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Optimizing core collections for
genetic studies: a worldwide
flax germplasm case study
Matthieu Gouy1, Matthieu Bogard1, Faharidine Mohamadi2

and Boris Demenou3*

1SAGeP, ARVALIS, Baziège, France, 2ARVALIS, Station Expérimentale, Boigneville, France, 3SAGeP,
ARVALIS, Ouzouer-le-Marché, France
Core collections provide a strategic approach to reducing population size while

retaining genetic diversity and allele frequencies, serving as key resources for

genetic research. Although various sampling and selection strategies have been

proposed, most of them focused on either diversity or representativeness, rarely

both, and none fully integrated these with QTL detection optimization. The first part

of our study focuses on a genetic diversity analysis of a flax germplasm (Linum

usitatissimum L.) maintained by the Arvalis Institute, a prerequisite for the

development of core collections. This germplasm is a worldwide flax collection

comprising 1,593 accessions originating from 42 countries, encompassing all major

flax-growing regions. It includes both spring- and winter-type lines, as well as

oilseed and fiber types. The results revealed a pronounced genetic structure within

the germplasm with six clusters, strongly influenced by cultivation purposes (fiber

vs. oilseed flax), growth cycle (winter vs. spring), and then geographic origin. Overall

genetic diversity was moderate (He = 0.22), with oilseed flax clusters displaying

greater diversity (He from0.21 to 0.27) than fiber flax (He < 0.17). In a second stepwe

evaluated distinct strategies for core-collection development, including

approaches -originally developed for core collection construction and others-

developed for optimizing genomic‐selection calibration panels. We introduced an

approach based on QTL detection performance via extensive simulations of QTLs

distributed across the genome. We observed a fundamental trade-off between

maximizing diversity and ensuring representativeness in core collection design.

Diversity-oriented approaches may overemphasize rare or outlier genotypes,

compromising representativeness, while representativeness-focused strategies

leaded to overlooking rare alleles, thus limiting diversity. In our results we have

found that particular combinations of selection criteria achieved a favorable balance

between genetic diversity and representativeness, while concurrently maintaining a

robust capacity to capture QTL signals across the genome. Finally, the approach

using the Shannon index combined with the allelic coverage led to optimal core

collection design adapted for GWAS applications in a structured population; and

was used to select a core collection of 409 accessions useful for further genetic

studies. These results provide knowledge for the development of optimized core

collections tailored to GWAS applications.
KEYWORDS

core collection, optimization criteria, quantitative trait loci (QTLs), genetic diversity, flax
(linum usitatissimum l.), Western European flax breeding
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1 Introduction

Plant genetic resources are a crucial source of diversity and are

essential for improving crops. Useful plant genetic resources for

breeding includes landraces, breeding lines, cultivars and the wild

relatives of the target species, offering a broad range of alleles that

can be exploited to enhance key agronomic traits. To face climate

change, food security challenges, and the need for sustainable

agriculture, the management and conservation of genetic

resources are fundamental for the development of productive and

resilient genetic material (Esquinas-Alcázar, 2005). More than

seven million plant accessions are conserved across around 1,750

genebanks, with over 60% belonging to only thirty cultivated species

(Hammer et al., 2003; Thormann et al., 2012). The diversity

maintained is largely oriented towards human needs. Given the

high number of accessions to be conserved, it has become necessary

to rationalize the management of these resources, particularly

through the selection of core collections.

The core collection concept was formalized in the 1980s to

ensure optimal management and use of the genetic resources

collected over time. A core collection can be defined as a reduced

set of accessions that represents the genetic diversity of a species and

its wild relatives with minimal redundancy (Brown and Clegg, 1983;

Frankel, 1984). Since its inception, numerous studies have focused

on methodologies for creating core collections. Brown et al. (1989)

suggested that a core collection should not exceed 10% of the full

collection and should never include more than 2,000 entries. In

practice, most core collections represent between 5% and 20% of the

original germplasm (Van Hintum et al., 2000). The reduced size of a

core collection is crucial to ensure its efficient long-term

management. The creation of core collections addresses two main

objectives: (1) maximizing the genetic diversity, often favored by

taxonomists, geneticists, and gene bank curators, and (2)

maximizing the representativeness of the germplasm, typically

chosen by breeders (Marita et al., 2000). The goal for the former

is to maximize diversity criteria and conserve the rarest alleles. The

second objective involves faithfully representing the source

germplasm by retaining more generalist alleles. Jointly optimizing

these two objectives ensures efficient short- and medium-term

management of a species’ genetic resources, although this

remains challenging.

Initially, passport information (i.e., morpho-descriptives data,

geographical origins) and other phenotypic traits (e.g. earliness,

disease resistance traits) were used to establish core collections.

However, it was recognized that environmental factors could

influence these variables, leading to inaccurate representations of

heritable genetic diversity (Tanksley and McCouch, 1997).

Nowadays, the use of molecular markers, such as RAPDs (Marita

et al., 2000), SSRs (Soto-Cerda et al., 2013), or SNPs (Bianchi et al.,

2020; Fu, 2025) has become standard and essential for studying

genetic diversity and developing core collections.

Many approaches to developing core collection (CC) have been

described. For these approaches, a comprehensive characterization

of the species’ genetic diversity and structure is an essential

prerequisite, as it is critical to ensure that all genetic clusters are
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adequately represented within the selected subsets of individuals.

This requirement underpins the rationale for employing stratified

sampling methods, which offer a more suitable alternative to

random sampling by preserving the underlying genetic structure

(Charmet and Balfourier, 1995; Gouesnard et al., 2001; Franco et al.,

2003). The sampling rate (i.e., allocation) must be defined based on

the intended objectives. Several strategies have been suggested: a

fixed selection rate, independent from cluster size, a rate

proportional to cluster size, a logarithmic-proportional rate

(which helps maintaining a manageable collection size), or a rate

proportional to intra-cluster genetic distances (or other diversity

metrics), also known as the D-method. This latter method has

shown significant efficiency compared to alternative approaches

(Franco et al., 2006).

The selection of accessions can be based on one or several

objective(s) (rarely greater than two) to be optimized, such as

genetic distances (Jansen and Van Hintum, 2007), diversity

criteria (Franco et al., 2006; Thachuk et al., 2009), or the effective

alleles number and their coverage rate (Kim et al., 2023). Some

strategies have been developed to simultaneously optimize multiple

criteria (Odong et al., 2013; De Beukelaer et al., 2018). These

approaches rely on optimization algorithms (e.g., genetic

algorithms, simulated annealing) which iteratively optimize an

objective function (maximizing or minimizing) by picking a new

entry, often randomly, at each iteration.

Similar methodologies have been developed in the genomic

selection area. These involve the use of calibration set optimization

algorithms, which aim to maximize genomic prediction accuracy based

on molecular marker data (Laloë, 1993; Albrecht et al., 2011; Pszczola

et al., 2012; Rincent et al., 2012; Akdemir, 2017; Ou and Liao, 2019).

While this approach does not directly link genomic selection

calibration methods to core collection inception, the optimization

techniques used in genomic selection, such as genetic algorithms and

diversity-based criteria, could potentially be adapted for core collection

creation. The focus on optimizing subsets for prediction accuracy in

genomic selection parallels the goal of selecting representative subsets

in core collection creation, suggesting a possible methodological

crossover. Moreover, core collections are widely used in associations

studies for QTL discovery (Nicolas et al., 2016; Berkner et al., 2024).

This type of population typically harbors greater genetic diversity than

biparental populations and includes a higher number of recombination

events. As a result, the resolution of detected QTLs is significantly

improved (Breseghello and Sorrells, 2006; Zhao et al., 2007; Huang and

Han, 2014; Bandillo et al., 2015).

The quality assessment of a core collection should, whenever

possible, be based on data that were not used for its development

(Van Hintum et al., 2000). Core collections are often compared to

the whole collection (WC) from which they were derived. Various

evaluation criteria can be computed to assess the resulting

population such as genetic distances, diversity indices (Shannon

index, heterozygosity) or even Principal components analysis

(Mohammadi and Prasanna, 2003; Reif et al., 2005, and Odong

et al., 2013).

The first breeding and improvement flax (Linum usitatissimum

L.) programs were initiated in the 1920s by Irish and Dutch
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researchers (Doré and Varoquaux, 2006). Breeding efforts

specifically targeting fiber flax also began during this period, with

early hybridizations carried out in 1919 (e.g., with the EGBK or

CRGH lines) (Blaringhem, 1926). Genetic improvement priorities

in flax vary according to its intended use, fiber or oilseed, and are

primarily aimed at addressing current agronomic and climatic

constraints. In fiber flax, breeding efforts focus on enhancing

resistance to major fungal pathogens, including Polyspora lini,

Septoria linicola, fusarium wilt, flax scorch, and powdery mildew.

Improving resistance to lodging is also a key objective, as it

contributes to reducing yield losses and facilitating mechanized

harvesting. Additionally, the enhancement of fiber quality remains a

central goal, along with the development of cultivars with improved

tolerance to abiotic stresses such as elevated temperatures, drought,

but also cold, particularly for winter-type lines. For oilseed flax,

breeding efforts are focused on stabilizing and optimizing yield

while accounting for strong genotype-by-environment (G×E)

interactions. Disease resistance, particularly against septoria, is

another major goal. Lastly, improving oil quality and enhancing

cold tolerance for winter-type lines are key breeding targets. The use

of extended genetic diversity in breeding programs could help

improving flax for resistance/tolerance to biotic and abiotic factors.

The worldwide diversity of cultivated flax and its wild relatives

is represented by an estimated 48,000 accessions maintained in 33

genebanks, among which only around 10,000 are considered

genetically distinct or truly unique (Diederichsen, 2007). From

these resources, many flax core collection have been created (Fu,

2006; Diederichsen et al., 2013; Hoque et al., 2020) in order to

investigate for example flowering time (Chandrawati et al., 2017),

agronomic, seed and fiber quality, disease resistance traits (You

et al., 2017), or even powdery mildew resistance (Speck et al., 2022).

The Arvalis Institute, a French institute for applied research in

agriculture, maintains a collection of around 1,650 fiber and oilseed

flax accessions. This germplasm comprises accessions from

countries worldwide where fiber and oilseed flax have been

cultivated or are naturally distributed, with a particular focus on

recently improved lines from western Europe breeding programs.

However, no core collection based on this western European flax

genetic resources was available. Then, rare genetic studies in

Western Europe have examined a diversity panel including large

modernWestern European flax. Speck et al. (2022) used a flax panel

of 311 lines selected from 38 countries spanning all continents and

diverse worldwide climatic regions. However, they did not describe

a clear selection methodology to ensure that genetic diversity was

adequately represented. This study and others on cultivated flax

diversity have revealed a significant genetic structure between fiber

and oilseed groups. Further sub-structuring has also been

characterized, often related to geographical origins or

physiological development (winter vs. spring types) (Hoque et al.,

2020; Fu, 2005; Speck et al., 2022). However, the effect of geographic

origin is not always significant (Smýkal et al., 2011; Chandrawati

et al., 2017; You et al., 2017). This may be attributed to the extensive

exchange of genetic material (Soto-Cerda et al., 2013). Developing a

core collection of flax germplasm focused on Western European

diversity should facilitate genetic studies for flax breeding in
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Europe, while also allowing comparisons between studies based

on this core collection.

In this study, we (i) performed genetic diversity analyses of a

flax collection, (ii) compared various approaches to identify a core

collection for further quantitative genetic studies and (iii) selected a

core collection based on the best approach for further genetic

studies. We tested and evaluated approaches specifically designed

for core collection construction alongside population optimization

methods that were originally developed for genomic selection

calibration sets. We also proposed a novel criterion to compare

approaches to build core collections based on QTL detection

performance via extensive simulations of QTLs distributed across

the genome. These methods differ in the type of input data used, the

nature and number of optimization criteria (diversity indices,

representativeness criteria, combination of them), and the

algorithms used. The core collection designed will be useful for

genome-wide association studies and genomic selection to enhance

Western European flax breeding programs.
2 Materials and methods

2.1 Plant materials

The germplasm maintained by Arvalis since 2010 is a collection

of 1,650 cultivated flax (fiber, oilseed and dual purposes type)

accessions. The initial accessions were collected in 1938 by

INRAe from botanical collections and further extended through

exchanges with research institutes, international biological

resources centers, and breeding companies. The most recent

accessions collected are lines originating from breeding programs

and obtained in 2021. This diversity panel is predominantly

composed of spring-type inbred lines, with 66% belonging to the

oilseed group, 22% to the fiber group, and 12% classified as dual-

purpose (both fiber and oilseed). Some winter-type lines have been

included (oil and fiber) representing a valuable genetic source for

low temperature tolerance. This germplasm encompasses the global

diversity of cultivated flax, with accessions originating from 42

countries across all continents. It includes 107 common accessions

with the PGRC core collection (Canada), the U.S. NPGS core

collection, and the composite collection from Guo et al. (2020).

The full list of accessions can be found in Supplementary Table S1.
2.2 Phenotypic data

The germplasm has been phenotyped for a set of 22 traits,

summarized in Supplementary Table S2. These data are primarily

passport data used to describe the accessions, including flower

morphology (anther and pollen color, petal shape and color,

fi lament color and winding, style color, ci liation and

pigmentation of capsule, corolla size, beak shape), seed

morphology (seed color, thousand kernel weight), geographic

origin, cultivated group (oilseed versus fiber-type), tolerance to

low temperatures, lodging tolerance, as well as resistance to
frontiersin.org
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powdery mildew and Fusarium wilt. Prior to analysis, missing

values were imputed using the R package missForest v1.5

(Stekhoven and Bühlmann, 2012). No imputation was performed

for the country of origin.
2.3 Genotypic data

A seedling was produced for each of the 1650 flax accessions in

the growing room at Arvalis Institute site in Boigneville (France)

with 20°C/18°C day/night temperature. The Fresh leaves of two-

weeks-old seedlings (50–100 mg) were harvested in microtube

strips and flash-frozen at -80°C for 24 hours before being freeze-

dried for 48 hours and then ground using the MM400 vibro-grinder

(Retch). Genomic DNA was extracted from the crushed material

using a modified Machery-Nagel NucleoMag Plant kit on the

Beckman Coulter Biomek i5 automated workstation. Genomic

DNA was then checked for quality on NanoDrop ND8000

(Thermo Fisher Scientific) and quantified on Qubit (Thermo

Fisher Scientific) by Picogreen dosage. All accessions were

genotyped using the Allegro AT-SNP-30K targeted genotyping

tool (Demenou et al., 2025, 2025) at the EPGV platform (INRAe,

Evry, France).

The genotyping matrix was generated using the bioinformatics

pipeline described in Demenou et al. (2025) and was then filtered.

Markers and accessions with more than 50% missing data were

discarded. The remaining markers were imputed using Beagle v5.4

(Browning, 2008; Browning and Browning, 2016), applying default

parameters. Following this imputation, the genotyping matrix was

filtered to remove markers having low minor allele frequency (MAF),

retaining only those with MAF > 1% (Supplementary Table S3). This

threshold has been chosen to preserve rare alleles that may carry

valuable genetic information (Goudet et al., 2018). The distribution of

selected imputed markers across the fifteen flax chromosomes was

visualized using the R package CMplot v4.5.1 (Yin et al., 2021) to assess

the quality and uniformity of the genotyping data.
2.4 Population structure and diversity
analysis

Prior to the genetic diversity analysis, the genotyping matrix

was intentionally pruned to retain only independent markers,

thereby minimizing the confounding effects of collinearity among

linked loci (Patterson et al., 2006). Marker pruning was performed

using PLINK v1.07 (Purcell et al., 2007) with the following

parameters: the ‘indep-pairwise’ function, a sliding window of 50

SNPs, and a linkage disequilibrium threshold of R² = 0.4. In other

words, pairs of markers within a sliding window of 50 SNPs and an

R² value greater than 0.4 were pruned, so that only one marker per

pair was kept.

We performed a Discriminant Analysis of Principal

Components (DAPC) using the R package adegenet v2.1.10

(Jombart et al., 2010). DAPC assigns membership probabilities to

predefined genetic clusters, which were inferred via K-means
Frontiers in Plant Science 04
clustering. The number of retained principal components for the

DAPC was determined using the Tracy-Widom test (Patterson

et al., 2006), which identifies the first axes that significantly explain

genetic variation. The optimal number of clusters K was determined

by evaluating models with K-values ranging from 1 to 10, using the

Bayesian Information Criterion (BIC) to select the best-supported

model. Additionally, the most likely K-value was inferred by

considering the correspondence between the identified groups

and our germplasm knowledge. A Principal Component Analysis

(PCA) was conducted on the pruned and standardized matrix using

the R package FactoMineR v2.11 (Lê et al., 2008) to visualize the

diversity and clustering. Pairwise Fixation indices (Fst) were

calculated between genetic clusters using the R package hierfstat

v0.5.11 (Goudet, 2005).

To further characterize the diversity hosted by the germplasm,

expected mean heterozygosity (Berg and Hamrick, 1997),

Shannon’s diversity index (Shannon, 1948), average Rogers’

genetic distance (Rogers, 1972), and the proportion of rare alleles

(considering MAF< 0.10) were computed for each cluster and for all

the entire germplasm.
2.5 Establishment of core collections

Two categories of methods have been employed in this study:

those specifically dedicated to core collections, and those aimed at

building calibration populations, particularly for genomic selection

purposes. Core collections were established using the R packages

CoreCollection v0.9.5 (Jansen and Van Hintum, 2007; Odong et al.,

2013), corehunter III v3.2.3 (Thachuk et al., 2009; De Beukelaer

et al., 2018), TrainSel v3.0 (Akdemir et al., 2021), as well as the

approach originally proposed by Laloë (1993) and further

developed by Rincent et al. (2012) (R code acquired directly from

the authors).

The method developed by Jansen and Van Hintum (2007) and

later refined by Odong et al. (2013) is based on genetic distances among

accessions. Entries are selected using a random descent algorithm,

optimizing one of three available criteria: the Average Nearest Entry

(A-NE), which minimizes the average distance between each accession

and its nearest neighbors, the Nearest Neighboring Entry (E-NE),

which maximizes this average distance, and the Entry-Entry (E-EE)

criterion, which maximizes the pairwise distance among all accessions

in the collection. We optimized the A-NE and E-NE criteria using

Rogers’ genetic distance (Rogers, 1972). Optimization parameters were

kept at their default settings.

The corehunter III R package (Thachuk et al., 2009; De

Beukelaer et al., 2018) applies a stochastic local search algorithm

based on replica exchange Monte Carlo chains for core collection

development. Multiple selection criteria can be combined and

weighted. This method can accommodate various input data

types, including genetic distance matrices, genotypic and

phenotypic datasets. Version III of this package supports the use

of the following selection criteria, either individually or jointly: the

previously described A-NE, E-NE, and E-EE criteria, expected

heterozygosity (He), Shannon diversity index (SH), and allelic
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coverage (CV). All available optimization criteria were considered,

except for the E-EE criterion. Criteria were applied individually or

in pairwise combinations. In the case of bi-objective optimization,

equal weights of 0.5 were assigned to each criterion. Additionally, a

combination of the following three criteria, A-NE, SH, and CV, was

tested, with each criterion assigned an equal weight (~0.33). The

execution mode was set to default, and normalization was applied

for multi-objective optimizations.

The approach proposed by Laloë (1993) and elaborated by

Rincent et al. (2012) aims to select a reference set of individuals for

phenotyping that maximizes the reliability of genomic predictions

for non-phenotyped individuals based on their genotypes. This

method optimizes the generalized coefficient of determination

(CDmean), which measures the correlation between predicted

and observed values of genetic contrasts. CDmean balances the

prediction error variance (PEV) against the genetic variance of the

contrasts, accounting for genetic relatedness. The optimization is

performed using a hill-climbing algorithm, exchanging one

individual at each iteration, with the CDmean recalculated at

every step using the individuals’ variance-covariance matrix. We

use the R-code given by the authors. A total of 3,000 iterations were

performed for each of the 10 core collection replicates.

Other available tools for selecting calibration sets include

STPGA (Akdemir, 2017), TSDFGS (Ou and Liao, 2019), and

more recently, the R package TrainSel v3.0 (Akdemir et al., 2021).

TrainSel enables the selection of individuals through mono- or

multi-objective optimization, with possible weighting of criteria. It

combines a genetic algorithm with simulated annealing. For our

study, TrainSel was used with the following objective functions:
Fron
• D-optimality criterion (D-opt): aiming to maximize the

determinant of the information matrix f(M), corresponding

to the principal component transformation of the genotypic

matrix, this criterion maximizes the dispersion in the

multivariate genetic space

• Avg_GRM_self: aiming to minimize the average relatedness

within the calibration population, thus maximizing its

genetic variance. The effectiveness of this criterion for

calibration population selection has been demonstrated in

previous studies (Atanda et al., 2021; Fernández-González

et al., 2023)

• The combined optimization of D-opt and Avg_GRM_self.
Optimization algorithm hyperparameters were set as follows:

medium population size, low complexity, and unordered sample.

The remaining parameters were left at their default settings.

Table 1 summarizes the method × criterion combinations tested.

For each combination, ten populations of 350 individuals were

generated, with a random selection of the initial set. With such

population size, the detection power for QTL studies should be

enhanced (Hyne and Kearsey, 1995; Charmet, 2000; Vales et al., 2005).
tiers in Plant Science 05
2.6 Core collection selection and
evaluation

2.6.1 Diversity and representativeness criteria
Each combination has been evaluated based on criteria

assessing both genetic diversity and representativeness. To

quantify the genetic diversity captured by each CC, the following

metrics have been computed: the rare alleles ratio (MAF< 10%)

(RAR), the mean Rogers’ distance (MRD), the expected

heterozygosity (He), and the Shannon diversity index (SH). These

indices are calculated using the following formulas:

1. Rare alleles ratio (RAR):

RAR =  
H
R

where R is the number of rare (i.e. MAF<10%) SNPs identified

in the whole collection, and H the number of these rare SNPs

founded as heterozygous within the core collection.

2. Mean Rogers’ genetic distance (MRD) (Rogers, 1972):

MRD =  
1
m

 o
m

i=1
 

ffiffiffi
1
2

r
o
ni

j=1
(aij − bij)

2

where m is the number of loci, ni is the number of alleles at locus

i, aij and bij, are the genotype codes for individuals a and b at locus i.

This metric can be likened to a Euclidean distance.

3. Expected heterozygosity (He) (Berg and Hamrick, 1997):

He =  
1
Lo

L

l=1

1 −o
nl

i=1
p2li

 !

Where L is the number of loci, nl is the number of alleles at locus

l, pli is the relative frequency of the i-th allele at locus l.

4. Shannon diversity index (SH) (Shannon, 1948):

SH =   −o
n

i=1
pi : log2(pi)

where n is the number of alleles and pi is the frequency of the i-

th allele.

To assess the representativeness of each CC relative to the WC,

we computed the following metrics: allelic coverage (CV) (Kim

et al., 2007), Kullback-Leibler divergence (KL) between allele

frequency distributions of CC and WC (Kullback and Leibler,

1951), the average absolute Pearson’s correlation of principal

component vectors (COR) between CC and WC (Yamamoto

et al., 2007), and the Mean Difference ratio (MD) for a set of

phenotypic variables (Hu et al., 2000). For MD calculation,

independent phenotypic variables were preselected using

Cramér’s V index (Cramér, 1999) to avoid overrepresentation of

specific variable categories.

These representativeness metrics are computed using the

following formulas:
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1. Allelic coverage (CV):

CV =
1
Lo

L

k=1

Acore

AWcol

 !

where L is the number of loci, Acore is the number of alleles

present in the core collection at locus L and AWcol is the number of

alleles present in the whole collection at the same locus.

2. Kullback-Leibler divergence (KL):

DKL(pjjq) =  o
m

j=1
pj : log

pj
qj

 !

where m is the total number of SNPs, pj is the frequency of the

minor allele at SNP j in the core collection and qj is the

corresponding frequency in the whole collection.
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3. Mean difference ratio for phenotypic traits (MD):

MD =
St
n

� �

where St is the number of traits showing a significant difference

between the CC and WC and n the total number of traits.

4. Average correlation between Principal Components (COR):

Pearson correlation coefficients ri are computed between

principal components of the same rank from the CC and the

WC. Due to an asymmetric distribution of correlation

coefficients, we apply Fisher’s z-transformation (Fisher, 1921)

before calculating the mean as follow:

zi =
1
2
ln

1 + ri
1 − ri

� �
TABLE 1 Combinations of twenty methods and selection criteria used in core collection development.

R Package Algorithm Criterion Input data Objective

CoreCollection a Random descent
A-NE

Genetic distances*
Optimizes representativeness

E-NE Maximizes genetic variance

corehunter b
Stochastic local search
on replica exchange
Monte Carlo chains

HE

Genotyping matrix

Maximizes allelic diversity

CV Maximizes allelic coverage

SH Optimizes genetic diversity while penalizing redundancies

code only c Hill-climbing CDmean Variance-covariance matrix Optimizes representativeness

TrainSel d Genetic algorithm
Avg_GRM_self Kinship matrix** Maximizes relatedness among individuals

D-opt Principal Components Optimizes representativeness

corehunter b
Stochastic local search
on replica exchange
Monte Carlo chains

A-NE + E-NE Genetic distances* Optimizes representativeness and maximizes genetic variance

A-NE + HE

Genetic distances* +
genotyping matrix

Optimizes representativeness and maximizes allelic diversity

A-NE + SH
Optimizes representativeness and genetic diversity while
penalizing redundancies

A-NE + CV Optimizes representativeness and maximizes allelic coverage

E-NE + HE Maximizes genetic variance and allelic diversity

E-NE + SH
Maximizes genetic variance and optimizes genetic diversity
while penalizing redundancies

E-NE + CV Maximizes genetic variance and allelic coverage

HE + SH

Genotyping matrix

Maximizes allelic diversity and optimizes genetic diversity
while penalizing redundancies

CV + SH
Maximizes allelic coverage and optimizes genetic diversity
while penalizing redundancies

CV + HE Maximizes allelic coverage and allelic diversity

A-NE + SH + CV
Genetic distances* +
genotyping matrix

Optimizes representativeness and genetic diversity while
maximizing allelic richness

TrainSel d Genetic algorithm
D-opt +

Avg_GRM_self
Kinship matrix**

Optimizes representativeness and relatedness among
individuals
a Jansen and Van Hintum, 2007; Odong et al., 2013; b Thachuk et al., 2009, De Beukelaer et al., 2018; c Laloë, 1993; Rincent et al., 2012 (code only); d Akdemir, 2017; Akdemir et al., 2021; *
Rogers’s genetic distance; **Computed according Vanraden (2008) formula.
SH, Shannon diversity index; He, Expected heterozygosity; CV, Allelic coverage; CDmean, Mean coefficient of determination; Avg_GRM, Average Genetic Relationship Matrix; A-NE, Average
Nearest Entry; D-opt, Optimality of the determinant of the information matrix f(M); E-NE, Nearest Neighboring Entry.
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The value zi is then transformed to obtain the average

correlation:

�r =
e2�z − 1
e2�z + 1

 

Since not all principal components contribute equally to the

genetic variance, each transformed coefficient zi is weighted by the

eigenvalue (inertia) of the corresponding component in the WC.

This weighting scheme assigns greater importance to the principal

axes. Only the significant axes under the Tracy-Widom test

(Patterson et al., 2006) are considered.

2.6.2 QTL simulation and detection
We introduced a novel criterion that aimed to compare the core

collections on their ability to detect QTLs. To this end, we simulated

two traits for each chromosome using the R package

PhenotypeSimulator v0.3.4 (Meyer and Birney, 2018), using the

genotypic matrix of the whole collection. The obtained simulated

QTLs thus leverage the existing linkage disequilibrium. QTLs were

simulated separately on each chromosome. To obtain QTLs evenly

distributed along the genome, QTLs were thus simulated separately

on each chromosome. In total, 940 QTLs distributed across the 15

flax chromosomes were obtained for the whole collection.

QTL detection was carried out for each of the 200 core

collections generated, using a mixed linear model (MLM)

accounting for both population structure and relatedness (Yu

et al., 2006). The model used was the following:

Y =  m1 + Qc + bx + g + ewhere Y is the vector of phenotypic

simulated values, m the overall mean, Q the matrix of covariates

derived from the DAPC to capture population structure, c the

vector of fixed effects associated with these covariates, b the additive

fixed effect of the SNP, x the vector of SNP genotypes coded as 0, 1,

or 2, g the vector of polygenic random effects, and e the vector of

residuals. Residuals were assumed to follow a normal distribution ~

N (0, I s 2
e ), and polygenic effects were assumed to follow a normal

distribution ~ N (0, K s 2
g ), with K being the kinship matrix

computed using the Vanraden (2008) method, as implemented in

the R package AGHmatrix v2.1.4 (Amadeu et al., 2023). Mixed

linear models were fitted using the R package GMMAT v1.4.2

(Chen et al., 2020). To assess the effectiveness of population

structure correction, the genomic control inflation factor l
(Devlin and Roeder, 1999) was calculated for each trait. Values of

l below 1.05 were considered indicative of appropriate control for

population structure effects (Price et al., 2010). SNP–trait

associations with p-values below the significance threshold

determined using Gao’s method (2008) were considered

statistically significant and interpreted as putative QTLs. The

proportion of QTLs identified within each core collection that

were previously detected in the whole collection (considered as

common QTLs) was calculated.

2.6.3 Synthetic index for an appropriate
comparison

To facilitate comparison among core collection construction

methods, we computed an index from the standardized values of
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our evaluation criteria. Criteria were pre-selected to balance

representativeness and diversity. A preliminary analysis of the

correlations between the indices was conducted to avoid

including those that were highly redundant. The index I was

defined accordingly as:

I =
1
7
(SH* +He* + RAR* + CV* +  COR* − KL* +  QTL*)

where SH is the Shannon index, He is the expected

heterozygosity, RAR is the rare allele rate, CV is the allelic

coverage, COR is the mean correlation coefficient, -KL is the

negative Kullback-Leibler divergence and QTL is the proportion

of shared QTLs between core collection and whole collection. Each

criterion has been standardized via normalization (i.e. centered

and scaled).

2.6.4 Designing a core collection for flax
germplasm

The objective was to select a core collection of c.a. 400 flax

accessions, a desirable size allowing both diversity conservation and

QTL discovery (Hyne and Kearsey, 1995; Charmet, 2000; Vales

et al., 2005).To achieve this, we used a mixed approach: i)

preselecting a part of the core collection based on the breeder’s

expertise and ii) used the best-identified core collection method to

select the remaining accessions. For the first accessions selection

step, a list of important accessions according to the breeder’s

expertise of two flax breeding companies in France (Linéa and

Terre de Lin) was retained. Finally, we used the best core collection

method identified in this study to select the remaining accessions.

This core collection will be maintained by Arvalis institute and used

for further genetic studies. It will be considered as a flax

reference collection.
3 Results

3.1 Genetic diversity of the flax germplasm

A total of 30,893 Single Nucleotide Polymorphism (SNP)

markers were obtained after genotyping the whole collection.

Following filtering for missing data, the dataset comprised 29,007

SNP markers for 1,593 accessions with a minor allele frequency

(MAF) greater than 1%. These markers are evenly distributed along

the chromosomes, providing a significant genome-wide coverage

(Figure 1). The imputed genotyping matrix was then pruned to

retain only a set of independent markers more adapted for structure

analyses. The resulting matrix contained 17,368 markers. The

distribution of Tracy-Widom test statistics (Supplementary Figure

S1) indicated that the first 203 principal components significantly

contributed to the genetic variance. These components were

retained for the DAPC and subsequent analyses.

Based on the Bayesian Information Criterion (BIC), the most

likely number of genetic clusters was determined to be 6

(Figure 2A). At K = 2, the structuring of the germplasm followed

the cultivation type, distinguishing oilseed from fiber flax
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accessions. At K = 3, a winter flax cluster emerged, characterized by

enhanced tolerance to low temperatures (data not shown). From K

= 4 onwards, the structuring primarily reflected the geographical

origin of accessions. For instance, at K = 4, a new cluster was

identified within the oilseed group, separating South American flax
Frontiers in Plant Science 08
accessions from the rest. At K = 5, another cluster was found within

the fiber group, separating Western European fiber flax from

Eastern European fiber flax. At K = 6, the oilseed group further

subdivided into three sub-clusters: South American, North

American, and Eastern European oilseed flax. Beyond K = 6,
FIGURE 1

Distribution of SNP density along the 15 chromosomes of the flax genome, based on 28,475 mapped SNPs. Scale bar on the right provides
numerical values for color density from zero (white) to two hundred sixteen (red).
FIGURE 2

A two-part figure includes: (A) Bayesian Information Criterion (BIC) values as a function of the number of clusters defined in the flax germplasm; (B) Scatter
plot of the first two principal components of the PCA of the Arvalis flax germplasm (1,593 accessions), with color-coded clusters identified by DAPC.
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further differentiation occurred within the oilseed group, notably

separating Eastern European lines from those of South American

origin. Genetic diversity for K = 6 is illustrated via a principal

component analysis (Figure 2B).

Table 2 summarizes the main features of the six previously

identified clusters. Oilseed lines are overrepresented relative to fiber

lines (69% vs 31%). Cluster O-NAM (Northern American oilseed

flax) contained the largest number of accessions (31%), mostly

composed of North American spring-type oilseed flax. Cluster

Winter-WEU (Winter Western European flax) contained the

fewest accessions (7%), primarily consisting of winter flax

originated from Western Europe.

The pairwise fixation index Fst values revealed relatively high

and significant genetic differentiation between clusters, especially

between oilseed and fiber clusters (Fst up to 0.28, Table 2). The

highest pairwise Fst value (Fst = 0.28) was found between clusters

Winter-WEU and F-EEU (Eastern European fiber flax). The lowest

Fst value (Fst = 0.05) was observed between oilseed clusters O-SAM

(South American oilseed flax) and O-NAM (Northern American

oilseed flax), both comprising American oilseed lines. The Fst value

between all clusters was significantly larger than zero (Fst =0.19).

Genetic diversity indices were generally moderate, with the

oilseed clusters being the most diverse. (Table 2). The clusters

exhibiting the greatest genetic diversity were the American oilseed

lines (clusters O-SAM and O-NAM), with Shannon diversity

indices ranging from 0.64 to 0.68 and expected heterozygosity

ranging from 0.21 to 0.27. These clusters also harbored the

highest rate of rare alleles. The cluster O-EEU (Eastern European

oilseed flax) and Winter-WEU showed a genetic diversity slightly

lower than O-SAM and O-NAM (He of 0.24 for O-EEU and 0.21

for Winter-WEU). Conversely to oilseed clusters, the fiber clusters

F-EEU and F-WEU (Western European fiber flax) exhibited the

lowest level of diversity (He<0.17 and SH<0.45).
3.2 Core collection methods comparison

We evaluated 20 methods x selection criteria combinations for

core collections establishment. In total, 200 core collections, each

consisting of 350 accessions, were generated and assessed. For each

core collection, representativeness and diversity indices were

computed. Additionally, the proportion of shared QTLs with the

whole collection was measured. Table 3 summarizes the mean

values (calculated from ten replicates) and standard deviation of

the evaluation criteria for the twenty tested combinations (non-

normalized data).

The evaluation criteria showed different levels of variability

between the methods. The Rare Allele Ratio (RAR) exhibited the

lowest variability across methods. Regardless of the method used,

nearly all rare alleles were consistently captured. Similarly, the

allelic coverage rate (CV) displayed limited variation across

methods (ranging from 0.965 to 0.994), suggesting that these two

metrics were not strongly discriminative. In contrast, diversity-

related indices such as Shannon’s index (SH), expected

heterozygosity (He), and Mean Rogers ‘Distances (MRD)
T
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TABLE 3 Evaluation criteria and standard errors computed for all core collection construction methods.

Diversity Representativeness QTL

KL
sd
(KL)

COR
sd

(COR)
MD

sd
(MD)

QTL
sd

(QTL)

3.E-04 3.E-05 0.65 2.E-02 0.11 0.06 27% 0.04

4.E-04 4.E-05 0.59 2.E-02 0.12 0.06 27% 0.02

4.E-03 1.E-02 0.58 4.E-02 0.17 0.05 27% 0.03

4.E-04 5.E-05 0.57 4.E-02 0.14 0.07 28% 0.03

6.E-04 2.E-04 0.56 3.E-02 0.13 0.05 26% 0.04

2.E-02 4.E-02 0.51 3.E-02 0.16 0.06 26% 0.02

1.E-03 1.E-04 0.50 1.E-02 0.22 0.08 28% 0.02

2.E-03 3.E-04 0.44 4.E-02 0.34 0.12 24% 0.02

3.E-03 1.E-04 0.41 7.E-03 0.49 0.08 18% 0.01

6.E-03 6.E-05 0.41 9.E-03 0.49 0.04 27% 0.02

2.E-02 4.E-02 0.48 6.E-03 0.43 0.04 24% 0.04

4.E-03 1.E-04 0.48 2.E-03 0.39 0.04 20% 0.01

1.E-01 1.E-02 0.46 3.E-03 0.46 0.03 20% 0.03

1.E-01 3.E-03 0.41 6.E-03 0.51 0.06 27% 0.02

1.E-01 5.E-03 0.39 1.E-02 0.51 0.04 27% 0.01

7.E-03 8.E-05 0.38 8.E-03 0.54 0.05 26% 0.01

1.E-01 2.E-04 0.37 9.E-03 0.53 0.03 21% 0.02

1.E-01 4.E-03 0.35 3.E-02 0.51 0.05 25% 0.02

1.E-01 8.E-04 0.18 2.E-02 0.57 0.05 19% 0.02

5.E-03 2.E-04 0.32 9.E-03 0.49 0.07 21% 0.02

overage; KL, Kullback-Leibler divergence of allelic frequencies; COR, Average correlation between Principal

erminant of the information matrix f(M); ENE, Nearest Neighboring Entry.
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Methods
SH

sd
(SH)

He
sd
(He)

MRD
sd

(MRD)
RAR

sd
(RAR)

CV
sd
(CV)

CDmean 0.68 1.E-03 0.21 6.E-04 0.43 9.E-04 1.000 0.E+00 0.981 2.E-03

CV 0.67 3.E-03 0.21 3.E-03 0.42 2.E-03 1.000 0.E+00 0.992 1.E-03

Avg_GRM 0.67 3.E-03 0.21 2.E-03 0.43 2.E-03 1.000 2.E-04 0.991 1.E-03

ANE_CV 0.67 2.E-03 0.21 3.E-03 0.42 2.E-03 1.000 8.E-05 0.992 1.E-03

ANE 0.68 3.E-03 0.21 2.E-03 0.43 2.E-03 1.000 5.E-05 0.991 1.E-03

D-opt+Avg_GRM 0.68 2.E-03 0.21 1.E-03 0.43 2.E-03 1.000 4.E-04 0.985 2.E-03

D-opt 0.69 1.E-03 0.21 1.E-03 0.44 8.E-04 1.000 1.E-04 0.965 2.E-03

ENE 0.69 1.E-03 0.22 4.E-03 0.44 1.E-03 1.000 2.E-04 0.994 1.E-03

ANE_ENE 0.69 4.E-04 0.21 7.E-04 0.44 3.E-04 0.999 2.E-04 0.974 1.E-03

SH_CV 0.71 1.E-04 0.22 9.E-04 0.46 1.E-04 1.000 0.E+00 0.991 5.E-04

ANE_SH 0.71 1.E-04 0.22 1.E-03 0.45 1.E-04 0.999 4.E-04 0.991 4.E-04

ANE_SH_CV 0.71 4.E-04 0.22 9.E-04 0.45 3.E-04 1.000 0.E+00 0.991 7.E-04

ANE_HE 0.71 1.E-04 0.22 1.E-03 0.45 8.E-05 0.998 3.E-04 0.991 5.E-04

SH 0.71 2.E-05 0.22 7.E-04 0.46 1.E-04 0.997 4.E-04 0.990 5.E-04

HE_SH 0.71 5.E-05 0.22 9.E-04 0.46 5.E-05 0.996 5.E-04 0.990 2.E-04

HE_CV 0.71 7.E-05 0.22 2.E-03 0.46 1.E-04 1.000 0.E+00 0.991 8.E-04

ENE_SH 0.71 1.E-04 0.22 3.E-04 0.45 1.E-04 0.998 2.E-04 0.982 1.E-03

HE 0.71 7.E-05 0.22 1.E-03 0.46 1.E-04 0.995 7.E-04 0.990 5.E-04

ENE_HE 0.71 1.E-04 0.23 1.E-03 0.45 1.E-04 0.995 8.E-04 0.982 9.E-04

ENE_CV 0.69 3.E-04 0.22 2.E-03 0.44 2.E-04 1.000 0.E+00 0.975 1.E-03

SH, Shannon diversity index; He, Expected heterozygosity; MRD, Mean Rogers’s distances; RAR, Rare allele ratio (considering MAF<10%); CV, Allelic
components; MD, Mean phenotypic differences; QTL, Ratio of common QTLs simulated.
CDmean, Mean coefficient of determination; Avg_GRM, Average Genetic Relationship Matrix; ANE, Average Nearest Entry; D-opt, Optimality of the de
c
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demonstrated more substantial variation and followed similar

trends across methods (Table 3). As expected, methods that

maximized these indices tended to yield higher overall genetic

diversity. Representativeness indices such as Kullback-Leibler

divergence (KL), correlation coefficient (COR), and Mean

Differences (MD) revealed significant differences between

methods. The CDmean method consistently achieved the lowest

KL divergence, the highest COR, and the lowest MD values. Other

methods showing high representativeness included the CV,

Avg_GRM_self, and ANE-based approaches. In general,

representativeness indices exhibited greater variability compared

to diversity indices. The highest MD values (greatest difference

between core and whole collection reflecting low phenotypic

representativeness) were observed for methods such as ENE_HE,

He_CV, and ENE_SH.

The novel criterion based on the proportion of shared QTLs

between the core and whole collections, was evaluated. All QTL

detection models successfully controlled the inflation of test

statistics (see Supplementary Figures S2A, B). QTL detection on

core collections generated, varied between methods, ranging from

18% to 28% of the 940 QTL simulated in the whole collection

(Supplementary Figure S3). Methods that detected the highest

average number of simulated QTLs included D-opt, ANE_CV,

and SH_CV. CDmean also showed a high median catching rate,

ranking second only to D-opt. The ANE_CV, ANE_He and

ANE_SH methods were more subject to sampling variations,

exhibiting greater variability in QTL detection rate. Generally,

methods ensuring high representativeness tended to catch more

simulated QTLs. The method with the lowest QTL rate is

ANE_ENE, and methods that prioritized the ENE index tended
Frontiers in Plant Science 11
to bring fewer QTLs overall. A clear trade-off was observed between

maximizing diversity and maximizing representativeness. Methods

that were most effective at enhancing diversity generally performed

less in terms of representativeness, and vice versa. Nonetheless,

certain methods, such as ANE_SH, ANE_SH_CV, and SH_CV,

provided a balanced compromise between the two objectives.
3.3 Composite score index for core
collection evaluation

For a simplified cross‐method comparison, a composite index

integrating some evaluation criteria was calculated. Prior to index

construction, inter‐criteria correlations were assessed to avoid the

inclusion of highly collinear metrics. Concurrently, a balance

between representativeness and diversity was sought. The MD index

was intentionally excluded from this composite index because it relies

primarily on passport data that cannot accurately reflect the full extent

of phenotypic diversity. Correlation analysis (Supplementary Figure

S4) revealed that diversity criteria (SH, MRD, and He) were mutually

and significantly correlated; moreover, MRD and SH exhibited

redundancy, warranting the inclusion of only one of these metrics in

the composite index. Although KL and COR were correlated, they

conveyed distinct information and were therefore both retained. The

distributions of KL, RAR, and CV were found to be highly skewed

(Supplementary Figure S4). Notably, COR exhibited the strongest

correlation with the QTL criterion (R = 0.45). All the seven selected

criteria were normalized before integration into the composite score.

The resulting composite index values are summarized in the

boxplot Figure 3.
FIGURE 3

Boxplot showing the Composite Index I, calculated across ten repetitions of each tested method. The x-axis lists the various methods, and the y-
axis represents the index values. Each method's box plot illustrates the median (the cross X), the interquartile range, and potential outliers.
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The method yielding the highest index value, and thus the best

overall compromise was the one that simultaneously optimized

both the SH and CV criteria (SH_CV). In general, methods that

integrated multiple criteria tended to produce higher index scores.

Conversely, the method with the lowest index was the one that

combined ENE and HE optimization (ENE_HE). More broadly,

methods that optimized the ENE criterion, either alone or in

combination with other criteria, consistently resulted in lower

index values.
3.4 Core collection based on breeder’s
expertise, Shannon index and allelic
coverage

A preliminary list of 98 essential accessions was preselected;

including 30 rare winter flax accessions and 68 accessions (33

oilseed and 35 fiber flax) recommended by the two French flax

breeders, Linéa and Terre de Lin. The breeder’s list included
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breeding lines (modern lines) and selection material. Most of

these were used in Western European breeding programs. Then,

to build bridges between our core collection and existing collections

around the world, and encourage international collaboration; we

retained all the 107 accessions that are common to our collection

with PGRC core collection (Canada), U.S.NPGS (USA) core

collection, as well as the composite collection from Guo

et al. (2020).

A complementary list of 204 new accessions was selected using

SH_CV method by fixing the 205 preselected accessions. This core

collection of 409 accessions included 300 oilseed flax, 69 fiber flax

and 40 mixed types (Table 4; Figure 4).

We then compared genetic diversity and representativity

parameters between the whole germplasm and the core collection

(Table 4; Figure 4). The core collection captured almost all the

genetic diversity of the whole collection (Table 4) and was fully

representative of the whole collection (Figure 4). For example, we

obtained He values of 0.216 for this core collection compared to

0.22 for the whole collection (Table 4).
FIGURE 4

Scatter plot of the first two principal components of the PCA of the Arvalis flax germplasm (1,593 accessions) highlighting the 409 selected
accessions that represent the core collection.
TABLE 4 Comparison of the core collection and the whole collection.

Panel Size Oilseed Fiber
Dual

purposes
Shannon
index

Expected
Heterozygosity (He)

Mean Rogers’
distance (MRD)

Germplasm 1593 1053 (66%) 354 (22%) 186 (12%) 0.672 0.220 0.424

Core collection 409 300 (73%) 69 (17%)
40

(10%)
0.692 0.216 0.440
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4 Discussion

4.1 Population structure and genetic
diversity

The genetic diversity study of the worldwide flax collection

revealed a pronounced genetic structure within this germplasm.

The primary axis of differentiation was between oilseed flax and

fiber flax types as expected, a pattern consistent with previous

findings reported in the literature (Fu, 2005; Hoque et al., 2020;

Speck et al., 2022). At K = 3, the emergence of a new cluster

composed predominantly of winter-type flax lines highlights the

differentiation between spring and winter types. This type of

structuring has also been observed in previous studies (Uysal

et al., 2010; Fu, 2012; Hoque et al., 2020). This cluster

predominantly comprised lines tolerant to low temperatures and

thus represents a valuable reservoir of alleles for the improvement

of other clusters, particularly given its composition of both fiber and

oilseed genotypes. For K = 4, the population structure became more

refined, with subdivisions reflecting the geographical origin of the

accessions. A new cluster composed primarily by south American

oilseed lines appeared. In contrast, the fiber flax group, only began

to subdivide from K = 5 onwards, distinguishing between Western

and Eastern European origins. At K = 6 and for higher K values,

further subdivision occurred within the oilseed clusters, notably

distinguishing Eastern European flax from Western European and

South American oilseed flax. In the K-means clustering procedure,

although the Bayesian Information Criterion exhibited a peak at K

= 2, it ultimately designated six clusters as the optimal

configuration. The investigation of cluster structure could be

supplemented by the Bayesian framework of Pritchard et al.

(2000) using the STRUCTURE software, thereby reinforcing

our results.

Genetic diversity analyses for the whole collection revealed

moderate diversity (H e= 0.22), a value similar to that reported by

Hoque et al. (2020) who used 6200 SNP markers to analyze the

diversity of 350 genotypes. This level of diversity is expected, given

that flax possesses an autogamous reproductive system (Hoque

et al., 2020). The expected heterozygosity value of the clusters

revealed that oilseed flax clusters harbored greater diversity than

fiber flax clusters (Table 2). These findings are consistent with those

reported in the literature. Hoque et al., 2020 reported seven genetic

clusters with only one cluster for fiber type flax. This difference is

probably due to the history of domestication and selective breeding

focused on specific traits in each type. Oil flax is considered the

ancestral form from which fiber flax was derived. During

domestication, fiber flax underwent strong selection for traits like

stem length and fiber quality, which reduced its genetic diversity

compared to oil flax (Xie et al., 2018). Selective breeding for specific

fiber traits in fiber flax led to narrowing the gene pool. Genomic

studies confirmed that many genes associated with fiber traits in

fiber flax showed strong selection signals, further supporting the

idea of a genetic bottleneck (Povkhova et al., 2021). Furthermore,

fiber flax is cultivated in a more restricted geographic area

compared to oilseed flax, thus leading to high selective pressure
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to adapt varieties to the specific agro-climatic conditions of this

growing area. In contrast, oil flax retained more of the original

genetic variation because it was selected for a broader range of traits,

including oil content and seed characteristics (Jiang et al., 2021).

This finding further underscores that oilseed flax lines harbor a

more substantial diversity reservoir, a factor that likely accounts for

their predominance over fiber flax lines in conservation collections.
4.2 Core collection assessment

In this study, we evaluated a comprehensive suite of core

collection development approaches (twenty method x selection-

criterion combinations) resulting in 200 core collections of 350

accessions each. Dedicated core collection methods were compared

both among themselves and against calibration-population

optimization approaches (as for genomic selection calibration

methods). Our aim was to assess outcomes from approaches that

differ in their input data (e.g., diversity indices, genetic-distance

matrices, or kinship matrices) and in their optimization criteria.

The underlying algorithms also varied between methods.

First, we observed that the evaluation criteria did not exhibit the

same level of variability. Both the CV and RAR criteria showed low

variability across methods. All approaches managed to capture

most alleles, including the rarest. This limited variability may be

attributed to the core collections size. Indeed, with 350 individuals

selected, it is more likely to encompass the full allelic diversity of the

initial collection of 1,593 individuals. It would be relevant to

compare the tested methods using smaller core collections,

ranging from 50 to 100 individuals for example. With such

reduced sample sizes, differences between methods might become

more pronounced. The choice of using 350 individuals was based

on studies assessing the statistical power for QTL detection (Hyne

and Kearsey, 1995; Charmet, 2000; Vales et al., 2005) but also for

practical reasons with the perspective of testing this CC in

field experiments.

Secondly, we observed that diversity-related criteria exhibited

lower variability across methods compared to representativeness-

related criteria. With core collections composed of 350 individuals,

genetic diversity is rapidly captured. This sample size corresponds

to approximately 22% of the total population, which exceeds the

proportion of 10% generally recommended in the literature (Van

Hintum et al., 2000). Nevertheless, methods that jointly optimized

He with CV, or SH with CV, significantly increased genetic diversity

within the core collections compared to other methods.

Among the methods that best preserved representativeness, CV,

ANE, ANE_CV, Avg_GRM_self, and CDmean produced core

collections that closely mirrored the initial collection. These

methods effectively maintained the overall genetic structure. As

expected, the methods originally developed for optimizing

calibration populations (CDmean and Avg_GRM_self) yielded

core collections that were highly representative of the whole

collection. Notably, high levels of representativeness can be

achieved through different strategies, by maximizing allelic

coverage, minimizing the average distance between an accession
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and its nearest neighbors (ANE approach), or by optimizing

pairwise relatedness between individuals.

Regardless of the approach, a clear trade-off emerged between

optimizing representativeness and maximizing the intrinsic

diversity of the core collection. Optimizing for diversity can lead

to over-representation of rare alleles, which may not reflect the

typical characteristics of the full germplasm, thus reducing

representativeness (Marita et al., 2000; Franco-Duran et al., 2019).

Conversely, optimizing for representativeness may result in a CC

that misses rare alleles or unique genotypes, thus underrepresenting

the full spectrum of the diversity (De Beukelaer et al., 2018). Some

advanced algorithms attempt to balance both objectives, but

improving one often comes at the expense of the other, requiring

a compromise based on the intended use of the core collection.

In our study, we also used a novel approach to assess the

capacity of core collections to capture QTLs. Core collections are

particularly valuable for QTL discovery because they harbor

extensive genetic diversity and thus represent a rich source of

QTLs of interest (Soto-Cerda et al., 2014; McLeod et al., 2023). It

is therefore important to determine which optimization criteria

yield a core collection that maximizes QTL detection power. We

detected on average 225 QTLs out of the 940 simulated on the whole

collection, corresponding to approximately 24% overlap in detected

QTLs. This reduction in detection, observed regardless of the

method employed, can be attributed to the smaller size of the

core collections, which diminishes power to detect QTLs with

smaller effect sizes. Indeed, numerous studies have demonstrated

that QTL detection power is strongly influenced by the population

size: larger populations consistently achieve higher detection power

revealing more QTLs, especially those with minor effects, whereas

small populations often fail to detect these minor QTLs (Vales et al.,

2005; Wang et al., 2012; Wang and Xu, 2019; Nwogwugwu et al.,

2022). Among the methods tested, the highest number of QTLs

detected within a core collection was obtained using the ANE_CV

method, where one core collection allowed detecting a total of 299

QTLs. However, this method exhibited high variability in QTL

detection rates. Such variability arised because each random seed

initiates the selection with a different individual, leading to a distinct

ensemble of cluster centers. The ANE method’s combination of

cluster center representativeness (ensuring thorough coverage of

each region in genotype space) and randomized starting points

(inducing different traversals of that space) naturally produces

subpopulations with unique allele frequency landscapes and

linkage patterns. Since QTL detection critically depends on these

landscapes and patterns, ANE yields high variability in the sets of

QTLs discovered across different core collections. The D optimality

criterion method (Dopt) create CC that capture on average the

highest number of QTLs, with relatively low variability across

replicates giving therefore a more stable QTL detection. The Dopt

method selects a subset of individuals that optimally represents the

genetic diversity and structure of the whole collection. By

maximizing the determinant of the feature matrix (typically the

first q principal components of the marker matrix), Dopt ensures

that the selected subset spans the broadest possible range of genetic

variation. This is crucial for QTL detection because a training set
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encompassing the full spectrum of genetic diversity increases the

likelihood that QTL alleles segregate within the subset, thereby

enhancing detection power. Moreover, maximizing the determinant

reduces multicollinearity in the design matrix, yielding more precise

estimates of marker effects. In general, methods that maximized

representativeness, such as Dopt, ANE_CV, and Avg_GRM_self,

captured the largest number of simulated QTLs. Any subpopulation

that preserves the same underlying genetic structure of the whole

collection necessarily has a higher probability of including

those QTLs.

Evaluating methods based on multiple indices can make selecting

the best approach challenging. To facilitate the identification of an

optimal trade-off between diversity, representativeness, and QTL

detection efficiency, we computed a composite index. This index

integrated the criteria in a comprehensive and balanced manner.

Significant differences in index values were observed across methods.

In our study, the combined optimization of the Shannon index and

the allelic coverage (with equal weighting) yielded the highest average

composite index. The Shannon index favors both high allelic richness

and evenness in allele frequencies, thereby promoting allelic balance.

Balanced allele frequencies increase the likelihood that causal variants

(QTLs) segregate at detectable frequencies. The allelic coverage

criterion tends to generate populations that are structurally similar

to the whole collection, thus enhancing representativeness. These two

criteria appear to be complementary. We also observed that methods

combining the ENE criterion with other criteria tended to yield lower

average composite index values. The ENE criterion maximizes the

genetic distances between the selected entry and its neighboring

accessions. This tends to select individuals located at the extremes of

the diversity cloud. Combinations including ENE did not produce

good compromises in our evaluations.

Evaluating the quality of a core collection should, whenever

possible, be based on data that were not used in its construction

(Van Hintum et al., 2000). In the present study, we employed the

full set of SNP markers both to assemble the core collections and to

assess their performance. A more impartial evaluation could be

achieved by partitioning the marker dataset: one subset of

independent, evenly spaced SNPs, would be used to define the

core collections, and the remaining marker set would serve

exclusively for their validation. This two‐step approach would

reduce circularity and provide a more rigorous assessment of core

collection construction methods.
4.3 A core collection representative of the
whole collection for future genetic studies

We selected a core collection of 409 accessions from the 1,593

accessions of the whole collection using a mixed approach based on

breeder’s expertise and optimization of Shannon diversity index and

allelic coverage. Its size would allow it to be used in field experiments,

making it suitable for achieving high statistical power in QTL detection

studies (Hyne and Kearsey, 1995; Charmet, 2000; Vales et al., 2005).

This core collection will allow us to build bridges between our core

collection and existing collections; as it includes 107 accessions that are
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common with PGRC core collection (Canada), U.S.NPGS (USA) core

collection and composite Collection fromGuo et al. (2020). Apart from

this list of common accessions identified by accession name, we were

unable to compare our core collection with others, as genotypic data for

the latter was unavailable. We would indeed like to identify whether

there are any genetically similar individuals among the 302 other

accessions. The availability of this core collection is an important step

in the development of new projects aimed at improving marker-

assisted selection breeding of new lines in the context of climate change.
5 Conclusion

The diversity analysis of the Arvalis flax germplasm revealed a

moderate genetic diversity and a clear genetic split between oilseed and

fiber types, with additional clusters reflecting seasonal and geographical

variation. When reducing the germplasm to 350 accessions across

twenty sampling strategies, most methods captured nearly all alleles but

differed substantially in representativeness and QTL detection power.

While ANE_CV detected the most QTLs, it showed high variability,

and D-optimality offered a more stable and significant recovery. By

integrating diversity, representativeness, and QTL‐detection into a

composite index, the Shannon‐index plus allelic coverage (SH + CV)

combination emerged as the superior compromise for our case study,

maximally balancing genetic richness, representativeness, and trait-

discovery potential for GWAS applications. A mixed approach, which

included fixing a list of accessions recommended by breeders and

selecting with the SH+CV method, allowed us to select a list of 409

accessions that are representative of the whole collection.
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