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GEDI and ICESat-2/ATLAS have significant limitations in estimating forest
structure parameters. This study aims to enhance the estimation accuracy of
above-ground carbon storage (AGC) of Dendrocalamus giganteus by applying
the ANUSPLIN interpolation technique for spatial expansion. The results indicate
that: (1) When the spline degree of ANUSPLIN interpolation was set to 4 for GEDI
parameters (cover, pai, sensitivity) and ICESat-2/ATLAS parameters
(toc_roughness, h_median_canopy_abs, h_canopy_abs, h_max_canopy_abs),
the model's accuracy was highest. The spline degree 2 for the
digital_elevation_model parameter (GEDI) and the asr parameter (ICESat-2/
ATLAS) yielded optimal results. (2) The interpolation accuracy and performance
of ANUSPLIN outperformed that of co-kriging (CK). (3) The Extreme Gradient
Boosting (XGBoost) model (Coefficient of Determination, R? = 0.93; Root Mean
Square Error, RMSE = 5.89 Mg/ha; Overall Estimation Accuracy, P = 85.84%;
relative RMSE, rRMSE = 14.16%) outperformed the Light Gradient Boosting
Machine (LightGBM) (R = 0.52, RMSE = 14.61 Mg/ha, P = 64.84%, rRMSE =
35.16%) and Random Forest Regression (RFR) (R = 0.90, RMSE = 8.23 Mg/ha,
P = 79.79%, rRMSE = 20.21%), achieving relative improvements of 78.85%,
59.67%, 32.36%, and 59.71% over LightGBM, and 3.33%, 28.41%, 7.58%, and
29.94% over RFR, respectively. This study demonstrates the feasibility of using
ANUSPLIN interpolation for satellite LIDAR data from GEDI and ICESat-2/ATLAS.
The approach offers a new perspective on spatial interpolation of satellite LiDAR
data at a regional scale, providing a valuable reference for cost-effective, high-
precision estimation of forest structural parameters.
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1 Introduction

Above-ground carbon storage (AGC) is one of the most
fundamental quantitative characteristics of forest ecosystems,
reflecting the complex relationships between material cycling, energy
flow, and the interaction between plants and the environment (Sun and
Liu, 2019). Bamboo forests, recognized as the “second-largest forest in
the world,” are important components of forest ecosystems. As
perennial grasses from the subfamily Bambusoideae, their carbon
storage accounts for approximately 0.94% of global forest carbon
storage (Zhang et al,, 2024b). Known as the “Kingdom of Bamboo”
(Li et al,, 2015; Zhang et al., 2024b), China holds significant bamboo
forest resources, with carbon storage of 2.10 x 10° Mg in 2021,
accounting for 1.96% of total forest carbon storage. The bamboo
forest area spans 7.5627 x 10° ha, representing 3.31% of the national
forest area. Compared to the results of the 9th National Forest
Resources Survey, the bamboo forest area increased by 17.95% (Feng
and Li, 2023). Moreover, studies indicate that while global forest areas
have been steadily decreasing, bamboo forest areas have been
expanding (Li et al, 2006), suggesting the importance of accurately
estimating the AGC of bamboo forests at a regional scale. Such
estimates are crucial for understanding global climate change
mechanisms, formulating carbon emission policies, and mitigating
global warming.

Traditional methods for estimating forest AGC primarily rely
on field surveys, which require extensive time and effort,
particularly in complex forest structures and regions with variable
environmental conditions. These methods struggle to meet the
demand for rapid and large-scale forest AGC distribution data
(Shu et al., 2022). The advent and development of remote sensing
technologies have provided a fast and efficient means of monitoring
forest carbon storage (Liu et al, 2024). Current remote sensing
studies of bamboo forest biomass and carbon storage mostly use
passive optical remote sensing data, but bamboo forests are
characterized by high growth density and interwoven branches
and stems, making it challenging to estimate AGC storage
accurately using optical remote sensing. Research has shown that
the estimation accuracy of bamboo biomass using traditional
optical remote sensing techniques is relatively low. For instance,
Du et al. (2010) estimated Phyllostachys edulis above-ground
biomass (AGB) based on Landsat TM data, finding a maximum
correlation coefficient of 0.48 between AGB and vegetation indices.
Chen et al. (2018) used Sentinel-2 data and Random Forest
Regression to estimate AGB in bamboo forests of Zhejiang
Province, with an R? of 0.46. Yang et al. (2024b) demonstrated
that airborne Light Detection and Ranging (LiDAR), based on
active remote sensing technology, can improve estimation
accuracy, achieving an R* of 0.64. Zhang et al. (2024a) integrated
unmanned aerial vehicles (UAV) LiDAR with Sentinel-2 data,
achieving an R” of 0.89, though airborne LiDAR is expensive and
not suitable for large-scale bamboo forest carbon storage
estimation. Yang et al. (2024a) used satellite LIDAR data from
Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud,
and land Elevation Satellite-2/Advanced Terrain Laser Altimeter
System (ICESat-2/ATLAS) to estimate bamboo forest AGC at a
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regional scale, achieving low-cost, high-precision inversion.
However, satellite LiDAR provides discrete sampling, which
cannot offer full coverage of data, necessitating the use of
extrapolation methods. In this context, spatial interpolation,
which is an effective way to obtain continuous spatial distribution
information, has been widely applied in satellite LiDAR data
processing (Yu et al., 2023).

Currently, geostatistical methods such as co-kriging (CK) (Yu et al,,
2023) and sequential Gaussian simulation (Luo et al., 2024) have been
widely used for spatial interpolation of satellite LIDAR data. However,
the use of the ANUSPLIN method for spatial interpolation of satellite
LiDAR data is relatively scarce. The effectiveness of interpolation
methods is influenced by the study area, and there is no unified
standard for selecting an interpolation method. Even the same
interpolation technique applied to different regions may yield varying
results. Numerous factors affect interpolation accuracy, and selecting
the most suitable interpolation method for a given dataset remains a
key challenge in current research (Pan, 2021).

ANUSPLIN, based on thin-plate spline theory, was originally
developed for interpolating meteorological data (Xu and
Hutchinson, 2013). It can incorporate elevation data as a
covariate in spatial interpolation. Unlike geostatistical
interpolation methods, which require prior calibration of
semivariogram parameters, ANUSPLIN is simpler as it does not
require such calibration and provides higher interpolation accuracy
(Guo et al,, 2020). Comparative studies in temperature and
precipitation research have shown that ANUSPLIN outperforms
other interpolation methods such as ordinary kriging and inverse
distance weighting, especially when elevation is used as a covariate
in areas with complex terrain (Liu et al., 2012; Peng et al., 2024).

This study focuses on Xinping County in Yunnan Province,
where Dendrocalamus giganteus is widely distributed, and uses GEDI
and ICESat-2/ATLAS satellite LiDAR data as the primary
information sources, with elevation data as an auxiliary input. The
ANUSPLIN software was employed to perform spatial interpolation
of GEDI and ICESat-2/ATLAS parameters, enabling spatial
extrapolation. The results were compared with those of CK
interpolation in terms of accuracy and performance. Additionally,
machine learning models, including Light Gradient Boosting
Machine (LightGBM), Random Forest Regression (RFR), and
Extreme Gradient Boosting (XGBoost), were used to develop the
optimal AGC estimation model for Dendrocalamus giganteus. The
study evaluated the effectiveness and feasibility of using ANUSPLIN
interpolation for GEDI and ICESat-2/ATLAS data, offering valuable
insights into the sustainable development of bamboo forests in China.

The specific research questions of this study are: 1) Can
ANUSPLIN interpolation significantly improve the spatial
extrapolation of spaceborne LiDAR parameters? 2) Are there
significant differences in accuracy and visualization performance
between ANUSPLIN interpolation and CK? 3) After data expansion
using ANUSPLIN interpolation, can machine learning models achieve
higher prediction accuracy of Dendrocalamus giganteus AGC?

Based on these research questions, we propose the following
hypotheses: 1) ANUSPLIN interpolation performs better than CK.
2) The input parameters after ANUSPLIN interpolation can
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FIGURE 1

Geographic location map: (A) Location of Yunnan Province in China; (B) Location of Xinping County in Yunnan Province; (C) Xinping.

significantly improve the accuracy of AGC models. 3) The XGBoost
model outperforms the LightGBM and RFR models in
AGC prediction.

The objectives of this study are to propose and validate the
applicability of ANUSPLIN interpolation for spaceborne LiDAR
data and to evaluate its potential for regional-scale estimation of
Dendrocalamus giganteus AGC.

2 Materials and methods

2.1 Study area

Xinping County (Qin et al.,, 2025) (Figure 1) is located on the
eastern slope of the central Ailao Mountains in southwestern China,
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with terrain that is higher in the northwest and lower in the
southeast. The county lies in a transitional zone with complex
topography and fertile soils. Elevation ranges from low valleys to
middle mountains, creating diverse habitats. The climate is
subtropical to temperate, with a mean annual temperature of
about 18 °C, mean annual precipitation of 869 mm, annual
sunshine of 2839 h, and a frost-free period of approximately 316
days. Forest land covers 23520.1 ha, accounting for 55.8% of the
county’s area, with a forest coverage rate of 70.99%. Vegetation
resources are highly diverse, comprising 1402 species of higher
plants from 219 families and 762 genera. Bamboo forests occupy
2417.75 ha across 12 townships (about 10% of the forest area), with
more than 20 genera represented; among them, Dendrocalamus
giganteus is dominant, widely distributed between 450 and 1800 m
elevation. With the implementation of national ecological and land-
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use policies, the bamboo industry in Xinping has expanded rapidly
and become an important driver of local economic development.
Against this background, estimating the carbon storage and
biomass of Dendrocalamus giganteus provides essential data for
forestry production and land-use planning, while supporting
sustainable development and China’s goals of achieving carbon
peak and carbon neutrality.

2.2 Measurement of Dendrocalamus
giganteus AGC

In Xinping County, Yuxi City, mosquitoes begin to appear in
March-April as temperatures gradually rise. From May to
November, mosquitoes are more active and abundant, whereas
from December to February of the following year, low winter
temperatures reduce mosquito activity, and the weather is
generally clear. Therefore, the field survey was conducted in
January 2024. During the survey, following the principles of
representativeness and accessibility, 80 Dendrocalamus giganteus
plots were preselected based on sub-compartment attribute data to
cover different elevations and slopes. Upon arrival in the study area,
circular sample plots were established within each preselected sub-
compartment according to plant density, growth status, and health,
ensuring that each plot included Dendrocalamus giganteus of
different age classes. Based on the principle of sufficient
representativeness and the requirement for a large sample size
(approximately 30 plots are considered small, while around 50
plots are regarded as large) (Shu et al., 2022), a total of 51 circular
sample plots (radius = 12.5 m, area = 490.63 m?>) were
established (Figure 1).

The center coordinates of each plot were determined using the
Qianxun StarMatrix SR3 (Pro version), and data were collected while
ensuring the device was in fixed solution mode. In each plot, the
diameter at breast height (DBH), geographic position, and plant
count were systematically recorded. The estimation of AGC followed
three sequential steps: 1) determining the AGB of a representative
mean tree; 2) converting the individual AGB to AGC using a carbon
content coefficient; 3) calculating plot-level AGC by scaling the
individual AGC to the total number of plants within the plot. The
corresponding formulas are shown in Equations 1-4:

The AGB model of Dendrocalamus giganteus was as follows
(Wang et al., 2021):

Bamboo stalk biomass.

w = 0.145DBH>**1%7 (1)

Bamboo biomass.

w = 0.0224DBH?*>%8¢ )

Bamboo leaf biomass.

w = 0.0196DBH""7 (3)

The AGC calculation formula of Dendrocalamus giganteus was
as follows:
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C,=Wxf. (4)

where C; is Dendrocalamus giganteus AGC, f, is the carbon
coefficient, and the carbon coefficient is 0.45 for bamboo rod, 0.45
for bamboo branch, and 0.43 for bamboo leaf (Teng, 2017).

In these 51 plots, the minimum, maximum, mean, and standard
deviation of Dendrocalamus giganteus AGC were 4.08 Mg/ha,
101.78 Mg/ha, 41.63 Mg/ha, and 20.55 Mg/ha, respectively, with
the calculation procedure following Yang et al. (2024a).

2.3 Full waveform data

The GEDI is the first full-waveform spaceborne LiDAR system
aboard the International Space Station. It is an active remote
sensing technology capable of collecting large-scale data. Using
short-wavelength laser pulses, GEDI penetrates the forest canopy to
obtain precise three-dimensional forest structure information
(Dubayah et al,, 2020). Its sampling range extends from 51.6°N to
51.6°S, enabling the inversion of forest structure parameters in all
regions except high-latitude areas (Wang et al., 2024). This study
utilized the GEDI L2B data product, which is available for download
from the official website (https://www.carthdata.nasa.gov). The data
used in this study covered the study area from January 2022 to
February 2023 and included all accessible swath data. The data is
stored in HDF5 format with a spatial resolution of 25 m and
consists of discrete laser footprints.

There were a total of 57,217 laser footprint samples in the study
area. To ensure uniform and random distribution, systematic
sampling was conducted on these footprints (sampling interval:
24). As a result, 2,384 GEDI laser footprint samples were selected as
preset samples for spatial analysis (Figure 2).

2.4 Photon counting

ICESat-2 data products are currently classified into four levels
(ATL00-ATL22), with 21 different products. This study primarily
uses ATL03 and ATLO8 data products. The ATLO8 product is
derived from ATLO3 data using the DDBSCAN (Density-Based
Spatial Clustering of Applications with Noise) and KNNB (K-
Nearest Neighbor-based) local statistical algorithms, followed by
an improved PTD (Progressive Triangulated Irregular Network
Densification) classification method. It provides various
parameters related to vegetation canopy and terrain (Qin et al,
2024). A comprehensive description of the ICESat-2/ATLAS data
products can be accessed on the official website (https://
www.earthdata.nasa.gov). This study obtained all available ATLO03
and ATLO8 data products covering the study area from January
2022 to August 2023.

In the study area, a total of 21,080 laser footprint samples were
collected. To ensure uniform and random distribution, systematic
sampling was performed on these footprints (sampling interval: 9).
As a result, 2,342 ICESat-2/ATLAS laser footprint samples were
selected as preset samples for spatial analysis (Figure 2).
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Information source map: (A) Localized magnification of GEDI light spots, (B) Localized magnification of ICESat-2/ATLAS light spots.

2.5 Auxiliary data

The digital elevation model (DEM) used in this study is the
ALOS PALSAR Radiometrically Terrain Corrected (RTC) 12.5 m
DEM, obtained from the Alaska Satellite Facility Distributed Active
Archive Center (ASF DAAC) via NASA Earthdata Search (https://
search.earthdata.nasa.gov/search) (Figure 2). The DEM data were
resampled to a spatial resolution of 25 m using the Resample tool in
ArcMap 10.5 with the bilinear method, in order to match the
footprint and plot area.

3 Research methods

This study employed ANUSPLIN software to interpolate
spaceborne LiDAR GEDI and ICESat-2/ATLAS footprint data
and compared its performance with CK. A remote sensing
estimation model was then constructed to estimate the AGC of
Dendrocalamus giganteus based on the optimal model (Figure 3).

3.1 Generation of LiDAR data surface

3.1.1 ANUSPLIN interpolation method

ANUSPLIN is based on the interpolation theory of ordinary
thin-plate splines and local thin-plate splines, initially developed by
Australian scholars such as Hutchinson. The principle of
ANUSPLIN is to use smooth spline functions to interpolate
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multivariate data, ensuring both the smoothness and accuracy of
the interpolation surface (Peng et al., 2024). Local thin-plate
smoothing spline interpolation, as an advancement over the
traditional thin-plate smoothing spline, not only permits the
inclusion of independent variables but also enables the
incorporation of covariates such as elevation. The relevant
calculations for the ANUSPLIN interpolation method are shown
in Equations 5-12.

Z; :f(.xi)"'bT i+ei,(i: 1,...,N) (5)

Note: z; is the value of the dependent variable at the i -th point
in space, x; is the d-dimensional spline independent variable, the
function f(x;) is a smooth function that estimates x;, y; is the p-
dimensional independent covariate, its coefficient is b, and ¢; is the
random error of the independent variable with a mean equal
to zero.

The function f and the coefficient b are calculated by least
squares estimation:

N 7 —f(x) = bly.
E[Zz f(iz/) b )’t}z +P]m(f) (6)
i=1 i

Note: w; is the known local relative coefficient of variation of the
weight; J,,(f) is the roughness measure function of function f(x;),
defined as the partial derivative of f (called spline degree, also called
roughness degree); p is a positive smoothness parameter that
balances data fidelity and surface roughness. In AUNSPLIN, it is
usually determined by minimizing generalized cross-validation
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GCV and minimizing maximum likelihood GML (Cuervo-Robayo
et al., 2014).
The fitted function value vector Z is expressed as:

Z = Az (7)

In Equation 7, A is the influence matrix of size NxN. The
degrees of freedom for the fitted spline, based on linear regression
principles, are given by:

SIGNAL = trace(A) (8)

The degrees of freedom for the weighted residual sum of squares

is:
ERROR = trace(I — A) = N — trace(A) 9)

The weighted mean squared residual is:

MSR = W 021 (10)
In Equation 10, W is a diagonal matrix:
W = diag(wy, -+, wy) (11)

The total degrees of freedom on each surface and the error
degrees of freedom sum to N (the total number of spot points). The
GCV calculates the value of each smoothing parameter p by leaving
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out one data point at a time and fitting the surface using the
remaining points under a fixed smoothing parameter, then
calculating the weighted sum of squares of the residuals between
the observed and estimated values. This is the GCV (Hutchinson
and Xu, 2004).

GCV = W=z’ /N

[tr(I-A)/N]? (12)

The specific steps are as follows:(1) Import the interpolation
data (xIs file) into SPSS and export the data batch file. (2) Place the
data file into the ANUSPLIN plugin folder and modify the spline
degree, independent, and covariate parameters in the sp.txt file
based on the model. (3) Run run.cmd to perform ANUSPLIN
interpolation. (4) Convert the generated “grd” file format, process
outliers, and perform other operations to obtain the final result.

ANUSPLIN allows for multiple combinations of independent
variables, covariates, and spline degrees, resulting in 18 different
models (Zhang et al., 2022a). This study used the optimal spatial
interpolation model for satellite lidar interpolation with GEDI and
ICE-Sat-2/ATLAS parameters as independent variables and
elevation as the covariate, setting the spline degree to 2, 3, and 4.

Based on the raw data and the ANUSPLIN user guide, batch
command files for running the SPLINA and LAPGRD program
modules of ANUSPLIN were written. The SPLINA program module
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was responsible for generating the coefficients of the surface fitting
results and the error statistics file. The LAPGRD program module used
the surface coefficient file generated by the SPLINA program module to
obtain the interpolation surface. ANUSPLIN provided a range of
statistical parameters in the log file, which were used to diagnose
error sources and evaluate the interpolation quality. These included the
effective number of fitting surface parameters, signal degrees of freedom
(Signal), residual degrees of freedom (Error), and signal-to-noise ratio
(SNR) (Zhang and Luo, 2011).

Criteria for selecting the best model (Li et al., 2019): Based on
generalized cross-validation or the maximum likelihood method, the
SNR should have been minimized. The Signal should have been less
than half of the number of observation sites, and no “*” symbol should
have appeared in the error file generated by SPLINA. The Signal
represented the complexity of the fitting surface; if it was greater than
half of the observation stations, it indicated significant data errors or
the presence of data unsuitable for the surface model. In such cases, the
fitting process failed to find the optimal smoothing parameter, and
these issues were marked with a “*” symbol in the error statistics file.

In this study, the Generalized Cross Validation (GCV) method
provided by ANUSPLIN was used to validate the interpolation
results. The evaluation criteria were as follows: the closer the GCV,
Mean Squared Residual (MSR), Variance (VAR), Spline Root Mean
Squared Error (RTGCV), Spline Residual Root Mean Squared Error
(RTMSR), and Spline Variance (RTVAR) were to 0, and the closer
the RTGCV value was to the GCV value, RTMSR to MSR, and
RTVAR to VAR, the higher the fitting accuracy (Shen, 2012).

3.1.2 CK interpolation method

CK is an extension of ordinary Kriging. Unlike ordinary Kriging,
which uses only the spatial autocorrelation of the prediction points, CK
utilizes the relationships between the main variable and multiple
covariates. The expression can be found in reference (Yu et al.,, 2023).

3.2 Accuracy validation of interpolation
results

This study used cross-validation to evaluate the accuracy of the
interpolation methods (Liu et al., 2006). The accuracy of the two
interpolation methods is compared and analyzed using four
metrics: Mean Error (ME), Mean Squared Error (MSE), Root
Mean Square Error (RMSE), and Average Standard Error (ASE),
with calculation formulas provided in Xu et al. (2023a). The closer
the ME and MSE were to 0, the less biased the predicted values were.
When the RMSE is minimized (Tian et al, 2011), and the ASE
approaches the RMSE, the accuracy improves.

3.3 AGC estimation models and their
accuracy assessment

In this study, three machine learning regression models—

LightGBM, RFR, and XGBoost—were selected and compared for
AGC estimation.
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The principle of the LightGBM is detailed in references
(Schapire, 19905 Li et al., 2024). In the R 4.3.1 environment, the
“LightGBM” package was called via the RStudio interface, and a
grid search method was applied to optimize and determine the
optimal hyperparameter values. Among these parameters,
num_leaves (number of leaves), max_depth (maximum depth of
trees), and learning rate (learning rate) were set to 20, 5, and
0.1, respectively.

For details on the principle of RFR, please refer to references
(Fan et al,, 2018). RFR can evaluate variable importance using
metrics such as %IncMSE and IncNodePurity. %IncMSE measures
the increase in prediction error when a variable’s values are
permuted in Out-of-Bag (OOB) samples, reflecting its
contribution to model accuracy, while IncNodePurity sums the
reduction in node impurity attributed to each variable across all
trees. In this study, the “randomForest” package in RStudio was
used to build the RFR model, with importance = TRUE to obtain
variable importance. For regression, %IncMSE was adopted for
feature selection due to its reliability. The grid search method is
applied to optimize and determine the best hyperparameters,
including the number of features used for each node split (mtry)
and the number of decision trees (ntree), with optimized values of 9
and 200, respectively.

For details about the principles of XGBoost, please refer to
references (Jia et al, 2024). In RStudio, the “XGBoost” package is
used to implement this method. A grid search method is applied to
optimize and determine the best hyperparameter values, with three key
parameters: Nrounds (maximum depth of each tree), max_depth (tree
depth), and eta (learning rate or step size shrinkage). The optimized
values are set to 45, 3, and 0.1, respectively.

This study uses ten-fold cross-validation and evaluates the
fitting performance of the constructed regression models using
four accuracy metrics: Coefficient of Determination (R*), RMSE,
Overall Estimation Accuracy (P), and relative RMSE (rRMSE). The
calculation formulas can be found in Reference Qin et al. (2025).

4 Results
4.1 Feature variable selection

Based on the feature importance ranking from the RFR model
(Figure 4A), the feature variables were sorted in descending order
by %IncMSE, where a higher %IncMSE value indicated greater
variable importance. By gradually adding variables according to this
ranking, the RMSE reached its minimum (8.23 Mg/ha) when the
number of variables increased to nine (Figure 4B). Therefore, the
combination of the top nine variables was selected. Among them,
four were GEDI parameters, including cover (13.35%),
digital_elevation_model (9.88%), pai (11.54%), and sensitivity
(13.48%), while the remaining five were ICESat-2/ATLAS
parameters, including toc_roughness (10.80%),
h_median_canopy_abs (11.22%), asr (14.53%), h_canopy_abs
(8.86%), and h_max_canopy_abs (8.80%). Table 1 presents the
meanings of the final selected variables.
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Variable optimization: (A) Shows the feature importance ranking, (B) Shows the change of RMSE with the number of variables.

4.2 Generation and comparison of LiDAR
data surfaces

4.2.1 ANUSPLIN

As shown in Table 2, the three parameters of GEDI, namely
cover, pai, and sensitivity, and the four parameters of ICESat-2/
ATLAS, including toc_roughness, h_median_canopy_abs,
h_canopy_abs, and h_max_canopy_abs, yielded the highest
model accuracy when the number of spline functions was set to
4. This accuracy was significantly higher than that obtained with
spline numbers of 2 and 3. In contrast, for the GEDI parameter
digital_elevation_model and the ICESat-2/ATLAS parameter ASR,
the model achieved higher accuracy when the spline number was set
to 2 than when it was set to 3 or 4.

From Table 3, it can be seen that among the nine variables,
except for the digital_elevation_model variable, where the values of
the five evaluation indicators (GCV, MSR, VAR, RTGCV, RTMSR,
RTVAR) were relatively large, the evaluation indicators for the
other eight variables tended to 0. This indicated that ANUSPLIN
interpolation was suitable for the spatial expansion of spaceborne
LiDAR, and the experimental results were reliable.

4.2.2 CK

Select the interpolation model based on the optimal principle of
the semivariogram function (Qin et al., 2025), Table 4 shows the
following: For the four GEDI parameters—cover,
digital_elevation_model, pai, and sensitivity—the optimal model
was the Gaussian model. For the five ICESat-2/ATLAS parameters
—toc_roughness, h_median_canopy_abs, asr, h_canopy_abs, and
h_max_canopy_abs—the optimal model was the Spherical model.
Among the nine parameters, only GEDI’s digital_elevation_model
and ICESat-2/ATLAS’s h_median_canopy_abs exhibited block
effects in the range of 25% - 75%, indicating moderate spatial
autocorrelation. The other seven parameters showed strong
spatial autocorrelation.
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4.2.3 Comparison of ANUSPLIN and CK
interpolation accuracy

From Table 5, it could be observed that, among the nine
parameters, ANUSPLIN interpolation showed better accuracy
than CK interpolation for all parameters except for
digital_elevation_model, where the MSE and ASE were higher for
ANUSPLIN than for CK. For the other parameters, ANUSPLIN
outperformed CK in terms of accuracy.

The interpolation results from the two methods are presented
(Figures 5, 6). Compared with CK, ANUSPLIN produced smoother
surfaces and better preserved local details, reducing the striping
effect to some extent. This improvement may be due to the fact that
the empirical covariance function only approximates spatial
covariance variation, and the fitting process inevitably leads to
some loss of local detail. The resulting surface files were converted
to TIFF format using ArcGIS 10.5 for visualization (Figure 5), where
the details of the nine variables were clearly highlighted, displaying
distinct “mosaic” patterns. ANUSPLIN interpolation also
demonstrated strong natural smoothing, effectively capturing
terrain characteristics and clearly delineating mountainous
contours in areas of complex topography. In contrast, Figure 6
shows that panels (A), (D), (E), and (G) exhibit pronounced
striping effects, while panels (A-E, G) display mechanical
gradients characterized by uneven or bumpy patterns.

4.3 Regional-scale model estimation and
mapping results

The 9 GEDI and ICESat-2/ATLAS independent variables
selected using Random Forest feature importance, together with
data from 51 plots, were input into the LightGBM, RFR, and
XGBoost models. The evaluation metrics (RZ, RMSE, P, rRMSE)
for the three models varied (Figure 7). The XGBoost model
(R? = 0.93, RMSE = 5.89 Mg/ha, P = 85.84%, rRMSE = 14.16%)
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TABLE 1 The optimal variables of GEDI and ICESat-2/ATLAS and their meanings.

Full waveform and photon

Variable Description
count data P
cover Total canopy cover is the percentage of ground occupied by the vertical projection of canopy
elements.
. X WGS84-referenced elevation, calculated from the TandemX 90m product and interpolated at the
digital_elevation_model K i . . .
specified latitude_bin0 and longitude_bin0.
GEDI
ai Total plant area index refers to the combined leaf and stem area per unit ground surface,
P representing the density of vegetation over a given area.
sensitivit The maximum proportion of the canopy that can be effectively sensed, taking into account the signal-
%
Y to-noise ratio (SNR) of the waveform.
toc_roughness Standard deviation of canopy-top photon heights per segment.
h_median_canopy_abs Segment-level median of absolute canopy heights (WGS84).
[CESat-2/ATLAS ast The proportion of incoming solar radiation Fhat ‘15 reflected from the surface, as measured by remote
sensing instruments.
h_canopy_abs 98% of individual canopy heights referenced to WGS84 per segment.
h_max_canopy_abs Maximum canopy height above WGS84 per segment.

outperformed the LightGBM (R* = 0.52, RMSE = 14.61 Mg/ha,
P = 64.84%, rRMSE = 35.16%) and RER (R? = 0.90, RMSE = 8.23
Mg/ha, P = 79.79%, rRMSE = 20.21%), achieving relative
improvements of 78.85%, 59.67%, 32.36%, and 59.71% over
LightGBM, and 3.33%, 28.41%, 7.58%, and 29.94% over
REFR, respectively.

Based on the XGBoost model, the AGC distribution of
Dendrocalamus giganteus in Xinping County was mapped
(Figure 8). The average AGC for the 51 plots predicted by
XGBoost was 41.59 Mg/ha. Across Xinping County, the average
AGC was 40.62 Mg/ha, ranging from 15.70 to 81.96 Mg/ha, with a
total stock of 1.14 x 10’ Mg. Spatially, most Dendrocalamus
giganteus was concentrated in the northwest of the county, with
fewer distributions in other areas. The species was mainly found at
elevations between 373 and 1755 m, with only a small proportion
occurring above 1755 m, consistent with field observations.

5 Discussion

5.1 The impact of different sensors on
bamboo forest AGC estimation

AGC prediction based on spectral data generally shows lower
accuracy than that using LiDAR data. This is likely because
multispectral data only provide horizontal information about the
canopy structure and cannot capture vertical structural
information. However, vertical structural parameters, such as tree
height and canopy height, are closely related to the AGC of the
forest (Su et al., 2023). For example, Li et al. (2018) estimated the
biomass of Phyllostachys edulis in Zhejiang Province using MODIS
time-series data and a random forest algorithm, with an R value of
0.53 for accuracy validation. Zhao (2016) used Landsat TM and
ALOS PALSAR data for bamboo forest biomass by developing
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different estimation models based on single and combined data
sources. Their study found that bamboo forests have relatively
lower biomass saturation compared to other forest types. When
the biomass exceeds 75 Mg/ha, remote sensing data tends to
saturate, and spectral reflectance no longer changes with biomass,
making it difficult to accurately estimate biomass beyond the
saturation point. This leads to lower model estimation accuracy
(Zhang et al., 2006).

LiDAR, on the other hand, can quickly acquire three-
dimensional spatial information, has strong penetration
capabilities, and can precisely monitor vertical canopy structure
parameters. It offers a significant advantage in forest parameter
inversion, biomass, and carbon stock estimation, leading to greatly
improved estimation accuracy (Korhonen et al., 2011; Peduzzi et al,
2012). For instance, Cai (2016) developed bamboo biomass
estimation models using airborne high-resolution imagery and
airborne LiDAR data, and the LiDAR-based model achieved a
correlation coefficient of 0.8. However, the high cost of airborne
data acquisition limits its applicability to regional-scale studies. In
contrast, spaceborne LiDAR offers global coverage and lower
acquisition costs, making it a promising data source for future
bamboo biomass and carbon stock estimation. Compared with the
study by Yang et al. (2024a), which employed CK interpolation, the
estimation accuracies of the XGBoost and RFR models were
R* = 0.90, RMSE = 7.62 Mg/ha, P = 81.66%, and R* = 0.88,
RMSE = 9.06 Mg/ha, P = 78.20%, respectively. In this study, after
applying ANUSPLIN interpolation, the accuracies of the XGBoost
and RFR models were further improved to R? = 0.93, RMSE = 5.89
Mg/ha, P = 85.84%, and R*=0.90, RMSE = 8.23 Mg/ha, P =79.79%,
respectively. These results demonstrate that ANUSPLIN
interpolation can effectively enhance the spatial extrapolation of
spaceborne LiDAR data and improve model prediction accuracy to
some extent. This provides more robust technical support for
bamboo carbon stock monitoring and regional-scale forest carbon
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TABLE 2 Statistical characteristics of ANUSPLIN interpolation output for GEDI and ICESat-2/ATLAS data.

Full waveform and photon " Spline With or
count data Variable counts without “**
2 2258.5 97.5 0.043 NO
cover 3 2258.5 97.5 0.043 NO
4 2266.8 89.2 0.039 NO
2 23514 4.6 0.002 NO
digital_elevation_model 3 2349 7.0 0.003 YES
4 2343.1 129 0.006 NO
GEDI
2 20185 337.5 0.167 NO
pai 3 2106.7 249.3 0.118 NO
4 22514 104.6 0.046 NO
2 2042.1 3139 0.154 NO
sensitivity 3 2092.9 263.1 0.126 NO
4 2104.8 251.2 0.119 NO
2 2301.1 127.9 0.056 NO
toc_roughness 3 2329.0 100.0 0.043 NO
4 2337.1 91.9 0.039 NO
2 1012.3 1416.7 1.399 NO
h_median_canopy_abs 3 1596.5 832.5 0.521 NO
4 2329.5 99.5 0.043 NO
2 1831.8 554.2 3.305 NO
ICESat-2/ATLAS asr 3 2129.1 256.9 8.288 NO
4 2151.1 2349 9.158 NO
2 1033.6 1395.4 1.350 NO
h_canopy_abs 3 1608.8 820.2 0.510 NO
4 2333.1 95.9 0.041 NO
2 1035.1 1393.9 1.347 NO
h_max_canopy_abs 3 1612.9 816.1 0.510 NO
4 2333.8 95.2 0.041 NO

sink assessment, contributing positively to the achievement of
carbon peaking and carbon neutrality goals in the forestry sector.

5.2 The impact of interpolation methods
on the effect of map visualization

Based on the ANUSPLIN interpolation method, space-borne
lidar was combined for the first time for spatial expansion. The
interpolation accuracy evaluation was consistent with the
conclusions obtained from other interpolation accuracy
verifications, indicating that the results of the article are reliable.
This is one of the innovations of this study. Liu et al. (2021) showed
that the ANUSPLIN method has significant advantages in
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precipitation interpolation, but the choice of DEM resolution can
affect interpolation accuracy. Their conclusion was that, for the
same region, different DEM resolutions rank as follows: 500 m
resolution > 1 km resolution > 2 km resolution. Xiao et al. (2023)
found that, under simulations using three different DEM
resolutions, temperature interpolation accuracy followed the order
of 25m > 90 m > 1 km. In this study, a 12.5 m DEM was used, and
to standardize the resolution, it was resampled to 25 m. This DEM
data is beneficial for improving ANUSPLIN interpolation accuracy.
Furthermore, the number of splines significantly impacts result
accuracy, and ANUSPLIN interpolation is highly dependent on
model selection (Xu et al., 2023b).

Through ANUSPLIN interpolation of satellite LIDAR data and
selection of the optimal model based on established principles, the
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Y TABLE 3 Statistical analysis of generalized cross-validation.
2
o . . . !
;A Full waveform and photon Variable Mean value of the fitted surface metrics Mean values of fitted surface metrics
o HELIE 2RI GCV MSR VAR RTGCV RTMSR RTVAR
>
@ cover 0.09 0.08 0.09 0.30 0.29 0.30
9
§ digital_elevation_model 183.00 183.00 183.00 13.50 13.50 13.50
GEDI
pai 3.47 3.16 331 1.86 1.78 1.82
sensitivity 0.00 0.00 0.00 0.02 0.02 0.02
toc_roughness 0.11 0.10 0.10 0.33 0.32 0.32
h_median_canopy_abs 0.15 0.140 0.140 0.39 0.38 0.38
ICESat-2/ATLAS asr 0.00 0.00 0.00 0.07 0.05 0.06
h_canopy_abs 0.148 0.137 0.142 0.385 0.370 0.377
h_max_canopy_abs 0.148 0.136 0.142 0.384 0.369 0.377
-
g

TABLE 4 Variogram models and comparison assessment of GEDI and ICESat-2/ATLAS factors.

Full waveform

and photon Variable Co/Co+C
count data
Gaussian 0.1 53.71 0.19 12817.18 715 0.82
cover Spherical 0.1 53.52 0.19 16100 777 0.81
Exponents 0.1 53.87 0.19 18900 1226 0.71
Gaussian 2000 354800 0.56 14895.64 2.81x10™ 0.833
digital_elevation_model Spherical 1000 353300 0.28 18600 3.09x10" 0.833
GEDI
Exponents 1000 355500 0.28 21600 5.06x10"° 0.736
Gaussian 0.1 293 0.03 13683.2 2.86x10* 0.765
pai Spherical 0.1 291.6 0.03 17000 3.13x10* 0.763
. Exponents 0.1 291.9 0.03 19200 4.64x10* 0.659
o
% sensitivity Gaussian 0.001 1.216 0.082 16627.69 1.59 0.561
.
g (Continued)
a
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TABLE 4 Continued

Full waveform

and photon
count data

ICESat-2/ATLAS asr

Variable
Spherical 0.001 1.213 0.082 21200 1.63 0.565
Exponents 0.001 1.203 0.083 22500 2.03 0.472
Gaussian 6.67 19.33 34.50 19572.17 78.50 0.726
toc_roughness Spherical 5.04 19.46 25.90 25200 72.3 0.748
Exponents 0.01 19.37 0.05 20700 74.4 0.740
Gaussian 103 775.5 13.28 24941.53 40386 0.94
h_median_canopy_abs Spherical 15 776.8 1.93 30400 35443 0.95
Exponents 1 804.3 0.12 37800 77303 0.90
Gaussian -0.08 -2.002 3.99 5022.95 14 0.072
Spherical -0.001 -2 0.05 6300 14 0.075
Exponents -0.001 -1.983 0.05 5700 14.5 0.048
Gaussian 102 772 13.21 24941.53 40326 0.945
h_canopy_abs Spherical 15 773.2 1.93 30400 35402 0.952
Exponents 1 800.6 0.12 37800 76975 0.904
Gaussian 102 771.4 13.22 24941.53 40312 0.945
h_max_canopy_abs Spherical 15 772.6 1.94 30400 35386 0.952
Exponents 1 800 0.12 37800 76905 0.904
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TABLE 5 Cross-validation results for ANUSPLIN and CK.

Full waveform ANUSPLIN
and photon Variable
count data RMSE MSE
cover 0.000 0.310 0.000 0.323 0.000 0.289 0.000 0.083
digital_elevation_model -0.205 108.932 -0.030 91.821 -0.123 13.892 192.975 192.975
GEDI
pai -0.006 2.001 -0.001 1.899 0.000 1.656 0.000 1.743
sensitivity 0.000 0.0187 0.001 0.0134 0.000 0.016 0.000 0.000
toc_roughness -0.023 0.359 -0.005 0.213 0.000 0.321 0.003 0.103
h_median_canopy_abs -0.007 0.448 -0.001 0.522 0.000 0.290 0.000 0.138
ICESat-2/ATLAS asr 0.001 0.079 0.009 0.055 0.000 0.070 0.005 0.005
h_canopy_abs 0.000 0.447 0.000 0.520 0.000 0.434 0.000 0.508
h_max_canopy_abs 0.000 0.446 0.000 0.520 0.000 0.290 0.000 0.139
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FIGURE 5
ANUSPLIN interpolation results (A-D) GEDI parameters: (A) cover, (B) digital_elevation_model, (C) pai, (D) sensitivity. (E-1) ICESat-2/ATLAS
parameters: (E) toc_roughness, (F) h_median_canopy_abs, (G) asr, (H) h_canopy_abs, (I) h_max_canopy_abs.
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FIGURE 8
AGC distribution map of Dendrocalamus giganteus in Xinping

results, verified by cross-validation (Table 5), show that this method
outperforms geostatistical interpolation methods (Yu et al., 2023;
Xu et al,, 2023a). From a visual perspective, ANUSPLIN results are
superior to those of CK, likely due to CK’s use of neighboring
known points combined with semivariance analysis to build a
statistical model, which is susceptible to statistical patterns and is
prone to creating striping effects, especially in areas with many spots
and high spatial heterogeneity. ANUSPLIN, on the other hand, fits a
curved surface that minimizes curvature using control points
(Bookstein, 1989), yielding a smoother overall result. Compared
to CK, ANUSPLIN interpolation maintains accuracy, smoothness,
and detail in the interpolation surface. It is also more efficient and
requires fewer manual parameter adjustments, thus reducing
uncertainty in the interpolation process. This conclusion can offer
useful insights for LIDAR data interpolation applications. However,
this study only considered elevation data as a covariate, while other
terrain factors, such as aspect and slope, also significantly affect
interpolation results. Future studies will consider incorporating
multiple covariates into the ANUSPLIN interpolation method,
providing a more meaningful reference for optimizing LiDAR
interpolation accuracy. Additionally, this study focused only on
Dendrocalamus giganteus because it is widely distributed in Xinping
County. However, Yunnan Province has diverse vegetation types, so
future research should explore the applicability of ANUSPLIN
interpolation using LiDAR data for other vegetation types.
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5.3 The impact of different spot densities
of satellite LiDAR on interpolation

In model development, sample size affects the accuracy of the
model. Generally, the larger the sample size, the better the model’s
reliability, though too large a sample size can waste resources (Shu
etal, 2022). Shu et al. (2022) suggested that to reduce human effort
and time, optimal sample sizes need to be explored. This issue also
applies to satellite LIDAR spot densities: the more spots there are,
the longer the interpolation takes, and the more prominent the
striping effect becomes. This is because the satellite LIDAR footprint
points are evenly distributed along the orbit. Before interpolating
spot data, GEDI data undergo quality screening according to a
selection criterion, filtering out low-quality spots from the same or
adjacent strips to enhance the spatial randomness of the footprint
points (Xu et al, 2023a). When extracting ICESat-2/ATLAS
parameters, the effective number of photon point clouds after
denoising and classification algorithms on the raw ATLO03 data
reached tens of thousands (Bookstein, 1989). However, even after
preprocessing, the remaining spots from both GEDI and ICESat-2/
ATLAS still do not meet the spatial randomness requirement. Some
researchers have carried out point thinning before interpolation to
alleviate the striping effect (Yu et al, 2023), without affecting
accuracy. This further suggests that future studies could explore
the optimal number of spot points for interpolation. Zhu et al.
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(2020) discussed the interpolation accuracy of three algorithms
(PRISM, CK, and IDW) at different station densities. They
concluded that errors increase as the sample size decreases.
Regarding interpolation mapping, when the sample size is small,
CK interpolation performs relatively better and results in smoother
maps. This may be because the distance between the sample and
grid points increases, corresponding to the smoother parts of the
empirical semivariance function. Therefore, future research could
explore the impact of spot density on interpolation, seeking the
optimal number of spots to reduce the workload.

5.4 The impact of variable selection on
model accuracy

Variable selection is a prerequisite for model development. The
choice of modeling variables directly influences the predictive
performance of the inversion model. By selecting relevant variables,
non-contributory ones can be eliminated, reducing data dimensions,
simplifying the model, and enhancing both model accuracy and
generalization ability (Luo et al, 2022). When estimating forest
structural parameters, different variable selection methods lead to
variations in model prediction accuracy, depending on the data
combinations, thus affecting the estimation results (Zhang et al,
2022b). For instance, Zhou et al. (2024) employed three methods—
Pearson correlation, Recursive Feature Elimination (RFE) using RFR,
and Support Vector Machines (SVM-RFE)—to select optimal feature
variables for remote sensing models. Their study showed significant
differences in the accuracy of remote sensing models constructed with
different feature selection methods. Models built with parameters
selected by SVM-RFE and RFR demonstrated better precision. Due to
the complex relationship between the AGC of Dendrocalamus
giganteus and satellite LIDAR parameters, variable selection
becomes crucial. This study employed the Random Forest feature
importance method for variable selection, ensuring that more
explanatory and influential variables were prioritized (Zhou et al.,
2024). Through this feature importance ranking, variables were
progressively added to the model. When the number of variables
reached nine, the RMSE was minimized (RMSE = 8.23 Mg/ha).
Future research can explore additional methods, such as SVM-RFE,
Boruta, and KNN-FIFS, for feature selection, aiming to identify even
more optimal parameters for improving the predictive accuracy of
satellite LIDAR estimation models.

5.5 Prospects for future research

A methodological highlight of this study is the first application
of the ANUSPLIN interpolation method for spatial extrapolation of
spaceborne LiDAR data, demonstrating its superiority over the
conventional geostatistical CK method. In addition, an XGBoost-
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based model was developed to estimate AGC in bamboo forests
with higher accuracy. The results have important implications for
bamboo carbon stock monitoring, forest resource surveys, and
regional carbon sink assessment. Nevertheless, this study has
some limitations, such as the incomplete consideration of
covariates, the focus on a single species (Dendrocalamus
giganteus), and a limited number of sample plots. Future research
could incorporate additional topographic and environmental
factors, increase the number of sample plots and LiDAR
footprints, and validate the method across different forest types
and larger regions, thereby providing more reliable technical
support for forest carbon stock estimation and carbon
neutrality targets.

6 Conclusion

This study systematically explored spatial interpolation methods
using GEDI and ICESat-2/ATLAS data and evaluated their
performance in estimating the AGC of Dendrocalamus giganteus.
The results showed that ANUSPLIN outperformed CK interpolation.
When nine key variables were selected based on random forest feature
importance (GEDI: cover, digital_elevation_model, pai, sensitivity;
ICESat-2/ATLAS: toc_roughness, h_median_canopy_abs, asr,
h_canopy_abs, h_max_canopy_abs), the RMSE was reduced to 8.23
Mg/ha. Among the machine learning models, XGBoost performed
best with these variables (R2 = 0.93, RMSE = 5.89 Mg/ha, P = 85.84%,
rRMSE = 14.16%), predicting an average AGC of 40.62 Mg/ha for
Dendrocalamus giganteus and a total AGC of 1.14 x 107 Mg in
Xinping County. This study demonstrates that the framework
integrating ANUSPLIN with spaceborne LiDAR has strong
potential for large-scale forest carbon stock monitoring and provides
valuable references for climate change research.
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