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Metabolomics combined with
transcriptomics reveals the
formation mechanism of
different leaf colors of
Heuchera micrantha

Yuxi Wang™, Yumeng Tang®, Xi Chen*, Xiaodong Yang®,
Qi Zhou?, Yueheng Hu?, Xiaohua Meng* and Jialin Peng?

!College of Environmental Ecology, Jiangsu Open University, Nanjing, China, ?College of Horticulture,
Nanjing Agricultural University, Nanjing, China

Introduction: The vivid colors of color-leafed plants endow plants with unique
ornamental value. At present, there are many researches focusing on the
mechanism of flower color formation, while there is less interesting research
on color-leafed plants. As an excellent color-leafed plant, Heuchera micrantha
has only been studied for its pigment content and physiological characteristics,
and the mechanism of color-leafed formation has not been characterized yet.
Methods: In this study, we used two varieties of Heuchera micrantha with green
and red leaves as materials, and employed a combination of metabolomics and
transcriptomics to reveal the molecular mechanisms underlying the formation of
different color leaves.

Results: Through observation of phenotype, analysis of metabolomics and
transcriptomics, and combined analysis of multi-omics, it was found that
differential metabolites and differentially expressed genes were enriched in
flavonoid metabolism and related pathways. Nine MYB and bHLH
transcription-factor candidates implicated in flavonoid metabolism were
selected and functionally annotated; five are predicted to act as activators and
four as repressors of the flavonoid biosynthetic pathway.

Discussion: In summary, this study provides important insights into the coloring
mechanism of color-leafed plants and provides gene reserves for subsequent
targeted breeding.
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Introduction

The ornamental value of ornamental plants largely comes from
their colorful appearance. The color of plants mainly comes from
pigments such as chlorophyll, carotenoids, flavonoids, betaine, etc
(Tanaka et al., 2008; Tanaka et al., 2009). These pigments not only
make plants look beautiful, but also help them carry out
photosynthesis, attract pollinators, and spread seeds (Cazzonelli,
2011; Wen et al., 2020; Singh et al., 2021; Tanaka, 2025). In addition,
they also help plants resist external pressures such as oxidation,
ultraviolet radiation, and microbial pathogens (Imene et al., 2010;
Cazzonelli, 2011; Kristanto et al., 2021).

As one of the important ornamental features, the study of the
mechanism of plant color formation has a long history. Research
has shown that changes in the color of plants are caused by
variations in the types and contents of their intrinsic plant
pigments. Among them, flavonoids are the most widely present
type of plant pigments. It can endow plants with a wide range of
colors and determine the color of most angiosperms (Tanaka et al.,
2008; Zhao and Tao, 2015; Yonekura-Sakakibara et al., 2019).
Numerous studies have shown that the flavonoid metabolism
pathway is highly conserved during plant evolution (Winkel
Shirley, 2001; Petroni and Tonelli, 2011; Wen et al., 2020), and its
biosynthesis is regulated by flavonoid biosynthesis structural genes
and upstream related transcription factors, such as myeloblastosis
(MYB), basic helix-loop-helix (bHLH), WRKY, YABBY, WD40-
repeat proteins (WD40) (Koes et al., 2005; Pang et al., 2009; Cong
et al,, 2021; Kayani et al,, 2021).

There are many colorful organs in ornamental plants, including
flowers, fruits, leaves, and stems. However, current research on the
coloring mechanism and regulation of ornamental plants is mostly
focused on flower colors (Yin et al., 2021; Erickson and Pessoa,
2022; Shen et al., 2024), with few research on colored leaves. Color-
leafed ornamentals can maintain their vibrant colors throughout
the entire growing season, prolonging viewing time with minimal
maintenance costs and adding a sense of layering to urban
landscapes. Therefore, it is of great significance to conduct
research on the coloring mechanism and regulation of colorleafed
plants. This can help explore and understand the diversity of plant
color-leafed, as well as screening candidate genes for color-leafed
regulation. It also helps to selectively cultivate more color-leafed
plants to beautify the environment. Heuchera micrantha is a highly
valuable horticultural ornamental plant known for its unique leaf
shape and colorful leaves (Rabe and Soltis, 1999). Its leaves exhibit a
diverse range of colors, including green, yellow, red, and multiple
colors, and its color changes to varying degrees with light,
temperature, and other environmental factors. Meanwhile,
Heuchera micrantha exhibits strong environmental adaptability. It
has resistant to cold and can withstand lower temperatures (Wang
and Deng, 2014). At present, research on the mechanism and
regulation of plant color formation is mainly focused on flower
color or fruit color (Erika Cavallini and Finezzo, 2015; Yin et al,,
2021; Erickson and Pessoa, 2022). Research on Heuchera micrantha
involves its physiological characteristics (Wang and Deng, 2014),
lipid metabolism (Gong et al., 2023), alkaloid metabolism (Gong
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etal., 2024), flavonoid species (Wilkins and Bohm, 1976), etc., while
there is a lack of research on the formation and regulatory
mechanisms of its different leaf colors.

In this study, we have taken Heuchera micrantha with different
leaf colors asresearch object, and use transcriptome and
metabolome to comprehensively understand the activity level and
key nodes of metabolic pathways. It uncovers the pathways and
genes driving the formation of color-leafed in Heuchera micrantha
and elucidates how color-leafed forms. It also provides potential
genetic resources and theoretical support for the genetic
improvement of color-leafed traits in horticultural plants and the
cultivation of new varieties.

Methods
Cultivation conditions for plant materials

We have chosen leaves that are representative and of pure color of
Heuchera micrantha, namely red and green. The plants were planted in
a greenhouse with a light exposure time of 16 hours at a temperature of
24°C, a dark time of 8 hours at a temperature of 16°C, and a humidity
of 70% throughout the entire process. At least 5 biological replicates of
each color of leaf were collected at the same leaf age of approximately
ten leaves, with a portion used for subsequent color measurements and
another portion frozen at -80°C for future experiments, such as
metabolic analysis and transciptomic analysis.

Measurement of color-leafed phenotype

The Minolta CR-400 handheld colorimeter (Konica Minolta,
Japan) were used to, ascertain the color attributes of two different
colored Heuchera micrantha leaves, referring to the CIELab color
system (Chen et al., 2013). Based on the instruction manual, the
measured values of luminance (L*) and chromatic elements a* and
b* were obtained, and then the saturation or chromaticity (C*) was
calculated using the formula C *=(a**+b**)"> (Gonnet, 1998). The
experiment was conducted six times and the average was taken to
ensure reliability.

Metabolomics analysis

Each sample contains six biological replicates for metabolomics
analysis. Metabolite determination were conducted by LC
Biotechnology Co., Ltd. (Hangzhou, China). The sample
metabolites of leaf sample were extracted with 80% methanol,
followed by Ultra Performance Liquid Chromatography-Tandem
Mass Spectrometry (UPLC-MS/MS) analysis using the Vanquish
Flex Ultra-high Performance Liquid Chromatography system
(Thermo Fisher Scientific, Germany) and Q-Exactive Plus system
(Thermo Fisher Scientific, Germany). XCMS software is used to
preprocess the collected mass spectrometry data, including peak
picking, peak grouping, retention time correction, secondary peak
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grouping, isotope and adduct labeling (Smith et al., 2006). Data
analysis was performed using the R package (Supplementary Table
S2), which included statistical analysis such as normalization,
hierarchical clustering, PCA, and PLSDA. Significant metabolites
were identified through a combination of P-values, fold changes,
and VIP scores. GSEA and MSigDB enrichment analysis pinpointed
differential KEGG gene sets, with significance determined by NES,
p-values, and q-values. Metabolites were ultimately mapped to their
respective pathways.

Transcriptome construction and analysis of
differential expression genes

Total RNA was extracted from different colored leaves using
RNAiso Reagent (Takara, Tokyo, Japan) according to the
manufacturer’s instructions, six ¢cDNA libraries for Green and
Red leaves were constructed with three biological replicates for
each samples. The RNA libraries were sequenced on the illumina
NovaseqTM 6000 platform by LC Bio Technology CO.,Ltd
(Hangzhou, China). Subsequent bioinformatic analysis was
performed using the OmicStudio tools at https://

www.omicstudio.cn/tool (Lyu et al., 2023).

Joint analysis of metabolomics and
transcriptomics

Significant differentially expressed genes and metabolites are
screened in transcriptome and metabolome data, respectively.
Then, based on the intersection of these pathways, differential

10.3389/fpls.2025.1672924

expressed genes and differential metabolites within the
intersecting pathways are sought. Subsequently, the structure is
depicted as a network diagram, displaying the associated data, with
a particular emphasis on the pathways of interest and the
differential expression patterns of RNAs. The R package used for
data analysis is shown in the Supplementary Table S2.

Statistical analysis

Data are shown as means. Student’s t-test was used for
comparisons between 2 groups. Differentially expressed genes are
classified based on FC (Fold Change) =2 or FC < 0.5 (i.e. absolute
value of log,FC>1) and False Discovery Rate (FDR) value<0.05
(JlogoFC|=1 & FDR<0.05) as the standard. Differential metabolites
need to satisfy: FC>1.2 or FC>1/1.2 (p value < 0.05, VIP 21). In the
heat map drawing, we use Zero Mean Unit Variance Normalization to
normalize each row of data, and the formula is: Z=(X-p)/c
(Paulson, 1942).

Results
Analysis of color-leafed phenotype

Under the same growth state, Heuchera micrantha with
different leaf colors, namely green and red, were selected as the
plant materials for this study (Figure 1A). In order to quantify its
leaf color phenotype, we used the Minolta CR-400 handheld
colorimeter to measure the L*, a*, b* value and calculate the C
value of different leaves. The results indicate that the brightness (L*)
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FIGURE 1

The phenotype of Heuchera micrantha leaves with different colors. Bars = 1 cm. (A) Heuchera micrantha with different leaf colors, namely Green
and Red. (B-E). CIELab* color parameters of leaves of three different colors, including values of lightness (L*), a*, b*, and chroma (C*). Error bars

indicate the standard deviation of six biological replicates.
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of green leaves is significantly higher than that of red leaves
(Figure 1B). In the measurement of a* value, green leaves are
negative, indicating that they belong to the green system, while
red leaves are positive, indicating that they belong to the red system,
which corresponds exactly to the range of a* channel changes from
red to green (Figure 1C). The b* values of both are positive,
indicating that they belong to the yellow category, and the value
of green leaves is significantly higher than that of red leaves
(Figure 1D). Furthermore, the C* value of the two-color leaves
were calculated and compared, and found that the chorma of green
leaves was significantly higher than that of red (Figure 1E).

Metabolomic profiling of leaves with
different colors and identification of
metabolic pathways

UPLC-MS/MS analysis was performed to quantify the total
metabolite profiling, in order to further explore the main metabolic
changes between the “Green” and “Red” leaves. Principal
Component Analysis (PCA) showed that PC1 is 69.23% and PC2
is 5.86% (Figure 2A). Moreover, statistical analysis was conducted
on the metabolome using Partial Least Squares Discriminant
Analysis (PLS-DA), as shown in Figures 2B, C. The PLS-DA
score plot shows that PCI is 69.83% and PC2 is 9.31%. Each
point on the plot corresponds to a sample, demonstrating clear
aggregation within the sample groups and distinct dispersion
between the groups. This pattern strongly suggests that the
“Green” and “Red” leaves exhibit different metabolic expression
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profiles (Figure 2B). The permutation test chart demonstrates that
the metabolomic model exhibits no signs of overfitting (Figure 2C).
Subsequently, a total of 29836 primary metabolites and 2351
secondary metabolites were identified. Aanalysis was focused on
secondary metabolites. In the “Green” group, 272 secondary
metabolites were significantly higher than those in the “Red”
group, 282 secondary metabolites were significantly lower, and
834 secondary metabolites showed no significant difference
between the two groups (Figures 2D, E). For Kyoto Encyclopedia
of Genes and Genomes(KEGG) enrichment analysis of differential
metabolites, the KEGG hierarchical bar chart shows that the KEGG
primary classification of differential metabolites mainly focuses on
changes in “Metabolic”, as shown in the blue box in Figure 2F.

Analysis of key metabolic pathways and
key differential metabolites

Based on the previous results, differential metabolites were
mainly enriched in metabolic pathways. To further investigate
their key pathways, we generated KEGG enrichment bubble plots.
As shown in Figure 3A, the pathways of differential metabolite
enrichment include those related to flavonoid metabolism.

In order to understand the trend of metabolite changes, we
plotted a differential metabolite metabolic pathway map
(Figure 3B). The results showed that in the early stages of
metabolism, including phenylalanine, cinnamic acid, and
coumaric acid, the content in “Green” group was significantly
higher than that in “Red”, which may be due to the fact that
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FIGURE 2

Metabolite Number

Overview of the metabolite profile of Heuchera micrantha leaves with different colors. (A) The principal component analysis (PCA) diagram illustrates
sample separation based on leaf color categories. (B, C) The combined analysis of PCA plots and scatter plots shows that good separation of data
between different groups and demonstrates the predictive accuracy of the model. (D, E) The combined analysis of bar chart and volcano chart
indicates that the number of metabolites identified in each leaf color class. (F) The KEGG hierarchical bar chart of differential metabolites.
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Analysis of key metabolic pathways. (A) KEGG enrichment bubble plots. The size of the dots represents the number of metabolites involved in each
pathway, with larger dots indicating higher quantities. The color gradient from blue to red represents the P-value, with red indicating a more
significant enrichment. (B) Metabolic pathway diagram. The arrow indicates the direction of metabolic flow, and the color gradient from blue to
orange represents the quantity of metabolites, with pink indicating a higher quantity.

substrates in red leaves are more catalyzed to synthesize
downstream products. The “Red” group exhibited significantly
higher levels of downstream metabolites, including naringin,
delphinidin derivatives, and cyanidin derivatives, than the
“Green” group. This result is consistent with its appearance.
Furthermore, we also found that in the colored leaves of
Heuchera micrantha, anthocyanins were mainly composed of
delphinidin and cyanidin and their derivatives, while no other
types of anthocyanins were identified.

Besides, in flavonoid metabolism, in addition to the
biosynthesis of anthocyanins, flavonol synthase and flavonol
synthase also catalyze the biosynthesis of kaempferol and luteolin,
respectively, which are branch pathways of flavonoid metabolism,
and its products are also related to plant coloration (Wang et al.,
2021). We analyzed its metabolites and found that the content of

Frontiers in Plant Science

kaempferol was significantly higher in the “Green” group, while the
“Red” group contained more luteolin (Figure 3B). Based on the
above results, it preliminarily indicates that the coloration of
different colored leaves of Heuchera micrantha is mainly
influenced by the anthocyanin biosynthesis in the flavonoid
metabolism pathway.

Analysis of transcriptome and identification
of differentially expressed genes

Six samples were obtained for RNA Seq analysis, with three
biological replicates in each of the two colored leaves. The outcome
of the assembly procedure was a set of 16753 transcript sequences,
with N50 of 2105 bp and GC content of 40.83%, as well as a set of
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Overview of the transcriptome of Heuchera micrantha leaves with different colors. (A) The PCA plot shows the distribution of samples with different
leaves colors. (B, C) The combined analysis of bar chart and volcano chart represents the number of differentially expressed genes (DEGs) in different
groups. The red bar and dots represent upregulated genes, while the blue represent downregulated genes. The comparison is Green vs Red.

40863 gene sequences, with N50 of 1848 bp and GC content of
40.84% (Supplementary Table S1). PCA showed that PC1 is 99.81%
and PC2 0.1%, and the PCA plot showed a significant separation of
genetic expression in the “Green” and “Red” groups (Figure 4A).
Differential expression genes (DEGs) were analyzed by comparing
transcriptomes between leaves of different colors (green and red)
with thresholds of FDR < 0.05 and |log,FC|>1. In the comparison
between “Green” and “Red” groups, there was a significant
upregulation of 5235 genes, and a significant downregulation of
4613 genes (Figures 4B, C).

Functional analysis of DEGs

Subsequently, in order to further explore the molecular
mechanisms behind the differential metabolism between green
and red leaves of Heuchera micrantha, KEGG enrichment
analysis was performed on the DEGs. Consistent with
metabolomics analysis, the results showed that the functions of
DEGs were mainly enriched in the regulation of metabolic
pathways, including Flavonoid biosynthesis, Anthocyanin
biosynthesis, Phenylpropanoid biosynthesis, and Phenylalanine
metabolism (Figure 5A).

Next, we analyzed the expression of biosynthetic genes in
Phenylpropanoid metabolism and Flavonoid biosynthesis
pathway enriched in the KEGG analysis mentioned above
(Figure 5B), which will help clarify how the expression of these
genes affects metabolite changes and leads to differences in leaf
color. As shown in the Figure 5B, we found that in the comparative
analysis of the DEGs between the “Green” and “Red” groups, there
was no significant difference in the expression of the key gene, PAL
(phenylalanine ammonia lyase, TRINITY_DN99_c0_gl), while
4CL (4-coumaroyl: CoA ligase, TRINITY-DN1189_cOugl) in the
“Green” group were significantly upregulated, for Phenylpropanoid
metabolism. In the subsequent Flavonoid metabolism, the early
biosynthetic genes, CHS (chalcone synthase, TRINITY-
DN1633_cOugl, TRINITY-DN10320_cOugl, TRINITY-
DN7761_cOugl) in the “Green” group were significantly
upregulated, while CHI (chalcone isomerase, TRINITY-
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DN1219_cOugl) showed no significant difference. About the late
biosynthetic genes, DFR (dihydroflavonol 4-reductase,
TRINITY_DN1804_c0_g1) and UFGT (UDP-glucose-flavonoid
3-O-glucosyltransferase, TRINITY_DN7864_c0_gl1,
TRINITY_DN5925_c0_g1) were significantly overexpressed in the
“Red” group. The expression trend of the above biosynthetic genes
is consistent with the differential accumulation trend of metabolites
in the metabolome.

Characterization of upstream candidate
transcription factors from the DEGs
analysis

In plants, flavonoid metabolism is not only regulated by the
expression of biosynthetic genes, but also by upstream transcription
factors, mainly including bHLH (Liu et al., 2024), MYB (Pratyusha
and Sarada, 2022), and MBW complexes (Koes et al., 2005; Lloyd
et al, 2017; Naik et al., 2022; Hong et al.,, 2023). As shown in the
Figure 6A, a total of 88 bHLH transcription factors and 72 MYB
transcription factors were annotated in transcriptome analysis
(Figure 6A). In order to screen the candidate transcription factors
located upstream of flavonoid metabolism pathway, especially
candidate members of MBW protein complex, the transcription
factors shown in Figure 6B were obtained in the DEGs analysis
between “Green” and “Red”. As a result, we obtained 4 differentially
expressed bHLH transcription factors, including 2 upregulated
(TRINITY_DN10522_c0_g1, TRINITY_DN7502_c0_gl) and 2
downregulated (TRINITY_DN4926_c0_gl, TRINITY_
DN33991_c0_g2), as well as 5 differentially expressed MYB
transcription factors, both upregulated (TRINITY_DN18982_
c0_gl, TRINITY_DN5807_c1_gl) and downregulated
(TRINITY_DN401_c0_g2, TRINITY_DN24808_c1_gl,
TRINITY_DN2564_c1_gl) accounted for half (Figure 6B).

In order to further investigate the functions of the candidate
TFs mentioned above, we conducted motif analysis of the TFs using
MEME Suite 5.5.8 (https://meme-suite.org). The results of motif
positions and sequences are shown in Supplementary Figure S1. As
shown in the figure, TFs in the same TF family share common
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motifs, but they also differ from each other. Next, we performed a
blast on the protein sequences of candidate TFs at NCBI (The
National Center for Biotechnology Information, https://
blast.ncbinlm.nih.gov/Blast.cgi) to explore their potential
biological functions. About MYB TFs, we found that
TRINITY_DN401_c0_g2 had the highest homology with
LfMYB113 (AQM49950.1), which was a positive regulator of
anthocyanins accumulation in Liquidambar formosana leaves
(Wen et al,, 2015); And TRINITY_DN24808_c1_gl had the
highest homology with a PsMYB (QIG55720.1), which has not
yet been characterized; TRINITY_DN2564_c1_gl had the highest
homology with LiMYB12 (QER90717.1), which regulates flavonoid
metabolism positively in Lonicera japonica (Wang et al., 2019).
These results ulteriorly indicate that the above three MYBs
positively regulate flavonoid metabolism in Heuchera micrantha.
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The candidate negative regulators of flavonoid metabolism in
Heuchera micrantha, TRINITY_DN18982_c0_gl and
TRINITY_DN5807_c1_gl1, had the highest homology with
Phaseolus vulgaris PvMYB114-like (XP_031247895.1) and Telopea
speciosissima TsMYB1-like (XP_043722769.1), respectively.

As for the bHLH TFs, the results showed that
TRINITY_DN4926_c0_gl and TRINITY_DN33991_c0_g2 had
highly similar motifs (Supplementary Figure S1), and both have the
highest homology with VvbHLH87 (RVX17028.1) in blast, which
indicated that the two may be different copies or variable splicing of
the same gene. Although the function of VvbHLH87 had not been
characterized, the expression trend of the above candidate bHLHs
suggested that they may be positive regulators of flavonoid
biosynthesis. And the potential negative regulatory TFs of
flavonoid metabolism, TRINITY_DN10522_c0_gl and
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Identification and expression pattern analysis of candidate transcription factors. (A) A bar chart displaying the number of genes associated with

different transcription factor (TF

functional categories. The categories are listed on the y-axis, and the number of TFs is represented on the x-axis.

(B) The heatmap shows the expression patterns of MYB and bHLH TFs, which are differentially expressed in green and red comparisons. The color
gradient from green to pink represents the level of expression from low to high. TFs are labeled with their respective Trinity IDs, with the pink box

representing bHLH TFs and the green box representing MYB TFs.

TRINITY_DN7502_c0_gl, had the highest homology with Vitis
vinifera VVbHLH51 (RVX03143.1) and Cunninghamia fargesii
CfbHLH62-like (XP_059632074.1), respectively.

Combined analysis of transcriptome and
metabolome to explore the formation
mechanism of different leaf colors

In order to overcome the problem that it is difficult to associate
genes with phenotypes in a single omic analysis, we conducted a
joint analysis of transcriptome and metabolome of Heuchera

micrantha with different leaf colors. We screened and obtained
pathways that were significantly different in both metabolomics and
transcriptomics, as shown in Figure 7. In the joint analysis of red
and green leaves, we identified that the metabolism of flavonoid and
flavonol biosynthesis, flavonoid biosynthesis, phenylpropane
biosynthesis and anthocyanin biosynthesis were significantly
enriched in the above two omics, as shown in the pink box in
Figure 7. Besides, we found that structural genes in red leaves were
significantly upregulated at the branching nodes of flavonoid
metabolism (Figure 5B), while the significant high accumulation
of metabolites was reflected in naringenin and the final products of
the flavonoid biosynthesis (Figure 3B), which may be due to the lag
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FIGURE 7

Transcriptomics

The KEGG bubble plot of the common pathway between transcriptome and metabolome in different color leaves. The x-axis lists metabolic
pathways, with P-values represented by a gradient from blue to red, where red indicates more significant enrichment (lower P-values), and the size
of each bubble corresponds to the degree of enrichment. The pink box represents flavonoid metabolism and its related metabolic pathways.
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between metabolite accumulation and gene expression. The above
results further showed that the metabolite difference of
phenylpropane to flavonoid metabolism was an important reason
for the formation of color-leafed, which was regulated by the
differential expression of structural genes related to this pathway
and upstream candidate transcription factors. This result provides a
genetic reserve for subsequentcolor-leafed directional breeding. In a
word, this preliminary revealed the formation mechanism of
different leaf colors of Heuchera micrantha, and provided genetic
reserves for subsequent oriented breeding.

Discussion

In this study, we systematically analyzed the molecular
mechanisms underlying the differences in leaf color between red
and green leaves of Heuchera micrantha by integrating
metabolomics and transcriptomics. Research has found that the
flavonoid metabolism pathway, especially the anthocyanin
biosynthesis pathway, is the core pathway driving differences of
leaf colors. Metabolome data showed that delphinidin, cyanidin,
and their derivatives were significantly enriched in red leaves,
while upstream substrates such as phenylalanine and cinnamic
acid accumulated more in green leaves (Figure 3). Transcriptome
analysis further confirmed the molecular mechanism behind the
above conclusion, that is, DFR and UFGT (late synthesis gene)
were significantly upregulated in red leaves, while CHS (early
synthesis gene) was expressed higher in green leaves (Figure 5).
These findings match the leaf-color phenotype (Figure 1) and
parallel earlier work in kale (Zhu et al., 2018), red coloration
coincides with the accumulation of late anthocyanin products,
whereas green leaves may exhibit a low anthocyanin state due to
substrate diversion to other branches (such as flavonol
biosynthesis), which is similar to the results of some previous
studies on competitive catalysis of substrates in flavonoid
metabolism, such as chrysanthemum, dahlia, and rose (Deguchi
etal, 2013; Luo et al., 2015; Wang et al., 2021). It is worth noting
that only two types of anthocyanins, delphinidin, cyanidin, and
their derivatives were detected in Heuchera micrantha, indicating
that their biosynthesis pathways are species-specific and may be
related to substrate preferences of Flavonoid 3’,5-hydroxylase
(F3’5’'H) and DFR enzymes (Katsumoto et al., 2007; Noda et al.,
2017). Integrating transcriptome and metabolome data solidifies
these conclusions.

Subsequently, we identified several differentially expressed MYB
and bHLH transcription factors (Figure 6), which may be individually
involved in flavonoid metabolism regulation or regulate anthocyanin
biosynthesis through the formation of MBW complexes. No
differentially expressed WD40 was detected, consistent with
previous reports that MYB-bHLH complexes can activate
anthocyanin genes without WD40 participation (Liu et al, 2013;
Lai et al,, 2016; Sun-Hyung et al,, 2017). Further protein sequence
analysis revealed that bHLH and MYB transcription factors share
common conserved motifs, respectively, but within the same family,
their motifs also differ, suggesting that they may belong to different
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subfamilies and play different biological functions (Supplementary
Figure S1). DEGs analysis of candidate TFs suggested that 2 bHLH
TFs and 3 MYB TFs, namely TRINITY_DN4926_c0_gI,
TRINITY_DN33991_c0_g2TRINITY_DN401_c0_g2, TRINITY_
DN24808_c1_gl, and TRINITY_DN2564_cl_gl, may be positive
regulators of anthocyanin biosynthesis, while 2 bHLH TFs and 2
MYB TFs, TRINITY_DN10522_c0_gl, TRINITY_DN7502_c0_gl,
TRINITY_DN18982_c0_gl, and TRINITY_DN5807_c1_gl, have
the opposite function (Figure 6). However, their clearly biological
function and regulatory mechanism still need to be verified in
subsequent transgenic experiments.

Heuchera mirantha is an excellent germplasm of color-leafed
plants in cold regions, the study on the formation mechanism of
different leaf colors not only provides key gene resources for
molecular breeding, but also provides a certain reference for the
research of other color-leafed plants. Moreover, Heuchera mirantha
has more leaf colors besides the red and green, and even has
compound colored leaves. Representative red and green leaves
varities were selected in the study, and single colored leaves can
better eliminate cross pathways to preliminarily elucidate the
coloring mechanism. The metabolic mechanisms of other plant
pigments involved, such as carotenoids, chlorophyll and etc., still
need to be explored. For example, in our differential metabolite
analysis, we identified that geranylgeranyl chlorophyll-a was
significantly higher in green leaves than in red. And the
regulation of transcription factors and their response to
environmental factors are also important research directions for
the future.
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