
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Xiaojun Jin,
Nanjing Forestry University, China

REVIEWED BY

Xin Ji,
Yangzhou University, China
Jixun Li,
Shandong Huayu University
of Technology, China
Chen Ding,
Fuyang Normal University, China
Tamiru Tesfaye Gemechu,
Nanjing Agricultural University, China
Wentao Zhao,
School of Civil Engineering, China

*CORRESPONDENCE

Jianjun Yin

yinjianjun@ujs.edu.cn

RECEIVED 03 August 2025

ACCEPTED 05 September 2025
PUBLISHED 19 September 2025

CITATION

Chen Z, Yin J, Farhan SM, Lin Z and Zhou M
(2025) Adaptive path tracking control of
unmanned agricultural
machinery with fixed-time super-twisting
sliding mode based on RLS-ELM.
Front. Plant Sci. 16:1678648.
doi: 10.3389/fpls.2025.1678648

COPYRIGHT

© 2025 Chen, Yin, Farhan, Lin and Zhou. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 19 September 2025

DOI 10.3389/fpls.2025.1678648
Adaptive path tracking control
of unmanned agricultural
machinery with fixed-time
super-twisting sliding mode
based on RLS-ELM
Zhijian Chen1, Jianjun Yin1*, Sheikh Muhammad Farhan2,
Zhenhua Lin1 and Maile Zhou1

1School of Agricultural Engineering, Jiangsu University, Zhenjiang, China, 2School of Mechanical
Engineering, Tongji University, Shanghai, China
Introduction: Accurate path tracking is essential for achieving intelligent

operation in unmanned agricultural machinery. To address the limitations of

traditional agricultural machine path tracking methods, which are susceptible to

high frequency oscillations and external disturbances, this study proposes a fixed

time super-twisting sliding mode adaptive path-tracking control for unmanned

agricultural vehicles.

Methods: The approach utilizes a Regularized Least Squares Extreme Learning

Machine (RLS-ELM) to improve robustness and adaptability under certain

operating conditions. A generalized terminal sliding mode surface is first

designed by incorporating both lateral and heading deviations of the vehicle.

Next, a Super-Twisting Sliding Mode control law is developed to perform path

tracking, while the RLS-ELM is used to estimate and compensate for unknown

disturbances. The stability of the proposed control system is verified through the

construction of a new Lyapunov function.

Results: The control algorithm is validated via field experiments on an agricultural

platform. Results show that, compared to the Fixed-Time Generalized Terminal

Super Twisting control method (FGST) and the Fixed-Time Sliding Mode

Controller (FTSMC), the Extreme Learning Machine-Adaptive Fixed-Time

Generalized Super-Twisting (ELM-AFGST) method reduces lateral mean

absolute errors by 24.5% and 27.4%, respectively, and decreases heading mean

absolute errors by 5.4% and 30.8%, respectively. These findings demonstrate that

the proposed path tracking method provides a solid theoretical framework for

high-precision path tracking of unmanned agricultural machines.
KEYWORDS

unmanned agricultural machines, path tracking, terminal sliding mode, super-twisting
sliding mode control, extreme learning machine
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1 Introduction

At present, the advancement of intelligent, automated, and

information-driven agricultural machinery has become an

inevitable trend and is widely used in various agricultural

production practices (Jin et al., 2021; Zhang et al., 2024). Among

these technologies, autonomous navigation technology for

agricultural machinery is the core technology that enables the

realization of unmanned farms, playing a crucial role in the entire

process of plowing, planting, crop management, and harvesting. Its

implementation significantly enhances operational efficiency,

improves task quality, optimizes land utilization, and reduces

both operator fatigue and the risk of agricultural accidents (Bai

et al., 2023). In addition, autonomous navigation technology also

provides more possibilities for the development of agricultural

robots, further promoting agricultural modernization and laying

an important foundation for the future development of agricultural

technology (Yang et al., 2022). Autonomous navigation technology

is mainly composed of three key components: environment

perception, path planning, and path tracking (Rovira-Más et al.,

2020; Wang et al., 2024). Path tracking plays a critical role in

modern agriculture automation by enabling vehicles to follow pre-

defined trajectories with high precision. This functionally reduces

unnecessary turns and repeated operations, thus enhancing

operational efficiency and productivity. In contrast, manual

driving is prone to human error, which can compromise the

precision of field tasks and lead to increased operator fatigue.

Automated path tracking not only improves operational

consistency but also enables agricultural vehicles to better adapt

to diverse and irregular terrain conditions (Sun et al., 2024).

However, real-world agricultural environments, such as muddy

fields, uneven surfaces, and rough roads, pose significant

challenges to stable and reliable path tracking (Si et al., 2019).

Therefore, improving the robustness and accuracy of path tracking

systems under these conditions is essential for advancing the

practical deployment of autonomous agricultural machinery

(Chen et al., 2023; Cui et al., 2024).

When operating in outdoor environments, unmanned

agricultural machines rely on a real-time dynamic positioning

system to obtain accurate positional data for effective path

tracking (Xie et al., 2023). To enhance the path-tracking

performance of unmanned agricultural machines equipped with

navigation systems, researchers have proposed various control

strategies (Carpio et al., 2020). These models usually employ

lateral and heading deviation as state variables, and have been

widely used in path tracking and control of unmanned agricultural

vehicles due to their practicality and effectiveness (Luo et al., 2022).

To achieve accurate path tracking control of unmanned agricultural

machines, various control strategies have been employed in the

development of path tracking systems. These strategies are mainly

categorized into model-free and model-based control algorithms.

Model-free control algorithms include Proportional-Integral-

Derivative (PID) control, neural network control, and fuzzy logic

control (Cheng and Lu, 2018). Model free control does not require
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an exact model, but typically relies on heuristic rules, empirical

parameters, or historical data. In complex scenarios, control

strategies lacking model guidance may be difficult to adapt

quickly and require manual intervention or long-term online

learning adjustments. Model-based control algorithms primarily

include model predictive control (MPC), pure tracking control, and

Sliding Mode Control (SMC), among others. However, MPC

requires a balance between model accuracy, computational

efficiency, and parameter tuning (Xu et al., 2021). Still, pure

tracking control forward view distance needs to be manually

adjusted according to the speed and the curvature of the path,

and it cannot be adaptive (Ma et al., 2022). Compared to the above

control strategies, SMC is widely used in engineering due to its

strong robustness and adaptability to system parameter

uncertainties and external disturbances, enabling it to deal with

uncertain situations effectively (Ding et al., 2023).

It is worth noting that due to the advantages of the above SMC

has a certain degree of application in engineering practice, but the

actual system, the high frequency switching of the control signal leads

to the system state in the sliding surface near the chattering, and

ultimately affects the stability of the driving of agricultural machinery,

how to reduce the chattering and at the same time to maintain the

system’s interference resistance is still a difficult problem that needs to

be solved (Zhang et al., 2022). Therefore, to overcome the limitations

of existing Siding Mode Control methods, particularly the high-

frequency jitter and parameter sensitivity issues, many scholars have

adopted this approach to enhance system stability. (Ding et al., 2023).

introduced a path tracking model in the presence of unknown

matched and unmatched disturbances and designed a second-order

perturbation observer combined with an adaptive SMC strategy

based on the barrier function. The adverse effects of matched and

unmatched disturbances are counteracted, while the jitter problem of

the designed controller is attenuated. Ultimately, simulations and

experiments verify the superiority of the designed controller.

Super-Twisting Sliding Mode Control (STSMC) is an improved

algorithm for second order SMC. By introducing the second order

sliding mode structure, the switching process of the control inputs is

smoothed, and the high-frequency jitter phenomenon in traditional

SMC is effectively reduced, while maintaining strong robustness.

For example, (Yang et al., 2024). proposed a FSTSM control

algorithm with additional linear and concomitant terms to enhance

path tracking accuracy and robustness for the tracking control

problem of unmanned agricultural machines under unknown

matching disturbances. (Ji et al., 2024). inspired by the traditional

STSMC, this study introduces perturbation observation and

feedforward compensation, constructs a composite STSMC

strategy, and applies it to the pre-aim error dynamic model path

tracking control, and verifies the effectiveness of the algorithm

through the vehicle dynamic simulation tool and hardware-in-the-

loop simulation platform.

Furthermore, when applying kinetic or kinematic tracking

models, it is often assumed in the above literature that the upper

bound of the system perturbation is known; however, in real

operations, the perturbation is random and usually not directly
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accessible through sensors. Considering the physical limitations of

real scenarios and equipment, it can only be ensured that the

disturbances are bounded, but their exact upper bound is often

difficult to determine. Therefore, it is crucial to develop a SMC

method that can effectively handle disturbances, even when their

maximum value is unknown. The structure of this article’s sections

is as follows: In Section 2, the hardware composition and software

architecture of the experimental platform are established, the

workflow of the path tracking system is explained, and a vehicle

kinematic model is developed to lay the foundation for subsequent

controller design; In Section 3, a generalized terminal sliding surface

is designed and a super-twisting sliding mode control law is

constructed to achieve convergence control of path tracking

errors, while an RLS-ELM network is introduced to estimate and

compensate for unknown disturbances, and a Lyapunov function is

built to verify system stability; In Section 4, through simulation

experiments, the proposed method is compared with various

existing controllers, and lateral error and heading error under

different parameters are analyzed, while the disturbance

estimation accuracy of RLS-ELM versus other observers is

compared, and field tests are conducted to verify the superiority

of Extreme Learning Machine-Adaptive Fixed-Time Generalized

Super-Twisting (ELM-AFGST) in real environments; In Section 5,

conclusions and prospects are provided, summarizing the

advantages of the proposed ELM-AFGST control strategy,

pointing out the limitations of the current model, and indicating

future optimization directions. The main contributions of this study

are as follows:
Fron
• This article proposes an adaptive mechanism based on the

RLS-ELM framework, which can achieve effective control

without precise knowledge of the disturbance upper bound.

By recursively updating the model output weights in real-

time, the dependence on prior knowledge of disturbances is

reduced, solving the problem of random disturbances in

actual agricultural operations that are difficult to obtain

directly through sensors.

• Using hyper spiral sliding mode control as the core strategy,

a fixed time generalized terminal sliding mode surface is

designed to overcome the limitation of traditional

disturbance observers that cannot be directly embedded

into the control law. The controller can effectively constrain

the trajectory of the combine harvester under external

disturbances, and the convergence of the system is

theoretically verified through Lyapunov stability analysis,

improving the robustness of path tracking.

• The effectiveness of the ELM-AFGST controller was

verified through simulation testing and field testing of a

combine harvester chassis equipped with RTK-GNSS. The

experimental results confirm that it can achieve high-

precision path tracking, providing a solution that

combines theoretical support and practical value for the

development of autonomous navigation technology for

agricultural machinery.
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2 Experimental materials and system
modeling

2.1 Structure of the automatic navigation
system for unmanned agricultural
machines

2.1.1 Agricultural machinery, automatic
navigation platform

As a key technology in precision agriculture, the unmanned

agricultural machinery automatic navigation system enables the

autonomous operation of the entire agricultural equipment process

through multimodal data fusion and intelligent control technology,

thus reducing labor costs. When the path tracking performance of

the unmanned agricultural machinery automatic navigation system

is insufficient, it will affect the efficiency of agricultural machinery

operation, so it is necessary to design an autonomous navigation

system to achieve the transfer control of agricultural equipment in

the field after the completion of the task. To verify the effectiveness

of the proposed algorithm research, this study implements a path

tracking control scheme on a combine harvester platform as shown

in Figure 1. This study considers a common driving operation

scenario of a harvester travelling, i.e., the reference path often

consists of straight lines and curves, which are often used in

agricultural driving scenarios.

In this study, the world 4LZK-5.0FQ tracked harvester is used as

the research object, which is equipped with a hydraulic

continuously variable speed (HST) system and a paired tracked

travelling mechanism to enable it to adapt to a variety of complex

terrains, such as mud, ruggedness, wetlands, etc., without terrain

limitations. The diesel engine-based tracked vehicle has a powerful

powertrain with high power, stable performance, and low cost.

Therefore, it can efficiently complete a variety of farmland

operations, and it is significant to realize the automatic navigation

and travel capabilities of this type of vehicle. The main technical

parameters of the vehicle are shown in Table 1.
2.1.2 Hardware components of the autonomous
navigation system

The harvester autonomous navigation hardware system is

mainly composed of an external environment sensing module, a

control decision-making module, and an underlying driver module.

The external environment sensing module includes RTK-GNSS for

positioning (Thousand Seek Navigation, G200mini), which adopts

dual-antenna working mode and receives real-time information

such as latitude, longitude and heading angle when the harvester is

moving, as well as the rotation speed of the active track wheel

(E6B2-CWZ5B encoder, OMRON, Japan), which is used to obtain

the real-time speed of the vehicle. The control decision-making

module (Lenovo laptop computer with CPU frequency of 3.6 GHz

and memory of 16GB) receives the information transferred from

the sensing module and the underlying driving module. The CPU

main frequency is 3.6 GHz with 16GB memory (flow), accepts the
frontiersin.org
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information transmitted from the sensing module, carries out the

vehicle position information processing and data saving and other

operations, runs the path tracking control algorithm on the

STM32F429 lower computer, carries out the real-time motion

control of the vehicle, the controller accepts the commands issued

by the upper computer through the CAN bus, and finally sends the

control commands to the controller and accepts the commands

from the upper computer through the CAN bus, and finally sends

the control commands to the aforementioned modified bottom

drive module, to control the harvester and realize the vehicle

walking and steering movements, the overall system composition

of the modified combine harvester is shown in Figure 2.

Tracked harvesters mainly achieve the forward, backward, and

steering control of the single-side braking chassis system through

HST. The system is mainly composed of a variable-displacement

hydraulic pump, hydraulic motors, a control valve group, a

hydraulic oil tank, and pipelines. This type of chassis regulates

the steering cylinder through the steering valve, thereby achieving

precise control of the single-side track clutch: when in - situ steering

is required, the steering valve drives the steering cylinder to

completely disengage the single - side clutch; while during

differential steering, the steering valve controls the clutch to be in

a semi-engaged state, and the turning action is completed through

the speed difference between the two tracks. This not only ensures

the power stability during straight-line driving but also improves

the steering response speed under complex terrains. The turning

radius of the harvester in the differential-steering state is not

adjustable. This type of single-side braking and steering harvester

has five steering modes: neutral, straight-driving, left and right in-

situ steering, and left and right semi-engaged steering. The steering

speed of the harvester increases with the increase of the vehicle

speed, and when the steering speed is relatively fast, it will cause the

harvester to jolt and jump as a whole. Therefore, during error

adjustment, it is regulated in the form of semi-engaged steering.

This provides a precise and reliable operation method. The HST

steering schematic is shown in Figure 3.
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2.1.3 Autonomous navigation system software
components

The core of the perception and planning layer of the autonomous

navigation software layered control system is a self-developed control

platform operating on the host computer. Within this system, the key

position coordinates of the harvester are defined, and a reference path

is generated accordingly. Simultaneously, real-time data collected

from the RTK-GNSS system is analyzed to determine the current

position of the vehicle and to compute path-tracking errors, including

lateral and heading deviations (Hu et al., 2025). In the decision-

making and control layer, an STM32-based controller is used to

deploy the proposed algorithm on the experimental platform. After

receiving the path-tracking deviation data from the perception layer,

the host computer executes the control algorithm. This layer is

responsible for processing multi-sensor data from the harvester via

serial communication and issuing control commands to the low-level

controller. The control architecture is designed based on Lyapunov

stability theory, and theoretical analysis confirms its global

asymptotic convergence. Finally, the computed driving and steering

commands are transmitted to the underlying control layer, whose

main function is to implement closed-loop control of the steering

angle and driving speed. This control structure forms the foundation

for achieving path-tracking control of the vehicle. The overall system

structure is shown in Figure 4.
2.2 Kinematic modelling of tracked
harvesters

Before designing the harvester path tracking control law, it is

necessary to establish the vehicle kinematics model based on its

actual working condition. In the modelling process, the vehicle is

simplified as follows: the driving resistance of the tracked vehicle in

the steering process is the same as during straight driving. The

vehicle suspension and the track tensioning force during steering

process are not considered. The origin of the dynamic coordinate
FIGURE 1

Scenarios of common turnaround driving operations of combine harvester.
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system is coincident with the center of mass, and the simplified

kinematic model of the tracked vehicle is shown in Figure 5. To

better describe the error between the actual trajectory of the vehicle

and the reference trajectory, a global coordinate system XOY is

constructed, and the actual position of the vehicle at moment ‘t’ is

denoted as Ot. The corresponding position is written as ½xt , yt , qt �
the ideal position Od, and the corresponding position at this point is

denoted as ½xd , yd , qd�. Then the trajectory tracking dynamic error

model can be obtained as:

x(t + 1) = x(t) + v · cos (q(t)) · Ts

y(t + 1) = y(t) + v · sin (q(t)) · Ts

q(t + 1) = q(t) + w · Ts

8>><
>>: (1)

ex

ey

eq

2
664

3
775 =

cos qd sin qd 0

− sin qd cos qd 0

0 0 1

2
664

3
775

xt − xd

yt − yd

qt − qd

2
664

3
775 (2)

Where V represents the vehicle speed; w represents the angular

velocity; Ts represents the sampling time interval; q(t) represents the
vehicle heading angle at the current moment; ex and ey are the position

coordinate errors, and eq is the heading angle error. In the global

coordinate system, the vehicle has a body coordinate system with its
Frontiers in Plant Science 05
origin fixed at the center of mass of the vehicle. To achieve an effective

path tracking effect, this study transforms the vehicle trajectory tracking

problem into gradually iterating the lateral offset and heading deviation

to 0 using the designed control law. So the lateral error and heading

error as: ey = −(xt − xd) sin qd + (yt − yd) cos qd , eq = qt − qd .
3 Control scheme design and stability
analysis

3.1 Path tracking sliding mode controller
design

In automatic navigation systems, the purpose of path-tracking

control is to eliminate lateral and heading deviations of the vehicle

and ensure that it can accurately follow the pre-defined reference

path. To achieve this, the present study adopts the generalized

terminal sliding mode control framework to construct a robust

sliding mode surface. This surface is specifically designed to

ensure that both lateral and heading deviations converge to zero

within a finite time during the tracking process. The design of

sliding mode surface and controller is shown in Equations 2–5.

The proposed generalized terminal sliding mode surface is
TABLE 1 Main technical parameters of world 4LZK-5.0FQ crawler harvester.

Technical Parameter Value Performance of walking system Value

L×W×H/mm 5830×3450×3020 Transmission type World dedicated 110 gearbox

Overall quality/kg 4760 Theoretical speed/km·h-1 0.9-6.5

Cutting table width/mm 2360 Track gauge/mm 1250

Feed rate/kg·s-1 5 Track pitch(mm)×Number×W(mm) 90×63×500
FIGURE 2

Overall structure of the combine harvester system.
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FIGURE 3

Schematic diagram of control system structure.
FIGURE 4

Structure of the automatic navigation software system.
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formulated as follows:

s = eq + k1 ey
�� ��a sign(ey) + k2 eqj jb sign(eq) (3)

where k1, k2 > 0, 0<a<1, b > 1, as can be seen by taking a

derivative of it:

_s = _eq + k1a ey
�� ��a−1 _ey + k2b eqj jb−1 _eq (4)

To address the challenges of path tracking disturbances in the

harvester, particularly those arising from variations in reference

path curvature, this study aims to mitigate the high-frequency

oscillations typically observed in conventional sliding-mode

control algorithms upon reaching the sliding-mode surface.

Consequently, a STSMC (Sun et al., 2023) is implemented, and its

design process is described below.

w = wref − l1 sj j1=2sign(s) − l2
Z t

0
sign(s)dt

− (g1 sj ja+g2 sj jb )sign(s) − d̂ (5)

where d̂ is the interference value estimated by the ELM, Wref is

the desired angular velocity. l1, l2 > 0.

After bringing the control law to the first order derivatives of the

sliding mode surface as (Equation 6):

_s = � l1 sj j1=2sign(s)� l2
Z t

0
sign(s)dt �

(g1 sj ja+g2 sj jb )sign(s)� d̂ + k1a ey
�� ��a � 1

_ey+

k2b eqj jb � 1½� l1 sj j1=2sign(s)� l2
Z t

0
s

ign(s)dt � (g1 sj ja+g2 sj jb )sign(s)� d̂ �

(6)
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The collation of Equation 6 gives:

_s = −l1(1 + k2b eqj jb−1) sj j1=2sign(s) − l2

(1 + k2b eqj jb−1)
Z t

0
sin(s)dt

−(1 + k2b eqj jb−1)(g1 sj ja+g2 sj jb )sign

(s) + k1a ey
�� ��a−1 _ey − d̂ (1 + k2b eqj jb−1)

(7)
3.2 Extreme learning machine

In the design of STSMC, the upper bound of the aggregate

perturbation in the path tracking deviation system needs to be known

in advance. However, this upper bound is usually difficult to obtain.

In engineering practice, to solve the problem, through the need to

select a gain to suppress the unknown perturbation suppression, in

this research study, the use of an extreme learning machine network

is proposed to compensate for its perturbation, to reduce the jitter

vibration phenomenon generated by the controller. The specific

derivation is from Equations 8–15. Extreme Learning Machine

(ELM) is an efficient single hidden layer feedforward neural

network (SLFN) training method (Zou et al., 2022). For a single

hidden-layer neural network, suppose there are N arbitrary samples

(Xi, ti) ti = ½ti1, ti2,⋯, tim�T ∈ Rm , the weights from the hidden layer

to the output layer areW = ½W1,W2,…,WL�T , the input weights are
bi = ½bi,1, bi,2,⋯, bi,n�T , for a single hidden-layer neural network with
L hidden-layer nodes can be represented as:

o
L

i=1
Wig(bi · Xj + bi) = oj, j = 1,⋯,N (8)
FIGURE 5

Schematic diagram of harvester path tracking.
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where g(x) is the activation function, bi is the bias of the hidden

layer unit, and Wi is the output weight;

The goal of single-hidden-layer neural network learning is to

minimize the error in the output, which can be expressed as:

o
N

j=1
jjoj − tjjj = 0 (9)

It can be expressed in terms of a matrix as:

HW = T (10)

where H is the output of the hidden layer node, W is the output

weight, and T is the desired output.

H(b1,⋯, bL, b1,⋯, bL,X1,⋯,XL) ==

=

g(b1 :X1 + b1) ⋯ g(bL :X1 + bL)

⋮ ⋯ ⋮

g(b1 :XN + b1) ⋯ g(bL :XN + bL)

2
664

3
775
N�L

(11)

where W = ½WT
1 …WT

L �L�mT = ½TT
1 … TT

N �N�m, for training a

single hidden layer neural network and thus obtaining estimates of

each parameter, makes:

∥H(b̂ i, b̂ i)Ŵ i − Tjj = min
b ,b,W

jjH(bi, bi) Wi − Tj jj (12)

RLS-ELM uses online-recursive least squares to update the

output weights with faster convergence and adaptability to time-

varying systems. The output weights of conventional ELM are

updated by minimizing offline or online gradient descent. The

output weights of RLS-ELM are updated as shown below:

W(k) = W(k − 1) + K(k)½d(k) − HT (k)W(k − 1)� (13)

Its gain matrix is:

K(k) =
P(k − 1)H(k)

h + HT (k)P(k − 1)H(k)
(14)

The formula for updating the covariance matrix is shown below:

P(k) =
1
h
½P(k − 1) − K(k)HT (k)P(k − 1)� (15)
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where l ∈ (0,1] is the forgetting factor, which regulates the

weights of the historical data.

Traditional ELM relies on batch data for offline training and

needs to compute the generalized inverse matrix of the Hermitian

matrix at one time. In this paper, we design the RLS-ELM using the

same framework as the traditional network, which combines the

efficient online updating capability of the recursive least squares

method with the fast initialization feature of ELM, making it

suitable for real-time modelling and control in dynamic

environments. At its core, it avoids repeated computation of the

generalized inverse matrix by recursive updating of the covariance

matrix, which significantly reduces the computational complexity

and leads to better updating of the output weights. The control

schematic of the system is shown in Figure 6.
3.3 Controller stability analysis

In this research, the total number of unknown disturbances and

their time derivatives are bounded (Ji et al., 2023a), dj j ≤ A0
_d
�� �� ≤

A1, where A0 and A1 are two effective constants. The derivation of

stability control is shown in Equations 16–34. It is worth noting that

the unknown perturbation is caused by the presence of poor road

smoothness, sensor noise and the vehicle’s load variations in the

unstructured environment in which the tracked vehicle is travelling,

which always affects the path tracking system and the perturbation

is usually finite, so that it can be regarded as a bounded term, and

similar perturbation assumptions in real scenarios are also found in

the related literature. The actual travelling speed of the tracked

harvester is usually low, which makes the unknown disturbance

change slowly. Therefore, the derivative of the unknown

disturbance can also be considered bounded. Suppose the

nonlinear system is as follows (Ji et al., 2022):

_x = f (x), x(0) = x0 (16)

where the state variable of the system x ∈ Rn and f(x) denotes a

nonlinear continuous function. If this nonlinear system can be

stabilized in finite time and the system stabilization time t1 is

independent of the system initial condition x0,
FIGURE 6

Schematic diagram of control logic for the system.
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lim
t→t1

jjx(t)jj = 0 (17)

and x(t) = 0 when time t > t1, which satisfies the fixed-time

stability condition. Assume that a Lyapunov candidate exists and is

satisfied (Ding et al., 2022):

_V ≤ −y1V
z1 − y2V

z2 + D (18)

Where y1 and y2∈ R, 0< z1<1< z2, 0 < D< ∞, 0 < q<1, then the

state of this nonlinear system is bounded by the following equation

(Li et al., 2023):

lim
t→T

x V ≤ min (
D

(1 − q)y1
)1=z1 , (

D
(1 − q)y2

)1=z2
� �����

��
(19)

Considering the scalar differential equation (Ji et al., 2023b):

_z = −l zj ja sign(z) − m zj jg sign(z) (20)

which equation has the same fixed-time convergence upper

bound T0 for any initial condition z(0):

T ≤ T0(a , g , l,m) =
1

l(a − 1)
+

1
m(1 − g )

(21)

Stability is a prerequisite for the normal operation of control

systems. In practical engineering, systems are often nonlinear and

time-varying. The Lyapunov method directly analyzes the stability

of nonlinear systems by constructing Lyapunov functions, without

the need to solve the system’s differential equations. It directly

determines whether the system has converged to an equilibrium

state through the sign properties of functions and their derivatives,

providing theoretical support for the control design of complex

systems (Moreno and Osorio, 2012). To ensure the stability and

effectiveness of the controller design, the stability of the controller

designed in this research is proved by constructing the Lyapunov

function. The constructed Lyapunov function is shown below:

V =
1
2
s2 +

1
2
~WTP−1 ~W (22)

The derivation of this can be shown:

_V = s_s + ~WTP−1 _~W +
1
2
~WT _P−1 ~W (23)

_V = −l1(1 + k2bjeq jb−1)jsj3=2 − l2

(1 + k2bjeq jb−1)s
Z t

0
sign(s) dt ​ −

(1 + k2bjeq jb−1)(g1 sj ja+g2 sj jb ) − d̂

(1 + k2bjeq jb−1)s + k1ajeyja−1s_ey
+ ~WTP−1 _~W + 1

2
~WT _P−1 ~W

(24)
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Where the actual perturbation in the perturbation estimation

error d consists of the estimation of the ELM d̂ as well as the

approximation error e, as follows:

d = d̂ + e = WTH + e (25)

Where the approximation error of the ELM is bounded ej j ≤ e0,
e0is a constant greater than 0. Due to _~W = − _W substituting this into

the RLS update law:

_W = K(d −HTW) = K(HT ~W + e)
_~W = −K(HT ~W + e)

(
(26)

where W*is the desired weight, ~W = W* −W .

_V = −l1(1 + k2bjeq jb−1)jsj3=2 − l2

(1 + k2bjeq jb−1)s
Z t

0
sign(s) dt ​−

(1 + k2bjeq jb−1)(g1 sj ja+g2 sj jb )

− H ~WT (1 + k2bjeq jb−1)s+
k1ajeyja−1s_ey + 1

2
~WT (hP−1 +HHT )

~W − ~WTP−1KHT ~W − ~WTP−1Ke

(27)

where _P−1 = hP−1 + HHT it can be seen from the above

Equation 1 + k2bjeq jb−1 ≥ 1 K = PH(x)=h. Therefore, Equation
27. can be scaled to:

_V ≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1) −H ~WT

(1 + k2bjeq jb−1) + 1
2
~WT (hP−1 +HHT ) ~W

− ~WTP−1KHT ~W − ~WTP−1Ke

= −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1) −H ~WT

(1 + k2bjeq jb−1)s + 1
2
~WT jhP−1 +HHT ) ~W

− 1
h
~WTP−1PHHT ~W − 1

h
~WTP−1PHe

= −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1) −H ~WT

(1 + k2bjeq jb−1)s + 1
2
~WT jhP−1 +HHT ) ~W

− 1
h
~WTHHT ~W − 1

h
~WTHe

= −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1)

− H ~WT (1 + k2bjeq jb−1)s
+ ~WT( 12 hP

−1 + ( 12 −
1
h )HH

T ) ~W − 1
h
~WTHe

(28)

By using Young’s inequality, Equation 28 can be further scaled

into:
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_V ≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1) − H ~WT (1 + k2bjeq jb−1)s
+ ~WT ( 12 hP

−1 + ( 12 −
1
h )HH

T ) ~W − 1
h
~WTHe

≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1) + 1
2

(1 + k2bjeq jb−1)s2 + (1 + k2bjeq jb−1)jjHjj2jj ~Wjj2

+ ~WT ( 12 hP
−1 + ( 12 −

1
h )HH

T ) ~W + 1
2h jjHjj2jj ~Wjj2+ 1

2h e
2
  0

≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1)

+ (1 + 1
h + k2bjeq jb−1)jjHjj2jj ~Wjj2

+ ~WT ( 12 hP
−1 + ( 12 −

1
h )HH

T ) ~W + 1
2h e

2
  0

≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1)

+ (1 + k2bjeq jb−1)jjHjj2jj ~Wjj2

+ 1
2 hP

−1 ~WT ~W + 1
2 HH

T ~WT ~W + 1
2h e

2
  0

≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1)

+ ( 32 + k2bjeq jb−1)jjHjj2jj ~Wjj2

+ 1
2 hP

−1jj ~Wjj2+ 1
2h e

2
  0

≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1)

+ 1
2 hP

−1jj ~Wjj2+ 1
2h e

2
  0

(29)

By as Jensen’s inequality, Equation 29 can be further scaled into:

_V ≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1)

+ 1
2 hP

−1jj ~Wjj2+ 1
2h e

2
  0

≤ −(1 + k2bjeq jb−1)(g1 sj ja+1+g2 sj jb+1+g1

( ~WTP−1 ~W)
a+1
2 + g22b ( ~WTP−1 ~W)

b+1
2 )

+g1(1 + k2bjeq jb−1)( ~WTP−1 ~W)
a+1
2 + g22b

(1 + k2bjeq jb−1)( ~WTP−1 ~W)
b+1
2 + 1

2 hP
−1jj ~Wjj2+ 1

2h e
2
  0

≤ −(1 + k2bjeq jb−1)(2g1V a+1
2 + g2V

b+1
2 ) + g1

(1 + k2bjeq jb−1) + g1(1 + k2bjeq jb−1)(P−1jj ~Wjj2)a+12

+g22b (1 + k2bjeq jb−1)(P−1jj ~Wjj2)b+12 + 1
2 hP

−1jj ~Wjj2+ 1
2h e

2
  0

(30)

Let Lmin (P) be the smallest eigenvalue of matrix P, then it can

be further calculated along Equation 30:

_V ≤ −2g1(1 + k2bjeq jb−1)V a+1
2 − g2

(1 + k2bjeq jb−1)V
b+1
2 + 2g1(

jj ~Wjj2
Lmin(P)

)
a+1
2

+g2(
jj ~Wjj2
Lmin(P)

)
b+1
2 + 1

2 h
jj ~Wjj2
Lmin(P)

+ 1
2h e

2
  0

(31)

Equation 27 can be obtained:

_V ≤ −y1V
a+1
2 − y2V

b+1
2 + D (32)
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Among them:y1 = 2g1(1 + k2bjeq jb−1),y2 = g2(1 + k2bjeq jb−1),
D = 2g1(

jj ~Wjj2
Lmin(P)

)
a+1
2 + g2(

jj ~Wjj2
Lmin(P)

)
b+1
2 + 1

2 h
jj ~Wjj2
Lmin(P)

+ 1
2h e

2
  0Thus, the

sliding mode variable s will converge to an arbitrarily small

neighborhood of the origin in a fixed time limited by a constant:

T ≤
1

y1(
a+1
2 − 1)

+
1

y2(1 −
b+1
2 )

(33)

The convergence time is independent of the initial path tracking

offset, thus completing the stability proof of the controller proposed

in this study (Zuo, 2015). The convergence region r is:

r = lim
t→T

x V ≤ min (
D

(1 − q)y1
)

2
a+1 , (

D
(1 − q)y2

)
2

b+1

� �����
��

(34)

Compared with the existing methods, the control scheme

designed has the following advantages: (1) a fixed-time generalized

terminal sliding mode surface is designed, which significantly

improves the convergence speed, robustness and anti-interference

ability of the system through the nonlinear structural design and the

convergence time decoupling mechanism; (2) the super-twisting

control law significantly improves the control accuracy and

dynamic response performance under the complex perturbation by

utilizing the higher-order sliding mode technique;(3) The RLS-ELM

estimator is used to update the uncertainty boundary, and the RLS

algorithm updates the weight matrix by recursive formulae, avoiding

the repeated inverse operation of the matrix under the traditional

ELM, reducing the computational volume significantly, and achieving

real-time and accurate estimation of the dynamic and complex

uncertainty boundary.

In the ELM-AFGST control strategy proposed in this article, the

parameter selection criteria for the proposed control are given as

follows: (i) k1 and k2 in formula (3) are the lateral error gain and

heading error gain, respectively. The larger the values of these

parameters, the faster the convergence speed, but the larger the

control signal caused. During the experiment, appropriate

parameters are manually adjusted to obtain them; a and b are

related to the upper bound of fixed time convergence. Although

larger values shorten the stable time value, they can cause chattering

in the controller and affect its performance; (ii) In formula (5), l1
and l2 are the sliding mode approach gain and integral

compensation gain, respectively, which determine the approach

speed of the sliding mode surface and eliminate steady-state errors.

However, larger values can cause significant chattering during the

convergence process, thereby affecting control performance.

Therefore, it is necessary to choose appropriate coefficients. a and

b are related to the upper bound of fixed-time convergence.

Although larger values shorten the stable time value, they can

cause chattering in the controller and affect its performance; (iii)

RLS-ELM updates the uncertainty bound and relaxes the

requirement for upper bound information in traditional sliding

mode control. As the number of hidden layer nodes increases, ELM

can approximate the true value with arbitrary precision. However,

when the number of hidden layer nodes is too large, it can lead to an

increase in the probability of feature diversity due to random

weights and a decrease in computation speed. Therefore, in edge
frontiersin.org

https://doi.org/10.3389/fpls.2025.1678648
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1678648
devices or real-time systems, it is necessary to balance model

performance and computing resources and choose a reasonable

L value.
4 Analysis of simulation and field
experiment results

4.1 Analysis of simulation experiment
results

To verify the effectiveness of the ELM-AFGST control strategy

proposed, relevant simulation experiments are necessary. The

control system simulation is carried out in the MATLAB

environment, and to make the comparative simulation more

comprehensive and convincing, two different interference

operation environments are considered. In the simulation

comparison experiment, the simulated paths are the common “S”

shaped curves and multi-curved paths in the driving process of

agricultural machines (Zhang et al., 2025). The “S” shaped curve,

which consists of straight and curved road features, was selected as

the reference operating path for control strategy validation in both

cases. It is essential to ensure vehicle stability while driving on a

predetermined trajectory. In the simulation, the initial coordinate

position and heading angle of the vehicle are set to [2, –1, 0], and the

starting point of the reference operation path is set to the coordinate

origin. In addition, to test the robust performance of the control

scheme designed, disturbances are introduced and set to: r =

6Vt cos (qos) sin (t). The different controller parameters are shown

in Table 2.

4.1.1 Comparison of the effects of different
speeds

The core goal of SMC is to quickly and stably converge the

system state to the sliding surface, that is, to force the system to

converge to a state with zero error through the sliding surface, thus

achieving tracking of the reference trajectory and robustness to

disturbances and parameter changes. During the movement of the

harvester, as the speed changes, the dynamic parameters of the

system, such as inertia and damping, will also change accordingly

(increasing at high speeds and decreasing at low speeds). If the

expected angular velocity is not adjusted with speed, the sliding

surface may deviate from the optimal trajectory due to system
Frontiers in Plant Science 11
parameter drift, resulting in increased tracking error or control

oscillation. The steering system of the harvester has speed-related

damping characteristics: as the speed increases, the damping of the

steering mechanism will increase. Specifically, when the harvester is

driving at high speed, the system sends the same control command,

and the actual angular velocity output will decrease. Increasing the

expected angular velocity at this time is essentially by increasing the

command strength, offsetting the output attenuation caused by

damping growth, and ensuring that the actual angular velocity can

reach the required value for tracking the path; When the vehicle is

driving at low speeds, the damping is small, the steering flexibility is

high, and a small expected angular velocity can meet the response

requirements. If the command is too large, it may even lead to

overshoot. This adjustment enables the sliding mode controller to

maintain stable tracking accuracy even when the speed dynamically

changes. The angular velocity output results of the controller at

different speeds are shown in Figure 7. As the vehicle speed

increases, the expected angular velocity of the vehicle will also

increase. When the vehicle speed decreases, the expected angular

velocity of the vehicle will also decrease. This reflects the robustness

of the sliding mode controller designed for different vehicle speeds,

enabling the harvester to stably travel along the preset path during

path tracking. Therefore, in the subsequent simulation, in order to

balance efficiency and control effect, the simulation and

experimental speed were set to 1m/s.

4.1.2 Comparison of the effect of different
controller algorithms

Under the “S” curve simulation, the linear controller,

represented by the PID algorithm, the model control algorithm,

represented by the pure tracking algorithm, and the sliding mode

controller designed are used for comparison in the experiment. The

simulation results for path tracking are shown in Figure 8, and the

path comparison results are presented in Figure 8A. From the

figure, it can be observed that the use of the ELM-AFGST controller

significantly reduces overshooting during path tracking and

improves the vehicle’s tracking accuracy. Considering that

vehicles often encounter turning and other maneuvering

scenarios during actual driving, the ELM-AFGST controller

proposed can effectively improve the driving efficiency of

agricultural machines. The comparative results of the lateral

deviation and heading deviation simulations are shown in

Figures 8B, C, from which it can be seen that the tracking error is

the most stable during the path tracking process using the ELM-

AFGST controller, which exhibits good robustness and the ability to

suppress oscillations, which means that the vehicle can follow the

desired path stably. It is worth noting that the PID controller has a

slower response because it does not have a good anti-interference

ability itself. The pure tracking algorithm is complex to obtain the

optimal forward-looking distance because its tracking performance

relies heavily on the selection of the forward-looking distance, so it

produces large fluctuations in the path tracking when they are

finally obtained, and the oscillations are obvious in the middle and

late stages, and the stability is poor. Additionally, the simulation

results show that in practical agricultural applications, the steady-
TABLE 2 Parameters of different controllers.

Control scheme Parameters

PID kp = 5, ki = 0.1, kd= 15

Pure Pursuit L= 6, ky = 15, kq = 30

FTSMC k1 = 1.2, a = 0.7, l1 = 10, l2 = 10

AFGST k1 = 150, k2 = 40, l1 = 5, l2 = 4, a = 0.8, b= 1.7

ELM-AFGST
k1 = 150, k2 = 40, l1 = 5, l2 = 4, a = 0.8, b= 1.7,

L=20
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state tracking error can be reduced by adjusting the control gain

appropriately. However, a too large control gain may induce

oscillations in the control signal.

To further investigate the effectiveness of the ELM-AFGST

controller proposed in this study to control the agricultural machine

to track the multi-curved reference path consisting of straight lines

and circular arcs. The angular velocity control input diagram of the

path tracking system is shown in Figure 9. From Figure 9, it can be

seen that in the path tracking control scenario, the FGST control input

exhibits a certain degree of regular fluctuation. However, from the

local magnified image, it can be seen that there are still small high-

frequency vibrations in some periods; The fluctuation frequency and

amplitude of the FTSMC control input are prominent, with obvious

oscillation characteristics. This is due to the hard switching

characteristic of the sign function in traditional terminal sliding

mode control, which can easily cause frequent jumps in the control

signal and impose a significant burden on the actuator, increasing the

risk of mechanical vibration; Although there is some fluctuation in the

ELM-AFGST control input, it is less compared to other controllers,

reflecting the effect of RLS-ELM real-time disturbance compensation

and integral smoothing of super distortion control law, which to some

extent suppresses high-frequency chattering.
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The path tracking simulation results are shown in Figure 10.

Figure 10A shows the actual results of the three controllers for

tracking the path, and Figures 10B, C show the lateral error and

heading error of the controls of the three controllers. From

Figures 10B, C, it can be seen that the lateral deviation and

heading error converge to zero quickly with the proposed ELM-

AFGST controller, which is crucial for enhancing the tracking

capabilities of autonomous agricultural vehicles. The system

control stabilization time of the proposed ELM-AFGST controller

and FGST controller is about 2 s, and the system control

convergence time of the FTSMC controller is about 3.2 s. From

the arrival system stabilization times of the three controllers,

FTSMC, FGST, and ELM-AFGST, it can be seen that the

proposed ELM-AFGST controller exhibits faster transient stability

than the other two. The transient response speed of the proposed

ELM-AFGST controller is faster than the other two controllers, and

the steady-state average heading error is 0.002 rad/s. The error

curves after path tracking under the control of the FTSMC

controller and the FGST controller exhibit a more pronounced

chattering phenomenon compared to the ELM-AFGST. The

proposed controller can be seen to have reduced the system’s

jitter to a large extent. It shows that the RLS-ELM network
FIGURE 7

Control effects at different vehicle speeds (A) different trajectories, (B) different expected angular velocities.
FIGURE 8

Multi-curved path tracking results (A) different trajectories, (B) lateral error, (C) heading error.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1678648
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1678648
designed can estimate the unknown disturbances of the system

while making online adjustments to suppress the jitter caused by

nonlinearities and uncertainties, which ensures the fixed-time

stability of the system while avoiding the generation of excessive

estimates when the disturbances vary greatly, and thus obtains more

excellent stability. These results highlight the effectiveness of the

ELM-AFGST controller when it comes to stable tracking

performance during start-up and transition, and therefore, the

ELM-AFGST controller designed is suitable for practical

unmanned agricultural machine travel.

4.1.3 Comparison of the effects of different
observers

The above simulation comparison results in two different cases

show that ELM-AFGST achieves better path control performance

compared to other control methods. However, to better reflect the

advantages of the RLS-ELM disturbance estimation designed, it

needs to be verified in comparison with other common NDO and

ESO observers. The results of disturbance estimation comparison

are shown in Figure 11. From the figure, it can be seen that RLS-

ELM provides a more accurate estimation of the disturbance when

the disturbance signal changes sharply in the initial stage and does

not require an accurate upper bound value of the disturbance, and

compared with the rest of the observation compensators, it has the
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best estimation of the disturbances. It is better suitable to

agricultural terrain scenarios.

Considering that the disturbance observation error is an

important index to measure the performance of the observer

ultimately, the integral absolute error (IAE) and the mean

absolute error (MAE) are used as the performance indexes, which

are shown in Figure 12 for different compensation controls. From

the comparison results in the figure, it is clear that the observation

accuracy of RLS-ELM is better than that of the other observers. It is

worth noting that the state observation in path tracking control

systems plays a crucial role in solving practical engineering

problems. Not all state variables can be directly measured during

the travelling process of the tracked harvester. The system

compensation by RLS-ELM can provide complete and accurate

perturbation state information for the controller designed, thus

improving the tracking accuracy.
4.2 Analysis of site experiment results

To verify the feasibility of the method proposed in this research,

a comparative experiment under different path tracking algorithms

was carried out through the reference path on the map, the

experiment time was May 2025, the location is in the vicinity of
FIGURE 9

Input diagram of angular velocity control for path tracking system.
FIGURE 10

S-shaped path tracking results (A) different trajectories, (B) lateral error, (C) heading error.
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Leisi Building, Jiangsu University, Zhenjiang City, Jiangsu Province,

China the desired path is shown in Figure 13. The concrete ground

is hard, and the overall road surface condition is good. However, the

presence of surface unevenness or stones on the road surface has a

certain impact on the path control effect, which can be considered

as a form of matching disturbance. Analyzing the deviation results

between the actual driving path and the desired path is an

important indicator of control performance. The actual driving

environment is more complex compared to the computer

simulation; the situation encountered is more complicated, which

will further enhance the difficulty of controlling the combine

harvester. Therefore, to avoid the error effects generated by the

jitter error when the harvester starts to move forward, the tracking
Frontiers in Plant Science 14
operation is carried out after the harvester has travelled smoothly

and straightly for three seconds, and the position data is recorded in

real time. The vehicle’s lateral error under the initial state is 2 m,

and the heading error is 0 rad.

The error during path tracking under different control schemes

are shown in Figure 14. From the error results, the proposed control

scheme has a better control effect in eliminating the path error, and

compared with the other control scheme, the ELM-AFGST control

scheme has the fastest convergence in tracking error and the

smallest amount of overshooting. In the simulation experiment,

the convergence time was 4.68 s, while in the actual test process, the

convergence time was 8.84 s. The main reason for this is that in

actual testing, to avoid overloading of the mechanical structure due
FIGURE 11

The lumped disturbance estimation under RLS-ELM, ESO, and NDO.
FIGURE 12

Comparison of observational performance with different metrics.
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to rapid steering, the hydraulic controller embedded dynamic

constraints (steering angular velocity not exceeding 0.5 rad/s),

which were not set in the simulation. Although this engineering

design reduces the risk of mechanical wear and tear, it objectively

delays the convergence speed of errors, resulting in actual

convergence time being longer than the simulation results and

when the hydraulic pressure switches direction (such as adjusting

from left to right), it is necessary to first overcome the empty stroke

caused by mechanical clearance, which is ignored in the simulation

and increases additional adjustment time. And the calculation delay

of GNSS positioning module will also increase the time, so the final

convergence time is greater than the actual simulation time.

The experiment results show that the harvester’s tracking

accuracy in turns is lower than during straight-line navigation.

This is mainly because, during a curve, the combine harvester’s

angular velocity varies frequently, and there is a certain lag in the

steering actuator. When driving in a curve, the actuator lags in its

response time, leading to increased tracking errors. Throughout the

entire tracking process, to better demonstrate the superiority of the

proposed scheme, the MAE is used in Table 3 to represent lateral

and heading errors across different control schemes. The scheme

introduced in this study has the best control performance.

Specifically, compared to the FGST and FTSMC control schemes,
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the average lateral errors with ELM-AFGST control scheme

decreases by approximately 24.5% and 27.4%, respectively.

Regarding heading deviation, the average error is reduced by

about 5.4% and 30.8% compared to the FGST and FTSMC

schemes, respectively, and no out-of-control incidents occur

during operation, the path tracking process is shown in Figure 15.

The experiment results demonstrate that the designed control

scheme exhibits good control performance in the actual driving

environment and does not cause the system to crash due to

computational burden, thus ensuring the standard recording of

experiment data, in the vehicle tracking scene, adjusting the vehicle

speed has limited impact on the overall tracking effect. The tracking

algorithm can adaptively adjust through the state update equation

to maintain a stable estimation of the target position and trajectory,

so there is no need to pay too much attention to the impact of

vehicle speed fine-tuning on the tracking results. In the complex

field environment, the harvester driving performance will be

affected by many factors, such as the relative unevenness of the

road surface or the presence of weeds and clods of soil, the attitude

of the entire machine is more undulating when it is travelling, which

leads to an increase in the amount of offset, and therefore the offset

distance is greater than that during the experiment conducted in the

simulation environment.
FIGURE 13

Actual scenarios. (A) satellite map trajectory map (B) path trajectories under different control schemes.
FIGURE 14

Actual path tracking results (A) lateral error; (B) heading error.
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5 Discussion

The proposed ELM-AFGST path-tracking controller has

demonstrated strong performance in both simulations and

experiments, confirming its ability to handle external disturbances

and maintain stability. However, a more detailed analysis highlights

several key considerations: Compared with traditional path tracking

control methods FTSMC and FGST, the proposed ELM-AFGST

method achieves superior robustness and accuracy. The design of a

generalized terminal sliding mode surface with adaptive gain

coefficients improves adaptability, while the integration of RLS-

ELM provides online learning to mitigate uncertain disturbances.

These contributions address the shortcomings of conventional

controllers, which often suffer from sensitivity to parameter

tuning and degraded performance under variable disturbances.

The proposed controller therefore narrows an important gap by

combining fixed-time convergence with adaptive intelligence,

offering both stability and flexibility in dynamic agricultural
Frontiers in Plant Science 16
environments. This study verifies the effectiveness of the proposed

control strategy based on a kinematic model. Although the design

process of path tracking control is simplified, it does not fully

describe the key track slip characteristics in unstructured

agricultural environments, which directly leads to deviations

between the actual driving trajectory and the theoretical path.

Meanwhile, the model ignores the dynamic coupling effect of the

load, which in turn affects the steering response and driving

stability. These dynamic deviations have not been included in the

current control system.

This control method has been validated to meet the operational

requirements of autonomous agricultural vehicles in structured

road environments. However, its potential application in

unstructured field scenarios has not yet been tested. Future work

will be focused on testing in an unstructured environment, under

conditions such as variable soil moisture contents (simulating soft

fields), residual crop coverage, and cross-slope driving to evaluate

the control effect on lateral errors and heading deviations caused by

track slippage. Load variations (e.g. empty-load and fully-load

conditions) should also be considered to assess adaptability under

dynamic working states and determine whether the existing model

can cope with the dynamic disturbances unique to unstructured

environments. Moreover, in the field of plant protection, the

autonomous sprayers equipped with the path tracking technology

can accurately drive along the crop lines or the pest areas identified

by sensors, reducing the risk of environmental pollution while

improving effectiveness. Similarly, in pest and disease monitoring,

autonomous inspection equipment combined with path-tracking
TABLE 3 Comparison of performance indicators of different control
schemes.

Control scheme
Lateral error Heading error

RMSE MAE RMSE MAE

FTSMC 0.1492 0.1142 0.3910 0.2130

FGST 0.1453 0.1097 0.3228 0.1558

ELM-AFGST 0.1159 0.0828 0.2756 0.1473
FIGURE 15

Combine harvester path tracking process.
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technology can collect data according to the preset path, ensuring

full coverage of key monitoring points in complex terrain, helping

to detect early signs of pest and disease outbreaks, and supporting

precise prevention and control.

While the proposed controller improves adaptability, further

work is needed to enhance robustness in highly dynamic

conditions. Current parameter tuning and ELM node selection

are still empirical, and fixed parameters are difficult to adapt to

dynamic disturbances in the field. In the future, dynamic model

constraints need to be introduced, and the integration of parameter

adaptive optimization algorithms such as reinforcement learning

with existing control frameworks needs to be explored. By

dynamically adjusting the weights of core parameters online, the

dependence on manual experience can be reduced, and the system

can maintain stable control performance under different crop types,

soil conditions, and operating modes, further expanding the

applicability of the technology.
6 Conclusion

This study addressed the challenge of path tracking for

autonomous navigation of tracked harvesters under external

disturbance conditions. An AFGST control method integrated with

RLS-ELM is developed, and its effectiveness is verified through

simulation and structured road tests. The research results show that

the proposed controller achieves fixed-time and significantly reduces

tracking errors compared with conventional controllers, lowering

lateral error by about 24-27% and heading deviation by 5-31%.

These findings confirm that the method provides robust and precise

path-tracking performance, meeting the requirements for unmanned

operation of agricultural vehicles. The practical contribution lies in

offering a reliable control strategy that supports high-precision

autonomous navigation, thereby improving operational efficiency

and providing technical support for promoting the transformation

of agricultural production towards intelligence and sustainability.

Future research will extend validation to unstructured field

environments and incorporate dynamic modeling and adaptive

parameter optimization to further improve system robustness and

adaptability in complex agricultural scenarios.
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