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Introduction

For millennia, medicinal plants have been a cornerstone of human healthcare,

providing a rich source of bioactive compounds used in both traditional and modern

medicine. A diverse array of therapeutic molecules is offered by these plants, from the

antimalarial artemisinin in Artemisia annua to the anticancer alkaloids in Catharanthus

roseus. The integration of artificial intelligence (AI) with bioinformatics and functional

genomics has revolutionized the study of these medicinal plants, enabling researchers to

explore their genetic and molecular underpinnings with unprecedented accuracy. These

integrated technologies are transforming the study of medicinal plants, including drug

discovery, responses to abiotic stresses, and the therapeutic potential of sustainable

healthcare. However, the complexity and volume of genomic data pose significant

challenges, necessitating advanced computational tools. AI, incorporating machine

learning (ML) and deep learning (DL) techniques, has emerged as a powerful solution,

capable of processing large volumes of data, identifying patterns and making predictions

that traditional methods cannot match. This opinion explores several areas in which AI

models in bioinformatics and functional genomics analysis are transforming medicinal

plant research. Through detailed discussions and an exploration of future trends, we

highlight how AI is reshaping our approach to medicinal plants, offering new possibilities

for drug development and sustainable agriculture.

ML is considered a core technology in AI. Standard ML methods are overly narrow in

their application to complex, natural, and high-dimensional raw data like genomic data. In

contrast, DL methods are a promising and exciting area currently being widely applied in

genomics, with successful applications in image recognition, audio classification, natural

language processing, online web tools, chatbots, and robotics (Alharbi and Rashid, 2022).

In this regard, DL as a genomics method is well-suited for analyzing large amounts of data.

Although DL is still in its infancy in genomics, it holds the potential to transform fields such
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as clinical genetics and functional genomics. Multiple genomic

fields are leveraging the generation of high-throughput data and

harnessing the power of deep learning algorithms to make complex

predictions. Modern advances in DNA/RNA sequencing

technologies and machine learning algorithms, particularly deep

learning, have opened up a new chapter in research, enabling the

translation of large biological datasets into new knowledge and

discoveries across various subfields of genomics (Lee, 2023). In the

field of next-generation sequencing, modern deep learning tools

have been proposed to overcome the limitations of traditional

interpretation pipelines (Alharbi and Rashid, 2022). It has

demonstrated that combining the deep learning-based variant

caller DeepVariant with traditional variant callers (such as

SAMtools and GATK) can improve the accuracy scores of single-

nucleotide variant and indel detection (Kumaran et al., 2019).

DeepVariant relies on graphical differences in input images to

perform the classification task of genetic variant calling from

NGS short reads (Hall et al., 2024). It treats mapped sequencing

datasets as images and transforms variant calling into an image

classification task.

Functional genomics aims to reveal the roles of genes and their

interactions in biological systems (Zhang Y, et al., 2025).

Traditional methods, such as gene set enrichment analysis, rely

on existing genomic databases and are relatively cumbersome and

time-consuming. However, many intriguing biological questions

often exceed the limitations of these databases, and the introduction

of AI offers new possibilities for filling these gaps. AI is reshaping

the traditional way genomics research is conducted. By utilizing

large language models (LLMs), scientists can significantly reduce

manual analysis time and rapidly identify gene functions and

interactions (Lotter et al., 2024). AI systems can quickly examine

vast volumes of genomic data in drug discovery to find biomarkers

and gene mutations linked to disease. This accelerates the

development of new drugs and increases the success rate of drug

discovery. For example, AI can screen thousands of compounds

within hours to identify the most likely effective drug candidates.

PDGrapher can identify the multiple factors that contribute to

disease in cells and predict treatment options that can restore

healthy cell function. Focusing on multiple pathogenic drivers,

PDGrapher can identify the genes most likely to transform

diseased cells into a healthy state and recommend the best single

or combination therapeutic targets. Results indicated that the tool

not only accurately predicted known effective drug targets but also

discovered several new potential candidates (Gonzalez et al., 2025).

Compared to similar models, PDGrapher achieved 35% higher

predictive accuracy and operated up to 25 times faster.

Genome annotation involves identifying genes and their

functions within a genome. It is a critical step in understanding

the genetic basis of the therapeutic properties of medicinal plants.

Traditional annotation methods, which rely on sequence similarity

to known genes, can be labor-intensive and ineffective when dealing

with novel or divergent paralogs, which are prevalent in plant

genomes. However, AI has introduced innovative solutions that use

machine learning algorithms, such as support vector machines

(SVMs) and Bayesian methods, to predict gene functions based
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on sequence features and expression patterns. For instance, SVMs

have been employed to identify drought-resistance genes in

Arabidopsis thaliana, establishing a model for analogous

applications in medicinal plants (Murmu et al., 2024). A

significant advancement in this field is the application of deep

learning to predict protein structures. Developed by DeepMind,

AlphaFold 2 has achieved remarkable accuracy in predicting

protein structures from amino acid sequences, thereby

transforming functional genomics (Jumper et al., 2021; McCall

and Almudevar, 2012). In Salvia miltiorrhiza, the structures of

key enzymes involved in tanshinone biosynthesis were predicted,

which helped the rational design of enzymes to enhance the

production of these cardiovascular disease-protecting compounds

(Chang et al., 2019; Zhou et al., 2017). Similarly, the homology-

based gene prediction has been used to identify genes involved in

withanolide biosynthesis, which are key adaptogenic compounds

(Agarwal et al., 2017; Hakim et al., 2025). AI is also advancing

single-cell genomics, enabling the study of gene expression at the

cellular level. Tools like SIMLR (Single-cell Interpretation via Multi-

kernel Learning) address challenges such as low-coverage single-cell

RNA sequencing data, facilitating the clustering and annotation of

rare cell types (Wang et al., 2018). In C. roseus, some bioinformatic

tools were applied to annotated genes involved in terpenoid indole

alkaloid (TIA) biosynthesis, thereby enhancing our understanding

of tissue-specific expression (Rai et al., 2022). Despite these

advancements, challenges persist. Many medicinal plants have

large, complex genomes, and comprehensive genomic data for

rare species is often lacking. The interpretability of DL models

also poses a hurdle, as understanding their predictions is crucial for

gaining biological insights. Ongoing efforts to develop standardized

datasets and understandable DL models are addressing these issues,

and these efforts are promising to expand the application in genome

annotation for medicinal plants.

Metabolic pathways are central to the production of secondary

metabolites in medicinal plants. These are often responsible for

their therapeutic properties. Reconstructing these pathways is

essential for understanding biosynthesis and for engineering

plants to produce more compounds (Song et al., 2022a).

Bioinformatics and genomics have transformed this process by

combining metabolomics data with sophisticated computational

methods. Machine learning algorithms predict metabolic pathways

by analyzing metabolite concentrations and gene expression

patterns. For instance, metabolic engineering helps to reconstruct

the artemisinin biosynthetic pathway in A. annua, identifying key

genes and enzymes, thereby informing strategies to increase

artemisinin yields (Costello and Martin, 2018). Gene mining is

the process of identifying genes of interest from genomic data. This

is another area where AI excels. ML models classify genes based on

sequence and expression data, pinpointing those involved in

metabolite production. In Panax ginseng, the glycosyltransferases

(UGTs) and CYP450 family genes responsible for ginsenoside

production, paving the way for genetic engineering to boost

ginsenoside content (Hou et al., 2021; Xu et al., 2017). Similarly,

large-scale gene mining in C. roseus genome has shed light on the

biosynthesis of TIAs, which are vital anti-cancer agents (McCall and
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Almudevar, 2012). AI facilitates the discovery of novel pathways. By

analyzing multi-omics datasets, we can predict pathways that are

not apparent through traditional methods, particularly in

understudied plants. In Ophiorrhiza pumila, some key genes

involved in camptothecin biosynthesis were identified by

integrating transcriptomic and metabolomic data (Yang et al.,

2021). Tools such as ClusterFinder and DeepBGC use hidden

Markov models (HMMs) and DL method to identify biosynthetic

gene clusters (BGCs), which are essential for producing secondary

metabolites (Liu et al., 2022; Hannigan et al., 2019). Genome-wide

identification of WRKY members from Myrica rubra revealed that

the WRKY14 significantly activates the promoter region of the

SWEET1 gene, suggesting its positive regulatory role in sugar

synthesis (Fan et al., 2025). These advancements would have a

lasting effect on drug discovery and agricultural biotechnology by

enabling targeted genetic modifications to optimize the production

of therapeutic compounds. However, challenges such as data

scarcity for rare plants.

Integrated multi-omics data — including genomics,

transcriptomics, proteomics, and metabolomics — provides a

comprehensive view of plant biology (Song et al., 2022b; Zhang

et al., 2023). Large language model facilitates this process by

managing the complexity and volume of the data. The orthogonal

projections to latent structures (OPLS) method can integrate

transcriptomic and metabolomic data, and tools such as iDREM

can construct integrated networks from temporal data (Kumar

et al., 2024). In S. lycopersicum, multi-omics integration has

optimized metabolic networks to improve fruit quality

(Cembrowska-Lech et al., 2023). The optimization of metabolic

networks involves predicting and manipulating pathways to

increase the yield of therapeutic compounds. Challenges such as

data noise, sparsity and scaling issues are being overcome. This is

because of its ability to handle high-dimensional data. Predicting

gene regulatory networks (GRNs) is essential for understanding

how genes are regulated in response to environmental and

developmental cues. AI, particularly neural network-based

methods, predicts transcription factor binding sites and

regulatory relationships. In C. roseus, AI has been used to predict

networks involved in TIA biosynthesis and identify key regulators

(Pan et al., 2016). Transformer-based models are used by tools like

Enformer and RNABERT to predict genome interactions and RNA

clustering, respectively (Avsec et al., 2021). These advancements

facilitate the identification of new therapeutic targets and pathways,

enhancing the potential for genetic engineering in medicinal plants.

However, genetic modification raises ethical concerns, requiring

careful assessment of ecological impacts.

GRNs govern gene expression in response to environmental

and developmental signals. Advances in AI have led to the

development of tools such as iDREM and GRNBoost2, which can

construct temporal and cell-specific GRNs from multi-omics data

(Sharma et al., 2024). These tools have been used to study stress

responses in Arabidopsis, revealing complex regulatory

mechanisms. In medicinal plants, predicting GRNs is crucial for

understanding how therapeutic compounds are produced. For

example, AI has been employed to predict the regulatory
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networks involved in TIA biosynthesis in C. roseus, identifying

the transcription factors that control alkaloid production. Transfer

learning has also enabled cross-species predictions, such as the

identification of metabolism-related genes in S. lycopersicum

(Badia-i-Mompel et al., 2023). In Withania somnifera, genome-

wide identification has identified stress-responsive genes involved

in withanolide biosynthesis, thereby enhancing plant resilience and

compound yield (Nicolis et al., 2024; Tripathi et al., 2020). Gene co-

expression network analysis is particularly valuable for identifying

stress-related genes, as many secondary metabolites are produced in

response to environmental stresses. By analyzing gene expression

under various conditions, large language models can classify genes

based on their stress responsiveness. This provides targets for

breeding stress-tolerant medicinal plants. The complexity of

GRNs and the need for comprehensive multi-omics data are just

two of the challenges that must be overcome (Badia-i-Mompel et al.,

2023; Otal et al., 2025). Using more sophisticated bioinformatics

and data integration techniques is helping to resolve these issues

and make predictions more accurate (Song et al., 2023; Zhang J,

et al., 2025).
Discussion

Despite the immense success of these tools in genomics and

bioinformatics, the adoption of different DL solutions and models

remains limited. One reason is the lack of published DL-based

protocols that can adapt to new, heterogeneous datasets that require

extensive data engineering. In genomics, high-throughput data are

used to train neural networks and have become a typical approach

for disease prediction or understanding regulatory genomics

(Schmidt and Hildebrandt, 2021). Similarly, developing new DL

models and testing existing models on new datasets are significant

challenges due to the lack of comprehensive, generalizable, and

practical biology-oriented deep learning libraries (Munappy et al.,

2022). In this regard, software frameworks and genomic packages

are crucial for quickly adopting new research questions or

hypotheses, integrating raw data, or conducting research using

different neural network architectures. Recently, advances in NLP

and LLMs have improved data integration and analysis. GRNs can

address data scarcity by generating synthetic datasets, and attention

mechanisms can enhance model interpretability. Future

breakthroughs will depend on interdisciplinary collaboration

between biologists, computer scientists, and data scientists.

Despite significant advancements, challenges remain in applying

AI to medicinal plant research. Standardized datasets that include

genomic, transcriptomic, proteomic, metabolomic and phenotypic

data are essential for training robust AI models. A range of

resources on spice genomics have been developed to help identify

the most promising future directions. These resources include

genome assemblies, sequencing and re-sequencing projects, as

well as studies based on the transcriptome, non-coding RNA-

mediated regulation, organelles-based resources, developed

molecular markers, web resources, databases and AI-directed

resources (Das et al., 2023). All of these are focused on enhancing
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the breeding potential of specific spices. While there are extensive

datasets for model plants, many medicinal plants still lack sufficient

genomic resources, which limits AI applications. Although deep

learning models are highly accurate, they often operate like black

boxes, hindering the translation of predictions into biological

insights. Therefore, developing explainable AI models is crucial

for gaining trust and extracting actionable biological insights.

Additionally, the substantial computational resources required for

genome-wide identification analyses present a challenge for

researchers in settings with limited resources. One solution is to

develop lightweight AI models for use in such environments, as well

as using GRNs to create gene expression data for model training

and integrating attention mechanisms to focus on biologically

relevant features.
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