
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Luigi Cattivelli,
Council for Agricultural and Economics
Research, Italy

REVIEWED BY

João Ricardo Bachega Feijó Rosa,
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In wheat breeding programs, several hundred crosses are performed annually, but

only individuals from a few families advance to the final stages of the breeding

pipelines. Therefore, a deeper understanding of the general combining ability (GCA)

of wheat genotypes might enhance the breeding efficiency in selecting parents. For

this reason, we tested the performance of the offspring of ~1200 parental elite lines.

Using a genome-wide association study (GWAS), gene ontology (GO) analysis, and

genomic prediction (GP), our objectives were to i) identify marker-trait associates

(MTAs) and candidate genes, ii) assess temporal allele frequency dynamics of

identified MTAs, and iii) estimate prediction accuracy (PA) for key traits: Progeny

Number per-Cross (PNC), grain yield (GY), and a combined index incorporating

these traits (“index”). Our findings revealed a total of 13 MTAs: eight for GY, four for

the “index”, and one for PNC. The GO analysis highlighted several genes involved in

hydrogen peroxide metabolism and catabolism processes (H2O2), reactive oxygen

species, response to oxidative stress, cell wall biogenesis, the metabolic process of

modified amino acids at the cellular level, and glutathione metabolic process for the

studied traits. Notably, allele frequency analysis over time indicated that most MTAs

are under positive selection, likely reflecting indirect breeder-driven selection. The

highest PA was reached by using the reproducing kernel Hilbert space (RKHS)model

for the trait GY (0.34). The identification of MTAs for PNC and GY provided insight

into the biological pathways underpinning combining ability and demonstrated the

potential for predicting the ability of the genotypes to be crossed. These findings

might contribute to the optimization crossing strategy saving costs and increasing

the breeding program efficiency.
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GRAPHICAL ABSTRACT
1 Introduction
Wheat is one of the most important staple crop globally, serving

as a primary source of nutrients for approximately 40% of the

world’s population (Giraldo et al., 2019; Reynolds and Braun,

2022). It is also the most widely cultivated crop worldwide, growing

on over 217 million hectares of land (Erenstein et al., 2022). The

breeding of new wheat varieties involves generating genetic

variations through controlled crosses, self-fertilization, advanced

generation selection, field trials, and several quality analyses, which

entails a considerable investment of time (10 to 15 years) and

resources (Haile et al., 2021).

Combining ability (CA) is the ability of the plants to combine

with each other in order to transmit their desirable traits to their

offspring; thus, by crossing one line with many others, it is possible

to observe its average performance in all its crosses and highlight

that the general combining ability (GCA) is described as the mean

performance of a genotype across multiple crosses. By contrast, the

specific combining ability (SCA) is characterized as deviations from

the expected performance in certain combinations, either exceeding

or falling short of the average performance of the parental inbred

lines (Fasahat et al., 2016; Sprague and Tatum, 1942). CA has been

widely studied in several crops, such as maize (Dermail et al., 2023;

Ertiro et al., 2013; Makumbi et al., 2011; Ravikesavan et al., 2020;

Run et al., 2013), cotton (Aishwarya et al., 2025; Anandan, 2010;

Zeng and Pettigrew, 2015), sunflower (Habib et al., 2021; Ortis et al.,

2005; Volotovich et al 2008), alfalfa (Bhandari et al., 2007; Lawati

et al., 2010), and rice (Azad et al., 2022; Shukla and Pandey, 2008;

Verma and Srivastava, 2004). In wheat (Triticum aestivum L.), the

presence of GCA has been statistically demonstrated using a 7 × 7
Frontiers in Plant Science 02
diallel set of bread wheat, also highlighting the potential to identify

superior general combiners (Kumar et al., 2011). Furthermore,

studies have shown that utilizing the GCA for parent selection

can be an effective strategy to enhance wheat breeding programs

(Gowda et al., 2012). In addition, the assessment of GCA and SCA

in wheat germplasm from Pakistan has successfully identified

superior combiners for grain yield and related traits (Iqbal, 2007).

Despite these advancements, wheat breeding programs continue to

produce hundreds of inefficient crosses each year. Understanding

the genetic and molecular basis of GCA and SCA could facilitate

efficient parent selection and crossing, accelerating the production

of elite cultivars.

Genome-wide association studies (GWAS) aim to identify

associations between single-nucleotide polymorphisms (SNPs)

and phenotypic traits of interest, such as complex characters like

yield. This allows for accelerated crop improvement through

molecular marker-assisted and allele stacking selection. GWAS or

quantitative trait loci (QTL) analyses have been performed in wheat

for a variety of traits, such as grain yield and yield components

(Eltaher et al., 2021; Li et al., 2019), phenology (Zhang et al., 2018),

disease resistance (Singh et al., 2020; Tessmann et al., 2019),

morphological traits (Sheoran et al., 2019; Vitale et al., 2021), and

quality traits (Tadesse et al., 2015; Yang et al., 2020). Studies in

maize have shown that the identification of key loci for GCA by

GWAS could accelerate breeding and the selection of elite parents

for the creation of hybrids (Liu et al., 2021; Lu et al., 2020).

Association studies related to CA have been carried out in recent

years, mainly in crops such as rice, corn, and cotton, in the case of

rice, it was found that the accumulation of superior GCA and SCA

alleles contributes to heterosis and that significant QTLs favor

combinatorial ability, which could accelerate the selection of the
frontiersin.org
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best parents for the development of hybrids (Chen et al., 2019; Li

et al., 2022; Sarfraz et al., 2021).

Additionally, several QTLs have been linked to CA in rice, along

with their pleiotropic effects on other agronomic traits (Qu et al.,

2012). Notably, Lu et al. (2020) also identified numerous QTLs

associated with per se performance and corresponding GCA effects

for yield-related traits, which hold potential for improving maize

hybrid breeding.

However, for a deeper analysis, it is necessary to complement

them with other tools, such as gene ontology (GO) analysis, used to

represent biological functions over genes, using a standardized

vocabulary (Ashburner et al., 2000; Meng et al., 2009). Indeed,

GO analyses have been performed following GWAS studies to

investigate CA in rice (Chen et al., 2019; Ullah Zaid et al., 2019).

Genomic prediction (GP) is a technique for estimating

phenotypic values from genotypic data, utilizing molecular

information from the entire genome. Its use has increased

significantly due to the low cost and incorporation of all or most of

the markers, making it an essential tool in breeding programs for

predicting traits of interest (Bernardo, 2008; Crossa et al., 2017;

Meuwissen et al., 2001). GP has been applied for predicting a wide

range of traits across several crops, such as wheat (Crossa et al., 2014;

Lado et al., 2013), rice (Bartholomé et al., 2022; Labroo et al., 2021),

maize (Crossa et al., 2013; Technow et al., 2014) and soybean (Jarquıń

et al., 2014; Zhang et al., 2016). In corn, GP has been used to predict

CA in order to evaluate the performance of lines and hybrids more

efficiently (Zhang et al., 2022). Furthermore, the effectiveness of

predicting GCA using genomic prediction models has been

evaluated. The study also compared GP application with

phenotyping methods, concluding that the application of GP is a

more effective and efficient approach for predicting the GCA of maize

lines and their hybrid performance (Vélez‐Torres et al., 2018).

Finally, Werner et al. (2018) evaluated the accuracy of genomic

prediction for various agronomic traits in oilseed rape. Their analysis

utilized ridge-regression best linear unbiased prediction (BLUP) and

three Bayesian alphabet models, considering both GCA and SCA.

The objectives of our study are: 1) to identify the marker traits

associations for three traits related to the GCA (GY, “index”, and

PNC) using GWAS analysis; 2) to uncover biological pathways or

metabolic processes overrepresented among the identified genes

through genetic enrichment analysis; 3) assess temporal allele

frequency dynamics of identified MTAs over 10 years of data,

and 4) to evaluate the genomic prediction accuracy for these traits,

enabling practical implementation in wheat breeding programs.
2 Materials and methods

2.1 Plant material and combining ability-
related traits

The phenotypic dataset comprised 1203 CIMMYT (International

Maize and Wheat Improvement Center) elite breeding lines used as

parents in the CIMMYT bread wheat breeding program crossing
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block over five years (from the 2013/14 to 2017/18 seasons). The

offspring of these breeding lines that reached the grain yield (GY)

evaluation stages were tested across multiple years (from 2017/18 to

2022/2023) at the CENEB (Campo Experimental Norman E.

Borlaug) research station (27°20′ N, 109°54′ W). The yield trials

were conducted following a raised bed planting system, under

optimal irrigated conditions (B5IR) (approximately 500 mm of

water supplied across five irrigation events) and an optimal sowing

date (late November to mid-December). They were arranged in an

alpha lattice design with two replicates, using a 4.48 m² plot size and a

seeding rate of 120 kg ha-¹. At maturity, whole plots were harvested to

assess GY. GY was standardized to a moisture content of 12%.

Finally, weather parameters including solar flux, temperatures,

humidity, precipitation, wind pressure and soil proprieties were

downloaded for each crop season from the NASAPOWER website

(https://www.nasa.gov/) and shared in the open repository Figshare

(https://doi.org/10.6084/m9.figshare.30025069.v1).
2.2 Statistical analysis and combining
ability

The GY phenotypic performances of the offspring produced by

the 1203 parents were analyzed using the lme4 package (Bates et al.,

2015) in R software (Team, 2016), using the following statistical

model (Equation 1):

yijk = m + rj + bk(j) + gi + eijk (1)

where yijk is the observed value, where m is the general mean, rj
is the random effects of the replicates (j = 1,…, 3), gi is the random

effect of the wheat genotype, assumed to be identically and

independently normally distributed (IID) with mean zero and

variance s 2
g , and bk(j)   represents the random effects of the

incomplete blocks (k = 1, …, 5) nested within replicate, and it is

assumed (IID) with mean zero and variance s 2
b . The term eijk is a

random residual assumed to be IID with mean zero and variance s 2
e

. Then, we fit the same model but now with gi as fixed effects to

estimate adjusted means (Best Linear Unbiased Estimates, BLUEs).

To estimate GCA, the GY of each elite parental line was

calculated as the average of its progeny. Before the calculation of

the CGA, the GY BLUEs of each progeny were expressed in terms of

the cultivar Borlaug 100 (common check across all the GY trials).

Therefore (Equation 2),

gi = �Fi − �F: (2)

Where gi is the GCA effect of inbred lines i; �Fi is the average

value of the progeny involving the inbred line i as parent, and �F:   is

the average value of all progenies.

Additionally, the number of progenies from each elite parental

line was tallied and divided by the number of crosses in which the

parental line participated (PNC). Finally, GY and PNC were

expressed using a scale from 1 to 2 (1 minimum value and 2

maximum value), and they were used to calculate an “index” using

the following formula (Equation 3):
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index = (GY ∗ 0:6) ∗ (PNC ∗ 0:4) (3)

Phenotipic dataset was public shared in the open access repository

Figshare (https://doi.org/10.6084/m9.figshare.30024511.v1).
2.3 Genotyping value

The genotypic data comprised a total of 18,239 SNP markers,

generated using the Genotyping-by-Sequencing (GBS) approach.

This process was carried out on an Illumina HiSeq2500 sequencer at

Kansas State University, following the protocol described by

(Poland et al., 2012). Data quality was ensured through

meticulous filtering conducted with TASSEL v5.0 software

(https://tassel.bitbucket.io) (Bradbury et al., 2007). Markers with a

minor allele frequency (MAF) below 5% and those with over 50%

missing data were excluded during the initial processing. The

filtered HapMap was used to perform GWAS analysis.

Subsequently, the HapMap was converted into a numerical

matrix, ensuring compatibility with genomic prediction tools.

Using the curated marker dataset, a genomic relationship matrix

(G) was calculated with the AGHmatrix v2.1.4 R package (Amadeu

et al., 2023). In addition, linkage disequilibrium (LD) was assessed

by calculating the squared correlation coefficient (r²) of allele

frequencies for all pairwise SNP combinations within each

chromosome using the TASSEL v5.0 software. To examine LD

decay, r² values were plotted against the physical distance (in Mb)

between marker pairs on each chromosome. Additionally, Kinship

matrix and Principal Component Analysis (PCA) were also

performed in TASSEL environment. The resulting filtered

HapMap was made publicly available on figshare (https://doi.org/

10.6084/m9.figshare.29669330.v1).
2.4 Genome-wide association study

We conducted the GWAS analysis using, as input, the GCA

values, PNC values, and the selection index described in the “Data

Analysis and Combining Ability” section, along with the filtered

marker dataset outlined above. For the GWAS study, we used R

software using the GAPIT v3.0 library (Genome Association and

Prediction Integrated Tool) (Lipka et al., 2012); two methods of

analysis were used; Bayesian information and Linkage

disequilibrium Iteratively Nested Keyway (BLINK) (Huang et al.,

2019) and Fixed and random model Circulating Probability

Unification (FarmCPU) (Liu et al., 2016). In addition, a principal

component parameter (PCA = 3) was incorporated to detect

associations between markers and phenotypes (GY, PNC, and

“index”). Finally, the significance threshold for the MTAs was

identified using a Bonferroni correction a = 0,05 with a p =

5.0561 x 10-6 (-log10 p = 5.30). Following the identification of

significant MTAs, the favorable allele for each locus was determined

by inspecting allele-specific phenotypic distributions via boxplots.

The allele associated with the higher average value of the target

traitxwas classified as favorable. Based on these classifications,

we generated Favorable Allelic Combinations (FACs) for GY
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and the selection “index” by compiling all observed multi-locus

combinations of favorable alleles across the respective sets of MTAs.

These FACs were then used to evaluate the additive effect of

multiple favorable alleles within genotypes, offering a composite

view of their contribution to trait expression.

2.4.1 Candidate genes, gene ontology, and
changes in favorable allele frequency

Flanking sequences covering (±)1 Mb of the significant markers

from the GWAS analysis results, were analyzed in comparison with

the wheat reference genome (IWGSC RefSeq v1.0) (Consortium

et al., 2018). For this purpose, the Linux operating system was used,

utilizing tools for manipulating genomic data, such as “gawk”

(Robbins, 2004) and “bedtools” (Quinlan and Hall, 2010). For the

genetic enrichment analysis, all the candidate genes for each trait

were taken and analyzed using the tool ShinyGO v0.741, with a

significance threshold p-value (FDR) of 0.05 (Ge et al., 2020).

Following the identification of significant marker-trait

associations, favorable alleles were determined by comparing the

mean phenotypic values associated with each allele using boxplots.

For each of the 13 MTAs, the allele linked to the more desirable

phenotypic performance was classified as favorable. To evaluate

changes in favorable allele frequencies over time, we leveraged a

historical dataset from the CIMMYT wheat breeding program

spanning ten consecutive crop seasons. Specifically, data from ten

years of Elite Yield Trials (EYT), covering breeding cycles from

2013–2014 to 2022–2023, were used to monitor the temporal trends

in favorable allele frequencies. For a detailed description of the EYT

dataset and its structure, refer to Vitale et al. (2025).
2.5 Genomic prediction

For GP analysis, the same input data as for GWAS was used,

with exception of the numerical SNPs conversion (1, 0, and 2) to

meet software requirements. Markers were scaled and centered, and

the matrix of genomic relationships was calculated (G) proposed by

Van Raden (VanRaden, 2008). The five-fold cross-validation

process was carried out (CV) 10 times. Prediction accuracy was

assessed by correlating the predicted values with the observed

phenotypes. The genomic best linear unbiased prediction

(GBLUP) model was performed as follows (Equation 4):

y = m1 + Zg + e (4)

where y is the vector of the phenotypes, m corresponds to the

intercept, Z corresponds to the design matrix of random effects, g is
the vector of genomic breeding values, and e is the vector of random
errors. It is also assumed that g ∼Nð0;Gs 2

GÞ, where G is the

genomic relationship matrix, and s 2
G is the additive genetic

variance (VanRaden, 2008).

Subsequently, RKHS with kernel averaging was applied as

follows (Equation 5):

y = m +o
L

l=1

ul + e (5)
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Where y, m, and e have been reported in Equation 4, and ul ∼
Nð0;  K ls2

ul Þ is the additive genetic effect with Kl corresponding to

the Gaussian reproducing kernel evaluated at lth of bandwidth

parameters and s2
ul is the additive genetic variance as reported in

the package BGLR (Pérez and de Los Campos, 2014). Both GBLUP

and RKHS models were run as single strings of 12,000 iterations,

of which the first 5,000 were discarded as burnIn in order to

ensure that the model had reached convergence. The analysis

was carried out using the BGLR library (Bayesian Generalized

Linear Regression).
3 Results

3.1 Population phenotypic analysis

Descriptive statistics showed variations for all variables. The

average grain yield was 95.3%, with a minimum of 70.0% and a

maximum of 117.5% of Borlaug 100, and a standard deviation (SD)

of 6.2, corresponding to a coefficient of variation (CV) of 6.5%. The

“index” variable had values from 1.3 to 3.2, with a mean of 1.8, a CV

of 11.3%, and an SD of 0.2. Finally, PNC exhibited an average of 4.0,

with minimum values of 1.0 to a maximum of 29.0; its CV was

86.3%, and its SD was 3.5 (Figure 1).
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3.2 Genome-wide association study

After filtering, 1190 genotypes and 9889 markers were

identified. Supplementary Figure S1 displays the distribution of

the markers along the three wheat genomes. LD ranged from 1.8

Mb to 15.1 Mb for the chromosome 6D and 2D, respectively

(Supplementary Figure S2). Kinship and PCA were also reported

in Supplementary Figures S3, S4, respectively. A total of 13

significant associations between markers and phenotypic traits

were detected; the BLINK model identified 62.5%, while

FarmCPU identified 37.5% of all associations. (Figure 2) We

identified eight markers associated with GY, four to “index”, and

one associated with PNC. The majority of associations were located

on chromosome 1. Two associations were found on chromosome

1A and three on chromosome 1D (5 associations), while

chromosomes 2 and 7 showed 3 and 2 associations, respectively.

Chromosome 2 had one association on 2A and two on 2B, while

chromosome 7 showed an association in 7A and another in 7B.

Chromosomes 4D, 5B, and 6B showed only one association each. It

is worth mentioning that the BLINK and FarmCPU models

identified the same marker on chr 1D at ~432 Mb, on chr 2A at

~15 Mb, and on chr 7B at ~44 Mb. In addition, the S1A_9565863

marker contributed 2.68% of the phenotypic variation explained

(PVE) for the PNC variable (Table 1).
FIGURE 1

Distribution and box plots for combining ability-related traits: grain yield (GY), Progeny Number per-Cross (PNC), and the “index”.
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https://doi.org/10.3389/fpls.2025.1675993
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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To identify favorable allele combinations, we examined boxplots

showing the phenotypic distribution associated with each allele across

the 13 significant MTAs and their respective target traits. For each

MTA, the allele contributing to superior phenotypic performance was

designated as favorable. Based on this, we generated all observed

combinations of favorable alleles, referred to as FACs for GY
Frontiers in Plant Science 06
(Figure 3) and the “index” (Figure 4). FACs were not computed for

PNC, as only a single significant MTA was identified for this trait. For

GY, we identified 187 unique FACs in the dataset and observed a clear

gradient in mean phenotypic performance across combinations. The

mean GY ranged from 93.60 to 102.58. The lowest-performing

combination was composed of the favorable alleles at markers
FIGURE 2

Manhattan and qqplot plots representing markers-traits associations. The red points above the black line (LOD ≥ 5.30) represent the significant
markers associated with grain yield (GY), Progeny Number per-Cross (PNC), and the “index”.
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S1D_411724142, S1D_412504493, S1D_432638693, S2B_800784801,

and S7A_533059303. In contrast, the highest-performing FAC

included favorable alleles at S1A_1158042, S1D_411724142,

S1D_412504493, S2B_161419325, and S7B_44882828.

In addition, FACs derived from the four MTAs associated with

the “index” did not exhibit a clear trend. Mean “index” values ranged

only slightly, from 1.85 to 1.94. The highest mean “index” value was

associated with the combination of favorable alleles at S2A_15755581,

S4D_481167093, S5B_610327124, and S6B_616781941.
3.3 Candidate genes, gene ontology, and
changes in allele frequency

The 13 significant markers led to the detection of 430 genes

(Supplementary File 1). The results of the genetic enrichment

analysis for grain yield revealed antioxidant processes, including

hydrogen peroxide metabolism, catabolism, and reactive oxygen

species, among others (Fold Enrichment > 12). In turn, the “index”

traits presented routes related to cell wall biogenesis, whereas for

PNC, the most relevant functions were involved in cellular amino

acid metabolism and glutathione metabolism (Figure 5).

To identify favorable alleles, we examined the allelic effect

distributions using boxplots, defining as favorable those alleles

associated with increased phenotypic values for key traits. We

then tracked the frequency of these favorable alleles across ten

breeding cycles, from crop season 2013–2014 to 2022–2023, for the

13 significant MTAs (Figure 6).
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Our results indicate that several favorable alleles have

undergone directional shifts in frequency over time, consistent

with positive selection pressure, which is likely applied indirectly

by breeders. In particular, markers such as S1A_1158042,

S1D_432638693, S2A_15755581, and S4D_481167093 exhibited

marked and sustained increases in favorable allele frequency.

These trends suggest that these loci may be linked to traits that

have been recurrently targeted by selection, intentionally or

unintentionally, during parental advancement and recycling in

the CIMMYT wheat breeding program. Notably, the favorable

allele at S4D_481167093 rapidly approached fixation within the

population, which may indicate strong selection or linkage to a

major-effect gene.

In contrast, other loci (e.g., S2B_161419325, S5B_610327124,

S7A_533059303) displayed more erratic patterns in allele frequency,

with no consistent directional trend. These irregular fluctuations

may reflect genetic drift, the absence of strong selection, or linkage

to traits with lower selection intensity or inconsistent value

across environments.
3.4 Genomic prediction

In general, GY showed a higher prediction accuracy compared

to the “index” and PNC for both models that have been used. The

results of the genomic prediction analysis demonstrated that the

RKHS model showed a slightly better prediction than GBLUP for

the variables “index”, GY, and PNC, increasing the prediction
TABLE 1 List of significant markers associated with grain yield (GY), Progeny Number per-Cross (PNC), and the “index”.

Number Traits SNP Chr
Pos
(Mbp)

Model LOD PVE Ref/Pos (Mpb)

1 GY S1A_1158042 1A 1.2 BLINK 5.98 3.89

2 GY S1D_411724142 1D 411.7 BLINK 6.93 2.98 (488.6–493.0) (Liu et al., 2020a)

3 GY S1D_412504493 1D 412.5 BLINK 8.83 4.39 (488.6–493.0) (Liu et al., 2020a)

4
GY S1D_432638693 1D 432.6 BLINK 6.05 3.35

(488.6–493.0) (Liu et al., 2020a)
GY S1D_432638693 1D 432.6 FarmCPU 5.4 0

5 GY S2B_161419325 2B 161.4 BLINK 5.83 2.25

6 GY S2B_800784801 2B 800.8 BLINK 5.54 3.48 (White et al., 2022) (766.2)

7 GY S7A_533059303 7A 533.1 FarmCPU 7.25 NA

8
GY S7B_44882828 7B 44.9 BLINK 5.69 3.75

GY S7B_44882828 7B 44.9 FarmCPU 6.59 3.65

9
“Index” S2A_15755581 2A 15.8 BLINK 9.1 5.75 (Liu et al., 2020a) (32.0 –32.9); (Li et al., 2019) (27.3–32.0);

(White et al., 2022) (18.6)
“Index” S2A_15755581 2A 15.8 FarmCPU 6.62 0.3

10 “Index” S4D_481167093 4D 481.2 BLINK 7.57 4.87 (Khan et al., 2022) (465.8)

11 “Index” S5B_610327124 5B 610.3 FarmCPU 5.47 0 (692.7–700.9) (Li et al., 2019)

12 “Index” S6B_616781941 6B 616.8 FarmCPU 5.39 0.28

13 PNC S1A_9565863 1A 9.6 BLINK 5.51 2.68
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FIGURE 3

Favorable Allelic Combinations (FACs) based on the eight MTAs associated with grain yield (GY), showing a gradient in mean GY across 187 observed
combinations.
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accuracy by 3.0%, 5.8%, and 8.3%, respectively. The best predictions

were obtained with the RHKS model, with a value of 0.344 for GY,

followed by 0.244 for PNC. Finally, the prediction of the “index”

showed the lowest accuracy, with a value of 0.207 (Figure 7).
4 Discussion

Although association studies have been performed for CA in

crops such as maize and rice (Chen et al., 2019; Liu et al., 2021; Lu

et al., 2020); to date, no GWAS analysis has been reported in the

literature for CA-related traits in wheat. Our studies identified eight

significant markers associated with grain yield present in

chromosomes 1A, 1D, 2B, 7A, and 7B (see Figure 2; Table 1).

Previously, several studies have identified significant markers

related to wheat yield on all 21 chromosomes (Akram et al., 2021;

Guan et al., 2018; Luján Basile et al., 2019; Pinto et al., 2010;

Sukumaran et al., 2015; Turuspekov et al., 2017; Yang et al., 2021).

For grain yield, the highest number of significant MTAs occurred

on chromosome 1D in positions 411.7, 412.5, and 432.6 Mbp. These

locations are close to those reported by Liu (Liu et al., 2020a), which

found flanking markers, in wheat for variables associated with yield

(D_contig32020_138–D_GDEEGVY01DD44S_389; chr1D: 488.6–

493.0 Mbp), close to our positions. We similarly identified four
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MTAs associated with “index” related to yield, located in

chromosomes 2A, 4D, 5B y 6D. One of the markers associated

with “index” (S2A_15755581), was identified near the region

described by White et al. (2022), which reported the marker

RAC875_c48625_182 in wheat for grain yield at 2.8 Mbp from

our location; this raises an important relationship between the two

regions, highlighting the need to study them in more depth. It is also

important to note that SNPs S1D_432638693, S7B_44882828, and

S2A_15755581 were consistently identified by both statistical

models (BLINK and FarmCPU). This suggests more confidence

in the relevance of these MTAs. Other SPNs associated with “index”

and GY, such as S1A_1158042, S1D_432638693, S2B_161419325,

S7A_533059303, S7B_44882828, and S2A_15755581 require further

research due to the limited literature available at this time. In

relation to PNC, we identified one MTA (S1A_9565863) located on

chromosome 1A at position 9.6 Mbp. This finding highlights the

importance of continuing studies due to its impact on the selection

of elite genotypes.

Additionally, we observed clear differences in grain yield

performance across the various FACs (Figure 3). The overall

mean grain yield of the population was 95.3, whereas the highest-

performing FAC reached a mean of 102.58, representing a 7.64%

increase relative to the population mean (see Results section). This

finding suggests a cumulative additive effect resulting from the
FIGURE 4

Favorable Allelic Combinations (FACs) based on the four MTAs associated with the “index”, showing limited variation in mean “index” values.
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combination of specific favorable alleles. Such information is

particularly valuable for breeding applications, as it can guide the

selection of superior parental combinations. By targeting genotypes

that carry optimal FACs, either as general combiners or

complementary combiners, breeders can increase the likelihood of

producing high-performing progeny.

The utility of FACs has also been documented in previous

studies. For example, Wang et al. (2023) identified beneficial FACs

for several yield component traits, including kernel number, kernel

weight, and thousand-kernel weight, in a panel of 81 wheat

varieties. They found that specific FACs could increase kernel

weight by 0.34 or 0.26 g per thousand kernels. The strategy of

pyramiding favorable alleles with additive effects is not new in

wheat breeding and has proven effective for traits with monogenic

or oligogenic control, such as grain quality and disease resistance

(Liu et al., 2020b; Tyagi et al., 2014).

The results of the genetic enrichment analysis revealed

implications of several key biological processes related to the

different traits in wheat (see Figure 5). The metabolic and

catabolic processes of hydrogen peroxide (H2O2), reactive oxygen

species, and oxidative stress response are related to grain yield

response. The processes of production and elimination of hydrogen

peroxide are involved in plant physiological processes and
Frontiers in Plant Science 10
particularly resistance to stress; however, an excessive

accumulation of hydrogen peroxide can activate autophagy in

chloroplasts, peroxisomes, and programmed cell death (Quan

et al., 2008; Smirnoff and Arnaud, 2019). Similarly, Ullah Zaid et

al. (2019) conducted a GWAS analysis to identify MTAs for general

CA in rice, focusing on 11 yield-related traits. Their subsequent GO

analysis revealed that many of these traits were significantly

associated with stress response, metabolic, and biosynthetic

processes. We also identified genetic enrichment for indices

associated with cell wall biogenesis, highlighting the importance

of cell wall functional and structural processes for the development

and functionality of the crop (Mehdi et al., 2019). Interestingly,

Chen et al. (2021) conducted transcriptome profiling to investigate

GCA in barley, with a focus on yield-related traits. Through GO

analysis, they identified several differentially expressed genes

(DEGs) associated with cellular components, including cell parts

and organelles.

On the other hand, PNC showed overexpression of genes in

pathways related to the cellular-modified amino acid metabolic

process and glutathione metabolic process. The latter plays an

important role in biosynthetic pathways, conjugation, and

detoxification of xenobiotics as well as reduction of reactive

oxygen species (ROS) and is important for better stress tolerance
FIGURE 5

Functional enrichment analysis of genes associated with agronomic variables grain yield (GY), Progeny Number per-Cross (PNC), and “index” in
wheat.
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(Dixon et al., 2002; Hasanuzzaman et al., 2019; Noctor et al., 2012;

Sahoo et al., 2017).

The analysis of favorable allele frequency dynamics over ten

breeding cycles revealed evidence of indirect positive selection

acting on several MTAs, notably S1A_1158042, S1D_432638693,

S2A_15755581, and S4D_481167093 (see Figure 6). The consistent

increase in their frequency suggests that these loci are linked to

traits routinely favored during parent and line selection, such as

yield or yield-related traits. In particular, the near fixation of some

alleles points to strong selection pressure, likely reflecting their

importance in breeding progress. In contrast, other MTAs exhibited

no consistent temporal trend, possibly due to weak or environment-

dependent selection, genetic drift, or association with traits of

lower priority.

We acknowledge that GCA in wheat, as in other species, is a

highly complex trait. Its genetic basis is governed by the cumulative

effects of thousands of small-effect loci, rather than a few major

genes (Rojas and Sprague, 1952; Walejko and Russell, 1977). While

FACs offer a useful framework for identifying promising

complementary crosses, their practical application may be limited

by the polygenic nature of the trait. As such, the predictive utility of
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individual GWAS-derived markers remains constrained in the

context of routine selection pipelines. From a genomic prediction

perspective, the emphasis shifts from identifying individual

significant loci to modeling the entire genomic architecture of the

trait. GP approaches, which are based on the infinitesimal model,

circumvent the statistical limitations of GWAS by avoiding multiple

testing and leveraging genome-wide marker information. While

GWAS remains valuable for generating biological insights and

identifying occasional candidate regions, its utility for improving

complex traits like GCA is limited compared to the predictive

accuracy and integration offered by GP models such as GBLUP

and RKHS.

Indeed, this is the first study that assessed genomic prediction

accuracy for GCA-related traits in wheat. The genomic prediction

results showed values ranging from 0.325 and 0.344 for GY, 0.201

and 0.207 for the “index” (see Figure 7), similar results were found

by Poland and colleagues (2012) for variables associated with wheat

yield in a panel of 254 lines, with precisions from 0.28 to 0.45. Our

results are also in line with another genomic prediction study in

wheat in different environments and years that exhibited prediction

accuracies from 0.27 to 0.59 for yield (Gill et al., 2021). The
FIGURE 6

Temporal dynamics of favorable allele frequencies across 10 years in the CIMMYT wheat program (2013–2014 to 2022–2023).
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predictive results for PNC had values of 0.225 and 0.244, indicating

a moderately limited prediction. In other crops, such as maize,

predictions related to GCA ranged from 0.49 to 0.61 (Vélez‐Torres

et al., 2018). However, due to the limited information related to the

prediction of CA in wheat (Basnet et al., 2019; Zhao et al., 2013), our

research could be a starting point for future analyses to improve the

prediction of PNC in wheat. Interestingly, our results showed that

the RKHS model only slightly outperformed GBLUP for grain yield

and other traits, though the differences were not statistically

significant. These findings align closely with those reported in

durum wheat for grain yield and yield-related traits (Vitale et al.,

2024). However, it is important to emphasize that improving

prediction accuracy may require integrating diverse data sources

and exploring alternative models, such as machine or deep learning

(Crossa et al., 2024).
5 Conclusions

To date, traits related to combining ability in wheat have not

been thoroughly investigated and often fail to produce high-

performing offspring despite originating from promising parents.

Therefore, a deeper understanding of the combining ability of
Frontiers in Plant Science 12
parental lines is crucial for optimizing the parental selection

process. In our study, we identified 13 MTAs, eight of which are

related to grain yield (GY), four of which are associated with the

“index”, in addition to a marker associated with the number of

progeny per cross (PNC). Gene ontology analyses revealed major

functions related to hydrogen peroxide metabolism and catabolism,

cell wall biogenesis, and amino acid and glutathione metabolism for

the traits of interest. Interestingly, several MTAs were found to be

under positive selection pressure, indirectly driven by breeders’

decisions over successive cycles. This finding highlights the

functional relevance of these loci and reinforces their importance

within the wheat breeding pipeline. Likewise, the best predictions

were obtained using the RKHS model, with values of 0.344, 0.207,

and 0.244 for the traits GY, “index”, and PNC. These findings

advance the current understanding of combining ability in wheat,

shedding light on MTAs that could serve as valuable tools for

developing new markers to better characterize candidate parents.

Moreover, this study highlights novel insights into the biological

pathways underlying traits related to combining ability. Applying

genomic prediction to evaluate the combining ability of candidate

parents offers a promising strategy to enhance the efficiency of

parental selection. This approach can ultimately improve offspring

yield performance and enhance the genetic gain.
FIGURE 7

Boxplot of the predictions for the grain yield (GY), Progeny Number per-Cross PNC, and “index” variables using the reproducing kernel Hilber space
(RKHS) and genomic best linear unbiased prediction (GBLUP) models.
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Crossa, J., Beyene, Y., Kassa, S., Pérez, P., Hickey, J. M., Chen, C., et al. (2013).
Genomic prediction in maize breeding populations with genotyping-by-sequencing.
G3: Genes Genom. Genet. 3, 1903–1926. doi: 10.1534/g3.113.008227

Crossa, J., Montesinos-Lopez, O. A., Costa-Neto, G., Vitale, P., Martini, J. W.,
Runcie, D., et al. (2024). Machine learning algorithms translate big data into predictive
breeding accuracy. Trends Plant Sci. 30(2), 167–184. doi: 10.1016/j.tplants.2024.09.011

Crossa, J., Perez, P., Hickey, J., Burgueno, J., Ornella, L., Cerón-Rojas, J., et al. (2014).
Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112,
48–60. doi: 10.1038/hdy.2013.16
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