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Introduction

For millennia, medicinal plants have been a cornerstone of human healthcare,
providing a rich source of bioactive compounds used in both traditional and modern
medicine. A diverse array of therapeutic molecules is offered by these plants, from the
antimalarial artemisinin in Artemisia annua to the anticancer alkaloids in Catharanthus
roseus. The integration of artificial intelligence (AI) with bioinformatics and functional
genomics has revolutionized the study of these medicinal plants, enabling researchers to
explore their genetic and molecular underpinnings with unprecedented accuracy. These
integrated technologies are transforming the study of medicinal plants, including drug
discovery, responses to abiotic stresses, and the therapeutic potential of sustainable
healthcare. However, the complexity and volume of genomic data pose significant
challenges, necessitating advanced computational tools. AI, incorporating machine
learning (ML) and deep learning (DL) techniques, has emerged as a powerful solution,
capable of processing large volumes of data, identifying patterns and making predictions
that traditional methods cannot match. This opinion explores several areas in which Al
models in bioinformatics and functional genomics analysis are transforming medicinal
plant research. Through detailed discussions and an exploration of future trends, we
highlight how AI is reshaping our approach to medicinal plants, offering new possibilities
for drug development and sustainable agriculture.

ML is considered a core technology in AIL Standard ML methods are overly narrow in
their application to complex, natural, and high-dimensional raw data like genomic data. In
contrast, DL methods are a promising and exciting area currently being widely applied in
genomics, with successful applications in image recognition, audio classification, natural
language processing, online web tools, chatbots, and robotics (Alharbi and Rashid, 2022).
In this regard, DL as a genomics method is well-suited for analyzing large amounts of data.
Although DL is still in its infancy in genomics, it holds the potential to transform fields such
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as clinical genetics and functional genomics. Multiple genomic
fields are leveraging the generation of high-throughput data and
harnessing the power of deep learning algorithms to make complex
predictions. Modern advances in DNA/RNA sequencing
technologies and machine learning algorithms, particularly deep
learning, have opened up a new chapter in research, enabling the
translation of large biological datasets into new knowledge and
discoveries across various subfields of genomics (Lee, 2023). In the
field of next-generation sequencing, modern deep learning tools
have been proposed to overcome the limitations of traditional
interpretation pipelines (Alharbi and Rashid, 2022). It has
demonstrated that combining the deep learning-based variant
caller DeepVariant with traditional variant callers (such as
SAMtools and GATK) can improve the accuracy scores of single-
nucleotide variant and indel detection (Kumaran et al, 2019).
DeepVariant relies on graphical differences in input images to
perform the classification task of genetic variant calling from
NGS short reads (Hall et al., 2024). It treats mapped sequencing
datasets as images and transforms variant calling into an image
classification task.

Functional genomics aims to reveal the roles of genes and their
interactions in biological systems (Zhang Y, et al., 2025).
Traditional methods, such as gene set enrichment analysis, rely
on existing genomic databases and are relatively cumbersome and
time-consuming. However, many intriguing biological questions
often exceed the limitations of these databases, and the introduction
of AI offers new possibilities for filling these gaps. Al is reshaping
the traditional way genomics research is conducted. By utilizing
large language models (LLMs), scientists can significantly reduce
manual analysis time and rapidly identify gene functions and
interactions (Lotter et al., 2024). Al systems can quickly examine
vast volumes of genomic data in drug discovery to find biomarkers
and gene mutations linked to disease. This accelerates the
development of new drugs and increases the success rate of drug
discovery. For example, AI can screen thousands of compounds
within hours to identify the most likely effective drug candidates.
PDGrapher can identify the multiple factors that contribute to
disease in cells and predict treatment options that can restore
healthy cell function. Focusing on multiple pathogenic drivers,
PDGrapher can identify the genes most likely to transform
diseased cells into a healthy state and recommend the best single
or combination therapeutic targets. Results indicated that the tool
not only accurately predicted known effective drug targets but also
discovered several new potential candidates (Gonzalez et al., 2025).
Compared to similar models, PDGrapher achieved 35% higher
predictive accuracy and operated up to 25 times faster.

Genome annotation involves identifying genes and their
functions within a genome. It is a critical step in understanding
the genetic basis of the therapeutic properties of medicinal plants.
Traditional annotation methods, which rely on sequence similarity
to known genes, can be labor-intensive and ineffective when dealing
with novel or divergent paralogs, which are prevalent in plant
genomes. However, Al has introduced innovative solutions that use
machine learning algorithms, such as support vector machines
(SVMs) and Bayesian methods, to predict gene functions based
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on sequence features and expression patterns. For instance, SVMs
have been employed to identify drought-resistance genes in
Arabidopsis thaliana, establishing a model for analogous
applications in medicinal plants (Murmu et al, 2024). A
significant advancement in this field is the application of deep
learning to predict protein structures. Developed by DeepMind,
AlphaFold 2 has achieved remarkable accuracy in predicting
protein structures from amino acid sequences, thereby
transforming functional genomics (Jumper et al., 2021; McCall
and Almudevar, 2012). In Salvia miltiorrhiza, the structures of
key enzymes involved in tanshinone biosynthesis were predicted,
which helped the rational design of enzymes to enhance the
production of these cardiovascular disease-protecting compounds
(Chang et al., 2019; Zhou et al., 2017). Similarly, the homology-
based gene prediction has been used to identify genes involved in
withanolide biosynthesis, which are key adaptogenic compounds
(Agarwal et al, 2017; Hakim et al,, 2025). Al is also advancing
single-cell genomics, enabling the study of gene expression at the
cellular level. Tools like SIMLR (Single-cell Interpretation via Multi-
kernel Learning) address challenges such as low-coverage single-cell
RNA sequencing data, facilitating the clustering and annotation of
rare cell types (Wang et al,, 2018). In C. roseus, some bioinformatic
tools were applied to annotated genes involved in terpenoid indole
alkaloid (TTA) biosynthesis, thereby enhancing our understanding
of tissue-specific expression (Rai et al, 2022). Despite these
advancements, challenges persist. Many medicinal plants have
large, complex genomes, and comprehensive genomic data for
rare species is often lacking. The interpretability of DL models
also poses a hurdle, as understanding their predictions is crucial for
gaining biological insights. Ongoing efforts to develop standardized
datasets and understandable DL models are addressing these issues,
and these efforts are promising to expand the application in genome
annotation for medicinal plants.

Metabolic pathways are central to the production of secondary
metabolites in medicinal plants. These are often responsible for
their therapeutic properties. Reconstructing these pathways is
essential for understanding biosynthesis and for engineering
plants to produce more compounds (Song et al, 2022a).
Bioinformatics and genomics have transformed this process by
combining metabolomics data with sophisticated computational
methods. Machine learning algorithms predict metabolic pathways
by analyzing metabolite concentrations and gene expression
patterns. For instance, metabolic engineering helps to reconstruct
the artemisinin biosynthetic pathway in A. annua, identifying key
genes and enzymes, thereby informing strategies to increase
artemisinin yields (Costello and Martin, 2018). Gene mining is
the process of identifying genes of interest from genomic data. This
is another area where AI excels. ML models classify genes based on
sequence and expression data, pinpointing those involved in
metabolite production. In Panax ginseng, the glycosyltransferases
(UGTs) and CYP450 family genes responsible for ginsenoside
production, paving the way for genetic engineering to boost
ginsenoside content (Hou et al., 2021; Xu et al., 2017). Similarly,
large-scale gene mining in C. roseus genome has shed light on the
biosynthesis of TIAs, which are vital anti-cancer agents (McCall and
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Almudevar, 2012). Al facilitates the discovery of novel pathways. By
analyzing multi-omics datasets, we can predict pathways that are
not apparent through traditional methods, particularly in
understudied plants. In Ophiorrhiza pumila, some key genes
involved in camptothecin biosynthesis were identified by
integrating transcriptomic and metabolomic data (Yang et al,
2021). Tools such as ClusterFinder and DeepBGC use hidden
Markov models (HMM:s) and DL method to identify biosynthetic
gene clusters (BGCs), which are essential for producing secondary
metabolites (Liu et al., 2022; Hannigan et al., 2019). Genome-wide
identification of WRKY members from Myrica rubra revealed that
the WRKYI14 significantly activates the promoter region of the
SWEETI gene, suggesting its positive regulatory role in sugar
synthesis (Fan et al,, 2025). These advancements would have a
lasting effect on drug discovery and agricultural biotechnology by
enabling targeted genetic modifications to optimize the production
of therapeutic compounds. However, challenges such as data
scarcity for rare plants.

Integrated multi-omics data — including genomics,
transcriptomics, proteomics, and metabolomics — provides a
comprehensive view of plant biology (Song et al., 2022b; Zhang
et al, 2023). Large language model facilitates this process by
managing the complexity and volume of the data. The orthogonal
projections to latent structures (OPLS) method can integrate
transcriptomic and metabolomic data, and tools such as iDREM
can construct integrated networks from temporal data (Kumar
et al, 2024). In S. lycopersicum, multi-omics integration has
optimized metabolic networks to improve fruit quality
(Cembrowska-Lech et al,, 2023). The optimization of metabolic
networks involves predicting and manipulating pathways to
increase the yield of therapeutic compounds. Challenges such as
data noise, sparsity and scaling issues are being overcome. This is
because of its ability to handle high-dimensional data. Predicting
gene regulatory networks (GRNs) is essential for understanding
how genes are regulated in response to environmental and
developmental cues. AI, particularly neural network-based
methods, predicts transcription factor binding sites and
regulatory relationships. In C. roseus, Al has been used to predict
networks involved in TIA biosynthesis and identify key regulators
(Pan et al,, 2016). Transformer-based models are used by tools like
Enformer and RNABERT to predict genome interactions and RNA
clustering, respectively (Avsec et al., 2021). These advancements
facilitate the identification of new therapeutic targets and pathways,
enhancing the potential for genetic engineering in medicinal plants.
However, genetic modification raises ethical concerns, requiring
careful assessment of ecological impacts.

GRNs govern gene expression in response to environmental
and developmental signals. Advances in AI have led to the
development of tools such as iDREM and GRNBoost2, which can
construct temporal and cell-specific GRNs from multi-omics data
(Sharma et al., 2024). These tools have been used to study stress
responses in Arabidopsis, revealing complex regulatory
mechanisms. In medicinal plants, predicting GRNs is crucial for
understanding how therapeutic compounds are produced. For
example, AI has been employed to predict the regulatory
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networks involved in TIA biosynthesis in C. roseus, identifying
the transcription factors that control alkaloid production. Transfer
learning has also enabled cross-species predictions, such as the
identification of metabolism-related genes in S. Ilycopersicum
(Badia-i-Mompel et al, 2023). In Withania somnifera, genome-
wide identification has identified stress-responsive genes involved
in withanolide biosynthesis, thereby enhancing plant resilience and
compound yield (Nicolis et al., 2024; Tripathi et al., 2020). Gene co-
expression network analysis is particularly valuable for identifying
stress-related genes, as many secondary metabolites are produced in
response to environmental stresses. By analyzing gene expression
under various conditions, large language models can classify genes
based on their stress responsiveness. This provides targets for
breeding stress-tolerant medicinal plants. The complexity of
GRNs and the need for comprehensive multi-omics data are just
two of the challenges that must be overcome (Badia-i-Mompel et al.,
2023; Otal et al, 2025). Using more sophisticated bioinformatics
and data integration techniques is helping to resolve these issues
and make predictions more accurate (Song et al., 2023; Zhang J,
et al.,, 2025).

Discussion

Despite the immense success of these tools in genomics and
bioinformatics, the adoption of different DL solutions and models
remains limited. One reason is the lack of published DL-based
protocols that can adapt to new, heterogeneous datasets that require
extensive data engineering. In genomics, high-throughput data are
used to train neural networks and have become a typical approach
for disease prediction or understanding regulatory genomics
(Schmidt and Hildebrandt, 2021). Similarly, developing new DL
models and testing existing models on new datasets are significant
challenges due to the lack of comprehensive, generalizable, and
practical biology-oriented deep learning libraries (Munappy et al.,
2022). In this regard, software frameworks and genomic packages
are crucial for quickly adopting new research questions or
hypotheses, integrating raw data, or conducting research using
different neural network architectures. Recently, advances in NLP
and LLMs have improved data integration and analysis. GRNs can
address data scarcity by generating synthetic datasets, and attention
mechanisms can enhance model interpretability. Future
breakthroughs will depend on interdisciplinary collaboration
between biologists, computer scientists, and data scientists.
Despite significant advancements, challenges remain in applying
AT to medicinal plant research. Standardized datasets that include
genomic, transcriptomic, proteomic, metabolomic and phenotypic
data are essential for training robust AI models. A range of
resources on spice genomics have been developed to help identify
the most promising future directions. These resources include
genome assemblies, sequencing and re-sequencing projects, as
well as studies based on the transcriptome, non-coding RNA-
mediated regulation, organelles-based resources, developed
molecular markers, web resources, databases and Al-directed
resources (Das et al., 2023). All of these are focused on enhancing
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the breeding potential of specific spices. While there are extensive
datasets for model plants, many medicinal plants still lack sufficient
genomic resources, which limits Al applications. Although deep
learning models are highly accurate, they often operate like black
boxes, hindering the translation of predictions into biological
insights. Therefore, developing explainable AI models is crucial
for gaining trust and extracting actionable biological insights.
Additionally, the substantial computational resources required for
genome-wide identification analyses present a challenge for
researchers in settings with limited resources. One solution is to
develop lightweight AT models for use in such environments, as well
as using GRNs to create gene expression data for model training
and integrating attention mechanisms to focus on biologically
relevant features.
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