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In wheat breeding programs, several hundred crosses are performed annually, but
only individuals from a few families advance to the final stages of the breeding
pipelines. Therefore, a deeper understanding of the general combining ability (GCA)
of wheat genotypes might enhance the breeding efficiency in selecting parents. For
this reason, we tested the performance of the offspring of ~1200 parental elite lines.
Using a genome-wide association study (GWAS), gene ontology (GO) analysis, and
genomic prediction (GP), our objectives were to i) identify marker-trait associates
(MTAs) and candidate genes, ii) assess temporal allele frequency dynamics of
identified MTAs, and iii) estimate prediction accuracy (PA) for key traits: Progeny
Number per-Cross (PNC), grain yield (GY), and a combined index incorporating
these traits (“index”). Our findings revealed a total of 13 MTAs: eight for GY, four for
the “index”, and one for PNC. The GO analysis highlighted several genes involved in
hydrogen peroxide metabolism and catabolism processes (H,O,), reactive oxygen
species, response to oxidative stress, cell wall biogenesis, the metabolic process of
modified amino acids at the cellular level, and glutathione metabolic process for the
studied traits. Notably, allele frequency analysis over time indicated that most MTAs
are under positive selection, likely reflecting indirect breeder-driven selection. The
highest PA was reached by using the reproducing kernel Hilbert space (RKHS) model
for the trait GY (0.34). The identification of MTAs for PNC and GY provided insight
into the biological pathways underpinning combining ability and demonstrated the
potential for predicting the ability of the genotypes to be crossed. These findings
might contribute to the optimization crossing strategy saving costs and increasing
the breeding program efficiency.
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GRAPHICAL ABSTRACT

1 Introduction

Wheat is one of the most important staple crop globally, serving
as a primary source of nutrients for approximately 40% of the
world’s population (Giraldo et al., 2019; Reynolds and Braun,
2022). It is also the most widely cultivated crop worldwide, growing
on over 217 million hectares of land (Erenstein et al., 2022). The
breeding of new wheat varieties involves generating genetic
variations through controlled crosses, self-fertilization, advanced
generation selection, field trials, and several quality analyses, which
entails a considerable investment of time (10 to 15 years) and
resources (Haile et al., 2021).

Combining ability (CA) is the ability of the plants to combine
with each other in order to transmit their desirable traits to their
offspring; thus, by crossing one line with many others, it is possible
to observe its average performance in all its crosses and highlight
that the general combining ability (GCA) is described as the mean
performance of a genotype across multiple crosses. By contrast, the
specific combining ability (SCA) is characterized as deviations from
the expected performance in certain combinations, either exceeding
or falling short of the average performance of the parental inbred
lines (Fasahat et al., 2016; Sprague and Tatum, 1942). CA has been
widely studied in several crops, such as maize (Dermail et al., 2023;
Ertiro et al., 2013; Makumbi et al., 2011; Ravikesavan et al., 2020;
Run et al., 2013), cotton (Aishwarya et al., 2025; Anandan, 2010;
Zeng and Pettigrew, 2015), sunflower (Habib et al., 2021; Ortis et al.,
2005; Volotovich et al 2008), alfalfa (Bhandari et al., 2007; Lawati
et al,, 2010), and rice (Azad et al., 2022; Shukla and Pandey, 2008;
Verma and Srivastava, 2004). In wheat (Triticum aestivum L.), the
presence of GCA has been statistically demonstrated using a 7 x 7
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diallel set of bread wheat, also highlighting the potential to identify
superior general combiners (Kumar et al, 2011). Furthermore,
studies have shown that utilizing the GCA for parent selection
can be an effective strategy to enhance wheat breeding programs
(Gowda et al., 2012). In addition, the assessment of GCA and SCA
in wheat germplasm from Pakistan has successfully identified
superior combiners for grain yield and related traits (Igbal, 2007).
Despite these advancements, wheat breeding programs continue to
produce hundreds of inefficient crosses each year. Understanding
the genetic and molecular basis of GCA and SCA could facilitate
efficient parent selection and crossing, accelerating the production
of elite cultivars.

Genome-wide association studies (GWAS) aim to identify
associations between single-nucleotide polymorphisms (SNPs)
and phenotypic traits of interest, such as complex characters like
yield. This allows for accelerated crop improvement through
molecular marker-assisted and allele stacking selection. GWAS or
quantitative trait loci (QTL) analyses have been performed in wheat
for a variety of traits, such as grain yield and yield components
(Eltaher et al,, 2021; Li et al., 2019), phenology (Zhang et al., 2018),
disease resistance (Singh et al,, 2020; Tessmann et al, 2019),
morphological traits (Sheoran et al., 2019; Vitale et al., 2021), and
quality traits (Tadesse et al, 2015; Yang et al., 2020). Studies in
maize have shown that the identification of key loci for GCA by
GWAS could accelerate breeding and the selection of elite parents
for the creation of hybrids (Liu et al., 2021; Lu et al,, 2020).
Association studies related to CA have been carried out in recent
years, mainly in crops such as rice, corn, and cotton, in the case of
rice, it was found that the accumulation of superior GCA and SCA
alleles contributes to heterosis and that significant QTLs favor
combinatorial ability, which could accelerate the selection of the
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best parents for the development of hybrids (Chen et al., 2019; Li
et al., 2022; Sarfraz et al., 2021).

Additionally, several QTLs have been linked to CA in rice, along
with their pleiotropic effects on other agronomic traits (Qu et al.,
2012). Notably, Lu et al. (2020) also identified numerous QTLs
associated with per se performance and corresponding GCA eftects
for yield-related traits, which hold potential for improving maize
hybrid breeding.

However, for a deeper analysis, it is necessary to complement
them with other tools, such as gene ontology (GO) analysis, used to
represent biological functions over genes, using a standardized
vocabulary (Ashburner et al., 2000; Meng et al, 2009). Indeed,
GO analyses have been performed following GWAS studies to
investigate CA in rice (Chen et al., 2019; Ullah Zaid et al,, 2019).

Genomic prediction (GP) is a technique for estimating
phenotypic values from genotypic data, utilizing molecular
information from the entire genome. Its use has increased
significantly due to the low cost and incorporation of all or most of
the markers, making it an essential tool in breeding programs for
predicting traits of interest (Bernardo, 2008; Crossa et al, 2017;
Meuwissen et al., 2001). GP has been applied for predicting a wide
range of traits across several crops, such as wheat (Crossa et al., 2014;
Lado et al., 2013), rice (Bartholome et al., 2022; Labroo et al., 2021),
maize (Crossa et al., 2013; Technow et al., 2014) and soybean (Jarquin
et al, 2014; Zhang et al., 2016). In corn, GP has been used to predict
CA in order to evaluate the performance of lines and hybrids more
efficiently (Zhang et al., 2022). Furthermore, the effectiveness of
predicting GCA using genomic prediction models has been
evaluated. The study also compared GP application with
phenotyping methods, concluding that the application of GP is a
more effective and efficient approach for predicting the GCA of maize
lines and their hybrid performance (Vélez-Torres et al, 2018).
Finally, Werner et al. (2018) evaluated the accuracy of genomic
prediction for various agronomic traits in oilseed rape. Their analysis
utilized ridge-regression best linear unbiased prediction (BLUP) and
three Bayesian alphabet models, considering both GCA and SCA.

The objectives of our study are: 1) to identify the marker traits
associations for three traits related to the GCA (GY, “index”, and
PNC) using GWAS analysis; 2) to uncover biological pathways or
metabolic processes overrepresented among the identified genes
through genetic enrichment analysis; 3) assess temporal allele
frequency dynamics of identified MTAs over 10 years of data,
and 4) to evaluate the genomic prediction accuracy for these traits,
enabling practical implementation in wheat breeding programs.

2 Materials and methods

2.1 Plant material and combining ability-
related traits

The phenotypic dataset comprised 1203 CIMMYT (International

Maize and Wheat Improvement Center) elite breeding lines used as
parents in the CIMMYT bread wheat breeding program crossing
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block over five years (from the 2013/14 to 2017/18 seasons). The
offspring of these breeding lines that reached the grain yield (GY)
evaluation stages were tested across multiple years (from 2017/18 to
2022/2023) at the CENEB (Campo Experimental Norman E.
Borlaug) research station (27°20" N, 109°54" W). The yield trials
were conducted following a raised bed planting system, under
optimal irrigated conditions (B5IR) (approximately 500 mm of
water supplied across five irrigation events) and an optimal sowing
date (late November to mid-December). They were arranged in an
alpha lattice design with two replicates, using a 4.48 m? plot size and a
seeding rate of 120 kg ha™'. At maturity, whole plots were harvested to
assess GY. GY was standardized to a moisture content of 12%.
Finally, weather parameters including solar flux, temperatures,
humidity, precipitation, wind pressure and soil proprieties were
downloaded for each crop season from the NASAPOWER website
(https://www.nasa.gov/) and shared in the open repository Figshare
(https://doi.org/10.6084/m9.figshare.30025069.v1).

2.2 Statistical analysis and combining
ability

The GY phenotypic performances of the offspring produced by
the 1203 parents were analyzed using the Ime4 package (Bates et al.,
2015) in R software (Team, 2016), using the following statistical
model (Equation 1):

Yijk = W+ 1+ by + & + €k 1)

where Yijk is the observed value, where 1t is the general mean, 7
is the random effects of the replicates (j = 1, ..., 3), g; is the random
effect of the wheat genotype, assumed to be identically and
independently normally distributed (IID) with mean zero and
variance 0';, and by represents the random effects of the
incomplete blocks (k = 1, ..., 5) nested within replicate, and it is
assumed (IID) with mean zero and variance of. The term €k is a
random residual assumed to be IID with mean zero and variance 67
. Then, we fit the same model but now with g; as fixed effects to
estimate adjusted means (Best Linear Unbiased Estimates, BLUEs).

To estimate GCA, the GY of each elite parental line was
calculated as the average of its progeny. Before the calculation of
the CGA, the GY BLUE: of each progeny were expressed in terms of
the cultivar Borlaug 100 (common check across all the GY trials).
Therefore (Equation 2),

gi=F-F )

Where g; is the GCA effect of inbred lines i; F; is the average
value of the progeny involving the inbred line i as parent, and F is
the average value of all progenies.

Additionally, the number of progenies from each elite parental
line was tallied and divided by the number of crosses in which the
parental line participated (PNC). Finally, GY and PNC were
expressed using a scale from 1 to 2 (1 minimum value and 2
maximum value), and they were used to calculate an “index” using
the following formula (Equation 3):
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index = (GY % 0.6) % (PNC % 0.4) (3)

Phenotipic dataset was public shared in the open access repository
Figshare (https://doi.org/10.6084/m9.figshare.30024511.v1).

2.3 Genotyping value

The genotypic data comprised a total of 18,239 SNP markers,
generated using the Genotyping-by-Sequencing (GBS) approach.
This process was carried out on an Illumina HiSeq2500 sequencer at
Kansas State University, following the protocol described by
(Poland et al., 2012). Data quality was ensured through
meticulous filtering conducted with TASSEL v5.0 software
(https://tassel.bitbucket.io) (Bradbury et al., 2007). Markers with a
minor allele frequency (MAF) below 5% and those with over 50%
missing data were excluded during the initial processing. The
filtered HapMap was used to perform GWAS analysis.
Subsequently, the HapMap was converted into a numerical
matrix, ensuring compatibility with genomic prediction tools.
Using the curated marker dataset, a genomic relationship matrix
(G) was calculated with the AGHmatrix v2.1.4 R package (Amadeu
et al., 2023). In addition, linkage disequilibrium (LD) was assessed
by calculating the squared correlation coefficient (r?) of allele
frequencies for all pairwise SNP combinations within each
chromosome using the TASSEL v5.0 software. To examine LD
decay, r* values were plotted against the physical distance (in Mb)
between marker pairs on each chromosome. Additionally, Kinship
matrix and Principal Component Analysis (PCA) were also
performed in TASSEL environment. The resulting filtered
HapMap was made publicly available on figshare (https://doi.org/
10.6084/m9.figshare.29669330.v1).

2.4 Genome-wide association study

We conducted the GWAS analysis using, as input, the GCA
values, PNC values, and the selection index described in the “Data
Analysis and Combining Ability” section, along with the filtered
marker dataset outlined above. For the GWAS study, we used R
software using the GAPIT v3.0 library (Genome Association and
Prediction Integrated Tool) (Lipka et al., 2012); two methods of
analysis were used; Bayesian information and Linkage
disequilibrium Iteratively Nested Keyway (BLINK) (Huang et al.,
2019) and Fixed and random model Circulating Probability
Unification (FarmCPU) (Liu et al., 2016). In addition, a principal
component parameter (PCA = 3) was incorporated to detect
associations between markers and phenotypes (GY, PNC, and
“index”). Finally, the significance threshold for the MTAs was
identified using a Bonferroni correction o = 0,05 with a p =
50561 x 10 (-logl0 p = 5.30). Following the identification of
significant MTAs, the favorable allele for each locus was determined
by inspecting allele-specific phenotypic distributions via boxplots.
The allele associated with the higher average value of the target
traitxwas classified as favorable. Based on these classifications,
we generated Favorable Allelic Combinations (FACs) for GY
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and the selection “index” by compiling all observed multi-locus
combinations of favorable alleles across the respective sets of MTAs.
These FACs were then used to evaluate the additive effect of
multiple favorable alleles within genotypes, offering a composite
view of their contribution to trait expression.

2.4.1 Candidate genes, gene ontology, and
changes in favorable allele frequency

Flanking sequences covering (+)1 Mb of the significant markers
from the GWAS analysis results, were analyzed in comparison with
the wheat reference genome (IWGSC RefSeq v1.0) (Consortium
etal,, 2018). For this purpose, the Linux operating system was used,
utilizing tools for manipulating genomic data, such as “gawk”
(Robbins, 2004) and “bedtools” (Quinlan and Hall, 2010). For the
genetic enrichment analysis, all the candidate genes for each trait
were taken and analyzed using the tool ShinyGO v0.741, with a
significance threshold p-value (FDR) of 0.05 (Ge et al, 2020).
Following the identification of significant marker-trait
associations, favorable alleles were determined by comparing the
mean phenotypic values associated with each allele using boxplots.
For each of the 13 MTAs, the allele linked to the more desirable
phenotypic performance was classified as favorable. To evaluate
changes in favorable allele frequencies over time, we leveraged a
historical dataset from the CIMMYT wheat breeding program
spanning ten consecutive crop seasons. Specifically, data from ten
years of Elite Yield Trials (EYT), covering breeding cycles from
2013-2014 to 2022-2023, were used to monitor the temporal trends
in favorable allele frequencies. For a detailed description of the EYT
dataset and its structure, refer to Vitale et al. (2025).

2.5 Genomic prediction

For GP analysis, the same input data as for GWAS was used,
with exception of the numerical SNPs conversion (1, 0, and 2) to
meet software requirements. Markers were scaled and centered, and
the matrix of genomic relationships was calculated (G) proposed by
Van Raden (VanRaden, 2008). The five-fold cross-validation
process was carried out (CV) 10 times. Prediction accuracy was
assessed by correlating the predicted values with the observed
phenotypes. The genomic best linear unbiased prediction
(GBLUP) model was performed as follows (Equation 4):

y=ul+Zg+¢e (4)

where y is the vector of the phenotypes, 1 corresponds to the
intercept, Z corresponds to the design matrix of random effects, g is
the vector of genomic breeding values, and € is the vector of random
errors. It is also assumed that g~N(0,GoZ), where G is the
genomic relationship matrix, and og is the additive genetic
variance (VanRaden, 2008).

Subsequently, RKHS with kernel averaging was applied as
follows (Equation 5):

L
y=U+Du+e (5)
=1
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Where y, u, and € have been reported in Equation 4, and u; ~
N(0, K,c;,) is the additive genetic effect with K; corresponding to
the Gaussian reproducing kernel evaluated at Ilth of bandwidth
parameters and G, is the additive genetic variance as reported in
the package BGLR (Pérez and de Los Campos, 2014). Both GBLUP
and RKHS models were run as single strings of 12,000 iterations,
of which the first 5,000 were discarded as burnln in order to
ensure that the model had reached convergence. The analysis
was carried out using the BGLR library (Bayesian Generalized
Linear Regression).

3 Results
3.1 Population phenotypic analysis

Descriptive statistics showed variations for all variables. The
average grain yield was 95.3%, with a minimum of 70.0% and a
maximum of 117.5% of Borlaug 100, and a standard deviation (SD)
of 6.2, corresponding to a coefficient of variation (CV) of 6.5%. The
“index” variable had values from 1.3 to 3.2, with a mean of 1.8, a CV
of 11.3%, and an SD of 0.2. Finally, PNC exhibited an average of 4.0,
with minimum values of 1.0 to a maximum of 29.0; its CV was
86.3%, and its SD was 3.5 (Figure 1).

10.3389/fpls.2025.1675993

3.2 Genome-wide association study

After filtering, 1190 genotypes and 9889 markers were
identified. Supplementary Figure S1 displays the distribution of
the markers along the three wheat genomes. LD ranged from 1.8
Mb to 15.1 Mb for the chromosome 6D and 2D, respectively
(Supplementary Figure S2). Kinship and PCA were also reported
in Supplementary Figures S3, S4, respectively. A total of 13
significant associations between markers and phenotypic traits
were detected; the BLINK model identified 62.5%, while
FarmCPU identified 37.5% of all associations. (Figure 2) We
identified eight markers associated with GY, four to “index”, and
one associated with PNC. The majority of associations were located
on chromosome 1. Two associations were found on chromosome
1A and three on chromosome 1D (5 associations), while
chromosomes 2 and 7 showed 3 and 2 associations, respectively.
Chromosome 2 had one association on 2A and two on 2B, while
chromosome 7 showed an association in 7A and another in 7B.
Chromosomes 4D, 5B, and 6B showed only one association each. It
is worth mentioning that the BLINK and FarmCPU models
identified the same marker on chr 1D at ~432 Mb, on chr 2A at
~15 Mb, and on chr 7B at ~44 Mb. In addition, the SIA_9565863
marker contributed 2.68% of the phenotypic variation explained
(PVE) for the PNC variable (Table 1).
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FIGURE 1

Distribution and box plots for combining ability-related traits: grain yield (GY), Progeny Number per-Cross (PNC), and the “index”.
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Manhattan and qgplot plots representing markers-traits associations. The red points above the black line (LOD > 5.30) represent the significant

markers associated with grain yield (GY), Progeny Number per-Cross (PNC), and the “index”.

To identify favorable allele combinations, we examined boxplots
showing the phenotypic distribution associated with each allele across
the 13 significant MTAs and their respective target traits. For each
MTA, the allele contributing to superior phenotypic performance was
designated as favorable. Based on this, we generated all observed
combinations of favorable alleles, referred to as FACs for GY
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(Figure 3) and the “index” (Figure 4). FACs were not computed for
PNC, as only a single significant MTA was identified for this trait. For
GY, we identified 187 unique FACs in the dataset and observed a clear
gradient in mean phenotypic performance across combinations. The
mean GY ranged from 93.60 to 102.58. The lowest-performing
combination was composed of the favorable alleles at markers
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TABLE 1 List of significant markers associated with grain yield (GY), Progeny Number per-Cross (PNC), and the “index”.

Number Traits SNP Chr mgp) Model LOD PVE Ref/Pos (Mpb)

1 GY SIA_1158042 1A | 12 BLINK 598 389

2 GY SID_411724142 1D 4117 BLINK | 693 | 298  (488.6-493.0) (Liu et al, 2020a)

3 GY SID_412504493 1D 4125 BLINK 883 439  (488.6-493.0) (Liu et al, 20202)
GY SID_432638693 1D 4326 BLINK 605 | 335

4 (488.6-493.0) (Liu et al., 2020a)
GY SID_432638693 1D 4326 FarmCPU 54 0

5 GY $2B_161419325 2B 1614 BLINK 583 | 225

6 GY S2B_800784801 2B 800.8 BLINK | 554 348  (White et al, 2022) (766.2)

7 GY S7A 533059303  7A 5331 FarmCPU | 725 | NA
GY S7B 44882828 | 7B | 449 BLINK | 560 | 375

’ GY S7B 44882828 | 7B | 449 FarmCPU = 659 | 3.65

X “Index” $2A_15755581 | 2A | 158 BLINK | 91 375 (Liu et al,, 2020a) (32.0 ~32.9); (Li et al,, 2019) (27.3-32.0);
“Index” S2A_15755581 | 2A | 158 FarmCPU | 662 03  (Whiteetal, 2022) (18.6)

10 “Index” $4D_481167093 4D 4812 BLINK | 757 | 487  (Khan et al, 2022) (465.8)

1 “Index” $5B_610327124 | 5B 610.3 FarmCPU | 547 | 0 (692.7-700.9) (Li et al., 2019)

12 “Index” S6B_616781941 6B 616.8 FarmCPU = 539 | 028

13 PNC SIA 9565863 | 1A | 96 BLINK 551 | 268

S1D_411724142, S1D_412504493, S1D_432638693, S2B_800784801,
and S7A_533059303. In contrast, the highest-performing FAC
included favorable alleles at SIA_1158042, S1D_411724142,
S1D_412504493, S2B_161419325, and S7B_44882828.

In addition, FACs derived from the four MTAs associated with
the “index” did not exhibit a clear trend. Mean “index” values ranged
only slightly, from 1.85 to 1.94. The highest mean “index” value was
associated with the combination of favorable alleles at S2A_15755581,
S§4D_481167093, S5B_610327124, and S6B_616781941.

3.3 Candidate genes, gene ontology, and
changes in allele frequency

The 13 significant markers led to the detection of 430 genes
(Supplementary File 1). The results of the genetic enrichment
analysis for grain yield revealed antioxidant processes, including
hydrogen peroxide metabolism, catabolism, and reactive oxygen
species, among others (Fold Enrichment > 12). In turn, the “index”
traits presented routes related to cell wall biogenesis, whereas for
PNC, the most relevant functions were involved in cellular amino
acid metabolism and glutathione metabolism (Figure 5).

To identify favorable alleles, we examined the allelic effect
distributions using boxplots, defining as favorable those alleles
associated with increased phenotypic values for key traits. We
then tracked the frequency of these favorable alleles across ten
breeding cycles, from crop season 2013-2014 to 2022-2023, for the
13 significant MTAs (Figure 6).

Frontiers in Plant Science

Our results indicate that several favorable alleles have
undergone directional shifts in frequency over time, consistent
with positive selection pressure, which is likely applied indirectly
by breeders. In particular, markers such as SIA_1158042,
SID_432638693, S2A_15755581, and S4D_481167093 exhibited
marked and sustained increases in favorable allele frequency.
These trends suggest that these loci may be linked to traits that
have been recurrently targeted by selection, intentionally or
unintentionally, during parental advancement and recycling in
the CIMMYT wheat breeding program. Notably, the favorable
allele at S4D_481167093 rapidly approached fixation within the
population, which may indicate strong selection or linkage to a
major-effect gene.

In contrast, other loci (e.g., S2B_161419325, S5B_610327124,
S7A_533059303) displayed more erratic patterns in allele frequency,
with no consistent directional trend. These irregular fluctuations
may reflect genetic drift, the absence of strong selection, or linkage
to traits with lower selection intensity or inconsistent value
across environments.

3.4 Genomic prediction

In general, GY showed a higher prediction accuracy compared
to the “index” and PNC for both models that have been used. The
results of the genomic prediction analysis demonstrated that the
RKHS model showed a slightly better prediction than GBLUP for
the variables “index”, GY, and PNC, increasing the prediction
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Index by Favorable Allele Combinations
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FIGURE 4

Favorable Allelic Combinations (FACs) based on the four MTAs associated with the “index”, showing limited variation in mean “index” values.

accuracy by 3.0%, 5.8%, and 8.3%, respectively. The best predictions
were obtained with the RHKS model, with a value of 0.344 for GY,
followed by 0.244 for PNC. Finally, the prediction of the “index”
showed the lowest accuracy, with a value of 0.207 (Figure 7).

4 Discussion

Although association studies have been performed for CA in
crops such as maize and rice (Chen et al., 2019; Liu et al., 2021; Lu
et al,, 2020); to date, no GWAS analysis has been reported in the
literature for CA-related traits in wheat. Our studies identified eight
significant markers associated with grain yield present in
chromosomes 1A, 1D, 2B, 7A, and 7B (see Figure 2; Table 1).
Previously, several studies have identified significant markers
related to wheat yield on all 21 chromosomes (Akram et al., 2021;
Guan et al., 2018; Lujan Basile et al., 2019; Pinto et al.,, 2010;
Sukumaran et al., 2015; Turuspekov et al., 2017; Yang et al., 2021).
For grain yield, the highest number of significant MTAs occurred
on chromosome 1D in positions 411.7, 412.5, and 432.6 Mbp. These
locations are close to those reported by Liu (Liu et al., 2020a), which
found flanking markers, in wheat for variables associated with yield
(D_contig32020_138-D_GDEEGVY01DD44S_389; chr1D: 488.6-
493.0 Mbp), close to our positions. We similarly identified four

Frontiers in Plant Science

MTAs associated with “index” related to yield, located in
chromosomes 2A, 4D, 5B y 6D. One of the markers associated
with “index” (S2A_15755581), was identified near the region
described by White et al. (2022), which reported the marker
RAC875_c48625_182 in wheat for grain yield at 2.8 Mbp from
our location; this raises an important relationship between the two
regions, highlighting the need to study them in more depth. It is also
important to note that SNPs SID_432638693, S7B_44882828, and
S2A_15755581 were consistently identified by both statistical
models (BLINK and FarmCPU). This suggests more confidence
in the relevance of these MTAs. Other SPNs associated with “index”
and GY, such as SIA_1158042, S1D_432638693, S2B_161419325,
S7A_533059303, S7B_44882828, and S2A_15755581 require further
research due to the limited literature available at this time. In
relation to PNC, we identified one MTA (SIA_9565863) located on
chromosome 1A at position 9.6 Mbp. This finding highlights the
importance of continuing studies due to its impact on the selection
of elite genotypes.

Additionally, we observed clear differences in grain yield
performance across the various FACs (Figure 3). The overall
mean grain yield of the population was 95.3, whereas the highest-
performing FAC reached a mean of 102.58, representing a 7.64%
increase relative to the population mean (see Results section). This
finding suggests a cumulative additive effect resulting from the
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Functional enrichment analysis of genes associated with agronomic variables grain yield (GY), Progeny Number per-Cross (PNC), and “index" in

wheat.

combination of specific favorable alleles. Such information is
particularly valuable for breeding applications, as it can guide the
selection of superior parental combinations. By targeting genotypes
that carry optimal FACs, either as general combiners or
complementary combiners, breeders can increase the likelihood of
producing high-performing progeny.

The utility of FACs has also been documented in previous
studies. For example, Wang et al. (2023) identified beneficial FACs
for several yield component traits, including kernel number, kernel
weight, and thousand-kernel weight, in a panel of 81 wheat
varieties. They found that specific FACs could increase kernel
weight by 0.34 or 0.26 g per thousand kernels. The strategy of
pyramiding favorable alleles with additive effects is not new in
wheat breeding and has proven effective for traits with monogenic
or oligogenic control, such as grain quality and disease resistance
(Liu et al., 2020b; Tyagi et al., 2014).

The results of the genetic enrichment analysis revealed
implications of several key biological processes related to the
different traits in wheat (see Figure 5). The metabolic and
catabolic processes of hydrogen peroxide (H,O,), reactive oxygen
species, and oxidative stress response are related to grain yield
response. The processes of production and elimination of hydrogen
peroxide are involved in plant physiological processes and

Frontiers in Plant Science

particularly resistance to stress; however, an excessive
accumulation of hydrogen peroxide can activate autophagy in
chloroplasts, peroxisomes, and programmed cell death (Quan
et al,, 2008; Smirnoft and Arnaud, 2019). Similarly, Ullah Zaid et
al. (2019) conducted a GWAS analysis to identify MTAs for general
CA in rice, focusing on 11 yield-related traits. Their subsequent GO
analysis revealed that many of these traits were significantly
associated with stress response, metabolic, and biosynthetic
processes. We also identified genetic enrichment for indices
associated with cell wall biogenesis, highlighting the importance
of cell wall functional and structural processes for the development
and functionality of the crop (Mehdi et al., 2019). Interestingly,
Chen et al. (2021) conducted transcriptome profiling to investigate
GCA in barley, with a focus on yield-related traits. Through GO
analysis, they identified several differentially expressed genes
(DEGs) associated with cellular components, including cell parts
and organelles.

On the other hand, PNC showed overexpression of genes in
pathways related to the cellular-modified amino acid metabolic
process and glutathione metabolic process. The latter plays an
important role in biosynthetic pathways, conjugation, and
detoxification of xenobiotics as well as reduction of reactive
oxygen species (ROS) and is important for better stress tolerance
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(Dixon et al., 2002; Hasanuzzaman et al., 2019; Noctor et al., 2012;
Sahoo et al., 2017).

The analysis of favorable allele frequency dynamics over ten
breeding cycles revealed evidence of indirect positive selection
acting on several MTAs, notably SIA_1158042, SID_432638693,
S2A_15755581, and S4D_481167093 (see Figure 6). The consistent
increase in their frequency suggests that these loci are linked to
traits routinely favored during parent and line selection, such as
yield or yield-related traits. In particular, the near fixation of some
alleles points to strong selection pressure, likely reflecting their
importance in breeding progress. In contrast, other MTAs exhibited
no consistent temporal trend, possibly due to weak or environment-
dependent selection, genetic drift, or association with traits of
lower priority.

We acknowledge that GCA in wheat, as in other species, is a
highly complex trait. Its genetic basis is governed by the cumulative
effects of thousands of small-effect loci, rather than a few major
genes (Rojas and Sprague, 1952; Walejko and Russell, 1977). While
FACs offer a useful framework for identifying promising
complementary crosses, their practical application may be limited
by the polygenic nature of the trait. As such, the predictive utility of
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individual GWAS-derived markers remains constrained in the
context of routine selection pipelines. From a genomic prediction
perspective, the emphasis shifts from identifying individual
significant loci to modeling the entire genomic architecture of the
trait. GP approaches, which are based on the infinitesimal model,
circumvent the statistical limitations of GWAS by avoiding multiple
testing and leveraging genome-wide marker information. While
GWAS remains valuable for generating biological insights and
identifying occasional candidate regions, its utility for improving
complex traits like GCA is limited compared to the predictive
accuracy and integration offered by GP models such as GBLUP
and RKHS.

Indeed, this is the first study that assessed genomic prediction
accuracy for GCA-related traits in wheat. The genomic prediction
results showed values ranging from 0.325 and 0.344 for GY, 0.201
and 0.207 for the “index” (see Figure 7), similar results were found
by Poland and colleagues (2012) for variables associated with wheat
yield in a panel of 254 lines, with precisions from 0.28 to 0.45. Our
results are also in line with another genomic prediction study in
wheat in different environments and years that exhibited prediction
accuracies from 0.27 to 0.59 for yield (Gill et al, 2021). The
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(RKHS) and genomic best linear unbiased prediction (GBLUP) models.

predictive results for PNC had values of 0.225 and 0.244, indicating
a moderately limited prediction. In other crops, such as maize,
predictions related to GCA ranged from 0.49 to 0.61 (Veélez-Torres
et al., 2018). However, due to the limited information related to the
prediction of CA in wheat (Basnet et al., 2019; Zhao et al., 2013), our
research could be a starting point for future analyses to improve the
prediction of PNC in wheat. Interestingly, our results showed that
the RKHS model only slightly outperformed GBLUP for grain yield
and other traits, though the differences were not statistically
significant. These findings align closely with those reported in
durum wheat for grain yield and yield-related traits (Vitale et al.,
2024). However, it is important to emphasize that improving
prediction accuracy may require integrating diverse data sources
and exploring alternative models, such as machine or deep learning
(Crossa et al., 2024).

5 Conclusions

To date, traits related to combining ability in wheat have not
been thoroughly investigated and often fail to produce high-
performing offspring despite originating from promising parents.
Therefore, a deeper understanding of the combining ability of
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parental lines is crucial for optimizing the parental selection
process. In our study, we identified 13 MTAs, eight of which are
related to grain yield (GY), four of which are associated with the
“index”, in addition to a marker associated with the number of
progeny per cross (PNC). Gene ontology analyses revealed major
functions related to hydrogen peroxide metabolism and catabolism,
cell wall biogenesis, and amino acid and glutathione metabolism for
the traits of interest. Interestingly, several MTAs were found to be
under positive selection pressure, indirectly driven by breeders’
decisions over successive cycles. This finding highlights the
functional relevance of these loci and reinforces their importance
within the wheat breeding pipeline. Likewise, the best predictions
were obtained using the RKHS model, with values of 0.344, 0.207,
and 0.244 for the traits GY, “index”, and PNC. These findings
advance the current understanding of combining ability in wheat,
shedding light on MTAs that could serve as valuable tools for
developing new markers to better characterize candidate parents.
Moreover, this study highlights novel insights into the biological
pathways underlying traits related to combining ability. Applying
genomic prediction to evaluate the combining ability of candidate
parents offers a promising strategy to enhance the efficiency of
parental selection. This approach can ultimately improve offspring
yield performance and enhance the genetic gain.
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