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Introduction: Establishing an appropriate irrigation schedule is fundamental for

the sustainable management of agricultural water resources, effectively

alleviating water scarcity and ensuring regional food security.

Methods: In this study, the AquaCrop model was calibrated and validated using

field experimental data of winter wheat collected from 2022 to 2024. Irrigation

schedules for three typical rainfall years—wet, normal, and dry—were

determined, and a multi-objective optimization approach was proposed by

coupling the AquaCrop model with the entropy weight method.

Results: The results showed that the AquaCrop model accurately simulated

canopy cover, aboveground biomass, soil water storage, and yield of winter

wheat. To achieve the maximum yield, 15, 16, and 18 irrigation events were

required in wet, normal, and dry years, respectively, with an irrigation quota of 30

mm per event and a lower soil water content threshold maintained at 50% of

readily available water (RAW). In contrast, when the objective shifts from

maximizing yield to maximizing water use efficiency (WUE), the highest WUE

was achieved with 3, 4, and 5 irrigations in wet, normal, and dry years,

respectively, with RAW thresholds of 90%, 90%, and 80%, and an irrigation

quota of 80 mm. When considering multi-objective optimization to minimize

irrigation water while maximizing yield and WUE, the recommended irrigation

schedules were 3 irrigations for wet years and 4 irrigations for both normal and

dry years, with RAW thresholds of 90%, 90%, and 110%, respectively, and an

irrigation quota of 80 mm.

Discussion: The findings provide a theoretical basis and technical support for

developing optimized irrigation schedules and making informed irrigation

decisions for winter wheat in arid regions.
KEYWORDS

irrigation schedule, aquacrop model, winter wheat, entropy weight method,
irrigation decision
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1 Introduction

Wheat is the second most widely produced cereal crop globally,

and winter wheat accounts for approximately 75% of the total wheat

cultivation area, exerting a significant influence on global food

security (Wang and Zhang, 2020). Xinjiang, located in an arid and

semi-arid region, is one of the most important agricultural

production areas in China (Wang et al., 2012). In 2024, the

winter wheat planting area in Xinjiang reached 883,000 hectares,

with a total output of 7.03 million tons (Ma et al., 2023). However,

the region receives an average annual precipitation of only 270 mm,

while the annual surface evaporation is about 1,000 mm.

Agriculture accounts for 93.2% of total water consumption in

Xinjiang, with agricultural water use reaching 51.37 billion m3 in

2017, and the proportion in southern Xinjiang exceeding 96%

(Wang et al., 2021). Persistent drought and severe water scarcity

have become critical constraints on the sustainable development of

agriculture in this region (Li et al., 2020). Therefore, developing

appropriate irrigation schedules and improving water use efficiency

(WUE) are essential to promoting sustainable agricultural

development in Xinjiang.

Traditionally, irrigation schedules have been determined

through field experiments or theoretical calculation methods.

However, field experiments are time-consuming and labor-

intensive, and their results often have limited applicability for

large-scale promotion (Shen et al., 2020). Theoretical approaches

are usually based on the water balance principle, in which reference

evapotranspiration is commonly estimated using the Penman–

Monteith equation and then multiplied by a crop coefficient (Kc)

to determine actual crop evapotranspiration. However, accurately

determining Kc is challenging (Nie et al., 2024), and when water

stress occurs during crop growth, evapotranspiration calculated

using the Penman–Monteith equation often exceeds the actual

values (Fernández, 2023). In recent years, with the continuous

development of crop growth models, they have been widely

applied for irrigation scheduling. Representative models include

WOFOST (de Wit et al., 2019, 2012), DSSAT (Dettori et al., 2017;

Porter et al., 2010), APSIM (Chimonyo et al., 2016; Li et al., 2009),

and AquaCrop (Foster et al., 2017), each differing in modeling

principles and focus, while AquaCrop focuses on soil-water-driven

crop growth and yield formation, requiring fewer input parameters

and offering a user-friendly interface, making it particularly suitable

for analyzing the relationship between soil moisture and yield and

for water management applications (Yang et al., 2022; Guo et al.,

2018; Ran et al., 2017).

The AquaCrop model simulates crop yield through canopy

cover and harvest index under different management practices and

irrigation scheduling, evaluating the yield response to water

availability via WUE (Zhang et al., 2017; Wang et al., 2015).

AquaCrop has been applied to various crops such as rice, wheat,

and maize to develop efficient irrigation strategies that maximize

water productivity while maintaining high yields (Sharafkhane

et al., 2024). For instance, Gadédjisso-Tossou et al. (2020)

simulated maize growth under full and deficit irrigation in the

semi-arid regions of West Africa, while Boulange et al. (2025)
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applied AquaCrop to simulate cotton growth in the semi-arid

climate of Uzbekistan. Amiri et al. (2014) compared CERES-Rice,

AquaCrop, and ORYZA2000 models for rice under different

irrigation timings and nitrogen levels and found that AquaCrop

provided more accurate yield estimates. Singh et al. (2013)

simulated wheat growth under flood irrigation in West Bengal,

India, with good agreement between simulated and observed yields.

In northern China, Du et al. (2011) used AquaCrop to simulate

winter wheat biomass and yield under drip, sprinkler, and flood

irrigation, achieving model efficiency indices above 0.95, with drip

irrigation showing the highest simulation accuracy. Unlike the

light-driven DSSAT model or the CO2-driven WOFOST model,

AquaCrop is a water productivity-driven model developed by FAO

that calculates daily soil-water balance, making it more suitable for

assessing the impacts of water availability on crop yield (Raes et al.,

2009a; Steduto et al., 2009). Abedinpour (2021) simulated wheat

growth under varying water and nitrogen levels using DSSAT-

CERES and AquaCrop and recommended AquaCrop due to its

lower data requirements and reliable yield estimation. Although

AquaCrop has been widely used to optimize irrigation scheduling

for winter wheat, most studies have focused on single objectives

such as minimizing irrigation water, maximizing yield, or

maximizing WUE. Few studies have comprehensively considered

multi-objective optimization that simultaneously balances

irrigation water use, yield, and WUE, which is critical for

improving irrigation decision-making in water-scarce regions.

Therefore, the objectives of this study were to: (i) calibrate and

validate the AquaCrop model parameters using winter wheat field

experiments conducted from 2022 to 2024; (ii) evaluate the impacts

of different irrigation scenarios on winter wheat yield and WUE

using the AquaCrop model; (iii) couple the AquaCrop model with

the entropy weight method to comprehensively assess irrigation

scenarios based on irrigation water use, yield, WUE, and to identify

the optimal irrigation schedule for winter wheat in the study area.
2 Materials and methods

2.1 Study area description

Field experiments on winter wheat were conducted over two

growing seasons from September 2022 to June 2024 at Huaxing

Farm, Changji City, Changji Hui Autonomous Prefecture, Xinjiang,

China (44°15′22″N, 87°15′34″E) (Figure 1). The study area is

characterized by a typical inland desert climate, with a mean

annual temperature of 6.6 °C, an average annual precipitation of

280 mm, a mean annual evaporation of 1,787 mm, and a total

annual sunshine duration of 2,833 h.
2.2 Data collection

2.2.1 Meteorological data
Meteorological data were collected from an on-site automatic

weather station (HOBO U30, USA) installed at the experimental site,
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which continuously monitored air temperature, relative humidity,

solar radiation, atmospheric pressure, wind speed, wind direction, and

precipitation. During the experimental period (September 2022 to July

2024), daily precipitation (Rain), maximum and minimum air

temperatures (Tmax and Tmin), and reference evapotranspiration

(ET0) are shown in Figure 2. The ET0 during the winter wheat

growing season was calculated using the FAO-56 Penman–Monteith

equation, as modified by Allan et al. (1998) and Raes (2009b), with the

aid of the FAO ET0 Calculator. The evapotranspiration file (.ET0),

rainfall file (.PLU), temperature file (.TMP), and the default

atmospheric CO2 concentration file (GlobalAverage.CO2) (Keeling

and Whorf, 2005) were combined to generate the climate input file

(.CLI) required by the AquaCrop model.

2.2.2 Crop data
The winter wheat cultivar used in this study was “XinDong 22”,

with a planting density of 450,000 plants ha−1. Sowing dates were 16

September 2022 and 12 September 2023, respectively. Wheat was

sown in rows with an equal row spacing of 15 cm and a seeding

depth of 3 cm. Harvesting was carried out on 9 July 2023 and 25

June 2024. For the 2022–2023 growing season, seedling emergence

occurred 10 days after sowing (DAS 10). The leaf area index (LAI)

increased steadily until the jointing stage (DAS 226), reached

maximum canopy cover at the heading stage (DAS 248), and

then gradually declined during flowering (DAS 259), followed by

senescence in the late grain-filling stage (DAS 272). Physiological

maturity occurred 300 days after sowing. For the 2023–2024

growing season, emergence, maximum canopy development,

onset of senescence, and maturity were observed at DAS 8, DAS

230, DAS 246, DAS 256, DAS 270, and DAS 288, respectively.

2.2.3 Management data
From September 2022 to July 2023 and from September 2023 to

June 2024, the experiments were arranged in a completely

randomized design, with each plot covering an area of 120 m2.
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Based on local farmers’ production practices, a drip irrigation system

was adopted, and the irrigation schedules are presented in Table 1.

Irrigation during the winter wheat growing seasons started on 11

April 2023 and 22 April 2024, respectively. Fertilization rates were

consistent across both seasons: 227 kg ha−1 of urea (N ≥ 46%), 195 kg

ha−1 of monoammonium phosphate (P2O5 + N ≥ 55%), and 150 kg

ha−1 of potassium chloride (K2O ≥ 60%). Monoammonium

phosphate and potassium chloride were applied as a basal fertilizer

before sowing, while urea was top-dressed in three split applications.

Each treatment was replicated three times. Three rows of buffer plants

were established around the experimental field to minimize border

effects. Other pest, disease, and weed management practices followed

local high-yield field management standards.
2.2.4 Soil data
Before sowing winter wheat, ten sampling points were

randomly selected within the experimental field. Soil samples

were collected using a soil auger at seven depth intervals: 0–10,

10–20, 20–30, 30–40, 40–60, 60–80, and 80–100 cm. The samples

were sealed in polyethylene bags, oven-dried, and analyzed to

determine soil bulk density, field capacity, saturated water

content, and initial soil water content (Table 2). Soil bulk density

and initial water content were measured by cutting ring method and

drying method, respectively. The cutting ring that contained the soil

sample was placed in a container of pure water for 24 h to slowly

absorb water and saturate it, before being removed to determine the

soil saturated water content. Subsequently, the saturated cores were

placed on dry soil to allow gravitational water to drain, and the soil

field capacity was then measured. According to the USDA Soil

Taxonomy, the soil texture of the experimental site was classified as

silty loam. The two experimental seasons were conducted on the

same plots, and the stratified mean soil parameters for each plot are

listed in Table 2. The chemical properties of the topsoil (0–20 cm)

were as follows: soil organic matter 11.3 g kg−1, available nitrogen

58.4 mg kg−1, available phosphorus 24.4 mg kg−1, and available
FIGURE 1

The location of experimental site.
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potassium 229 mg kg−1. The measured soil physical and chemical

properties were incorporated into the AquaCrop model to generate

the soil input file (*.SOL).

2.2.5 Canopy cover, aboveground biomass, soil
water storage and yield

During the jointing, heading, flowering, grain-filling, and

maturity stages of winter wheat, soil samples were collected from

seven depth intervals: 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm,

40–60 cm, 60–80 cm, and 80–100 cm. The gravimetric soil water

content of each layer was determined using the oven-drying

method. Based on the gravimetric water content, bulk density,

and soil layer thickness, the soil water storage (SWS, mm) in the

0–100 cm profile was calculated using the following Equation (1):

SWS = 10� qm � BD�H (1)

where qm is the gravimetric soil water content (cm3 cm−3), BD is

the soil bulk density (g cm−3), and H is the thickness of the soil

layer (cm).

During the jointing, heading, flowering, grain-filling, and

maturity stages of winter wheat, ten representative plants were

selected from each plot. For each plant, the maximum length and

width of all green leaves were measured, and the LAI was calculated

according to Equation (2) Heng et al. (2018):

LAI = 0:75� r �
o
m

j=1
(Lnj �Wnj)

m
(2)

where r is the planting density (plants m−2),m is the number of

sampled plants, Lnj is the maximum length of the j-th leaf (cm),Wnj
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is the maximum width of the j-th leaf (cm), 0.75 is the leaf

shape coefficient.

Canopy cover (CC) represents the degree of crop canopy

development, expressed as the proportion of green leaf area

covering the plot surface. It was derived from the LAI and

calculated according to Equation (3) (Katerji et al., 2013):

CC = 1:005� (1 − e−0:6LAI)1:2 (3)

During the jointing, heading, flowering, grain-filling, and

maturity stages of winter wheat, ten representative plants were

selected from each plot. The aboveground plant samples were first

oven-dried at 105 °C for 30 min to deactivate enzymes and then

dried at 80 °C to a constant weight to determine the aboveground

biomass. At maturity, uniform areas within each plot were selected

to measure yield components, including the number of spikes per

meter in two adjacent rows, the number of grains per spike, and the

thousand-grain weight. For yield determination, a 3 m2 area was

harvested from each plot, threshed, and weighed to record the yield.

2.2.6 Water use efficiency
WUE was defined as the yield obtained per unit of water

consumed and was calculated according to Equation (4) (Tan

et al., 2018):

WUE =
Y

10� ET
� 1000 (4)

where Y is the yield (t ha−1), and ET is simulated

evapotranspiration during the entire growing season (mm). The

ET was estimated using the soil water balance method for winter

wheat according to Equation (5) (Fernández et al., 2020):
FIGURE 2

Daily maximum and minimum temperature (Tmax and Tmin), rainfall, and reference evapotranspiration (ETo) in winter wheat growing seasons of
2022-2024.
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ET = DW + I + P + Sg − D − R (5)

where DW is the change in soil water storage between sowing

and harvest (mm), I is the irrigation amount (mm), P is the

precipitation (mm), Sg is the groundwater recharge (mm), D is

the deep percolation (mm), and R is the surface runoff (mm).
2.3 Model evaluation

The AquaCrop model was calibrated by data obtained in the first

growing season (2022–2023) and validated using data from the

second growing season (2023–2024). Evaluation of the model

performance was based on the model’s accuracy in simulating

canopy cover, aboveground biomass, soil water storage, and yield.

Several statistical indicators were used to compare model

performance based on each calibration scenario. Root-mean square

error (RMSE), Willmott’s index of agreement (d), and coefficient of

determination (R2) were obtained according to Equations (6–8).
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Si −Mi)

2

n

vuuut
(6)

d = 1 −
o
n

i=1
(Si −Mi)

2

o
n

i=1
( Si − S
�� �� + Mi −M

�� ��)2
(7)

R2 =

½o
n

i=1
(Mi −M)2(Si − S)�2

o
n

i=1
(Mi −M)2o

n

i=1
(Si − S)2

(8)

where is Mi, Si, and M are the measured value, simulated value,

and average value of measurements. Values of R2 and d close to

1 indicate the model’s good performance. RMSE values close to

zero indicate a good matching between simulated values

and observations.
TABLE 1 The irrigation schedule in the 2022–2024 entire wheat growing season, respectively.

Treatment Irrigation period (day) Irrigation frequency Irrigating amount (mm)

T1

5 11

270

T2 330

T3 390

T4 450

T5

7 8

270

T6 330

T7 390

T8 450

T9

9 6

270

T10 330

T11 390

T12 450
TABLE 2 The soil hydraulic parameters in the experimental field.

Soil texture Depth (cm) Bulk density (g m−3) qs (cm3 cm−3) qfc (cm3 cm−3) qpwp (cm3 cm−3) q0 (cm3 cm−3)

Silty loam

0-10 1.42 0.44 0.36 0.08 0.24

10-20 1.41 0.45 0.37 0.08 0.26

20-30 1.45 0.45 0.36 0.08 0.28

30-40 1.41 0.45 0.37 0.10 0.26

40-60 1.39 0.49 0.40 0.10 0.27

60-80 1.33 0.49 0.40 0.12 0.24

80-100 1.41 0.49 0.41 0.12 0.26
qs represents saturated soil water content; qfc represents field capacity; qpwp represents permanent wilting point; q0 represents initial soil water content.
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2.4 Irrigation scheduling scenarios

To investigate the effects of irrigation schedules under typical

rainfall years on winter wheat yield and WUE in Xinjiang, and to

optimize irrigation management for high winter wheat productivity,

multiple irrigation scenarios were designed. The scenario design

followed the framework of Shao et al. (2018), primarily considering

two factors: soil water content at the time of irrigation and irrigation

quota. The soil water content scenarios were set to cover the full

range of water stress levels that winter wheat might experience

during its growing season in the study region, from the lowest to the

highest water availability. The irrigation quotas encompassed the

minimum and maximum feasible field application amounts. In the

model, soil water content was expressed as a percentage of readily

available water (RAW), where RAW is defined as half the difference

between field capacity and the wilting point. Volumetric soil

moisture levels corresponding to 50%, 60%, 70%, 80%, 90%,

100%, 110%, and 120% of RAW were simulated. Drip irrigation

was employed with irrigation quotas set at 30, 40, 50, 60, 70, and 80

mm, resulting in a total of 48 combined irrigation scenarios.

Due to the arid climate and low precipitation in the study area,

insufficient soil moisture at sowing leads to water deficit, which is a

critical factor limiting seedling emergence. Therefore, a pre-sowing

irrigation event was applied to ensure uniform emergence across all

scenarios. The water demand from sowing to mid-April was met by

soil water stored from non-seasonal rainfall and pre-sowing

irrigation event (Moghbel et al., 2024). For rational irrigation

scheduling, irrigation events were assumed to start 223 days after

sowing. Based on local planting and harvesting dates, the sowing

date was set to 10 September and the harvest date to 1 July.

This study employed the Pearson-III distribution to analyze

rainfall data during the winter wheat growing seasons from 1990 to

2020 in the study area. Based on this analysis, typical hydrological

years were selected according to their exceedance probabilities: wet

years (25% exceedance probability), normal years (50%), and dry

years (75%) (Guo et al., 2021). Three representative years were

chosen for simulation to assess the irrigation-induced yield

potential of winter wheat: 1997–1998 (177 mm) as a wet year,

1999–2000 (134.8 mm) as a normal year, and 2005–2006 (98.5 mm)

as a dry year.
2.5 Entropy weight method

The entropy weight method is a multi-criteria decision-making

approach that determines indicator weights based on the degree of

variation in the information contained within each indicator. It uses

information entropy to describe the relative rate of change in

sample data: the closer the coefficient is to 1, the nearer it is to

the optimal target, whereas a coefficient closer to 0 indicates a

greater deviation from the target (Elena Arce et al., 2015). In the

function construction, each irrigation scenario is denoted as the k-

th scenario, while the irrigation amount, yield, and WUE under

different irrigation scenarios are represented as the j-th indicator of

the k-th scenario. Among these indicators, higher yield and WUE
Frontiers in Plant Science 06
are preferable, whereas lower irrigation amounts are considered

better. The function can thus be formulated as follows:

(1) Processing of original indicator data:

Positive indicators were obtained according to Equation (9):

x
0
kj = x

xkj − xmin

xmax − xmin
(9)

Negative indicators were obtained according to Equation (10):

x
0
kj =

xmax − xj
xmax − xmin

(10)

(2) Standardization eliminates the dimensional differences of

indicators were obtained according to Equation (11):

x}kj =
x
0
kj − mj

sj
      (1 ≤ k ≤ m,   1 ≤ j ≤ n) (11)

where mj is the mean value of indicator j, sj is the standard

deviation of indicator j, x″ is the standardized value of the indicator,
m is the total number of irrigation scenarios (48 in this study), and n

is the number of evaluation indicators, namely irrigation amount,

yield, andWUE. Since the standardized values may include negative

numbers, a translation (shift) is applied to ensure that all

standardized values are positive before subsequent entropy

calculations according to Equation (12):

Zkj = x}kj −min (x}j ) + e (12)

where e is a very small constant (10−6) added to avoid zero

values in the entropy calculation.

(3) The proportion of the k-th irrigation scenario under the j-th

indicator, denoted as Pkj, was calculated according to Equation (13):

Pkj =
Zkj

o
m

k=1

Zkj

(13)

(4) Calculation of the entropy value ej for indicator j was carried

out according to Equation (14):

ej = −
1
mo

m

j=1
pkj  Inpkj (14)

(5) Calculation of the weight wj for indicator j was carried out

according to Equation (15):

wj =

1 + 1
mo

m

k=1

pkjInpkj

on
j=1(1 +

1
mo

m

k=1

pkjInpkj)
(15)

(6) Calculation of the comprehensive evaluation score Fk for the

k-th irrigation scenario was carried out according to Equation (16):

Fk =o
n

j=1
wjpkj (16)

where wj is the weight of the j-th indicator, pkj is the normalized

value of the j-th indicator under the k-th irrigation scenario, and n is

the total number of indicators (irrigation amount, yield, and WUE
frontiersin.org
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in this study). A higher Fk indicates a more favorable irrigation

scenario when considering multiple objectives simultaneously.
3 Results

3.1 Model parameter calibration

Determining crop parameters—including canopy development,

aboveground biomass accumulation, yield formation parameters,

and responses to water, temperature, and salinity stress—is essential

for calibrating the AquaCrop model. Following the winter wheat

parameters recommended in the AquaCrop model manual (Raes

et al., 2009a), the model was calibrated using the observed data

collected during the 2022–2023 winter wheat growing season. The

main crop parameters used in the model are listed in Table 3. The

canopy growth coefficient (CGC), canopy decline coefficient (CDC),

normalized biomass water productivity (WP*), and reference

harvest index (HI0) are key parameters controlling canopy

dynamics, aboveground biomass accumulation, and yield

formation in AquaCrop, and are generally considered constant

for a given crop cultivar (Steduto et al., 2009). However, due to

differences in cultivar characteristics and local climatic conditions,

adjustments within the recommended parameter ranges are

acceptable (Hsiao et al., 2009).

In this study, the calibrated CGC and CDC values were 3.2% d−1

and 10.2% d−1, respectively. Compared to the recommended values

for winter wheat (4.9% d−1 for CGC and 7.2% d−1 for CDC), CGC

was lower while CDC was higher. The calibratedWP* and HI0 were

17 g m−2 and 42%, respectively. WP* was slightly higher than the

recommended value of 15 g m−2, while HI0 was lower than the

recommended value of 48%, but both remained within the

suggested ranges of 15–20 g m−2 and 25–50%. In addition, the

calibrated yield formation adjustment factor (fyield) was 72%, lower

than the default value of 100%. The sink strength coefficient under

elevated CO2 concentrations (fCO2) was calibrated to 60%, which is

higher than the recommended value of 50% for wheat but still

within the reasonable range of 40–60%.

For the water, temperature, and salinity stress parameters,

several key thresholds were adjusted within the recommended

ranges of the AquaCrop model manual to better represent the

local field conditions. For water stress, the soil water depletion

thresholds were set to 0.10–0.45 for canopy expansion, 0.45 for

stomatal conductance, and 0.60 for canopy senescence. For

temperature stress, the base temperature, upper temperature limit,

and upper growing-degree threshold (GDupper) were adjusted to 0 °

C, 40 °C, and 5 °C day, respectively. For salinity stress, the salinity

threshold affecting crop growth was set to 3–14 dS m−1. All these

parameters were tuned within the recommended ranges using a

“method of trial and error” to ensure that the simulated results were

consistent with the observed field conditions.

The AquaCrop model was calibrated using canopy cover,

aboveground biomass, 0–100 cm soil water storage, and yield data

obtained from all treatments during the 2022–2023 field
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experiment. For treatments T1–T12, the simulated canopy cover

showed good agreement with field observations, with RMSE values

ranging from 9.2% to 17.8%, d ranging from 0.69 to 0.93, and R2

between 0.86 and 0.99 (Figure 3). Similarly, the simulated

aboveground biomass closely matched the measured data, with

RMSE values of 2.8–4.9 t ha−1, d values of 0.86–0.95, and R2 values

of 0.96–0.98 (Figure 4). These results indicate that the calibrated

model parameters provided a reliable simulation of canopy

development and biomass accumulation in winter wheat. For 0–

100 cm soil water storage, the model performance was slightly

lower, with RMSE values ranging from 8.2 mm to 38.9 mm, d values

of 0.62–0.96, and R2 values of 0.34–0.94 (Figure 5). The relatively

lower accuracy for soil water storage was mainly attributed to

spatial heterogeneity in soil water content within the field, which

affects simulation precision compared with canopy cover and

biomass. For yield, the simulated values showed a strong

correlation with field measurements, with an R2 of 0.812 (Figure

6A). Overall, the results demonstrate that the calibrated AquaCrop

model can reasonably simulate the growth dynamics of winter

wheat and the temporal variation of soil water storage in the

study region. However, further validation is needed to confirm its

broader applicability for winter wheat under the climatic and soil

conditions of Xinjiang.
3.2 Model validation

After parameter calibration, the AquaCrop model was validated

using field observations from the T1–T12 irrigation treatments

during the 2023–2024 winter wheat growing season. As shown in

Table 4, the simulated canopy cover closely matched the measured

values, with RMSE values ranging from 10.3% to 14.4%, d ranging

from 0.61 to 0.71, and R2 between 0.94 and 0.98. The aboveground

biomass of winter wheat exhibited a typical three-phase trend over

time, characterized by an “increase–stagnation–increase” pattern.

The simulated biomass agreed well with the measured data, with

RMSE values of 4.7–8.5 t ha−1, d values of 0.76–0.87, and R2 values

of 0.83–0.98. The underlying mechanism is as follows: After

emergence and before overwintering, rapid leaf growth led to an

expansion of canopy cover, resulting in high photosynthetic

assimilation and a steady increase in aboveground biomass.

During the overwintering stage, when daily mean temperatures

dropped below 0 °C, wheat entered a dormant or semi-dormant

state. Cell division and elongation nearly ceased, and the activity of

photosynthetic enzymes was inhibited, causing biomass

accumulation to stagnate. Following the jointing stage, when the

daily mean temperature exceeded 5 °C, wheat resumed active

growth. Photosynthetic enzyme activity was restored, leaf

photosynthetic rates increased rapidly, and assimilates were

redistributed from leaves to stems, sheaths, and spikes, leading to

accelerated biomass accumulation.

For 0–100 cm soil water storage, the model showed reasonable

performance, with RMSE values of 12.6–30.9 mm, d values of 0.73–

0.96, and R2 values of 0.49–0.88. For yield, the simulated values
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exhibited a moderate correlation with field measurements, with an

R2 of 0.703 (Figure 6B). It may be attributed to the spatial

heterogeneity of soil properties, differences in field management

practices, and some unconsidered environmental stress factors

(such as pests and diseases, lack of nutrition) that affect

actual yield. Overall, these results indicate that, based on canopy

cover, aboveground biomass, soil water storage, and yield
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observations from the 2023–2024 experimental data, the

validated AquaCrop model demonstrated satisfactory accuracy,

which is acceptable for practical irrigation management

applications. Thus, the calibrated and validated AquaCrop model

can reliably simulate winter wheat growth characteristics and soil

water dynamics under the climatic and soil conditions of the

study region.
TABLE 3 Main crop parameters in AquaCrop for winter wheat under drip irrigation.

Symbol Description Value Unit Remarks

Parameters of canopy development and production

CC0 Initial canopy cover 4.5 % Measured

CCx Maximum canopy cover 96 % Measured

CGC Canopy-growth coefficient 3.2 % d−1 Calibrated

CDC Canopy-decline coefficient 10.2 % d−1 Calibrated

Zrmin Minimum effective rooting depth 0.1 m Measured

Zrmax Maximum effective rooting depth 1.2 m Measured

fshape,z Shape factor for root-zone expansion 1.5 – Recommended

KcTr Crop coefficient at CC = 100% prior to senescence 1.1 – Recommended

fyield Water productivity normalized for ETo and CO2 during yield formation 72 % Calibrated

fCO2 Crop performance under elevated atmospheric CO2 concentration 60 % Calibrated

Sm Maximum root-water extraction over effective root zone 44 mm day−1 Measured

WP* Water productivity normalized for ETo and CO2 17 g m−2 Calibrated

HIo Reference harvest index 42 % Calibrated

Parameters of water-stress response

Pexp,upper Fraction of TAW at which canopy expansion is limited 0.1 – Calibrated

Pexp,lower Fraction of TAW at which canopy expansion stops 0.45 – Calibrated

Pexp,shp Shape factor for water-stress coefficient of canopy expansion 3.5 – Recommended

Psto,upper Fraction of TAW at the beginning of stomatal closure 0.45 – Calibrated

fshape,sto Shape factor for water-stress coefficient of stomatal closure 2.0 – Recommended

Psen,upper Fraction of TAW at the beginning of early canopy senescence 0.6 – Calibrated

fshape,sen Shape factor for water-stress coefficient of canopy senescence 2.0 – Recommended

Ppol Fraction of TAW at the beginning of pollination failure 0.85 – Recommended

Parameters of air temperature stress response

Tbase Base temperature 0 °C Calibrated

Tupper Upper temperature 40 °C Calibrated

GDupper The upper threshold at which crop transpiration will be limited by air temperature 5 °C day Calibrated

Parameters of salinity-stress response

ECelower ECe at which crop starts to be affected 3 dS m−1 Calibrated

Eceupper ECe at which crop can no longer grow 14 dS m−1 Calibrated

CCD Canopy deformation degree 25 % Recommended

fks,sto,salt Shape factor for the response of stomatal closure 100 % Recommended
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FIGURE 3

Measured and simulated canopy cover for the irrigation treatments of T1-T12. The error bars represent standard deviations.
FIGURE 4

Measured and simulated aboveground biomass for the irrigation treatments of T1-T12. The error bars represent standard deviations.
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3.3 Irrigation schedule optimization

Optimizing winter wheat irrigation scheduling under different

rainfall scenarios requires an understanding of how yield responds

to irrigation amount. Figure 7 illustrates the simulated relationships

between irrigation depth and winter wheat yield under 48 irrigation

scenarios for three typical rainfall years. As shown in Figure 7, the

response of winter wheat yield to irrigation followed two distinct

phases: Rapid increase phase–At lower irrigation levels, yield
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increased sharply with additional irrigation, indicating that water

availability was the primary limiting factor for crop growth. Yield

stabilization phase–Once irrigation reached a certain threshold,

further increases in irrigation had only marginal effects, with

yields stabilizing at a high level or showing only slight additional

gains. In dry years, limited in-season rainfall resulted in severe

water deficits. Under rainfed conditions, the yield was only 1.275 t

ha−1, but supplemental irrigation of 540 mm increased the yield to

9.677 t ha−1 (Figure 7A). This corresponds to an average yield gain
5FIGURE

Measured and simulated soil water storage (0–100 cm) for the irrigation treatments of T1-T12. .
FIGURE 6

Observed and simulated yield for the irrigation treatments of T1-T12.
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of 1.556 t ha−1 for every additional 100 mm of irrigation. In normal

years, the rainfed yield was 3.746 t ha−1, while supplemental

irrigation of 480 mm increased the yield to 8.589 t ha−1 (Figure

7B), equivalent to 1.009 t ha−1 yield gain per 100 mm of irrigation.

In wet years, the rainfed yield was relatively higher (4.324 t ha−1).

With 450 mm of supplemental irrigation, yield reached 9.214 t ha−1

(Figure 7C), resulting in 1.087 t ha−1 yield gain per 100 mm of

irrigation. These results clearly indicate that the potential yield

response to irrigation is highest in drought years, followed by wet

years, and lowest in normal years. This pattern arises because, in

drought years, water is the primary limiting factor, so supplemental

irrigation produces the largest yield gains. In wet years, rainfall

partially mitigates water stress, leading to a moderate yield

response. In normal years, rainfall generally meets crop water

requirements, so additional irrigation contributes only minimally

to yield increases.

Tables 5, 6, 7 present the simulated yield and WUE of winter

wheat under 48 irrigation scenarios for wet, normal, and dry years.

The results show that the highest-yielding irrigation scheduling

required 15, 16, and 18 irrigation events in wet, normal, and dry

years, respectively, with an irrigation depth of 30 mm per event and

a readily available water (RAW) of 50%, representing the lower

control limit of RAW. In contrast, the highest WUE was achieved

with only 3, 4, and 5 irrigation events in wet, normal, and dry years,

respectively, with higher soil water depletion thresholds (RAW of

90%, 90%, and 80%) and a larger irrigation depth of 80 mm

per event.
3.4 Irrigation schedule decision

By constructing a multi-objective optimization function that

simultaneously minimizes irrigation volume while maximizing

grain yield and water use efficiency, we calculated the
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comprehensive evaluation index (Fk) for all 48 irrigation scenarios

under wet, normal, and dry precipitation years (Tables 5, 6, 7). The

results showed that the optimal irrigation schedule in wet year

consisted of a soil water depletion threshold of 90% RAW, with an

irrigation quota of 80 mm applied 3 times, resulting in a total

irrigation volume of 240 mm, a yield of 8.819 t ha−1, and a WUE of

1.99 kg m−3. In normal year, the optimal scheduling was 90% RAW,

80 mm per application, with 3 irrigations totaling 320 mm,

achieving a yield of 8.236 t ha−1 and a WUE of 1.71 kg m−3. In

dry year, the optimal scheduling was 110% RAW, with 80 mm per

application, applied 4 times, yielding 9.125 t ha−1 with a WUE of

1.89 kg m−3.

These results demonstrate that multi-objective optimization can

effectively balance water savings and productivity, producing near-

maximum yields with substantially reduced irrigation inputs

compared to the yield-maximizing irrigation schedule. Notably,

the optimized scheduling required only 3–4 irrigations with larger

individual irrigation depths, maintaining sufficient soil moisture to

avoid irreversible water stress during critical growth stages. From a

practical standpoint, this approach enables flexible irrigation

scheduling according to annual precipitation conditions, offering

a sustainable compromise between maximizing yield, improving

water productivity, and minimizing water use in water-scarce

regions like Xinjiang.
4 Discussion

In recent years, numerous studies have demonstrated that the

AquaCrop model exhibits sufficient accuracy in simulating the

dynamics of canopy cover, aboveground biomass, yield, and soil

water storage in winter wheat, indicating that it is a reliable and

valuable tool for investigating yield and WUE responses. For

example, Han et al. (2019) evaluated the applicability of
TABLE 4 AquaCrop model verification results.

Treatment
Canopy cover (%) Aboveground biomass (t ha−1) Soil water storage (mm)

RMSE d R2 RMSE d R2 RMSE d R2

T1 14.1 0.62 0.96 6.7 0.80 0.96 18.7 0.88 0.72

T2 10.3 0.71 0.98 6.8 0.76 0.95 12.6 0.96 0.86

T3 11.6 0.67 0.96 5.2 0.87 0.98 13.7 0.96 0.86

T4 11.7 0.67 0.96 6.1 0.80 0.90 14.6 0.95 0.88

T5 13.6 0.63 0.98 8.5 0.76 0.96 30.2 0.75 0.85

T6 11.7 0.67 0.96 6.6 0.80 0.98 30.9 0.81 0.67

T7 11.5 0.68 0.96 4.7 0.81 0.83 30.2 0.73 0.55

T8 11.1 0.68 0.96 7.6 0.79 0.96 20.2 0.91 0.71

T9 14.0 0.61 0.94 7.2 0.78 0.98 19.6 0.92 0.76

T10 13.1 0.64 0.96 5.3 0.86 0.92 27.0 0.81 0.50

T11 13.7 0.63 0.96 5.6 0.83 0.96 22.4 0.85 0.79

T12 10.8 0.69 0.96 5.4 0.82 0.96 28.6 0.78 0.49
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AquaCrop for a winter wheat–summer maize rotation system in the

North China Plain and reported normalized root mean square

errors (NRMSE) of 15.9% for canopy cover and 4.23% for yield

simulations. Similarly, Iqbal et al. (2014) tested the model’s ability

to simulate winter wheat yield, biomass, actual evapotranspiration,

and soil water storage (0–120 cm) in the same region, reporting

RMSE values of 0.58 t ha−1 for yield, 0.87 t ha−1 for biomass, 33.2

mm for actual evapotranspiration, and 24.5–37.6 mm for soil water

storage, with corresponding d values of 0.92, 0.95, 0.93, and 0.85–

0.90, respectively. Furthermore, Moghbel et al. (2024) employed

AquaCrop to investigate the effects of irrigation intervals and

supplemental irrigation strategies on winter wheat in the U.S.

Midwest, achieving RMSE, NRMSE, and d values of 0.85 t ha−1,

0.06, and 0.85 for biomass, and 0.79 t ha−1, 0.17, and 0.68 for yield.

These findings are consistent with the results of the present study,

where the model achieved high simulation accuracy for canopy

cover (Figure 3), aboveground biomass (Figure 4), 0–100 cm soil

water storage (Figure 5), and yield (Figure 6). Such consistency

confirms that AquaCrop provides reliable simulations of winter

wheat growth dynamics and soil water processes under the climatic

conditions of Xinjiang. Therefore, it can be considered a robust tool

for irrigation scheduling and optimization, offering valuable

guidance for improving water productivity and sustaining high

yields in arid and semi-arid regions.

The response of winter wheat yield to irrigation quotas under

different typical hydrological years revealed clear differences among

rainfall regimes. Under rainfed conditions, grain yield was highest in

the wet year (4.324 t ha−1), followed by the normal year (3.746 t ha−1),

and lowest in the dry year (1.275 t ha−1) (Figure 7). This pattern can

be attributed to the significant influence of seasonal rainfall amount

and distribution on winter wheat productivity (Wang et al., 2022).

Using the AquaCrop model, optimized irrigation schedules were

determined for typical hydrological years in the study region. The

results showed that maximum grain yield was achieved with

irrigation quotas of 450 mm (15 irrigations), 480 mm (16

irrigations), and 540 mm (18 irrigations) in wet, normal, and dry

years, respectively, with a fixed irrigation depth of 30 mm per event.

In contrast, the highest WUE was obtained with irrigation quotas of

240 mm, 320 mm, and 400 mm in wet, normal, and dry years,
Frontiers in Plant Science 12
respectively, by applying fewer irrigation events (3, 4, and 5 times)

with a larger irrigation depth of 80 mm per event (Tables 5, 6, 7).

These findings are consistent with previous results on winter wheat

irrigation management in Xinjiang (Lei et al., 2017; Yang et al., 2025).

It is worth noting that the determination of optimal irrigation

scheduling is closely related not only to the total rainfall but also to

the intra-seasonal rainfall distribution within the wheat growth

stages. Even when the total seasonal rainfall is similar across years,

rainfall events occurring at different phenological stages can have

markedly different impacts on crop growth and yield formation (Guo

et al., 2021; Moghbel et al., 2024; Shao et al., 2018; Xing et al., 2016).

Therefore, the determination of winter wheat irrigation schedule is

closely related to the rainfall distribution of the selected typical

hydrological year. Moreover, the uncertainty of future precipitation

regimes implies that irrigation schedules derived from historical

typical hydrological years should be regarded as reference scenarios

rather than fixed prescriptions. In practical applications, these model-

based irrigation strategies need to be flexibly adjusted according to

real-time meteorological conditions, water availability, and local

management practices to ensure sustainable water resource

utilization and stable wheat production.

Decision-making priorities differ among stakeholders

depending on their production scale and objectives. In the

context of crop production, stakeholders can generally be

categorized into smallholder farmers and large-scale farms, with

the most notable differences lying in farm size, input intensity, and

management goals. Large-scale farms operate on extensive areas

with substantial capital investment, thus prioritizing maximized net

economic returns. In contrast, smallholder farmers emphasize

stable grain yields while minimizing time and labor inputs (Jian

et al., 2018). To account for these differences, this study coupled the

AquaCrop model with an entropy-based multi-objective

optimization method to derive optimal irrigation schedules for

winter wheat under different typical hydrological years. Based on

the optimized scenarios, irrigation regimes were further averaged

across hydrological conditions to provide practical irrigation

recommendations tailored to farmers and large-scale farms.

Under different rainfall scenarios, the optimized irrigation

frequency often resulted in non-integer values, which are
FIGURE 7

Winter wheat yield under different irrigation schedules in dry year (A), normal year (B), and wet year (C).
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TABLE 5 Optimized irrigation schedules in wet year.

Scenario F Rank RAW Irrigating quota (mm) Irrigating times Irrigation amount (mm) Yield (t ha−1) WUE (kg m−3)

450 9.214 1.67

390 9.162 1.75

360 9.037 1.78

300 8.512 1.77

270 7.879 1.7

180 6.022 1.5

120 5.646 1.52

30 4.324 1.44

400 9.209 1.78

400 9.162 1.78

320 8.972 1.85

280 8.490 1.81

280 8.198 1.79

160 5.997 1.54

120 5.629 1.53

40 4.324 1.44

400 9.193 1.83

350 9.149 1.87

300 8.877 1.89

300 8.708 1.86

250 8.427 1.84

200 5.908 1.48

150 5.612 1.5

50 4.324 1.44

360 9.190 1.9

360 9.136 1.86

300 8.948 1.92
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W1 0.0193 36 50%

30

15

W2 0.0206 29 60% 13

W3 0.0211 25 70% 12

W4 0.0213 23 80% 10

W5 0.0207 27 90% 9

W6 0.0189 42 100% 6

W7 0.0195 32 110% 4

W8 0.0190 40 120% 1

W9 0.0207 26 50%

40

10

W10 0.0207 28 60% 10

W11 0.0220 16 70% 8

W12 0.0218 18 80% 7

W13 0.0215 21 90% 7

W14 0.0194 33 100% 4

W15 0.0195 31 110% 3

W16 0.0188 43 120% 1

W17 0.0211 24 50%

50

8

W18 0.0219 17 60% 7

W19 0.0225 8 70% 6

W20 0.0221 14 80% 6

W21 0.0224 11 90% 5

W22 0.0184 47 100% 4

W23 0.0189 41 110% 3

W24 0.0187 44 120% 1

W25 0.0221 15 50%

60

6

W26 0.0217 19 60% 6

W27 0.0228 6 70% 5
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TABLE 5 Continued

Scenario F Rank RAW Irrigating quota (mm) Irrigating times Irrigation amount (mm) Yield (t ha−1) WUE (kg m−3)

5 300 8.847 1.89

4 240 8.592 1.9

3 180 5.966 1.52

2 120 5.641 1.51

1 60 4.324 1.44

6 420 9.187 1.9

5 350 9.099 1.91

5 350 9.010 1.92

4 280 8.892 1.94

4 280 8.737 1.89

3 210 6.029 1.56

2 140 5.664 1.53

1 70 4.324 1.44

5 400 9.178 1.89

4 320 9.113 1.98

4 320 9.025 1.96

4 320 8.945 1.91

3 240 8.819 1.99

2 160 6.121 1.64

2 160 5.687 1.55

1 80 4.324 1.44

he top-ranked irrigation scenario.
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W28 0.0225 9 80%

W29 0.0231 4 90%

W30 0.0190 38 100%

W31 0.0194 34 110%

W32 0.0186 45 120%

W33 0.0214 22 50%

70

W34 0.0222 13 60%

W35 0.0222 12 70%

W36 0.0231 2 80%

W37 0.0226 7 90%

W38 0.0190 39 100%

W39 0.0193 35 110%

W40 0.0185 46 120%

W41 0.0215 20 50%

80

W42 0.0231 3 60%

W43 0.0229 5 70%

W44 0.0225 10 80%

W45 0.0239 1 90%

W46 0.0202 30 100%

W47 0.0192 37 110%

W48 0.0184 48 120%

F represents the assessment value, RAW represents readily available soil water, and WUE represents water use efficiency. Bold values indicate
 t
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TABLE 6 Optimized irrigation schedules in normal year.

Scenario F Rank RAW Irrigating quota (mm) Irrigating times Irrigation amount (mm) Yield (t ha−1) WUE (kg m−3)

16 8.589 1.52

15 8.55 1.53

13 8.412 1.6

12 8.032 1.58

11 7.742 1.55

10 7.534 1.55

7 6.343 1.49

4 5.348 1.48

12 8.579 1.56

11 8.543 1.59

10 8.45 1.61

9 8.217 1.62

8 7.895 1.59

7 7.719 1.61

5 6.535 1.55

3 5.339 1.5

9 8.581 1.63

9 8.559 1.62

8 8.436 1.63

7 8.315 1.66

7 8.108 1.63

6 7.833 1.63

4 6.558 1.57

3 5.398 1.49

8 8.577 1.64

7 8.548 1.65

7 8.472 1.66
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N1 0.0182 46 50%

30

480

N2 0.0188 41 60% 450

N3 0.0208 27 70% 390

N4 0.0203 31 80% 360

N5 0.0197 35 90% 330

N6 0.0198 34 100% 300

N7 0.0182 45 110% 210

N8 0.0179 47 120% 120

N9 0.0191 39 50%

40

480

N10 0.0202 32 60% 440

N11 0.0210 23 70% 400

N12 0.0214 20 80% 360

N13 0.0209 26 90% 320

N14 0.0216 19 100% 280

N15 0.0199 33 110% 200

N16 0.0184 43 120% 120

N17 0.0209 25 50%

50

450

N18 0.0207 29 60% 450

N19 0.0214 21 70% 400

N20 0.0225 10 80% 350

N21 0.0216 18 90% 350

N22 0.0219 13 100% 300

N23 0.0203 30 110% 200

N24 0.0178 48 120% 150

N25 0.0207 28 50%

60

480

N26 0.0217 17 60% 420

N27 0.0218 15 70% 420
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TABLE 6 Continued

Scenario F Rank RAW Irrigating quota (mm) Irrigating times Irrigation amount (mm) Yield (t ha−1) WUE (kg m−3)

360 6 8.388 1.67

360 6 8.147 1.64

300 5 8.028 1.65

240 4 6.401 1.53

120 2 5.47 1.55

490 7 8.581 1.67

420 6 8.549 1.66

420 6 8.504 1.69

350 5 8.422 1.69

350 5 8.247 1.66

280 4 8.045 1.69

210 3 6.354 1.54

140 2 5.307 1.52

480 6 8.563 1.65

400 5 8.55 1.69

400 5 8.511 1.7

400 5 8.437 1.69

320 4 8.236 1.71

320 4 8.209 1.69

240 3 6.466 1.56

160 2 5.371 1.52

he top-ranked irrigation scenario.
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N28 0.0227 7 80%

N29 0.0217 16 90%

N30 0.0226 9 100%

N31 0.0188 40 110%

N32 0.0196 36 120%

N33 0.0212 22 50%

70

N34 0.0219 14 60%

N35 0.0225 11 70%

N36 0.0233 4 80%

N37 0.0224 12 90%

N38 0.0237 2 100%

N39 0.0193 38 110%

N40 0.0185 42 120%

N41 0.0209 24 50%

80

N42 0.0228 6 60%

N43 0.0229 5 70%

N44 0.0226 8 80%

N45 0.0238 1 90%

N46 0.0234 3 100%

N47 0.0195 37 110%

N48 0.0183 44 120%

F represents the assessment value, RAW represents readily available soil water, and WUE represents water use efficiency. Bold values indicate
 t
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TABLE 7 Optimized irrigation schedules in dry year.

Scenario F Rank RAW Irrigating quota (mm) Irrigating times Irrigation amount (mm) Yield (t ha−1) WUE (kg m−3)

18 9.677 1.64

17 9.619 1.70

16 9.539 1.71

14 9.194 1.71

13 8.868 1.68

12 8.662 1.71

10 8.288 1.70

7 6.31 1.6

13 9.674 1.73

12 9.640 1.75

11 9.490 1.77

11 9.394 1.79

10 9.096 1.76

9 9.009 1.75

8 8.795 1.77

5 6.353 1.57

10 9.678 1.79

10 9.632 1.81

9 9.562 1.79

8 9.486 1.81

8 9.338 1.78

7 9.181 1.80

6 8.654 1.80

4 6.337 1.58

8 9.678 1.83

8 9.637 1.79

7 9.590 1.86

(Continued)
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17
D1 0.0174 45 50%

30

540

D2 0.0187 42 60% 510

D3 0.0193 38 70% 480

D4 0.0197 37 80% 420

D5 0.0192 40 90% 390

D6 0.0199 36 100% 360

D7 0.0201 35 110% 300

D8 0.0170 46 120% 210

D9 0.0192 39 50%

40

520

D10 0.0201 34 60% 480

D11 0.0208 28 70% 440

D12 0.0210 26 80% 440

D13 0.0207 32 90% 400

D14 0.0210 27 100% 360

D15 0.0216 18 110% 320

D16 0.0167 48 120% 200

D17 0.0205 33 50%

50

500

D18 0.0208 29 60% 500

D19 0.0211 25 70% 450

D20 0.0221 15 80% 400

D21 0.0214 21 90% 400

D22 0.0222 11 100% 350

D23 0.0223 10 110% 300

D24 0.0169 47 120% 200

D25 0.0215 20 50%

60

480

D26 0.0207 31 60% 480

D27 0.0228 6 70% 420
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TABLE 7 Continued

Scenario F Rank RAW Irrigating quota (mm) Irrigating times Irrigation amount (mm) Yield (t ha−1) WUE (kg m−3)

420 7 9.496 1.82

420 7 9.401 1.79

360 6 9.297 1.82

300 5 8.883 1.84

180 3 6.444 1.67

490 7 9.674 1.83

490 7 9.631 1.80

420 6 9.593 1.88

420 6 9.515 1.83

420 6 9.456 1.83

350 5 9.269 1.85

350 5 9.007 1.82

210 3 6.485 1.65

480 6 9.662 1.87

480 6 9.630 1.84

480 6 9.590 1.82

400 5 9.537 1.90

400 5 9.409 1.84

400 5 9.298 1.82

320 4 9.125 1.89

240 3 6.509 1.63

he top-ranked irrigation scenario.
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D28 0.0220 17 80%

D29 0.0213 23 90%

D30 0.0226 7 100%

D31 0.0232 3 110%

D32 0.0189 41 120%

D33 0.0213 22 50%

70

D34 0.0208 30 60%

D35 0.0231 5 70%

D36 0.0221 12 80%

D37 0.0221 14 90%

D38 0.0232 4 100%

D39 0.0223 9 110%

D40 0.0181 43 120%

D41 0.0221 13 50%

80

D42 0.0216 19 60%

D43 0.0212 24 70%

D44 0.0237 2 80%

D45 0.0225 8 90%

D46 0.0220 16 100%

D47 0.0241 1 110%

D48 0.0174 44 120%

F represents the assessment value, RAW represents readily available soil water, and WUE represents water use efficiency. Bold values indicate
 t
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impractical for field implementation. Therefore, for ease of on-farm

application, the irrigation frequency for smallholder farmers was

rounded to 3–4 irrigations per season, with an irrigation depth of 80

mm per event, prioritizing water-saving and reduced management

requirements. In contrast, large-scale farms were recommended to

adopt 16–17 irrigations per season, with a smaller irrigation depth

of 30 mm per event, ensuring near-optimal soil moisture conditions

and maximizing yield potential. Thus, the optimized irrigation

strategies for winter wheat in Xinjiang can be summarized as

follows: For smallholder farmers, apply 80 mm per irrigation, 3–4

times per season, focusing on higher water productivity and

reduced operational complexity. For large-scale farms, apply 30

mm per irrigation, 16–17 times per season, targeting maximum

yield benefits with precise soil moisture management. These

differentiated irrigation recommendations provide a flexible

decision-making framework that allows stakeholders to select

irrigation schedules according to their operational scale, resource

availability, and production objectives.

Irrigation optimization is one of the most effective approaches for

designing irrigation strategies under limited water supply, with the

core objective of determining how to allocate finite water resources

across different growth stages to achieve either maximum yield or

maximum water productivity (Jian et al., 2018). Previous studies have

typically relied on scenario-based statistical analyses of AquaCrop

model simulations to optimize irrigation regimes (Li et al., 2005; Zhu

et al., 2024). In this study, we coupled the AquaCrop model with a

multi-objective optimization framework based on the entropy weight

method, providing a novel approach for winter wheat irrigation

scheduling under water-limited conditions. This method enables

multi-scale decision support, offering tailored irrigation strategies

for different stakeholders, including irrigation district managers,

smallholder farmers, and large-scale farms, thereby enhancing both

water-use efficiency and economic returns. Nevertheless, several

limitations remain: (i) the optimization focused solely on water

availability, without accounting for nutrient deficiencies, salinity

stress, or pest and disease pressures, which may affect crop growth

and yield. (ii) AquaCrop parameters were primarily calibrated using a

trial-and-error approach, without conducting a formal sensitivity

analysis, which could have identified the most influential parameters

affecting model accuracy. (iii) the proposed optimization framework

has not yet been extended to a regional-scale modeling system,

limiting its applicability for large-scale water resource planning

and management.
5 Conclusion

This study proposed a multi-objective optimization method for

winter wheat irrigation scheduling and identified optimal irrigation

regimes for the arid region of Xinjiang, China. The main conclusions

are as follows: (i) the AquaCrop model demonstrated good accuracy

in simulating the dynamic processes of canopy cover, aboveground

biomass, soil water storage, and grain yield of winter wheat under

different irrigation treatments in Xinjiang. (ii) the simulated results

revealed the yield response potential of winter wheat to supplemental
Frontiers in Plant Science 19
irrigation under different hydrological years. In dry years, every

additional 100 mm of irrigation increased grain yield by 1.556 t

ha−1, while in normal and wet years, the yield increase was 1.009 t

ha−1 and 1.087 t ha−1, respectively. (iii) by coupling AquaCrop with

the entropy weight method, a multi-objective optimization

framework was developed to balance irrigation water use, yield,

and WUE. The recommended irrigation schedules were 3

irrigations for wet years and 4 irrigations for both normal and dry

years, with RAW thresholds of 90%, 90%, and 110%, respectively, and

an irrigation quota of 80 mm.
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