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Core collections provide a strategic approach to reducing population size while
retaining genetic diversity and allele frequencies, serving as key resources for
genetic research. Although various sampling and selection strategies have been
proposed, most of them focused on either diversity or representativeness, rarely
both, and none fully integrated these with QTL detection optimization. The first part
of our study focuses on a genetic diversity analysis of a flax germplasm (Linum
usitatissimum L.) maintained by the Arvalis Institute, a prerequisite for the
development of core collections. This germplasm is a worldwide flax collection
comprising 1,593 accessions originating from 42 countries, encompassing all major
flax-growing regions. It includes both spring- and winter-type lines, as well as
oilseed and fiber types. The results revealed a pronounced genetic structure within
the germplasm with six clusters, strongly influenced by cultivation purposes (fiber
vs. oilseed flax), growth cycle (winter vs. spring), and then geographic origin. Overall
genetic diversity was moderate (He = 0.22), with oilseed flax clusters displaying
greater diversity (He from 0.21 to 0.27) than fiber flax (He < 0.17). In a second step we
evaluated distinct strategies for core-collection development, including
approaches -originally developed for core collection construction and others-
developed for optimizing genomic-selection calibration panels. We introduced an
approach based on QTL detection performance via extensive simulations of QTLs
distributed across the genome. We observed a fundamental trade-off between
maximizing diversity and ensuring representativeness in core collection design.
Diversity-oriented approaches may overemphasize rare or outlier genotypes,
compromising representativeness, while representativeness-focused strategies
leaded to overlooking rare alleles, thus limiting diversity. In our results we have
found that particular combinations of selection criteria achieved a favorable balance
between genetic diversity and representativeness, while concurrently maintaining a
robust capacity to capture QTL signals across the genome. Finally, the approach
using the Shannon index combined with the allelic coverage led to optimal core
collection design adapted for GWAS applications in a structured population; and
was used to select a core collection of 409 accessions useful for further genetic
studies. These results provide knowledge for the development of optimized core
collections tailored to GWAS applications.
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1 Introduction

Plant genetic resources are a crucial source of diversity and are
essential for improving crops. Useful plant genetic resources for
breeding includes landraces, breeding lines, cultivars and the wild
relatives of the target species, offering a broad range of alleles that
can be exploited to enhance key agronomic traits. To face climate
change, food security challenges, and the need for sustainable
agriculture, the management and conservation of genetic
resources are fundamental for the development of productive and
resilient genetic material (Esquinas-Alcazar, 2005). More than
seven million plant accessions are conserved across around 1,750
genebanks, with over 60% belonging to only thirty cultivated species
(Hammer et al, 2003; Thormann et al., 2012). The diversity
maintained is largely oriented towards human needs. Given the
high number of accessions to be conserved, it has become necessary
to rationalize the management of these resources, particularly
through the selection of core collections.

The core collection concept was formalized in the 1980s to
ensure optimal management and use of the genetic resources
collected over time. A core collection can be defined as a reduced
set of accessions that represents the genetic diversity of a species and
its wild relatives with minimal redundancy (Brown and Clegg, 1983;
Frankel, 1984). Since its inception, numerous studies have focused
on methodologies for creating core collections. Brown et al. (1989)
suggested that a core collection should not exceed 10% of the full
collection and should never include more than 2,000 entries. In
practice, most core collections represent between 5% and 20% of the
original germplasm (Van Hintum et al., 2000). The reduced size of a
core collection is crucial to ensure its efficient long-term
management. The creation of core collections addresses two main
objectives: (1) maximizing the genetic diversity, often favored by
taxonomists, geneticists, and gene bank curators, and (2)
maximizing the representativeness of the germplasm, typically
chosen by breeders (Marita et al., 2000). The goal for the former
is to maximize diversity criteria and conserve the rarest alleles. The
second objective involves faithfully representing the source
germplasm by retaining more generalist alleles. Jointly optimizing
these two objectives ensures efficient short- and medium-term
management of a species’ genetic resources, although this
remains challenging.

Initially, passport information (i.e., morpho-descriptives data,
geographical origins) and other phenotypic traits (e.g. earliness,
disease resistance traits) were used to establish core collections.
However, it was recognized that environmental factors could
influence these variables, leading to inaccurate representations of
heritable genetic diversity (Tanksley and McCouch, 1997).
Nowadays, the use of molecular markers, such as RAPDs (Marita
et al., 2000), SSRs (Soto-Cerda et al., 2013), or SNPs (Bianchi et al.,
2020; Fu, 2025) has become standard and essential for studying
genetic diversity and developing core collections.

Many approaches to developing core collection (CC) have been
described. For these approaches, a comprehensive characterization
of the species’ genetic diversity and structure is an essential
prerequisite, as it is critical to ensure that all genetic clusters are
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adequately represented within the selected subsets of individuals.
This requirement underpins the rationale for employing stratified
sampling methods, which offer a more suitable alternative to
random sampling by preserving the underlying genetic structure
(Charmet and Balfourier, 1995; Gouesnard et al., 2001; Franco et al.,
2003). The sampling rate (i.e., allocation) must be defined based on
the intended objectives. Several strategies have been suggested: a
fixed selection rate, independent from cluster size, a rate
proportional to cluster size, a logarithmic-proportional rate
(which helps maintaining a manageable collection size), or a rate
proportional to intra-cluster genetic distances (or other diversity
metrics), also known as the D-method. This latter method has
shown significant efficiency compared to alternative approaches
(Franco et al., 2006).

The selection of accessions can be based on one or several
objective(s) (rarely greater than two) to be optimized, such as
genetic distances (Jansen and Van Hintum, 2007), diversity
criteria (Franco et al.,, 2006; Thachuk et al., 2009), or the effective
alleles number and their coverage rate (Kim et al,, 2023). Some
strategies have been developed to simultaneously optimize multiple
criteria (Odong et al., 2013; De Beukelaer et al, 2018). These
approaches rely on optimization algorithms (e.g., genetic
algorithms, simulated annealing) which iteratively optimize an
objective function (maximizing or minimizing) by picking a new
entry, often randomly, at each iteration.

Similar methodologies have been developed in the genomic
selection area. These involve the use of calibration set optimization
algorithms, which aim to maximize genomic prediction accuracy based
on molecular marker data (Laloé, 1993; Albrecht et al., 2011; Pszczola
et al., 2012; Rincent et al., 2012; Akdemir, 2017; Ou and Liao, 2019).
While this approach does not directly link genomic selection
calibration methods to core collection inception, the optimization
techniques used in genomic selection, such as genetic algorithms and
diversity-based criteria, could potentially be adapted for core collection
creation. The focus on optimizing subsets for prediction accuracy in
genomic selection parallels the goal of selecting representative subsets
in core collection creation, suggesting a possible methodological
crossover. Moreover, core collections are widely used in associations
studies for QTL discovery (Nicolas et al., 2016; Berkner et al., 2024).
This type of population typically harbors greater genetic diversity than
biparental populations and includes a higher number of recombination
events. As a result, the resolution of detected QTLs is significantly
improved (Breseghello and Sorrells, 2006; Zhao et al., 2007; Huang and
Han, 2014; Bandillo et al., 2015).

The quality assessment of a core collection should, whenever
possible, be based on data that were not used for its development
(Van Hintum et al., 2000). Core collections are often compared to
the whole collection (WC) from which they were derived. Various
evaluation criteria can be computed to assess the resulting
population such as genetic distances, diversity indices (Shannon
index, heterozygosity) or even Principal components analysis
(Mohammadi and Prasanna, 2003; Reif et al., 2005, and Odong
et al., 2013).

The first breeding and improvement flax (Linum usitatissimum
L.) programs were initiated in the 1920s by Irish and Dutch
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researchers (Dore and Varoquaux, 2006). Breeding efforts
specifically targeting fiber flax also began during this period, with
early hybridizations carried out in 1919 (e.g., with the EGBK or
CRGH lines) (Blaringhem, 1926). Genetic improvement priorities
in flax vary according to its intended use, fiber or oilseed, and are
primarily aimed at addressing current agronomic and climatic
constraints. In fiber flax, breeding efforts focus on enhancing
resistance to major fungal pathogens, including Polyspora lini,
Septoria linicola, fusarium wilt, flax scorch, and powdery mildew.
Improving resistance to lodging is also a key objective, as it
contributes to reducing yield losses and facilitating mechanized
harvesting. Additionally, the enhancement of fiber quality remains a
central goal, along with the development of cultivars with improved
tolerance to abiotic stresses such as elevated temperatures, drought,
but also cold, particularly for winter-type lines. For oilseed flax,
breeding efforts are focused on stabilizing and optimizing yield
while accounting for strong genotype-by-environment (GxE)
interactions. Disease resistance, particularly against septoria, is
another major goal. Lastly, improving oil quality and enhancing
cold tolerance for winter-type lines are key breeding targets. The use
of extended genetic diversity in breeding programs could help
improving flax for resistance/tolerance to biotic and abiotic factors.

The worldwide diversity of cultivated flax and its wild relatives
is represented by an estimated 48,000 accessions maintained in 33
genebanks, among which only around 10,000 are considered
genetically distinct or truly unique (Diederichsen, 2007). From
these resources, many flax core collection have been created (Fu,
2006; Diederichsen et al., 2013; Hoque et al., 2020) in order to
investigate for example flowering time (Chandrawati et al., 2017),
agronomic, seed and fiber quality, disease resistance traits (You
etal, 2017), or even powdery mildew resistance (Speck et al., 2022).
The Arvalis Institute, a French institute for applied research in
agriculture, maintains a collection of around 1,650 fiber and oilseed
flax accessions. This germplasm comprises accessions from
countries worldwide where fiber and oilseed flax have been
cultivated or are naturally distributed, with a particular focus on
recently improved lines from western Europe breeding programs.
However, no core collection based on this western European flax
genetic resources was available. Then, rare genetic studies in
Western Europe have examined a diversity panel including large
modern Western European flax. Speck et al. (2022) used a flax panel
of 311 lines selected from 38 countries spanning all continents and
diverse worldwide climatic regions. However, they did not describe
a clear selection methodology to ensure that genetic diversity was
adequately represented. This study and others on cultivated flax
diversity have revealed a significant genetic structure between fiber
and oilseed groups. Further sub-structuring has also been
characterized, often related to geographical origins or
physiological development (winter vs. spring types) (Hoque et al.,
20205 Fu, 20055 Speck et al.,, 2022). However, the effect of geographic
origin is not always significant (Smykal et al., 2011; Chandrawati
etal, 2017; You et al., 2017). This may be attributed to the extensive
exchange of genetic material (Soto-Cerda et al., 2013). Developing a
core collection of flax germplasm focused on Western European
diversity should facilitate genetic studies for flax breeding in
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Europe, while also allowing comparisons between studies based
on this core collection.

In this study, we (i) performed genetic diversity analyses of a
flax collection, (ii) compared various approaches to identify a core
collection for further quantitative genetic studies and (iii) selected a
core collection based on the best approach for further genetic
studies. We tested and evaluated approaches specifically designed
for core collection construction alongside population optimization
methods that were originally developed for genomic selection
calibration sets. We also proposed a novel criterion to compare
approaches to build core collections based on QTL detection
performance via extensive simulations of QTLs distributed across
the genome. These methods differ in the type of input data used, the
nature and number of optimization criteria (diversity indices,
representativeness criteria, combination of them), and the
algorithms used. The core collection designed will be useful for
genome-wide association studies and genomic selection to enhance
Western European flax breeding programs.

2 Materials and methods
2.1 Plant materials

The germplasm maintained by Arvalis since 2010 is a collection
of 1,650 cultivated flax (fiber, oilseed and dual purposes type)
accessions. The initial accessions were collected in 1938 by
INRAe from botanical collections and further extended through
exchanges with research institutes, international biological
resources centers, and breeding companies. The most recent
accessions collected are lines originating from breeding programs
and obtained in 2021. This diversity panel is predominantly
composed of spring-type inbred lines, with 66% belonging to the
oilseed group, 22% to the fiber group, and 12% classified as dual-
purpose (both fiber and oilseed). Some winter-type lines have been
included (oil and fiber) representing a valuable genetic source for
low temperature tolerance. This germplasm encompasses the global
diversity of cultivated flax, with accessions originating from 42
countries across all continents. It includes 107 common accessions
with the PGRC core collection (Canada), the U.S. NPGS core
collection, and the composite collection from Guo et al. (2020).
The full list of accessions can be found in Supplementary Table S1.

2.2 Phenotypic data

The germplasm has been phenotyped for a set of 22 traits,
summarized in Supplementary Table S2. These data are primarily
passport data used to describe the accessions, including flower
morphology (anther and pollen color, petal shape and color,
filament color and winding, style color, ciliation and
pigmentation of capsule, corolla size, beak shape), seed
morphology (seed color, thousand kernel weight), geographic
origin, cultivated group (oilseed versus fiber-type), tolerance to
low temperatures, lodging tolerance, as well as resistance to
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powdery mildew and Fusarium wilt. Prior to analysis, missing
values were imputed using the R package missForest v1.5
(Stekhoven and Biithlmann, 2012). No imputation was performed
for the country of origin.

2.3 Genotypic data

A seedling was produced for each of the 1650 flax accessions in
the growing room at Arvalis Institute site in Boigneville (France)
with 20°C/18°C day/night temperature. The Fresh leaves of two-
weeks-old seedlings (50-100 mg) were harvested in microtube
strips and flash-frozen at -80°C for 24 hours before being freeze-
dried for 48 hours and then ground using the MM400 vibro-grinder
(Retch). Genomic DNA was extracted from the crushed material
using a modified Machery-Nagel NucleoMag Plant kit on the
Beckman Coulter Biomek i5 automated workstation. Genomic
DNA was then checked for quality on NanoDrop ND8000
(Thermo Fisher Scientific) and quantified on Qubit (Thermo
Fisher Scientific) by Picogreen dosage. All accessions were
genotyped using the Allegro AT-SNP-30K targeted genotyping
tool (Demenou et al., 2025, 2025) at the EPGV platform (INRAe,
Evry, France).

The genotyping matrix was generated using the bioinformatics
pipeline described in Demenou et al. (2025) and was then filtered.
Markers and accessions with more than 50% missing data were
discarded. The remaining markers were imputed using Beagle v5.4
(Browning, 2008; Browning and Browning, 2016), applying default
parameters. Following this imputation, the genotyping matrix was
filtered to remove markers having low minor allele frequency (MAF),
retaining only those with MAF > 1% (Supplementary Table S3). This
threshold has been chosen to preserve rare alleles that may carry
valuable genetic information (Goudet et al., 2018). The distribution of
selected imputed markers across the fifteen flax chromosomes was
visualized using the R package CMplot v4.5.1 (Yin et al., 2021) to assess
the quality and uniformity of the genotyping data.

2.4 Population structure and diversity
analysis

Prior to the genetic diversity analysis, the genotyping matrix
was intentionally pruned to retain only independent markers,
thereby minimizing the confounding effects of collinearity among
linked loci (Patterson et al., 2006). Marker pruning was performed
using PLINK v1.07 (Purcell et al, 2007) with the following
parameters: the ‘indep-pairwise’ function, a sliding window of 50
SNPs, and a linkage disequilibrium threshold of R* = 0.4. In other
words, pairs of markers within a sliding window of 50 SNPs and an
R’ value greater than 0.4 were pruned, so that only one marker per
pair was kept.

We performed a Discriminant Analysis of Principal
Components (DAPC) using the R package adegenet v2.1.10
(Jombart et al.,, 2010). DAPC assigns membership probabilities to
predefined genetic clusters, which were inferred via K-means
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clustering. The number of retained principal components for the
DAPC was determined using the Tracy-Widom test (Patterson
et al,, 2006), which identifies the first axes that significantly explain
genetic variation. The optimal number of clusters K was determined
by evaluating models with K-values ranging from 1 to 10, using the
Bayesian Information Criterion (BIC) to select the best-supported
model. Additionally, the most likely K-value was inferred by
considering the correspondence between the identified groups
and our germplasm knowledge. A Principal Component Analysis
(PCA) was conducted on the pruned and standardized matrix using
the R package FactoMineR v2.11 (Lé et al., 2008) to visualize the
diversity and clustering. Pairwise Fixation indices (Fst) were
calculated between genetic clusters using the R package hierfstat
v0.5.11 (Goudet, 2005).

To further characterize the diversity hosted by the germplasm,
expected mean heterozygosity (Berg and Hamrick, 1997),
Shannon’s diversity index (Shannon, 1948), average Rogers’
genetic distance (Rogers, 1972), and the proportion of rare alleles
(considering MAF< 0.10) were computed for each cluster and for all
the entire germplasm.

2.5 Establishment of core collections

Two categories of methods have been employed in this study:
those specifically dedicated to core collections, and those aimed at
building calibration populations, particularly for genomic selection
purposes. Core collections were established using the R packages
CoreCollection v0.9.5 (Jansen and Van Hintum, 2007; Odong et al.,
2013), corehunter III v3.2.3 (Thachuk et al., 2009; De Beukelaer
et al,, 2018), TrainSel v3.0 (Akdemir et al., 2021), as well as the
approach originally proposed by Laloé (1993) and further
developed by Rincent et al. (2012) (R code acquired directly from
the authors).

The method developed by Jansen and Van Hintum (2007) and
later refined by Odong et al. (2013) is based on genetic distances among
accessions. Entries are selected using a random descent algorithm,
optimizing one of three available criteria: the Average Nearest Entry
(A-NE), which minimizes the average distance between each accession
and its nearest neighbors, the Nearest Neighboring Entry (E-NE),
which maximizes this average distance, and the Entry-Entry (E-EE)
criterion, which maximizes the pairwise distance among all accessions
in the collection. We optimized the A-NE and E-NE criteria using
Rogers’ genetic distance (Rogers, 1972). Optimization parameters were
kept at their default settings.

The corehunter III R package (Thachuk et al., 2009; De
Beukelaer et al., 2018) applies a stochastic local search algorithm
based on replica exchange Monte Carlo chains for core collection
development. Multiple selection criteria can be combined and
weighted. This method can accommodate various input data
types, including genetic distance matrices, genotypic and
phenotypic datasets. Version III of this package supports the use
of the following selection criteria, either individually or jointly: the
previously described A-NE, E-NE, and E-EE criteria, expected
heterozygosity (He), Shannon diversity index (SH), and allelic
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coverage (CV). All available optimization criteria were considered,
except for the E-EE criterion. Criteria were applied individually or
in pairwise combinations. In the case of bi-objective optimization,
equal weights of 0.5 were assigned to each criterion. Additionally, a
combination of the following three criteria, A-NE, SH, and CV, was
tested, with each criterion assigned an equal weight (~0.33). The
execution mode was set to default, and normalization was applied
for multi-objective optimizations.

The approach proposed by Laloé (1993) and elaborated by
Rincent et al. (2012) aims to select a reference set of individuals for
phenotyping that maximizes the reliability of genomic predictions
for non-phenotyped individuals based on their genotypes. This
method optimizes the generalized coefficient of determination
(CDmean), which measures the correlation between predicted
and observed values of genetic contrasts. CDmean balances the
prediction error variance (PEV) against the genetic variance of the
contrasts, accounting for genetic relatedness. The optimization is
performed using a hill-climbing algorithm, exchanging one
individual at each iteration, with the CDmean recalculated at
every step using the individuals’ variance-covariance matrix. We
use the R-code given by the authors. A total of 3,000 iterations were
performed for each of the 10 core collection replicates.

Other available tools for selecting calibration sets include
STPGA (Akdemir, 2017), TSDFGS (Ou and Liao, 2019), and
more recently, the R package TrainSel v3.0 (Akdemir et al., 2021).
TrainSel enables the selection of individuals through mono- or
multi-objective optimization, with possible weighting of criteria. It
combines a genetic algorithm with simulated annealing. For our
study, TrainSel was used with the following objective functions:

* D-optimality criterion (D-opt): aiming to maximize the
determinant of the information matrix f(M), corresponding
to the principal component transformation of the genotypic
matrix, this criterion maximizes the dispersion in the
multivariate genetic space

* Avg GRM_self: aiming to minimize the average relatedness
within the calibration population, thus maximizing its
genetic variance. The effectiveness of this criterion for
calibration population selection has been demonstrated in
previous studies (Atanda et al., 2021; Fernandez-Gonzalez
et al,, 2023)

¢ The combined optimization of D-opt and Avg GRM_self.

Optimization algorithm hyperparameters were set as follows:
medium population size, low complexity, and unordered sample.
The remaining parameters were left at their default settings.

Table 1 summarizes the method x criterion combinations tested.
For each combination, ten populations of 350 individuals were
generated, with a random selection of the initial set. With such
population size, the detection power for QTL studies should be
enhanced (Hyne and Kearsey, 1995; Charmet, 2000; Vales et al., 2005).
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2.6 Core collection selection and
evaluation

2.6.1 Diversity and representativeness criteria

Each combination has been evaluated based on criteria
assessing both genetic diversity and representativeness. To
quantify the genetic diversity captured by each CC, the following
metrics have been computed: the rare alleles ratio (MAF< 10%)
(RAR), the mean Rogers’ distance (MRD), the expected
heterozygosity (He), and the Shannon diversity index (SH). These
indices are calculated using the following formulas:

1. Rare alleles ratio (RAR):

RAR= —
R

where R is the number of rare (i.e. MAF<10%) SNPs identified
in the whole collection, and H the number of these rare SNPs
founded as heterozygous within the core collection.

2. Mean Rogers’ genetic distance (MRD) (Rogers, 1972):

1 m [1n )
MRD = - ; Eg’(aij - by)

where m is the number of loci, n; is the number of alleles at locus
i, aj and by;, are the genotype codes for individuals a and b at locus i.
This metric can be likened to a Euclidean distance.

3. Expected heterozygosity (He) (Berg and Hamrick, 1997):

1L nl
He = ZE <1 —_2p,€->
=1 i=1
Where L is the number of loci, n; is the number of alleles at locus
1, pi; is the relative frequency of the i-th allele at locus 1.
4. Shannon diversity index (SH) (Shannon, 1948):

n
SH = _EIPi'logZ(pi)
i

where n is the number of alleles and p; is the frequency of the i-
th allele.

To assess the representativeness of each CC relative to the WC,
we computed the following metrics: allelic coverage (CV) (Kim
et al,, 2007), Kullback-Leibler divergence (KL) between allele
frequency distributions of CC and WC (Kullback and Leibler,
1951), the average absolute Pearson’s correlation of principal
component vectors (COR) between CC and WC (Yamamoto
et al, 2007), and the Mean Difference ratio (MD) for a set of
phenotypic variables (Hu et al., 2000). For MD calculation,
independent phenotypic variables were preselected using
Cramer’s V index (Crameér, 1999) to avoid overrepresentation of
specific variable categories.

These representativeness metrics are computed using the
following formulas:
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TABLE 1 Combinations of twenty methods and selection criteria used in core collection development.

R Package Algorithm Criterion Input data Objective
A-NE Optimizes representativeness
CoreCollection * Random descent e — Genetic distances*
E-NE Maximizes genetic variance
HE Maximizes allelic diversity
Stochastic local search
corehunter © on replica exchange cv Genotyping matrix Maximizes allelic coverage
Monte Carlo chains
SH Optimizes genetic diversity while penalizing redundancies
code only © Hill-climbing CDmean Variance-covariance matrix Optimizes representativeness
Avg GRM_self Kinship matrix** Maximizes relatedness among individuals
TrainSel ¢ Genetic algorithm
D-opt Principal Components Optimizes representativeness
A-NE + E-NE Genetic distances* Optimizes representativeness and maximizes genetic variance
A-NE + HE Optimizes representativeness and maximizes allelic diversity
ANE + SH Optin.ﬁ'zes representat'iveness and genetic diversity while
penalizing redundancies
A-NE + CV Genetic distances* + Optimizes representativeness and maximizes allelic coverage
E-NE + HE genotyping matrix Maximizes genetic variance and allelic diversity
Maximizes genetic variance and optimizes genetic diversit
Stochastic local search E-NE + SH K g R P 8 ¥
b . while penalizing redundancies
corehunter on replica exchange
Monte Carlo chains E-NE + CV Maximizes genetic variance and allelic coverage
Maximizes allelic diversity and optimizes genetic diversity
HE + SH . .. .
while penalizing redundancies
CV + SH Genotyping matrix Maximizes allelic coverage and optimizes genetic diversity
while penalizing redundancies
CV + HE Maximizes allelic coverage and allelic diversity
A-NE + SH + CV Genetic d.istances*. + Opti'mi'ze's repres'ent'ativeness and genetic diversity while
genotyping matrix maximizing allelic richness
D-opt + Optimizes sentativeness and relatedness
TrainSel ¢ Genetic algorithm °p Kinship matrix** . p.u.m e representativencss and relatedness among
Avg_GRM_self individuals

? Jansen and Van Hintum, 2007; Odong et al., 2013; > Thachuk et al., 2009, De Beukelaer et al.,, 2018; © Laloé, 1993; Rincent et al., 2012 (code only); d Akdemir, 2017; Akdemir et al., 2021; *
Rogers’s genetic distance; **Computed according Vanraden (2008) formula.

SH, Shannon diversity index; He, Expected heterozygosity; CV, Allelic coverage; CDmean, Mean coefficient of determination; Avg_GRM, Average Genetic Relationship Matrix; A-NE, Average
Nearest Entry; D-opt, Optimality of the determinant of the information matrix f(M); E-NE, Nearest Neighboring Entry.

1. Allelic coverage (CV): 3. Mean difference ratio for phenotypic traits (MD):
S
cv=(1 EL: Acore MD = (ﬁ)
L k=1 AWcol

where S, is the number of traits showing a significant difference
between the CC and WC and n the total number of traits.
4. Average correlation between Principal Components (COR):

where L is the number of loci, Ay is the number of alleles
present in the core collection at locus L and Ay, is the number of
alleles present in the whole collection at the same locus.

2. Kullback-Leibler divergence (KL): Pearson correlation coefficients ri are computed between

principal components of the same rank from the CC and the
WC. Due to an asymmetric distribution of correlation

Dy (pllq) = Zp,--log q—] coefficients, we apply Fisher’s z-transformation (Fisher, 1921)
=1 j

before calculating the mean as follow:
where m is the total number of SNPs, p; is the frequency of the

minor allele at SNP j in the core collection and g; is the Z =lln(1 +1’i)
2 1-r;

corresponding frequency in the whole collection.

Frontiers in Plant Science 06 frontiersin.org


https://doi.org/10.3389/fpls.2025.1675815
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Gouy et al.

The value zi is then transformed to obtain the average
correlation:

¥ -1

Since not all principal components contribute equally to the
genetic variance, each transformed coefficient z; is weighted by the
eigenvalue (inertia) of the corresponding component in the WC.
This weighting scheme assigns greater importance to the principal
axes. Only the significant axes under the Tracy-Widom test
(Patterson et al., 2006) are considered.

2.6.2 QTL simulation and detection

We introduced a novel criterion that aimed to compare the core
collections on their ability to detect QTLs. To this end, we simulated
two traits for each chromosome using the R package
PhenotypeSimulator v0.3.4 (Meyer and Birney, 2018), using the
genotypic matrix of the whole collection. The obtained simulated
QTLs thus leverage the existing linkage disequilibrium. QTLs were
simulated separately on each chromosome. To obtain QTLs evenly
distributed along the genome, QTLs were thus simulated separately
on each chromosome. In total, 940 QTLs distributed across the 15
flax chromosomes were obtained for the whole collection.

QTL detection was carried out for each of the 200 core
collections generated, using a mixed linear model (MLM)
accounting for both population structure and relatedness (Yu
et al., 2006). The model used was the following:

Y= ul+Q,+b, +g+ewhere Y is the vector of phenotypic
simulated values, | the overall mean, Q the matrix of covariates
derived from the DAPC to capture population structure, ¢ the
vector of fixed effects associated with these covariates, b the additive
fixed effect of the SNP, x the vector of SNP genotypes coded as 0, 1,
or 2, g the vector of polygenic random effects, and € the vector of
residuals. Residuals were assumed to follow a normal distribution ~
N (0,1 6?2), and polygenic effects were assumed to follow a normal
distribution ~ N (0, K O'gz), with K being the kinship matrix
computed using the Vanraden (2008) method, as implemented in
the R package AGHmatrix v2.1.4 (Amadeu et al, 2023). Mixed
linear models were fitted using the R package GMMAT v1.4.2
(Chen et al., 2020). To assess the effectiveness of population
structure correction, the genomic control inflation factor A4
(Devlin and Roeder, 1999) was calculated for each trait. Values of
A below 1.05 were considered indicative of appropriate control for
population structure effects (Price et al., 2010). SNP-trait
associations with p-values below the significance threshold
determined using Gao’s method (2008) were considered
statistically significant and interpreted as putative QTLs. The
proportion of QTLs identified within each core collection that
were previously detected in the whole collection (considered as
common QTLs) was calculated.

2.6.3 Synthetic index for an appropriate
comparison

To facilitate comparison among core collection construction
methods, we computed an index from the standardized values of
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our evaluation criteria. Criteria were pre-selected to balance
representativeness and diversity. A preliminary analysis of the
correlations between the indices was conducted to avoid
including those that were highly redundant. The index I was
defined accordingly as:

1
I= 7(SH* +He* + RAR* + CV* + COR* - KL* + QTL")

where SH is the Shannon index, He is the expected
heterozygosity, RAR is the rare allele rate, CV is the allelic
coverage, COR is the mean correlation coefficient, -KL is the
negative Kullback-Leibler divergence and QTL is the proportion
of shared QTLs between core collection and whole collection. Each
criterion has been standardized via normalization (i.e. centered
and scaled).

2.6.4 Designing a core collection for flax
germplasm

The objective was to select a core collection of c.a. 400 flax
accessions, a desirable size allowing both diversity conservation and
QTL discovery (Hyne and Kearsey, 1995; Charmet, 2000; Vales
et al, 2005).To achieve this, we used a mixed approach: i)
preselecting a part of the core collection based on the breeder’s
expertise and ii) used the best-identified core collection method to
select the remaining accessions. For the first accessions selection
step, a list of important accessions according to the breeder’s
expertise of two flax breeding companies in France (Linéa and
Terre de Lin) was retained. Finally, we used the best core collection
method identified in this study to select the remaining accessions.
This core collection will be maintained by Arvalis institute and used
for further genetic studies. It will be considered as a flax
reference collection.

3 Results
3.1 Genetic diversity of the flax germplasm

A total of 30,893 Single Nucleotide Polymorphism (SNP)
markers were obtained after genotyping the whole collection.
Following filtering for missing data, the dataset comprised 29,007
SNP markers for 1,593 accessions with a minor allele frequency
(MAF) greater than 1%. These markers are evenly distributed along
the chromosomes, providing a significant genome-wide coverage
(Figure 1). The imputed genotyping matrix was then pruned to
retain only a set of independent markers more adapted for structure
analyses. The resulting matrix contained 17,368 markers. The
distribution of Tracy-Widom test statistics (Supplementary Figure
S1) indicated that the first 203 principal components significantly
contributed to the genetic variance. These components were
retained for the DAPC and subsequent analyses.

Based on the Bayesian Information Criterion (BIC), the most
likely number of genetic clusters was determined to be 6
(Figure 2A). At K = 2, the structuring of the germplasm followed
the cultivation type, distinguishing oilseed from fiber flax
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FIGURE 1

Distribution of SNP density along the 15 chromosomes of the flax genome, based on 28,475 mapped SNPs. Scale bar on the right provides
numerical values for color density from zero (white) to two hundred sixteen (red).

accessions. At K = 3, a winter flax cluster emerged, characterized by
enhanced tolerance to low temperatures (data not shown). From K
= 4 onwards, the structuring primarily reflected the geographical
origin of accessions. For instance, at K = 4, a new cluster was
identified within the oilseed group, separating South American flax
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FIGURE 2

A two-part figure includes: (A) Bayesian Information Criterion (BIC) values as a function of the number of clusters defined in the flax germplasm; (B) Scatter
plot of the first two principal components of the PCA of the Arvalis flax germplasm (1,593 accessions), with color-coded clusters identified by DAPC.
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accessions from the rest. At K = 5, another cluster was found within
the fiber group, separating Western European fiber flax from
Eastern European fiber flax. At K = 6, the oilseed group further
subdivided into three sub-clusters: South American, North
American, and Eastern European oilseed flax. Beyond K = 6,
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- g further differentiation occurred within the oilseed group, notably
s A A , E é separating Eastern European lines from those of South American
u & origin. Genetic diversity for K = 6 is illustrated via a principal
z component analysis (Figure 2B).
) ] . . .
o R SR < Table 2 summarizes the main features of the six previously
o °l° QE identified clusters. Oilseed lines are overrepresented relative to fiber
g lines (69% vs 31%). Cluster O-NAM (Northern American oilseed
x a 2 flax) contained the largest number of accessions (31%), mostly
= % RS § composed of North American spring-type oilseed flax. Cluster
= % S S ° @ § Winter-WEU (Winter Western European flax) contained the
'% = ° é fewest accessions (7%), primarily consisting of winter flax
= o originated from Western Europe.
<§( wlwl ol § The pairwise fixation index Fst values revealed relatively high
Z. ! Lz g zZz zZ ?, and significant genetic differentiation between clusters, especially
O f between oilseed and fiber clusters (Fst up to 0.28, Table 2). The
g highest pairwise Fst value (Fst = 0.28) was found between clusters
<E( R R O I ;.j Winter-WEU and F-EEU (Eastern European fiber flax). The lowest
A 1813838 |88 g Fst value (Fst = 0.05) was observed between oilseed clusters O-SAM
o f (South American oilseed flax) and O-NAM (Northern American
& oilseed flax), both comprising American oilseed lines. The Fst value
% éf; E between all clusters was significantly larger than zero (Fst =0.19).
A 2 2 52 ] 28 T Genetic diversity indices were generally moderate, with the
%-% RO I I E B A é oilseed clusters being the most diverse. (Table 2). The clusters
o = g, exhibiting the greatest genetic diversity were the American oilseed
o E lines (clusters O-SAM and O-NAM), with Shannon diversity
(4 E £ indices ranging from 0.64 to 0.68 and expected heterozygosity
08’\% ol wlolal ol ol o f ranging from 0.21 to 0.27. These clusters also harbored the
E o T z2 2 2 2 49 3z & highest rate of rare alleles. The cluster O-EEU (Eastern European
2 3 & 2 oilseed flax) and Winter-WEU showed a genetic diversity slightly
%’ = g '“1: lower than O-SAM and O-NAM (He of 0.24 for O-EEU and 0.21
i g for Winter-WEU). Conversely to oilseed clusters, the fiber clusters
-"é’ ’g HE F-EEU and F-WEU (Western European fiber flax) exhibited the
. 5 g lowest level of diversity (He<0.17 and SH<0.45).
Tl 5% IR I
3 (¥d S 2 2 2 S S 2 %
; 5 8 g . :
“;; o § 3.2 Core collection methods comparison
€ 2 5
§ § We evaluated 20 methods x selection criteria combinations for
% g ; %é core collections establishment. In total, 200 core collections, each
2 % g E R EECHES R E £ consisting of 350 accessions, were generated and assessed. For each
E & 'g ; core collection, representativeness and diversity indices were
g = é computed. Additionally, the proportion of shared QTLs with the
E < ; whole collection was measured. Table 3 summarizes the mean
-% °~o' £ 2 g 2 £ 2| £ g values (calculated from ten replicates) and standard deviation of
"g = 8§ 8 M ] =8 Z° the evaluation criteria for the twenty tested combinations (non-
ke (o= E normalized data).
I ° The evaluation criteria showed different levels of variability
E i g 5 8 8 R % % between the methods. The Rare Allele Ratio (RAR) exhibited the
G 3 lowest variability across methods. Regardless of the method used,
% g nearly all rare alleles were consistently captured. Similarly, the
-% o g é allelic coverage rate (CV) displayed limited variation across
E, é E % é é E % ;5 methods (ranging from 0.965 to 0.994), suggesting that these two
~ S 3 E O £ z & metrics were not strongly discriminative. In contrast, diversity-
E = § 2 related indices such as Shannon’s index (SH), expected
s S heterozygosity (He), and Mean Rogers ‘Distances (MRD)
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TABLE 3 Evaluation criteria and standard errors computed for all core collection construction methods.

Diversity Representativeness
sd sd sd sd
He) MRD (MRD) Kb wn “OR (com)
CDmean 0.68 1.E-03 0.21 6.E-04 043 9.E-04 1.000 0.E+00 0.981 2E-03 | 3E-04  3.E-05 0.65 2.E-02 0.11 0.06 27% 0.04
cv 0.67 3.E-03 0.21 3.E-03 042 2.E-03 1.000 0.E+00 0.992 1E-03 = 4E-04  4FE-05 0.59 2.E-02 0.12 0.06 27% 0.02
Avg GRM 0.67 3E-03 0.21 2E-03 043 2.E-03 1.000 2.E-04 0.991 1LE-03  4E-03  1E-02 0.58 4.E-02 0.17 0.05 27% 0.03
ANE_CV 0.67 2.E-03 0.21 3.E-03 042 2.E-03 1.000 8.E-05 0.992 1E-03 = 4E-04  5E-05 0.57 4.E-02 0.14 0.07 28% 0.03
ANE 0.68 3.E-03 0.21 2.E-03 043 2.E-03 1.000 5.E-05 0.991 LE-03 | 6E-04  2E-04 0.56 3.E-02 0.13 0.05 26% 0.04
D-opt+Avg_GRM 0.68 2.E-03 0.21 1.E-03 043 2.E-03 1.000 4.E-04 0.985 2E-03 | 2E-02  4E-02 0.51 3.E-02 0.16 0.06 26% 0.02
D-opt 0.69 1.E-03 0.21 1.E-03 0.44 8.E-04 1.000 1.E-04 0.965 2E-03 | 1E-03  LE-04 0.50 1.E-02 0.22 0.08 28% 0.02
ENE 0.69 1.E-03 022 4.E-03 0.44 1.E-03 1.000 2.E-04 0.994 1E-03  2E-03  3E-04 0.44 4.E-02 0.34 0.12 24% 0.02
ANE_ENE 0.69 4.E-04 021 7.E-04 0.44 3E-04 0.999 2.E-04 0.974 LE-03  3.E-03  1.E-04 041 7.E-03 0.49 0.08 18% 0.01
SH_CV 0.71 1.E-04 022 9.E-04 0.46 1.E-04 1.000 0.E+00 0.991 5E-04  6E-03  6.E-05 041 9.E-03 0.49 0.04 27% 0.02
ANE_SH 071 1.E-04 022 1.E-03 045 1.E-04 0.999 4.E-04 0.991 4E-04 | 2E-02  4E-02 048 6.E-03 043 0.04 24% 0.04
ANE_SH_CV 0.71 4.E-04 022 9.E-04 045 3.E-04 1.000 0.E+00 0.991 7E-04 | 4E-03  1.E-04 048 2.E-03 0.39 0.04 20% 0.01
ANE_HE 071 1.E-04 022 1.E-03 045 8.E-05 0.998 3.E-04 0.991 5E-04  LE-01  LE-02 0.46 3.E-03 0.46 0.03 20% 0.03
SH 071 2.E-05 022 7.E-04 0.46 L.E-04 0.997 4.E-04 0.990 5E-04  LE-01  3.E-03 041 6.E-03 051 0.06 27% 0.02
HE_SH 0.71 5.E-05 022 9.E-04 0.46 5.E-05 0.996 5.E-04 0.990 2E-04 | 1E-01  5E-03 0.39 1.E-02 051 0.04 27% 0.01
HE_CV 0.71 7.E-05 022 2.E-03 0.46 1.E-04 1.000 0.E+00 0.991 8E-04  7E-03  8E-05 0.38 8.E-03 0.54 0.05 26% 0.01
ENE_SH 0.71 1.E-04 022 3.E-04 045 1.E-04 0.998 2.E-04 0.982 1E-03 = 1E-01  2E-04 0.37 9.E-03 0.53 0.03 21% 0.02
HE 0.71 7.E-05 022 1.E-03 0.46 L.E-04 0.995 7.E-04 0.990 5E-04  LE-01  4E-03 035 3.E-02 051 0.05 25% 0.02
ENE_HE 071 1.E-04 023 1.E-03 045 1.E-04 0.995 8.E-04 0.982 9E-04 | 1E-01  8E-04 0.18 2.E-02 0.57 0.05 19% 0.02
ENE_CV 0.69 3.E-04 022 2E-03 0.44 2.E-04 1.000 0.E+00 0.975 1LE-03  5E-03  2E-04 0.32 9.E-03 0.49 0.07 21% 0.02

SH, Shannon diversity index; He, Expected heterozygosity; MRD, Mean Rogers’s distances; RAR, Rare allele ratio (considering MAF<10%); CV, Allelic coverage; KL, Kullback-Leibler divergence of allelic frequencies; COR, Average correlation between Principal
components; MD, Mean phenotypic differences; QTL, Ratio of common QTLs simulated.

CDmean, Mean coefficient of determination; Avg_GRM, Average Genetic Relationship Matrix; ANE, Average Nearest Entry; D-opt, Optimality of the determinant of the information matrix f(M); ENE, Nearest Neighboring Entry.
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demonstrated more substantial variation and followed similar
trends across methods (Table 3). As expected, methods that
maximized these indices tended to yield higher overall genetic
diversity. Representativeness indices such as Kullback-Leibler
divergence (KL), correlation coefficient (COR), and Mean
Differences (MD) revealed significant differences between
methods. The CDmean method consistently achieved the lowest
KL divergence, the highest COR, and the lowest MD values. Other
methods showing high representativeness included the CV,
Avg_GRM_self, and ANE-based approaches. In general,
representativeness indices exhibited greater variability compared
to diversity indices. The highest MD values (greatest difference
between core and whole collection reflecting low phenotypic
representativeness) were observed for methods such as ENE_HE,
He_CV, and ENE_SH.

The novel criterion based on the proportion of shared QTLs
between the core and whole collections, was evaluated. All QTL
detection models successfully controlled the inflation of test
statistics (see Supplementary Figures S2A, B). QTL detection on
core collections generated, varied between methods, ranging from
18% to 28% of the 940 QTL simulated in the whole collection
(Supplementary Figure S3). Methods that detected the highest
average number of simulated QTLs included D-opt, ANE_CV,
and SH_CV. CDmean also showed a high median catching rate,
ranking second only to D-opt. The ANE_CV, ANE_He and
ANE_SH methods were more subject to sampling variations,
exhibiting greater variability in QTL detection rate. Generally,
methods ensuring high representativeness tended to catch more
simulated QTLs. The method with the lowest QTL rate is
ANE_ENE, and methods that prioritized the ENE index tended

-0.2

-0.4

Composite Index |

-0.6

-0.8

-1.2

FIGURE 3

10.3389/fpls.2025.1675815

to bring fewer QTLs overall. A clear trade-off was observed between
maximizing diversity and maximizing representativeness. Methods
that were most effective at enhancing diversity generally performed
less in terms of representativeness, and vice versa. Nonetheless,
certain methods, such as ANE_SH, ANE_SH_CV, and SH_CV,
provided a balanced compromise between the two objectives.

3.3 Composite score index for core
collection evaluation

For a simplified cross-method comparison, a composite index
integrating some evaluation criteria was calculated. Prior to index
construction, inter-criteria correlations were assessed to avoid the
inclusion of highly collinear metrics. Concurrently, a balance
between representativeness and diversity was sought. The MD index
was intentionally excluded from this composite index because it relies
primarily on passport data that cannot accurately reflect the full extent
of phenotypic diversity. Correlation analysis (Supplementary Figure
54) revealed that diversity criteria (SH, MRD, and He) were mutually
and significantly correlated; moreover, MRD and SH exhibited
redundancy, warranting the inclusion of only one of these metrics in
the composite index. Although KL and COR were correlated, they
conveyed distinct information and were therefore both retained. The
distributions of KL, RAR, and CV were found to be highly skewed
(Supplementary Figure S4). Notably, COR exhibited the strongest
correlation with the QTL criterion (R = 0.45). All the seven selected
criteria were normalized before integration into the composite score.
The resulting composite index values are summarized in the
boxplot Figure 3.

Boxplot showing the Composite Index |, calculated across ten repetitions of each tested method. The x-axis lists the various methods, and the y-
axis represents the index values. Each method's box plot illustrates the median (the cross X), the interquartile range, and potential outliers.
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The method yielding the highest index value, and thus the best
overall compromise was the one that simultaneously optimized
both the SH and CV criteria (SH_CV). In general, methods that
integrated multiple criteria tended to produce higher index scores.
Conversely, the method with the lowest index was the one that
combined ENE and HE optimization (ENE_HE). More broadly,
methods that optimized the ENE criterion, either alone or in
combination with other criteria, consistently resulted in lower
index values.

3.4 Core collection based on breeder’s
expertise, Shannon index and allelic
coverage

A preliminary list of 98 essential accessions was preselected;
including 30 rare winter flax accessions and 68 accessions (33
oilseed and 35 fiber flax) recommended by the two French flax
breeders, Linéa and Terre de Lin. The breeder’s list included

TABLE 4 Comparison of the core collection and the whole collection.

Dual

Oilseed

Fiber

10.3389/fpls.2025.1675815

breeding lines (modern lines) and selection material. Most of
these were used in Western European breeding programs. Then,
to build bridges between our core collection and existing collections
around the world, and encourage international collaboration; we
retained all the 107 accessions that are common to our collection
with PGRC core collection (Canada), U.S.NPGS (USA) core
collection, as well as the composite collection from Guo
et al. (2020).

A complementary list of 204 new accessions was selected using
SH_CV method by fixing the 205 preselected accessions. This core
collection of 409 accessions included 300 oilseed flax, 69 fiber flax
and 40 mixed types (Table 4; Figure 4).

We then compared genetic diversity and representativity
parameters between the whole germplasm and the core collection
(Table 4; Figure 4). The core collection captured almost all the
genetic diversity of the whole collection (Table 4) and was fully
representative of the whole collection (Figure 4). For example, we
obtained He values of 0.216 for this core collection compared to
0.22 for the whole collection (Table 4).

purposes

Germplasm 1593 1053 (66%) 354 (22%) 186 (12%)
Core collection 409 300 (73%) 69 (17%) 40
(10%)
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Scatter plot of the first two principal components of the PCA of the Arvalis flax germplasm (1,593 accessions) highlighting the 409 selected

accessions that represent the core collection.
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4 Discussion

4.1 Population structure and genetic
diversity

The genetic diversity study of the worldwide flax collection
revealed a pronounced genetic structure within this germplasm.
The primary axis of differentiation was between oilseed flax and
fiber flax types as expected, a pattern consistent with previous
findings reported in the literature (Fu, 2005; Hoque et al., 20205
Speck et al, 2022). At K = 3, the emergence of a new cluster
composed predominantly of winter-type flax lines highlights the
differentiation between spring and winter types. This type of
structuring has also been observed in previous studies (Uysal
et al., 2010; Fu, 2012; Hoque et al., 2020). This cluster
predominantly comprised lines tolerant to low temperatures and
thus represents a valuable reservoir of alleles for the improvement
of other clusters, particularly given its composition of both fiber and
oilseed genotypes. For K = 4, the population structure became more
refined, with subdivisions reflecting the geographical origin of the
accessions. A new cluster composed primarily by south American
oilseed lines appeared. In contrast, the fiber flax group, only began
to subdivide from K = 5 onwards, distinguishing between Western
and Eastern European origins. At K = 6 and for higher K values,
further subdivision occurred within the oilseed clusters, notably
distinguishing Eastern European flax from Western European and
South American oilseed flax. In the K-means clustering procedure,
although the Bayesian Information Criterion exhibited a peak at K
= 2, it ultimately designated six clusters as the optimal
configuration. The investigation of cluster structure could be
supplemented by the Bayesian framework of Pritchard et al.
(2000) using the STRUCTURE software, thereby reinforcing
our results.

Genetic diversity analyses for the whole collection revealed
moderate diversity (H e=0.22), a value similar to that reported by
Hoque et al. (2020) who used 6200 SNP markers to analyze the
diversity of 350 genotypes. This level of diversity is expected, given
that flax possesses an autogamous reproductive system (Hoque
et al, 2020). The expected heterozygosity value of the clusters
revealed that oilseed flax clusters harbored greater diversity than
fiber flax clusters (Table 2). These findings are consistent with those
reported in the literature. Hoque et al., 2020 reported seven genetic
clusters with only one cluster for fiber type flax. This difference is
probably due to the history of domestication and selective breeding
focused on specific traits in each type. Oil flax is considered the
ancestral form from which fiber flax was derived. During
domestication, fiber flax underwent strong selection for traits like
stem length and fiber quality, which reduced its genetic diversity
compared to oil flax (Xie et al., 2018). Selective breeding for specific
fiber traits in fiber flax led to narrowing the gene pool. Genomic
studies confirmed that many genes associated with fiber traits in
fiber flax showed strong selection signals, further supporting the
idea of a genetic bottleneck (Povlkhova et al., 2021). Furthermore,
fiber flax is cultivated in a more restricted geographic area
compared to oilseed flax, thus leading to high selective pressure

Frontiers in Plant Science

13

10.3389/fpls.2025.1675815

to adapt varieties to the specific agro-climatic conditions of this
growing area. In contrast, oil flax retained more of the original
genetic variation because it was selected for a broader range of traits,
including oil content and seed characteristics (Jiang et al., 2021).
This finding further underscores that oilseed flax lines harbor a
more substantial diversity reservoir, a factor that likely accounts for
their predominance over fiber flax lines in conservation collections.

4.2 Core collection assessment

In this study, we evaluated a comprehensive suite of core
collection development approaches (twenty method x selection-
criterion combinations) resulting in 200 core collections of 350
accessions each. Dedicated core collection methods were compared
both among themselves and against calibration-population
optimization approaches (as for genomic selection calibration
methods). Our aim was to assess outcomes from approaches that
differ in their input data (e.g., diversity indices, genetic-distance
matrices, or kinship matrices) and in their optimization criteria.
The underlying algorithms also varied between methods.

First, we observed that the evaluation criteria did not exhibit the
same level of variability. Both the CV and RAR criteria showed low
variability across methods. All approaches managed to capture
most alleles, including the rarest. This limited variability may be
attributed to the core collections size. Indeed, with 350 individuals
selected, it is more likely to encompass the full allelic diversity of the
initial collection of 1,593 individuals. It would be relevant to
compare the tested methods using smaller core collections,
ranging from 50 to 100 individuals for example. With such
reduced sample sizes, differences between methods might become
more pronounced. The choice of using 350 individuals was based
on studies assessing the statistical power for QTL detection (Hyne
and Kearsey, 1995; Charmet, 2000; Vales et al., 2005) but also for
practical reasons with the perspective of testing this CC in
field experiments.

Secondly, we observed that diversity-related criteria exhibited
lower variability across methods compared to representativeness-
related criteria. With core collections composed of 350 individuals,
genetic diversity is rapidly captured. This sample size corresponds
to approximately 22% of the total population, which exceeds the
proportion of 10% generally recommended in the literature (Van
Hintum et al,, 2000). Nevertheless, methods that jointly optimized
He with CV, or SH with CV, significantly increased genetic diversity
within the core collections compared to other methods.

Among the methods that best preserved representativeness, CV,
ANE, ANE_CV, Avg GRM_self, and CDmean produced core
collections that closely mirrored the initial collection. These
methods effectively maintained the overall genetic structure. As
expected, the methods originally developed for optimizing
calibration populations (CDmean and Avg_GRM_self) yielded
core collections that were highly representative of the whole
collection. Notably, high levels of representativeness can be
achieved through different strategies, by maximizing allelic
coverage, minimizing the average distance between an accession
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and its nearest neighbors (ANE approach), or by optimizing
pairwise relatedness between individuals.

Regardless of the approach, a clear trade-off emerged between
optimizing representativeness and maximizing the intrinsic
diversity of the core collection. Optimizing for diversity can lead
to over-representation of rare alleles, which may not reflect the
typical characteristics of the full germplasm, thus reducing
representativeness (Marita et al., 2000; Franco-Duran et al., 2019).
Conversely, optimizing for representativeness may result in a CC
that misses rare alleles or unique genotypes, thus underrepresenting
the full spectrum of the diversity (De Beukelaer et al., 2018). Some
advanced algorithms attempt to balance both objectives, but
improving one often comes at the expense of the other, requiring
a compromise based on the intended use of the core collection.

In our study, we also used a novel approach to assess the
capacity of core collections to capture QTLs. Core collections are
particularly valuable for QTL discovery because they harbor
extensive genetic diversity and thus represent a rich source of
QTLs of interest (Soto-Cerda et al., 2014; McLeod et al.,, 2023). It
is therefore important to determine which optimization criteria
yield a core collection that maximizes QTL detection power. We
detected on average 225 QTLs out of the 940 simulated on the whole
collection, corresponding to approximately 24% overlap in detected
QTLs. This reduction in detection, observed regardless of the
method employed, can be attributed to the smaller size of the
core collections, which diminishes power to detect QTLs with
smaller effect sizes. Indeed, numerous studies have demonstrated
that QTL detection power is strongly influenced by the population
size: larger populations consistently achieve higher detection power
revealing more QTLs, especially those with minor effects, whereas
small populations often fail to detect these minor QTLs (Vales et al.,
2005; Wang et al.,, 2012; Wang and Xu, 2019; Nwogwugwu et al.,
2022). Among the methods tested, the highest number of QTLs
detected within a core collection was obtained using the ANE_CV
method, where one core collection allowed detecting a total of 299
QTLs. However, this method exhibited high variability in QTL
detection rates. Such variability arised because each random seed
initiates the selection with a different individual, leading to a distinct
ensemble of cluster centers. The ANE method’s combination of
cluster center representativeness (ensuring thorough coverage of
each region in genotype space) and randomized starting points
(inducing different traversals of that space) naturally produces
subpopulations with unique allele frequency landscapes and
linkage patterns. Since QTL detection critically depends on these
landscapes and patterns, ANE yields high variability in the sets of
QTLs discovered across different core collections. The D optimality
criterion method (Dopt) create CC that capture on average the
highest number of QTLs, with relatively low variability across
replicates giving therefore a more stable QTL detection. The Dopt
method selects a subset of individuals that optimally represents the
genetic diversity and structure of the whole collection. By
maximizing the determinant of the feature matrix (typically the
first g principal components of the marker matrix), Dopt ensures
that the selected subset spans the broadest possible range of genetic
variation. This is crucial for QTL detection because a training set
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encompassing the full spectrum of genetic diversity increases the
likelihood that QTL alleles segregate within the subset, thereby
enhancing detection power. Moreover, maximizing the determinant
reduces multicollinearity in the design matrix, yielding more precise
estimates of marker effects. In general, methods that maximized
representativeness, such as Dopt, ANE_CV, and Avg GRM_self,
captured the largest number of simulated QTLs. Any subpopulation
that preserves the same underlying genetic structure of the whole
collection necessarily has a higher probability of including
those QTLs.

Evaluating methods based on multiple indices can make selecting
the best approach challenging. To facilitate the identification of an
optimal trade-off between diversity, representativeness, and QTL
detection efficiency, we computed a composite index. This index
integrated the criteria in a comprehensive and balanced manner.
Significant differences in index values were observed across methods.
In our study, the combined optimization of the Shannon index and
the allelic coverage (with equal weighting) yielded the highest average
composite index. The Shannon index favors both high allelic richness
and evenness in allele frequencies, thereby promoting allelic balance.
Balanced allele frequencies increase the likelihood that causal variants
(QTLs) segregate at detectable frequencies. The allelic coverage
criterion tends to generate populations that are structurally similar
to the whole collection, thus enhancing representativeness. These two
criteria appear to be complementary. We also observed that methods
combining the ENE criterion with other criteria tended to yield lower
average composite index values. The ENE criterion maximizes the
genetic distances between the selected entry and its neighboring
accessions. This tends to select individuals located at the extremes of
the diversity cloud. Combinations including ENE did not produce
good compromises in our evaluations.

Evaluating the quality of a core collection should, whenever
possible, be based on data that were not used in its construction
(Van Hintum et al., 2000). In the present study, we employed the
full set of SNP markers both to assemble the core collections and to
assess their performance. A more impartial evaluation could be
achieved by partitioning the marker dataset: one subset of
independent, evenly spaced SNPs, would be used to define the
core collections, and the remaining marker set would serve
exclusively for their validation. This two-step approach would
reduce circularity and provide a more rigorous assessment of core
collection construction methods.

4.3 A core collection representative of the
whole collection for future genetic studies

We selected a core collection of 409 accessions from the 1,593
accessions of the whole collection using a mixed approach based on
breeder’s expertise and optimization of Shannon diversity index and
allelic coverage. Its size would allow it to be used in field experiments,
making it suitable for achieving high statistical power in QTL detection
studies (Hyne and Kearsey, 1995; Charmet, 2000; Vales et al., 2005).
This core collection will allow us to build bridges between our core
collection and existing collections; as it includes 107 accessions that are
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common with PGRC core collection (Canada), U.S.NPGS (USA) core
collection and composite Collection from Guo et al. (2020). Apart from
this list of common accessions identified by accession name, we were
unable to compare our core collection with others, as genotypic data for
the latter was unavailable. We would indeed like to identify whether
there are any genetically similar individuals among the 302 other
accessions. The availability of this core collection is an important step
in the development of new projects aimed at improving marker-
assisted selection breeding of new lines in the context of climate change.

5 Conclusion

The diversity analysis of the Arvalis flax germplasm revealed a
moderate genetic diversity and a clear genetic split between oilseed and
fiber types, with additional clusters reflecting seasonal and geographical
variation. When reducing the germplasm to 350 accessions across
twenty sampling strategies, most methods captured nearly all alleles but
differed substantially in representativeness and QTL detection power.
While ANE_CV detected the most QTLs, it showed high variability,
and D-optimality offered a more stable and significant recovery. By
integrating diversity, representativeness, and QTL-detection into a
composite index, the Shannon-index plus allelic coverage (SH + CV)
combination emerged as the superior compromise for our case study,
maximally balancing genetic richness, representativeness, and trait-
discovery potential for GWAS applications. A mixed approach, which
included fixing a list of accessions recommended by breeders and
selecting with the SH+CV method, allowed us to select a list of 409
accessions that are representative of the whole collection.
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