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Education, Kunming, Yunnan, China, 3College of Surveying and Mapping and Information Engineering,
West Yunnan University of Applied Sciences, Dali, Yunnan, China, 4College of Soil and Water
Conservation, Southwest Forestry University, Kunming, Yunnan, China
GEDI and ICESat-2/ATLAS have significant limitations in estimating forest

structure parameters. This study aims to enhance the estimation accuracy of

above-ground carbon storage (AGC) of Dendrocalamus giganteus by applying

the ANUSPLIN interpolation technique for spatial expansion. The results indicate

that: (1) When the spline degree of ANUSPLIN interpolation was set to 4 for GEDI

parameters (cover, pai, sensitivity) and ICESat-2/ATLAS parameters

(toc_roughness, h_median_canopy_abs, h_canopy_abs, h_max_canopy_abs),

the model ’s accuracy was highest. The spl ine degree 2 for the

digital_elevation_model parameter (GEDI) and the asr parameter (ICESat-2/

ATLAS) yielded optimal results. (2) The interpolation accuracy and performance

of ANUSPLIN outperformed that of co-kriging (CK). (3) The Extreme Gradient

Boosting (XGBoost) model (Coefficient of Determination, R2 = 0.93; Root Mean

Square Error, RMSE = 5.89 Mg/ha; Overall Estimation Accuracy, P = 85.84%;

relative RMSE, rRMSE = 14.16%) outperformed the Light Gradient Boosting

Machine (LightGBM) (R2 = 0.52, RMSE = 14.61 Mg/ha, P = 64.84%, rRMSE =

35.16%) and Random Forest Regression (RFR) (R2 = 0.90, RMSE = 8.23 Mg/ha,

P = 79.79%, rRMSE = 20.21%), achieving relative improvements of 78.85%,

59.67%, 32.36%, and 59.71% over LightGBM, and 3.33%, 28.41%, 7.58%, and

29.94% over RFR, respectively. This study demonstrates the feasibility of using

ANUSPLIN interpolation for satellite LiDAR data from GEDI and ICESat-2/ATLAS.

The approach offers a new perspective on spatial interpolation of satellite LiDAR

data at a regional scale, providing a valuable reference for cost-effective, high-

precision estimation of forest structural parameters.
KEYWORDS

ANUSPLIN interpolation, GEDI, ICESat-2/ATLAS, above-ground carbon storage,
machine learning
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1 Introduction

Above-ground carbon storage (AGC) is one of the most

fundamental quantitative characteristics of forest ecosystems,

reflecting the complex relationships between material cycling, energy

flow, and the interaction between plants and the environment (Sun and

Liu, 2019). Bamboo forests, recognized as the “second-largest forest in

the world,” are important components of forest ecosystems. As

perennial grasses from the subfamily Bambusoideae, their carbon

storage accounts for approximately 0.94% of global forest carbon

storage (Zhang et al., 2024b). Known as the “Kingdom of Bamboo”

(Li et al., 2015; Zhang et al., 2024b), China holds significant bamboo

forest resources, with carbon storage of 2.10 × 108 Mg in 2021,

accounting for 1.96% of total forest carbon storage. The bamboo

forest area spans 7.5627 × 106 ha, representing 3.31% of the national

forest area. Compared to the results of the 9th National Forest

Resources Survey, the bamboo forest area increased by 17.95% (Feng

and Li, 2023). Moreover, studies indicate that while global forest areas

have been steadily decreasing, bamboo forest areas have been

expanding (Li et al., 2006), suggesting the importance of accurately

estimating the AGC of bamboo forests at a regional scale. Such

estimates are crucial for understanding global climate change

mechanisms, formulating carbon emission policies, and mitigating

global warming.

Traditional methods for estimating forest AGC primarily rely

on field surveys, which require extensive time and effort,

particularly in complex forest structures and regions with variable

environmental conditions. These methods struggle to meet the

demand for rapid and large-scale forest AGC distribution data

(Shu et al., 2022). The advent and development of remote sensing

technologies have provided a fast and efficient means of monitoring

forest carbon storage (Liu et al., 2024). Current remote sensing

studies of bamboo forest biomass and carbon storage mostly use

passive optical remote sensing data, but bamboo forests are

characterized by high growth density and interwoven branches

and stems, making it challenging to estimate AGC storage

accurately using optical remote sensing. Research has shown that

the estimation accuracy of bamboo biomass using traditional

optical remote sensing techniques is relatively low. For instance,

Du et al. (2010) estimated Phyllostachys edulis above-ground

biomass (AGB) based on Landsat TM data, finding a maximum

correlation coefficient of 0.48 between AGB and vegetation indices.

Chen et al. (2018) used Sentinel-2 data and Random Forest

Regression to estimate AGB in bamboo forests of Zhejiang

Province, with an R2 of 0.46. Yang et al. (2024b) demonstrated

that airborne Light Detection and Ranging (LiDAR), based on

active remote sensing technology, can improve estimation

accuracy, achieving an R2 of 0.64. Zhang et al. (2024a) integrated

unmanned aerial vehicles (UAV) LiDAR with Sentinel-2 data,

achieving an R2 of 0.89, though airborne LiDAR is expensive and

not suitable for large-scale bamboo forest carbon storage

estimation. Yang et al. (2024a) used satellite LiDAR data from

Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud,

and land Elevation Satellite-2/Advanced Terrain Laser Altimeter

System (ICESat-2/ATLAS) to estimate bamboo forest AGC at a
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regional scale, achieving low-cost, high-precision inversion.

However, satellite LiDAR provides discrete sampling, which

cannot offer full coverage of data, necessitating the use of

extrapolation methods. In this context, spatial interpolation,

which is an effective way to obtain continuous spatial distribution

information, has been widely applied in satellite LiDAR data

processing (Yu et al., 2023).

Currently, geostatistical methods such as co-kriging (CK) (Yu et al.,

2023) and sequential Gaussian simulation (Luo et al., 2024) have been

widely used for spatial interpolation of satellite LiDAR data. However,

the use of the ANUSPLIN method for spatial interpolation of satellite

LiDAR data is relatively scarce. The effectiveness of interpolation

methods is influenced by the study area, and there is no unified

standard for selecting an interpolation method. Even the same

interpolation technique applied to different regions may yield varying

results. Numerous factors affect interpolation accuracy, and selecting

the most suitable interpolation method for a given dataset remains a

key challenge in current research (Pan, 2021).

ANUSPLIN, based on thin-plate spline theory, was originally

developed for interpolating meteorological data (Xu and

Hutchinson, 2013). It can incorporate elevation data as a

covariate in spatial interpolation. Unlike geostatistical

interpolation methods, which require prior calibration of

semivariogram parameters, ANUSPLIN is simpler as it does not

require such calibration and provides higher interpolation accuracy

(Guo et al., 2020). Comparative studies in temperature and

precipitation research have shown that ANUSPLIN outperforms

other interpolation methods such as ordinary kriging and inverse

distance weighting, especially when elevation is used as a covariate

in areas with complex terrain (Liu et al., 2012; Peng et al., 2024).

This study focuses on Xinping County in Yunnan Province,

where Dendrocalamus giganteus is widely distributed, and uses GEDI

and ICESat-2/ATLAS satellite LiDAR data as the primary

information sources, with elevation data as an auxiliary input. The

ANUSPLIN software was employed to perform spatial interpolation

of GEDI and ICESat-2/ATLAS parameters, enabling spatial

extrapolation. The results were compared with those of CK

interpolation in terms of accuracy and performance. Additionally,

machine learning models, including Light Gradient Boosting

Machine (LightGBM), Random Forest Regression (RFR), and

Extreme Gradient Boosting (XGBoost), were used to develop the

optimal AGC estimation model for Dendrocalamus giganteus. The

study evaluated the effectiveness and feasibility of using ANUSPLIN

interpolation for GEDI and ICESat-2/ATLAS data, offering valuable

insights into the sustainable development of bamboo forests in China.

The specific research questions of this study are: 1) Can

ANUSPLIN interpolation significantly improve the spatial

extrapolation of spaceborne LiDAR parameters? 2) Are there

significant differences in accuracy and visualization performance

between ANUSPLIN interpolation and CK? 3) After data expansion

using ANUSPLIN interpolation, can machine learning models achieve

higher prediction accuracy of Dendrocalamus giganteus AGC?

Based on these research questions, we propose the following

hypotheses: 1) ANUSPLIN interpolation performs better than CK.

2) The input parameters after ANUSPLIN interpolation can
frontiersin.org
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significantly improve the accuracy of AGC models. 3) The XGBoost

model outperforms the LightGBM and RFR models in

AGC prediction.

The objectives of this study are to propose and validate the

applicability of ANUSPLIN interpolation for spaceborne LiDAR

data and to evaluate its potential for regional-scale estimation of

Dendrocalamus giganteus AGC.
2 Materials and methods

2.1 Study area

Xinping County (Qin et al., 2025) (Figure 1) is located on the

eastern slope of the central Ailao Mountains in southwestern China,
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with terrain that is higher in the northwest and lower in the

southeast. The county lies in a transitional zone with complex

topography and fertile soils. Elevation ranges from low valleys to

middle mountains, creating diverse habitats. The climate is

subtropical to temperate, with a mean annual temperature of

about 18 °C, mean annual precipitation of 869 mm, annual

sunshine of 2839 h, and a frost-free period of approximately 316

days. Forest land covers 23520.1 ha, accounting for 55.8% of the

county’s area, with a forest coverage rate of 70.99%. Vegetation

resources are highly diverse, comprising 1402 species of higher

plants from 219 families and 762 genera. Bamboo forests occupy

2417.75 ha across 12 townships (about 10% of the forest area), with

more than 20 genera represented; among them, Dendrocalamus

giganteus is dominant, widely distributed between 450 and 1800 m

elevation. With the implementation of national ecological and land-
FIGURE 1

Geographic location map: (A) Location of Yunnan Province in China; (B) Location of Xinping County in Yunnan Province; (C) Xinping.
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use policies, the bamboo industry in Xinping has expanded rapidly

and become an important driver of local economic development.

Against this background, estimating the carbon storage and

biomass of Dendrocalamus giganteus provides essential data for

forestry production and land-use planning, while supporting

sustainable development and China’s goals of achieving carbon

peak and carbon neutrality.
2.2 Measurement of Dendrocalamus
giganteus AGC

In Xinping County, Yuxi City, mosquitoes begin to appear in

March–April as temperatures gradually rise. From May to

November, mosquitoes are more active and abundant, whereas

from December to February of the following year, low winter

temperatures reduce mosquito activity, and the weather is

generally clear. Therefore, the field survey was conducted in

January 2024. During the survey, following the principles of

representativeness and accessibility, 80 Dendrocalamus giganteus

plots were preselected based on sub-compartment attribute data to

cover different elevations and slopes. Upon arrival in the study area,

circular sample plots were established within each preselected sub-

compartment according to plant density, growth status, and health,

ensuring that each plot included Dendrocalamus giganteus of

different age classes. Based on the principle of sufficient

representativeness and the requirement for a large sample size

(approximately 30 plots are considered small, while around 50

plots are regarded as large) (Shu et al., 2022), a total of 51 circular

sample plots (radius = 12.5 m, area = 490.63 m²) were

established (Figure 1).

The center coordinates of each plot were determined using the

Qianxun StarMatrix SR3 (Pro version), and data were collected while

ensuring the device was in fixed solution mode. In each plot, the

diameter at breast height (DBH), geographic position, and plant

count were systematically recorded. The estimation of AGC followed

three sequential steps: 1) determining the AGB of a representative

mean tree; 2) converting the individual AGB to AGC using a carbon

content coefficient; 3) calculating plot-level AGC by scaling the

individual AGC to the total number of plants within the plot. The

corresponding formulas are shown in Equations 1–4:

The AGB model of Dendrocalamus giganteus was as follows

(Wang et al., 2021):

Bamboo stalk biomass.

w = 0:145DBH2:4197 (1)

Bamboo biomass.

w = 0:0224DBH2:5286 (2)

Bamboo leaf biomass.

w = 0:0196DBH1:917 (3)

The AGC calculation formula of Dendrocalamus giganteus was

as follows:
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Ct = W � fc (4)

where Ct is Dendrocalamus giganteus AGC, fc is the carbon

coefficient, and the carbon coefficient is 0.45 for bamboo rod, 0.45

for bamboo branch, and 0.43 for bamboo leaf (Teng, 2017).

In these 51 plots, the minimum, maximum, mean, and standard

deviation of Dendrocalamus giganteus AGC were 4.08 Mg/ha,

101.78 Mg/ha, 41.63 Mg/ha, and 20.55 Mg/ha, respectively, with

the calculation procedure following Yang et al. (2024a).
2.3 Full waveform data

The GEDI is the first full-waveform spaceborne LiDAR system

aboard the International Space Station. It is an active remote

sensing technology capable of collecting large-scale data. Using

short-wavelength laser pulses, GEDI penetrates the forest canopy to

obtain precise three-dimensional forest structure information

(Dubayah et al., 2020). Its sampling range extends from 51.6°N to

51.6°S, enabling the inversion of forest structure parameters in all

regions except high-latitude areas (Wang et al., 2024). This study

utilized the GEDI L2B data product, which is available for download

from the official website (https://www.earthdata.nasa.gov). The data

used in this study covered the study area from January 2022 to

February 2023 and included all accessible swath data. The data is

stored in HDF5 format with a spatial resolution of 25 m and

consists of discrete laser footprints.

There were a total of 57,217 laser footprint samples in the study

area. To ensure uniform and random distribution, systematic

sampling was conducted on these footprints (sampling interval:

24). As a result, 2,384 GEDI laser footprint samples were selected as

preset samples for spatial analysis (Figure 2).
2.4 Photon counting

ICESat-2 data products are currently classified into four levels

(ATL00-ATL22), with 21 different products. This study primarily

uses ATL03 and ATL08 data products. The ATL08 product is

derived from ATL03 data using the DDBSCAN (Density-Based

Spatial Clustering of Applications with Noise) and KNNB (K-

Nearest Neighbor-based) local statistical algorithms, followed by

an improved PTD (Progressive Triangulated Irregular Network

Densification) classification method. It provides various

parameters related to vegetation canopy and terrain (Qin et al.,

2024). A comprehensive description of the ICESat-2/ATLAS data

products can be accessed on the official website (https://

www.earthdata.nasa.gov). This study obtained all available ATL03

and ATL08 data products covering the study area from January

2022 to August 2023.

In the study area, a total of 21,080 laser footprint samples were

collected. To ensure uniform and random distribution, systematic

sampling was performed on these footprints (sampling interval: 9).

As a result, 2,342 ICESat-2/ATLAS laser footprint samples were

selected as preset samples for spatial analysis (Figure 2).
frontiersin.org
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2.5 Auxiliary data

The digital elevation model (DEM) used in this study is the

ALOS PALSAR Radiometrically Terrain Corrected (RTC) 12.5 m

DEM, obtained from the Alaska Satellite Facility Distributed Active

Archive Center (ASF DAAC) via NASA Earthdata Search (https://

search.earthdata.nasa.gov/search) (Figure 2). The DEM data were

resampled to a spatial resolution of 25 m using the Resample tool in

ArcMap 10.5 with the bilinear method, in order to match the

footprint and plot area.
3 Research methods

This study employed ANUSPLIN software to interpolate

spaceborne LiDAR GEDI and ICESat-2/ATLAS footprint data

and compared its performance with CK. A remote sensing

estimation model was then constructed to estimate the AGC of

Dendrocalamus giganteus based on the optimal model (Figure 3).
3.1 Generation of LiDAR data surface

3.1.1 ANUSPLIN interpolation method
ANUSPLIN is based on the interpolation theory of ordinary

thin-plate splines and local thin-plate splines, initially developed by

Australian scholars such as Hutchinson. The principle of

ANUSPLIN is to use smooth spline functions to interpolate
Frontiers in Plant Science 05
multivariate data, ensuring both the smoothness and accuracy of

the interpolation surface (Peng et al., 2024). Local thin-plate

smoothing spline interpolation, as an advancement over the

traditional thin-plate smoothing spline, not only permits the

inclusion of independent variables but also enables the

incorporation of covariates such as elevation. The relevant

calculations for the ANUSPLIN interpolation method are shown

in Equations 5–12.

zi = f (xi) + bTyi + ei, (i = 1,…,N) (5)

Note: zi is the value of the dependent variable at the i -th point

in space, xi is the d-dimensional spline independent variable, the

function f (xi) is a smooth function that estimates xi, yi is the p-

dimensional independent covariate, its coefficient is b, and ei is the

random error of the independent variable with a mean equal

to zero.

The function f and the coefficient b are calculated by least

squares estimation:

o
N

i=1
½Zi − f (xi) − bTyi

wi
�2 + pJm(f ) (6)

Note: wi is the known local relative coefficient of variation of the

weight; Jm(f ) is the roughness measure function of function f (xi),

defined as the partial derivative of f (called spline degree, also called

roughness degree); p is a positive smoothness parameter that

balances data fidelity and surface roughness. In AUNSPLIN, it is

usually determined by minimizing generalized cross-validation
FIGURE 2

Information source map: (A) Localized magnification of GEDI light spots, (B) Localized magnification of ICESat-2/ATLAS light spots.
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GCV and minimizing maximum likelihood GML (Cuervo-Robayo

et al., 2014).

The fitted function value vector Ẑ is expressed as:

Ẑ = Az (7)

In Equation 7, A is the influence matrix of size N×N. The

degrees of freedom for the fitted spline, based on linear regression

principles, are given by:

SIGNAL = trace(A) (8)

The degrees of freedom for the weighted residual sum of squares

is:

ERROR = trace(I − A) = N − trace(A) (9)

The weighted mean squared residual is:

MSR = ∥W−1(I−A)z ∥2
N

(10)

In Equation 10, W is a diagonal matrix:

W = diag(w1,⋯,wN ) (11)

The total degrees of freedom on each surface and the error

degrees of freedom sum to N (the total number of spot points). The

GCV calculates the value of each smoothing parameter p by leaving
Frontiers in Plant Science 06
out one data point at a time and fitting the surface using the

remaining points under a fixed smoothing parameter, then

calculating the weighted sum of squares of the residuals between

the observed and estimated values. This is the GCV (Hutchinson

and Xu, 2004).

GCV = ∥W−1(I−A)z ∥2 =N
½tr(I−A)=N�2 (12)

The specific steps are as follows:(1) Import the interpolation

data (xls file) into SPSS and export the data batch file. (2) Place the

data file into the ANUSPLIN plugin folder and modify the spline

degree, independent, and covariate parameters in the sp.txt file

based on the model. (3) Run run.cmd to perform ANUSPLIN

interpolation. (4) Convert the generated “grd” file format, process

outliers, and perform other operations to obtain the final result.

ANUSPLIN allows for multiple combinations of independent

variables, covariates, and spline degrees, resulting in 18 different

models (Zhang et al., 2022a). This study used the optimal spatial

interpolation model for satellite lidar interpolation with GEDI and

ICE-Sat-2/ATLAS parameters as independent variables and

elevation as the covariate, setting the spline degree to 2, 3, and 4.

Based on the raw data and the ANUSPLIN user guide, batch

command files for running the SPLINA and LAPGRD program

modules of ANUSPLIN were written. The SPLINA program module
FIGURE 3

Technical flow chart.
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was responsible for generating the coefficients of the surface fitting

results and the error statistics file. The LAPGRD programmodule used

the surface coefficient file generated by the SPLINA programmodule to

obtain the interpolation surface. ANUSPLIN provided a range of

statistical parameters in the log file, which were used to diagnose

error sources and evaluate the interpolation quality. These included the

effective number of fitting surface parameters, signal degrees of freedom

(Signal), residual degrees of freedom (Error), and signal-to-noise ratio

(SNR) (Zhang and Luo, 2011).

Criteria for selecting the best model (Li et al., 2019): Based on

generalized cross-validation or the maximum likelihood method, the

SNR should have been minimized. The Signal should have been less

than half of the number of observation sites, and no “*” symbol should

have appeared in the error file generated by SPLINA. The Signal

represented the complexity of the fitting surface; if it was greater than

half of the observation stations, it indicated significant data errors or

the presence of data unsuitable for the surface model. In such cases, the

fitting process failed to find the optimal smoothing parameter, and

these issues were marked with a “*” symbol in the error statistics file.

In this study, the Generalized Cross Validation (GCV) method

provided by ANUSPLIN was used to validate the interpolation

results. The evaluation criteria were as follows: the closer the GCV,

Mean Squared Residual (MSR), Variance (VAR), Spline Root Mean

Squared Error (RTGCV), Spline Residual Root Mean Squared Error

(RTMSR), and Spline Variance (RTVAR) were to 0, and the closer

the RTGCV value was to the GCV value, RTMSR to MSR, and

RTVAR to VAR, the higher the fitting accuracy (Shen, 2012).

3.1.2 CK interpolation method
CK is an extension of ordinary Kriging. Unlike ordinary Kriging,

which uses only the spatial autocorrelation of the prediction points, CK

utilizes the relationships between the main variable and multiple

covariates. The expression can be found in reference (Yu et al., 2023).
3.2 Accuracy validation of interpolation
results

This study used cross-validation to evaluate the accuracy of the

interpolation methods (Liu et al., 2006). The accuracy of the two

interpolation methods is compared and analyzed using four

metrics: Mean Error (ME), Mean Squared Error (MSE), Root

Mean Square Error (RMSE), and Average Standard Error (ASE),

with calculation formulas provided in Xu et al. (2023a). The closer

the ME andMSE were to 0, the less biased the predicted values were.

When the RMSE is minimized (Tian et al., 2011), and the ASE

approaches the RMSE, the accuracy improves.
3.3 AGC estimation models and their
accuracy assessment

In this study, three machine learning regression models—

LightGBM, RFR, and XGBoost—were selected and compared for

AGC estimation.
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The principle of the LightGBM is detailed in references

(Schapire, 1990; Li et al., 2024). In the R 4.3.1 environment, the

“LightGBM” package was called via the RStudio interface, and a

grid search method was applied to optimize and determine the

optimal hyperparameter values. Among these parameters,

num_leaves (number of leaves), max_depth (maximum depth of

trees), and learning_rate (learning rate) were set to 20, 5, and

0.1, respectively.

For details on the principle of RFR, please refer to references

(Fan et al., 2018). RFR can evaluate variable importance using

metrics such as %IncMSE and IncNodePurity. %IncMSE measures

the increase in prediction error when a variable’s values are

permuted in Out-of-Bag (OOB) samples, reflecting its

contribution to model accuracy, while IncNodePurity sums the

reduction in node impurity attributed to each variable across all

trees. In this study, the “randomForest” package in RStudio was

used to build the RFR model, with importance = TRUE to obtain

variable importance. For regression, %IncMSE was adopted for

feature selection due to its reliability. The grid search method is

applied to optimize and determine the best hyperparameters,

including the number of features used for each node split (mtry)

and the number of decision trees (ntree), with optimized values of 9

and 200, respectively.

For details about the principles of XGBoost, please refer to

references (Jia et al., 2024). In RStudio, the “XGBoost” package is

used to implement this method. A grid search method is applied to

optimize and determine the best hyperparameter values, with three key

parameters: Nrounds (maximum depth of each tree), max_depth (tree

depth), and eta (learning rate or step size shrinkage). The optimized

values are set to 45, 3, and 0.1, respectively.

This study uses ten-fold cross-validation and evaluates the

fitting performance of the constructed regression models using

four accuracy metrics: Coefficient of Determination (R2), RMSE,

Overall Estimation Accuracy (P), and relative RMSE (rRMSE). The

calculation formulas can be found in Reference Qin et al. (2025).
4 Results

4.1 Feature variable selection

Based on the feature importance ranking from the RFR model

(Figure 4A), the feature variables were sorted in descending order

by %IncMSE, where a higher %IncMSE value indicated greater

variable importance. By gradually adding variables according to this

ranking, the RMSE reached its minimum (8.23 Mg/ha) when the

number of variables increased to nine (Figure 4B). Therefore, the

combination of the top nine variables was selected. Among them,

four were GEDI parameters, including cover (13.35%),

digital_elevation_model (9.88%), pai (11.54%), and sensitivity

(13.48%), while the remaining five were ICESat-2/ATLAS

p a r am e t e r s , i n c l u d i n g t o c _ r o u g h n e s s ( 1 0 . 8 0% ) ,

h_median_canopy_abs (11.22%), asr (14.53%), h_canopy_abs

(8.86%), and h_max_canopy_abs (8.80%). Table 1 presents the

meanings of the final selected variables.
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4.2 Generation and comparison of LiDAR
data surfaces

4.2.1 ANUSPLIN
As shown in Table 2, the three parameters of GEDI, namely

cover, pai, and sensitivity, and the four parameters of ICESat-2/

ATLAS, including toc_roughness, h_median_canopy_abs,

h_canopy_abs, and h_max_canopy_abs, yielded the highest

model accuracy when the number of spline functions was set to

4. This accuracy was significantly higher than that obtained with

spline numbers of 2 and 3. In contrast, for the GEDI parameter

digital_elevation_model and the ICESat-2/ATLAS parameter ASR,

the model achieved higher accuracy when the spline number was set

to 2 than when it was set to 3 or 4.

From Table 3, it can be seen that among the nine variables,

except for the digital_elevation_model variable, where the values of

the five evaluation indicators (GCV, MSR, VAR, RTGCV, RTMSR,

RTVAR) were relatively large, the evaluation indicators for the

other eight variables tended to 0. This indicated that ANUSPLIN

interpolation was suitable for the spatial expansion of spaceborne

LiDAR, and the experimental results were reliable.

4.2.2 CK
Select the interpolation model based on the optimal principle of

the semivariogram function (Qin et al., 2025), Table 4 shows the

f o l l ow ing : Fo r th e f ou r GEDI pa r ame t e r s— cov e r ,

digital_elevation_model, pai, and sensitivity—the optimal model

was the Gaussian model. For the five ICESat-2/ATLAS parameters

—toc_roughness, h_median_canopy_abs, asr, h_canopy_abs, and

h_max_canopy_abs—the optimal model was the Spherical model.

Among the nine parameters, only GEDI’s digital_elevation_model

and ICESat-2/ATLAS’s h_median_canopy_abs exhibited block

effects in the range of 25% - 75%, indicating moderate spatial

autocorrelation. The other seven parameters showed strong

spatial autocorrelation.
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4.2.3 Comparison of ANUSPLIN and CK
interpolation accuracy

From Table 5, it could be observed that, among the nine

parameters, ANUSPLIN interpolation showed better accuracy

than CK interpolation for al l parameters except for

digital_elevation_model, where the MSE and ASE were higher for

ANUSPLIN than for CK. For the other parameters, ANUSPLIN

outperformed CK in terms of accuracy.

The interpolation results from the two methods are presented

(Figures 5, 6). Compared with CK, ANUSPLIN produced smoother

surfaces and better preserved local details, reducing the striping

effect to some extent. This improvement may be due to the fact that

the empirical covariance function only approximates spatial

covariance variation, and the fitting process inevitably leads to

some loss of local detail. The resulting surface files were converted

to TIFF format using ArcGIS 10.5 for visualization (Figure 5), where

the details of the nine variables were clearly highlighted, displaying

distinct “mosaic” patterns. ANUSPLIN interpolation also

demonstrated strong natural smoothing, effectively capturing

terrain characteristics and clearly delineating mountainous

contours in areas of complex topography. In contrast, Figure 6

shows that panels (A), (D), (E), and (G) exhibit pronounced

striping effects, while panels (A–E, G) display mechanical

gradients characterized by uneven or bumpy patterns.
4.3 Regional-scale model estimation and
mapping results

The 9 GEDI and ICESat-2/ATLAS independent variables

selected using Random Forest feature importance, together with

data from 51 plots, were input into the LightGBM, RFR, and

XGBoost models. The evaluation metrics (R2, RMSE, P, rRMSE)

for the three models varied (Figure 7). The XGBoost model

(R2 = 0.93, RMSE = 5.89 Mg/ha, P = 85.84%, rRMSE = 14.16%)
FIGURE 4

Variable optimization: (A) Shows the feature importance ranking, (B) Shows the change of RMSE with the number of variables.
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outperformed the LightGBM (R2 = 0.52, RMSE = 14.61 Mg/ha,

P = 64.84%, rRMSE = 35.16%) and RFR (R2 = 0.90, RMSE = 8.23

Mg/ha, P = 79.79%, rRMSE = 20.21%), achieving relative

improvements of 78.85%, 59.67%, 32.36%, and 59.71% over

LightGBM, and 3.33%, 28.41%, 7.58%, and 29.94% over

RFR, respectively.

Based on the XGBoost model, the AGC distribution of

Dendrocalamus giganteus in Xinping County was mapped

(Figure 8). The average AGC for the 51 plots predicted by

XGBoost was 41.59 Mg/ha. Across Xinping County, the average

AGC was 40.62 Mg/ha, ranging from 15.70 to 81.96 Mg/ha, with a

total stock of 1.14 × 107 Mg. Spatially, most Dendrocalamus

giganteus was concentrated in the northwest of the county, with

fewer distributions in other areas. The species was mainly found at

elevations between 373 and 1755 m, with only a small proportion

occurring above 1755 m, consistent with field observations.
5 Discussion

5.1 The impact of different sensors on
bamboo forest AGC estimation

AGC prediction based on spectral data generally shows lower

accuracy than that using LiDAR data. This is likely because

multispectral data only provide horizontal information about the

canopy structure and cannot capture vertical structural

information. However, vertical structural parameters, such as tree

height and canopy height, are closely related to the AGC of the

forest (Su et al., 2023). For example, Li et al. (2018) estimated the

biomass of Phyllostachys edulis in Zhejiang Province using MODIS

time-series data and a random forest algorithm, with an R2 value of

0.53 for accuracy validation. Zhao (2016) used Landsat TM and

ALOS PALSAR data for bamboo forest biomass by developing
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different estimation models based on single and combined data

sources. Their study found that bamboo forests have relatively

lower biomass saturation compared to other forest types. When

the biomass exceeds 75 Mg/ha, remote sensing data tends to

saturate, and spectral reflectance no longer changes with biomass,

making it difficult to accurately estimate biomass beyond the

saturation point. This leads to lower model estimation accuracy

(Zhang et al., 2006).

LiDAR, on the other hand, can quickly acquire three-

dimensional spatial information, has strong penetration

capabilities, and can precisely monitor vertical canopy structure

parameters. It offers a significant advantage in forest parameter

inversion, biomass, and carbon stock estimation, leading to greatly

improved estimation accuracy (Korhonen et al., 2011; Peduzzi et al.,

2012). For instance, Cai (2016) developed bamboo biomass

estimation models using airborne high-resolution imagery and

airborne LiDAR data, and the LiDAR-based model achieved a

correlation coefficient of 0.8. However, the high cost of airborne

data acquisition limits its applicability to regional-scale studies. In

contrast, spaceborne LiDAR offers global coverage and lower

acquisition costs, making it a promising data source for future

bamboo biomass and carbon stock estimation. Compared with the

study by Yang et al. (2024a), which employed CK interpolation, the

estimation accuracies of the XGBoost and RFR models were

R2 = 0.90, RMSE = 7.62 Mg/ha, P = 81.66%, and R2 = 0.88,

RMSE = 9.06 Mg/ha, P = 78.20%, respectively. In this study, after

applying ANUSPLIN interpolation, the accuracies of the XGBoost

and RFR models were further improved to R2 = 0.93, RMSE = 5.89

Mg/ha, P = 85.84%, and R2 = 0.90, RMSE = 8.23 Mg/ha, P = 79.79%,

respectively. These results demonstrate that ANUSPLIN

interpolation can effectively enhance the spatial extrapolation of

spaceborne LiDAR data and improve model prediction accuracy to

some extent. This provides more robust technical support for

bamboo carbon stock monitoring and regional-scale forest carbon
TABLE 1 The optimal variables of GEDI and ICESat-2/ATLAS and their meanings.

Full waveform and photon
count data

Variable Description

GEDI

cover
Total canopy cover is the percentage of ground occupied by the vertical projection of canopy

elements.

digital_elevation_model
WGS84-referenced elevation, calculated from the TandemX 90m product and interpolated at the

specified latitude_bin0 and longitude_bin0.

pai
Total plant area index refers to the combined leaf and stem area per unit ground surface,

representing the density of vegetation over a given area.

sensitivity
The maximum proportion of the canopy that can be effectively sensed, taking into account the signal-

to-noise ratio (SNR) of the waveform.

ICESat-2/ATLAS

toc_roughness Standard deviation of canopy-top photon heights per segment.

h_median_canopy_abs Segment-level median of absolute canopy heights (WGS84).

asr
The proportion of incoming solar radiation that is reflected from the surface, as measured by remote

sensing instruments.

h_canopy_abs 98% of individual canopy heights referenced to WGS84 per segment.

h_max_canopy_abs Maximum canopy height above WGS84 per segment.
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sink assessment, contributing positively to the achievement of

carbon peaking and carbon neutrality goals in the forestry sector.
5.2 The impact of interpolation methods
on the effect of map visualization

Based on the ANUSPLIN interpolation method, space-borne

lidar was combined for the first time for spatial expansion. The

interpolation accuracy evaluation was consistent with the

conclusions obtained from other interpolation accuracy

verifications, indicating that the results of the article are reliable.

This is one of the innovations of this study. Liu et al. (2021) showed

that the ANUSPLIN method has significant advantages in
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precipitation interpolation, but the choice of DEM resolution can

affect interpolation accuracy. Their conclusion was that, for the

same region, different DEM resolutions rank as follows: 500 m

resolution ≥ 1 km resolution > 2 km resolution. Xiao et al. (2023)

found that, under simulations using three different DEM

resolutions, temperature interpolation accuracy followed the order

of 25 m > 90 m > 1 km. In this study, a 12.5 m DEM was used, and

to standardize the resolution, it was resampled to 25 m. This DEM

data is beneficial for improving ANUSPLIN interpolation accuracy.

Furthermore, the number of splines significantly impacts result

accuracy, and ANUSPLIN interpolation is highly dependent on

model selection (Xu et al., 2023b).

Through ANUSPLIN interpolation of satellite LiDAR data and

selection of the optimal model based on established principles, the
TABLE 2 Statistical characteristics of ANUSPLIN interpolation output for GEDI and ICESat-2/ATLAS data.

Full waveform and photon
count data

Variable
Spline
counts

Error Signal SNR
With or

without “*”

GEDI

cover

2 2258.5 97.5 0.043 NO

3 2258.5 97.5 0.043 NO

4 2266.8 89.2 0.039 NO

digital_elevation_model

2 2351.4 4.6 0.002 NO

3 2349 7.0 0.003 YES

4 2343.1 12.9 0.006 NO

pai

2 2018.5 337.5 0.167 NO

3 2106.7 249.3 0.118 NO

4 2251.4 104.6 0.046 NO

sensitivity

2 2042.1 313.9 0.154 NO

3 2092.9 263.1 0.126 NO

4 2104.8 251.2 0.119 NO

ICESat-2/ATLAS

toc_roughness

2 2301.1 127.9 0.056 NO

3 2329.0 100.0 0.043 NO

4 2337.1 91.9 0.039 NO

h_median_canopy_abs

2 1012.3 1416.7 1.399 NO

3 1596.5 832.5 0.521 NO

4 2329.5 99.5 0.043 NO

asr

2 1831.8 554.2 3.305 NO

3 2129.1 256.9 8.288 NO

4 2151.1 234.9 9.158 NO

h_canopy_abs

2 1033.6 1395.4 1.350 NO

3 1608.8 820.2 0.510 NO

4 2333.1 95.9 0.041 NO

h_max_canopy_abs

2 1035.1 1393.9 1.347 NO

3 1612.9 816.1 0.510 NO

4 2333.8 95.2 0.041 NO
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TABLE 3 Statistical analysis of generalized cross-validation.

Mean value of the fitted surface metrics Mean values of fitted surface metrics

TGCV RTMSR RTVAR

0.30 0.29 0.30

del 13.50 13.50 13.50

1.86 1.78 1.82

0.02 0.02 0.02

0.33 0.32 0.32

abs 0.39 0.38 0.38

0.07 0.05 0.06

0.385 0.370 0.377

s 0.384 0.369 0.377

t of GEDI and

Model a/m RSS R2

Gaussian 12817.18 715 0.82

Spherical 16100 777 0.81

Exponents 18900 1226 0.71

Gaussian 14895.64 2.81×1010 0.833

Spherical 18600 3.09×1010 0.833

Exponents 21600 5.06×1010 0.736

Gaussian 13683.2 2.86×104 0.765

Spherical 17000 3.13×104 0.763

Exponents 19200 4.64×104 0.659

Gaussian 16627.69 1.59 0.561

(Continued)
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Full waveform and photon
count data

Variable

GEDI

cover

digital_elevation_mo

pai

sensitivity

ICESat-2/ATLAS

toc_roughness

h_median_canopy_

asr

h_canopy_abs

h_max_canopy_ab

TABLE 4 Variogram models and comparison assessmen

Full waveform
and photon
count data

Variable

GEDI

cover

digital_elevation_model

pai

sensitivity
CV MSR VAR R

0.09 0.08 0.09

83.00 183.00 183.00

3.47 3.16 3.31

0.00 0.00 0.00

0.11 0.10 0.10

0.15 0.140 0.140

0.00 0.00 0.00

0.148 0.137 0.142

0.148 0.136 0.142

CESat-2/ATLAS factors.

C0 C0+C C0/C0+C

0.1 53.71 0.19

0.1 53.52 0.19

0.1 53.87 0.19

2000 354800 0.56

1000 353300 0.28

1000 355500 0.28

0.1 293 0.03

0.1 291.6 0.03

0.1 291.9 0.03

0.001 1.216 0.082
G

1

I
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TABLE 4 Continued

Full waveform
C0+C C0/C0+C a/m RSS R2

1.213 0.082 21200 1.63 0.565

1.203 0.083 22500 2.03 0.472

19.33 34.50 19572.17 78.50 0.726

19.46 25.90 25200 72.3 0.748

19.37 0.05 20700 74.4 0.740

775.5 13.28 24941.53 40386 0.94

776.8 1.93 30400 35443 0.95

804.3 0.12 37800 77303 0.90

-2.002 3.99 5022.95 14 0.072

-2 0.05 6300 14 0.075

-1.983 0.05 5700 14.5 0.048

772 13.21 24941.53 40326 0.945

773.2 1.93 30400 35402 0.952

800.6 0.12 37800 76975 0.904

771.4 13.22 24941.53 40312 0.945

772.6 1.94 30400 35386 0.952

800 0.12 37800 76905 0.904
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and photon
count data

Variable Model C0

Spherical 0.001

Exponents 0.001

ICESat-2/ATLAS

toc_roughness

Gaussian 6.67

Spherical 5.04

Exponents 0.01

h_median_canopy_abs

Gaussian 103

Spherical 15

Exponents 1

asr

Gaussian -0.08

Spherical -0.001

Exponents -0.001

h_canopy_abs

Gaussian 102

Spherical 15

Exponents 1

h_max_canopy_abs

Gaussian 102

Spherical 15

Exponents 1

https://doi.org/10.3389/fpls.2025.1676195
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1676195
TABLE 5 Cross-validation results for ANUSPLIN and CK.

Full waveform
and photon
count data

Variable
CK ANUSPLIN

ME RMSE MSE ASE ME RMSE MSE ASE

GEDI

cover 0.000 0.310 0.000 0.323 0.000 0.289 0.000 0.083

digital_elevation_model -0.205 108.932 -0.030 91.821 -0.123 13.892 192.975 192.975

pai -0.006 2.001 -0.001 1.899 0.000 1.656 0.000 1.743

sensitivity 0.000 0.0187 0.001 0.0134 0.000 0.016 0.000 0.000

ICESat-2/ATLAS

toc_roughness -0.023 0.359 -0.005 0.213 0.000 0.321 0.003 0.103

h_median_canopy_abs -0.007 0.448 -0.001 0.522 0.000 0.290 0.000 0.138

asr 0.001 0.079 0.009 0.055 0.000 0.070 0.005 0.005

h_canopy_abs 0.000 0.447 0.000 0.520 0.000 0.434 0.000 0.508

h_max_canopy_abs 0.000 0.446 0.000 0.520 0.000 0.290 0.000 0.139
F
rontiers in Plant Science
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FIGURE 5

ANUSPLIN interpolation results (A-D) GEDI parameters: (A) cover, (B) digital_elevation_model, (C) pai, (D) sensitivity. (E-I) ICESat-2/ATLAS
parameters: (E) toc_roughness, (F) h_median_canopy_abs, (G) asr, (H) h_canopy_abs, (I) h_max_canopy_abs.
ontiersin.org

https://doi.org/10.3389/fpls.2025.1676195
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1676195
FIGURE 6

CK interpolation results (A-D) GEDI parameters: (A) cover, (B) digital_elevation_model, (C) pai, (D) sensitivity; (E-I) ICESat-2/ATLAS parameters:
(E) toc_roughness, (F) h_median_canopy_abs, (G) asr, (H) h_canopy_abs, (I) h_max_canopy_abs.
FIGURE 7

Scatter plots of Dendrocalamus giganteus AGC models (A) LightGBM, (B) RFR, (C) XGBoost.
Frontiers in Plant Science frontiersin.org14

https://doi.org/10.3389/fpls.2025.1676195
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1676195
results, verified by cross-validation (Table 5), show that this method

outperforms geostatistical interpolation methods (Yu et al., 2023;

Xu et al., 2023a). From a visual perspective, ANUSPLIN results are

superior to those of CK, likely due to CK’s use of neighboring

known points combined with semivariance analysis to build a

statistical model, which is susceptible to statistical patterns and is

prone to creating striping effects, especially in areas with many spots

and high spatial heterogeneity. ANUSPLIN, on the other hand, fits a

curved surface that minimizes curvature using control points

(Bookstein, 1989), yielding a smoother overall result. Compared

to CK, ANUSPLIN interpolation maintains accuracy, smoothness,

and detail in the interpolation surface. It is also more efficient and

requires fewer manual parameter adjustments, thus reducing

uncertainty in the interpolation process. This conclusion can offer

useful insights for LiDAR data interpolation applications. However,

this study only considered elevation data as a covariate, while other

terrain factors, such as aspect and slope, also significantly affect

interpolation results. Future studies will consider incorporating

multiple covariates into the ANUSPLIN interpolation method,

providing a more meaningful reference for optimizing LiDAR

interpolation accuracy. Additionally, this study focused only on

Dendrocalamus giganteus because it is widely distributed in Xinping

County. However, Yunnan Province has diverse vegetation types, so

future research should explore the applicability of ANUSPLIN

interpolation using LiDAR data for other vegetation types.
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5.3 The impact of different spot densities
of satellite LiDAR on interpolation

In model development, sample size affects the accuracy of the

model. Generally, the larger the sample size, the better the model’s

reliability, though too large a sample size can waste resources (Shu

et al., 2022). Shu et al. (2022) suggested that to reduce human effort

and time, optimal sample sizes need to be explored. This issue also

applies to satellite LiDAR spot densities: the more spots there are,

the longer the interpolation takes, and the more prominent the

striping effect becomes. This is because the satellite LiDAR footprint

points are evenly distributed along the orbit. Before interpolating

spot data, GEDI data undergo quality screening according to a

selection criterion, filtering out low-quality spots from the same or

adjacent strips to enhance the spatial randomness of the footprint

points (Xu et al., 2023a). When extracting ICESat-2/ATLAS

parameters, the effective number of photon point clouds after

denoising and classification algorithms on the raw ATL03 data

reached tens of thousands (Bookstein, 1989). However, even after

preprocessing, the remaining spots from both GEDI and ICESat-2/

ATLAS still do not meet the spatial randomness requirement. Some

researchers have carried out point thinning before interpolation to

alleviate the striping effect (Yu et al., 2023), without affecting

accuracy. This further suggests that future studies could explore

the optimal number of spot points for interpolation. Zhu et al.
FIGURE 8

AGC distribution map of Dendrocalamus giganteus in Xinping.
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(2020) discussed the interpolation accuracy of three algorithms

(PRISM, CK, and IDW) at different station densities. They

concluded that errors increase as the sample size decreases.

Regarding interpolation mapping, when the sample size is small,

CK interpolation performs relatively better and results in smoother

maps. This may be because the distance between the sample and

grid points increases, corresponding to the smoother parts of the

empirical semivariance function. Therefore, future research could

explore the impact of spot density on interpolation, seeking the

optimal number of spots to reduce the workload.
5.4 The impact of variable selection on
model accuracy

Variable selection is a prerequisite for model development. The

choice of modeling variables directly influences the predictive

performance of the inversion model. By selecting relevant variables,

non-contributory ones can be eliminated, reducing data dimensions,

simplifying the model, and enhancing both model accuracy and

generalization ability (Luo et al., 2022). When estimating forest

structural parameters, different variable selection methods lead to

variations in model prediction accuracy, depending on the data

combinations, thus affecting the estimation results (Zhang et al.,

2022b). For instance, Zhou et al. (2024) employed three methods—

Pearson correlation, Recursive Feature Elimination (RFE) using RFR,

and Support Vector Machines (SVM-RFE)—to select optimal feature

variables for remote sensing models. Their study showed significant

differences in the accuracy of remote sensingmodels constructed with

different feature selection methods. Models built with parameters

selected by SVM-RFE and RFR demonstrated better precision. Due to

the complex relationship between the AGC of Dendrocalamus

giganteus and satellite LiDAR parameters, variable selection

becomes crucial. This study employed the Random Forest feature

importance method for variable selection, ensuring that more

explanatory and influential variables were prioritized (Zhou et al.,

2024). Through this feature importance ranking, variables were

progressively added to the model. When the number of variables

reached nine, the RMSE was minimized (RMSE = 8.23 Mg/ha).

Future research can explore additional methods, such as SVM-RFE,

Boruta, and KNN-FIFS, for feature selection, aiming to identify even

more optimal parameters for improving the predictive accuracy of

satellite LiDAR estimation models.
5.5 Prospects for future research

A methodological highlight of this study is the first application

of the ANUSPLIN interpolation method for spatial extrapolation of

spaceborne LiDAR data, demonstrating its superiority over the

conventional geostatistical CK method. In addition, an XGBoost-
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based model was developed to estimate AGC in bamboo forests

with higher accuracy. The results have important implications for

bamboo carbon stock monitoring, forest resource surveys, and

regional carbon sink assessment. Nevertheless, this study has

some limitations, such as the incomplete consideration of

covariates, the focus on a single species (Dendrocalamus

giganteus), and a limited number of sample plots. Future research

could incorporate additional topographic and environmental

factors, increase the number of sample plots and LiDAR

footprints, and validate the method across different forest types

and larger regions, thereby providing more reliable technical

support for forest carbon stock estimation and carbon

neutrality targets.
6 Conclusion

This study systematically explored spatial interpolation methods

using GEDI and ICESat-2/ATLAS data and evaluated their

performance in estimating the AGC of Dendrocalamus giganteus.

The results showed that ANUSPLIN outperformed CK interpolation.

When nine key variables were selected based on random forest feature

importance (GEDI: cover, digital_elevation_model, pai, sensitivity;

ICESat-2/ATLAS: toc_roughness, h_median_canopy_abs, asr,

h_canopy_abs, h_max_canopy_abs), the RMSE was reduced to 8.23

Mg/ha. Among the machine learning models, XGBoost performed

best with these variables (R2 = 0.93, RMSE = 5.89 Mg/ha, P = 85.84%,

rRMSE = 14.16%), predicting an average AGC of 40.62 Mg/ha for

Dendrocalamus giganteus and a total AGC of 1.14 × 107 Mg in

Xinping County. This study demonstrates that the framework

integrating ANUSPLIN with spaceborne LiDAR has strong

potential for large-scale forest carbon stock monitoring and provides

valuable references for climate change research.
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