel(R)
Core(TM) i7-14700KF, the GPU is NVIDIA GeForce RTX 4060 Ti
with a video memory capacity of 8GB, and the RAM is 16GB. The
deep learning framework used in the experiment is PyTorch
(Version 2.5.0), CUDA (Version 12.4), and Python (Version 3.
10), with the programming environment being PyCharm. The basic
parameters set for the experiments are as follows: the input image
size is 640x640, the learning rate is 0.01, the batch size is 8, and the
number of iterations (epochs) is set to 100.

3.2 Comparative experiments of different
attention mechanisms

To improve key performance indicators such as model
precision and recall, this study added four advanced attention
mechanisms—CA (Ma et al., 2025), GAM (Li et al., 2023), CBAM
(Woo et al, 2018), and OrientedECA—to the original YOLOv11
model for comparative detection performance experiments. The
specific experimental results of different attention mechanisms are
shown in Table 2. The results demonstrate that OrientedECA

" v
mput DWConv Concat —» —» Shuffle —»
C1 channels +
’ output
C2/2 channels
C2/2 channels
FIGURE 5
GSConv structure.
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achieves the highest precision and recall without increasing model
parameters or computational complexity, balancing model accuracy
improvement and computational resource consumption.

3.3 Ablation experiments

To verify the improvement effects of various modifications in
the YOLO v11-EDS network on model performance, multiple
groups of ablation experiments were designed. The experimental
results are detailed in Table 3.

As shown in Table 3, the introduction of Dysample and
SlimNeck modules improved precision by 1.3 percentage points,
recall by 2.3 percentage points, mnAP@0.5 by 1.5 percentage points,
and mAP@0.5:0.95 by 1.6 percentage points. Meanwhile, model
parameters were reduced by 0. 1M and floating-point operations
(FLOPs) by 0.5G, indicating that these two modules enhance
detection accuracy while achieving model lightweighting. When
the OrientedECA and SlimNeck modules are introduced, the recall
rate increases by 3.0 percentage points and mAP0.5:0.95 rises by 1.4
percentage points, which shows that OrientedECA enhances the
adaptability to the morphology and growth angle of wheat ears by
introducing the direction-aware mechanism, making feature
extraction more in line with the target morphological
characteristics, and especially improving the target recall effect in
complex scenarios. When the OrientedECA and Dysample modules
are added, the precision increases by 1.6 percentage points and
mAPO.5 goes up by 1.4 percentage points, verifying that Dysample
has the ability to retain detailed information during the feature map
magnification process, and it forms a synergy with the direction-
aware mechanism of OrientedECA, significantly improving the
detection accuracy. When all three improved modules were used
simultaneously, the model achieved optimal performance: precision
increased by 2.0 percentage points, recall by 3.5 percentage points,
mAP@0.5 by 1.5 percentage points, and mAP@0.5:0.95 by 2.5
percentage points. With parameters and FLOPs of 2.5M and
5.8G, respectively, the model reduced parameters by 0.1M and
FLOPs by 0.5G compared to the baseline, achieving dual
optimization of detection accuracy and inference efficiency.
Experimental results show that all three proposed improvements
effectively enhance model performance. The OrientedECA
attention mechanism and Dysample upsampling operator
significantly improve detection accuracy, while the SlimNeck
module achieves model lightweighting while optimizing feature
fusion and transmission. Their combination significantly

TABLE 2 Performance comparison of different attention mechanisms.

Attention mechanism

10.3389/fpls.2025.1672425

improves the detection accuracy and inference efficiency of
YOLOv11 for wheat ears in complex farmland environments,
verifying the effectiveness and complementarity of each
improved module.

3.4 Heatmap visualization

Heatmap visualization serves as an important intuitive means to
present the model’s learning process and analysis results. With the aid
of HiResCAM heatmaps, it is possible to clearly gain insight into the
model’s sensitive regions to input data and its internal operation
mechanisms. As shown in Figure 6, taking an image from the wheat
ear dataset as an example, the heatmap generated by the YOLOv11
baseline model shows that the heat values in some wheat ear regions
are relatively low, reflecting that the model does not pay sufficient
attention to these ears. In contrast, the heatmap of the improved
YOLOvV11-EDS significantly enhances the focusing ability on wheat
ear targets, with heat distribution showing a higher degree offit to the
actual ear regions. This indicates that the improved model can extract
more discriminative target features from input information, enabling
more accurate detection of wheat ears under complex backgrounds. It
effectively enhances the capability to capture ear targets, reduces
potential missed detections, and fully demonstrates the advantages of
the improved model in terms of robustness and generalization ability.
The model can more efficiently focus on key target regions of wheat
ears, thereby optimizing detection performance.

3.5 Comparative experiments of different
algorithms

To compare the detection performance of the improved model
with current mainstream object detection models for wheat ears,
algorithms including Faster-RCNN (Sun et al, 2018), RT-DETR
(Kong et al., 2024), RetinaNet (Wang et al., 2019), SSD (Liu et al.,
2016), YOLOVS5 (Tan et al., 2025), YOLOvS8 (Li et al.,, 2024), and
YOLOv11 (Khanam and Hussain, 2024) were used to train and test
on the wheat ear dataset.

Table 4 systematically compares the core performance
indicators of different models in the wheat - ear detection task.
The baseline model YOLOv11l demonstrates excellent
comprehensive performance: with a precision of 91.1%, a recall of
89.8%, and an mAP@0.5 as high as 95.3%, it only requires 2.6M
parameters and 6.3G floating - point operations. The performance

CA 91.6 90 ‘ 95.2
GAM 90.5 90.4 ‘ 95.7
CBAM 90.9 90.5 ‘ 95.8
OrientedECA 92.2 91.6 ‘ 95.9

mAP@0.5:0.95/% Params/M FLOPs/G
53.6 26 63
52.7 42 7.6
53.1 26 6.4
53.6 26 63
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TABLE 3 Ablation study results of different improvement methods.

10.3389/fpls.2025.1672425

OrientedECA Dysample SlimNeck P/% R/% mAP@0.5/% mAP@O0.5:0.95/%  Params/M FLOPs/G

X X x 91.1 89.8
X 4 v 92.4 92.1
4 x v 91.5 92.8
v 4 X 92.7 92.6
4 4 v 93.1 933

vindicates the use of this module; x indicates that the module is not used.

of this model is significantly better than that of traditional detection
models. Its mAP@0.5 is 16.8 percentage points higher than the
78.5% of Faster - RCNN, while the number of parameters is reduced
by 34.1M and the computational load is reduced by 189.3G. Among
the YOLO series, the detection accuracy of YOLOvI1 is also
leading. Its mAP@0.5 is approximately 1.9 percentage points
higher than the 93.4% of YOLOv5 and approximately 1.0
percentage point higher than the 94.3% of YOLOVS.

The improved model YOLOv11 - EDS proposed in this paper
achieves all - round performance breakthroughs: the precision is
increased to 93.1%, the recall is increased to 93.3%, and the mAP@
0.5 reaches 96.8%. The three key indicators are improved by 2.0, 3.5,
and 1.5 percentage points respectively compared with the baseline
model. In terms of model efficiency, the number of parameters is
reduced to 2.5M, and the computational amount is compressed to
5.8G, achieving the simultaneous optimization of accuracy and
efficiency. Horizontal comparison shows that the detection accuracy
of this model significantly leads the mainstream detection
frameworks: it is 12.6 percentage points higher than RetinaNet,
15.5 percentage points higher than RT - DETR, and also maintains a
clear advantage in the YOLO series - 3.4 percentage points higher
than YOLOV5 and 2.5 percentage points higher than YOLOVS.

The experimental verification shows that through the
innovative feature - fusion architecture and lightweight design,
YOLOVI11 - EDS achieves higher wheat - ear detection accuracy

FIGURE 6

95.3 52.8 2.6 6.3
96.8 54.4 2.5 5.8
96.7 54.2 2.5 5.8
96.7 54.4 2.6 6.3
96.8 55.3 2.5 5.8

in complex field scenarios while maintaining high - efficiency
computing characteristics, providing an advanced solution with
both high accuracy and low energy consumption for smart
agriculture applications.

Figure 7 presents a comparison of the performance of different
models in detecting wheat ears in the field. Here, red rectangles
represent the prediction boxes of the models, yellow rectangles
mark the wheat ears missed by the models, and white rectangles
indicate the wheat ears falsely detected by the models. It can be
clearly seen from the figure that when wheat ears are highly similar
to the complex background in terms of color and texture, YOLOvV5
shows multiple yellow missed detection boxes in dense wheat ear
areas. In particular, its ability to capture small-sized wheat ears is
obviously insufficient, which fully reflects its weak ability to
distinguish similar backgrounds. Although the detection
performance of YOLOv8 and YOLOv11 has improved to some
extent, there are still a small number of yellow missed detection
boxes and white redundant boxes, which are mainly concentrated in
areas where wheat ears overlap or are occluded. The YOLOv11-EDS
proposed in this paper significantly reduces the number of missed
detections. Especially in scenarios where wheat ears are densely
arranged and the background is complex, it can still accurately
distinguish the target from the background by virtue of efficient
feature extraction capability, which strongly verifies the

effectiveness of the improvement strategy.

Visualization results of wheat ear image heatmap. (A) Original image; (B) YOLOv11; (C) YOLOv11-EDS.
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TABLE 4 Experimental results of different models.

mAP@O0.5/ Params/  FLOPs/

%
Faster-RCNN | 763 812 | 785 367 195.6
RT-DETR 847 | 762 | 813 213 57.8
RetinaNet 853 | 815 | 842 353 2414
SSD 804 | 796  80.1 265 923
YOLOVS 903 | 886 | 934 7.0 15.8
YOLOv8 91.2 89.5 94.3 3.0 8.1
YOLOVI1 911 | 898 | 953 26 63
YOLOvIL- 93.1 93.3 96.8 2.5 5.8
EDS

3.6 Counting performance analysis

Figure 8 presents a comparative analysis of wheat ear counting
performance by different models under three complex
environments: strong light, low light, and blurry conditions. In

10.3389/fpls.2025.1672425

the figure, bounding boxes annotate detected wheat ears, with
manual counting results used as ground truth references.

Low-light environment: The ground truth count by manual
counting was 51 wheat ears. Faster-RCNN, limited by low feature
extraction efficiency, predicted 43 ears with 8 missed detections;
YOLOV5 and YOLOV8 predicted 46 and 48 ears, with 5 and 3
missed detections, respectively; the baseline YOLOvVI11 predicted 48
ears with 3 misses; the improved YOLOv11-EDS, through enhanced
feature extraction, predicted 49 ears with only 2 misses, showing the
closest result to the ground truth.

Blurry environment: The manual counting ground truth was 31
ears. Faster-RCNN predicted 27 ears with 4 misses; both YOLOv5
and YOLOV8 predicted 28 ears with 3 misses each; YOLOvI11
predicted 29 ears with 2 misses; YOLOvVI1-EDS accurately
identified all targets, with the predicted count matching the
ground truth—significantly outperforming other models.

Strong-light environment: The manual counting ground truth
was 32 ears. Faster-RCNN, constrained by shallow feature
extraction, predicted 26 ears with 6 misses; YOLOV5 predicted 29
ears with 3 misses; YOLOv8 and YOLOV11 predicted 30 ears with 2
misses each; YOLOvV11-EDS predicted 31 ears with only 1 miss,
exhibiting the smallest counting error.

FIGURE 7

Comparison of detection performance of different models. (A) Original image; (B) Faster-RCNN; (C) YOLOV5; (D) YOLOVS; (E) YOLOv11; (F) YOLOv11-EDS.
The red rectangular box represents the model prediction box, the yellow rectangular box represents wheat ears missed by the model, and the white

rectangular boxes represent the redundant boxes generated by the model.
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FIGURE 8

10.3389/fpls.2025.1672425

Comparison of counting performance of different models. (A) Low-light; (B) Strong-light; (C) Blurry; (a) Original images; (b) Ground truth; (c) Faster-

RCNN; (d) YOLOVS; (e) YOLOVS; (f) YOLOvV1L; (g) YOLOV11-EDS.

Comprehensive experimental results show that YOLOv11-EDS,
through multi-module collaborative optimization, effectively
enhances the robustness of wheat ear detection in complex
environments and demonstrates significant advantages in
counting accuracy.

3.7 Model robustness validation on custom
dataset

To verify the effectiveness of the method proposed in this study,
the YOLOv11-EDS model trained on the global wheat ear dataset
was subjected to a robustness test using a self-built iPhone-
perspective wheat ear dataset. Figure 9 presents the visualization
results of detection performance of different models on the self -
built wheat ear dataset. Two typical images from the grouting stage
and two from the maturity stage were selected to verify the
robustness of the models. In terms of detection performance,
RetinaNet showed a certain number of missed detections when
dealing with wheat ears in complex scenarios, and its localization
accuracy decreased especially in regions with densely arranged
wheat ears or low color contrast. YOLOvI1 exhibited a certain
improvement compared with RetinaNet, being able to detect more
wheat ear targets, but there is still room for improvement in the
detection of small and occluded targets.

In contrast, relying on its unique architectural design and multi
- scale feature fusion capability, YOLOvI1 - EDS performed
excellently in complex scenarios at different growth stages.
Whether for plump wheat ears in the grouting stage or for the
situation of reduced color contrast in the maturity stage, the model
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could locate and identify wheat ears relatively accurately, with the
red prediction boxes highly fitting the main bodies of the wheat
ears. Missed detections were mainly concentrated in extremely
occluded regions, which indicates that YOLOv11 - EDS has good
environmental adaptability and robustness in wheat ear
detection tasks.

To further comprehensively evaluate the model performance,
this study conducted a comparative analysis of three models,
namely RetinaNet, YOLOv11, and YOLOv11-EDS, as shown in
Figure 9. The evaluation adopted three indicators: mean absolute
error (MAE), root mean squared error (RMSE), and coefficient of
determination (R?). Among them, MAE reflects the average
deviation degree between predicted values and true values, RMSE
characterizes the dispersion of prediction results, and R*> measures
the goodness of fit of the trend line. All models were trained and
tested on a self-built wheat ear dataset from an iPhone perspective,
and the results are shown in Table 5.

The analysis indicates that the YOLOv11-EDS model
performed optimally in all indicators: it had the lowest MAE
(2.67), the smallest RMSE (3.87), and the highest R* (0.95), which
suggests that this model has the smallest prediction error, the most
stable results, and the best goodness of fit. In contrast, all indicators
of RetinaNet were relatively inferior, indicating that it has obvious
limitations in processing wheat ear data from an iPhone
perspective. Although YOLOv11 was superior to RetinaNet, there
were still gaps with YOLOvI11-EDS in terms of accuracy and
goodness of fit. Overall, YOLOv11-EDS showed excellent
performance stability in the wheat ear detection task from an
iPhone perspective, providing a reliable technical basis for
subsequent wheat ear phenotypic analysis and breeding evaluation.
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FIGURE 9

Detection visualization of self-built wheat ear dataset. (A)Original images; (B) RetinaNet; (C) YOLOv11; (D) YOLOV11-EDS; (a) Grouting period; (b) Maturity
period. The red rectangular box represents the model prediction box, the yellow rectangular box represents wheat ears missed by the model.

To further validate the counting accuracy of YOLOv11-EDS, this
study randomly selected 30 representative samples from the dataset
for in-depth analysis. To ensure the reliability and scientific rigor of
the manual counting validation, a standardized verification process
and evaluation criteria were established. The counting task was
independently performed by three researchers with backgrounds in
agronomy, all of whom received unified standardized training prior

TABLE 5 Comparison of counting performance metrics across models.

Model MAE RMSE R?
RetinaNet ‘ 425 623 0.88
YOLOV11 ‘ 3.68 4.96 0.92
YOLOV11-EDS ‘ 2.67 3.87 0.95
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to the experiment. The training covered the identification of
morphological characteristics of wheat ears at different growth
stages and counting rules under complex conditions (such as
occlusion and overlapping). The specific rules were as follows: (1)
Occlusion handling rule: Only targets with a visible proportion
exceeding 40% that could be unambiguously identified as
independent ears were counted; targets that could not be reliably
identified were excluded. (2) Overlapping and clustering rule: When
multiple wheat ears overlapped but were distinguishable by contour,
they were counted separately; if the ears were tightly clustered and
could not be reliably separated, the entire cluster was counted as one
unit. All counters independently completed the counting of all 30
images without knowledge of each other’s results, and the final
manual counting ground truth was obtained by averaging the
results from the three counters. The consistency of counting was
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quantitatively evaluated using the intraclass correlation coefficient
(ICC = 0.962), which confirmed the high reliability of the manual
ground truth. Based on the above standardized manual annotation
results, the detection results of the YOLOv11-EDS and YOLOv11
models were quantitatively compared against the manual ground
truth, as shown in Figure 10.

The YOLOv11-EDS model achieved a coefficient of
determination (R*) of 0.954 between predicted and true values,
with all data points closely distributed along the y=x reference line,
visually confirming a strong agreement. In contrast, the original
YOLOv11 model yielded an R* value of 0.898, with data points
exhibiting a more scattered distribution. The experimental results
demonstrate that the counting error of YOLOvI1-EDS remains
within an acceptable range even in complex field scenarios. Its
robustness supports the requirement for automated wheat ear
detection in the field, thereby providing a reliable technical
foundation for yield estimation in precision agriculture Figure 11 is
a Bland - Altman analysis plot of the consistency between the model
and manual annotations in wheat ear counting. The horizontal axis is
“Average Wheat Ear Count (Manual + Algorithm)/2”, which is the
average value of manual counts and model counts; the vertical axis is
“Difference (Algorithm - Manual)”, that is, the difference between the
model count and the manual count. The black dashed lines represent
the limits of agreement (95% LoA), with an upper limit of 2.70 and a
lower limit of -5.50, meaning that 95% of the data points should fall
between these two lines. The light - blue translucent area corresponds

10.3389/fpls.2025.1672425

to the 95% limits of agreement range, in which the scatter points are
distributed. As can be seen from the figure, most of the scatter points
are within the limits of agreement, and there is no obvious
distribution trend, indicating that the counting results of the
improved model YOLOv11 - EDS and manual annotations have
good consistency in the wheat ear counting task. The model
performance is relatively reliable, and it can count the number of
wheat ears relatively accurately.

3.8 Occlusion robustness test

To validate the model’s performance under complex
environments with varying lighting conditions and occlusion
scenarios, we selected multiple sets of representative images from
both public and self-built datasets. These images cover different
lighting conditions such as low light, strong light, and normal light,
and include moderate to severe occlusion phenomena. Figure 12A
shows the original images, while Figures 12B, C present the
detection results of YOLOv11 and YOLOvVI11-EDS, respectively,
where (a) represents low light, (b) strong light, and (c) normal light.
Red bounding boxes indicate the targets predicted by the models,
and yellow elliptical boxes mark the missed wheat ears.

The experimental results demonstrate that under different
lighting conditions and significant occlusion, YOLOv11 exhibited
a considerable number of missed detections, as evidenced by the
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FIGURE 10

Scatter plot of predicted vs. true values of YOLOvV11-EDS on the iPhone-view wheat ear dataset.
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Bland - Altman analysis plot.

notable quantity of yellow elliptical boxes. In contrast, YOLOv11-
EDS significantly reduced the number of missed detections across
all lighting conditions, demonstrating superior adaptability to both
lighting variations and occlusion. Furthermore, the improved
model maintained strong detection performance for overlapping
wheat ears, with only occasional missed detections in extreme
occlusion cases (such as wheat ears obscured by leaves by more
than 60%). These results verify that YOLOvI11-ETS retains strong
detection reliability even in complex occlusion scenarios, indicating
that the proposed improvement strategies in this study effectively
enhance the model’s occlusion robustness.

4 Discussion and conclusions

Accurate detection and counting of wheat ears are pivotal for
wheat yield estimation and agricultural production management.
To address challenges in complex field environments, this study
proposes the YOLOv11-EDS model by refining YOLOv11, tailored
for efficient wheat ear detection and counting.

1. Specifically, three key improvements were implemented: the

Dysample dynamic upsampling operator was introduced to
adaptively adjust the upsampling process based on diverse
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image features, enhancing feature map information
transmission and strengthening the model’s capability to
capture multi-scale wheat ear features. Additionally,
Incorporated is the specially designed the Direction-aware
Oriented Efficient Channel Attention (OrientedECA)
module, which enhances adaptability to the morphology
and growth angle of wheat ears by introducing a direction-
aware mechanism, making feature extraction more in line
with the target morphological characteristics. While guiding
the model to focus on representative feature channels and
adaptively reweighting channel-wise features, it strengthens
the learning of key directional features of wheat ears. Finally,
the Slim-Neck module was integrated to optimize the feature
fusion structure, enabling more efficient integration of cross-
layer feature information and boosting detection
performance in complex scenarios.

. Experimental results demonstrated significant performance

advancements of YOLOv11-EDS: in terms of detection
accuracy, P increased by 2.0 percentage points, R
improved by 3.5 percentage points, mAP@0.5 rose by 1.5
percentage points, and mAP@0.5:0.95 climbed by 2.5
percentage points compared to the baseline YOLOv11,
showcasing superior target recognition and recall
capabilities. Concurrently, the model achieved effective
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FIGURE 12
Detection results comparison between YOLOv11 and YOLOv11-EDS under occlusion conditions. (A) Original images; (B) YOLOv11; (C) YOLOv11-

EDS; (a) Low light; (b) Strong light; (c) Normal light. Note: Red rectangles represent model prediction boxes, and yellow ellipses represent wheat ears
missed by the model.

lightweight optimization: parameter count was reduced to
2.5 M, and computational complexity (FLOPs) dropped to
5.8 G, ensuring robust detection performance while
enabling deployment on resource-constrained devices.

. Compared with other mainstream detection networks,

YOLOvVI11-EDS exhibited superior comprehensive
performance in detection accuracy, miss detection rate,
and computational efficiency. Robustness testing on a
self-built wheat ear dataset (captured from an iPhone
perspective) confirmed stable detection performance
under complex field conditions, providing reliable
technical support for subsequent wheat yield estimation
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and promoting the intelligent transformation of
agricultural production management. Future work will
focus on optimizing the model’s adaptability to complex
scenarios such as extreme occlusion, with particular
emphasis on exploring the incorporation of explicit
occlusion-handling mechanisms—such as partial
convolution or attention modules—to further enhance its
perception and recognition performance under occluded
conditions. Meanwhile, we will investigate multimodal data
fusion strategies to improve detection robustness and
facilitate its wider application in intelligent wheat
production systems.
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