
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Chengzhen Liang,
Chinese Academy of Agricultural Sciences,
China

REVIEWED BY

Zhi Gang Meng,
Biotechnology Research institute of CAAS,
China
Saba Delfan,
University of Tehran, Iran

*CORRESPONDENCE

Yerlan Turuspekov

yerlant@yahoo.com

RECEIVED 07 August 2025

ACCEPTED 24 September 2025
PUBLISHED 08 October 2025

CITATION

Genievskaya Y, Maulenbay A, Rsaliyev S,
Abugalieva S, Rsaliyev A, Zatybekov A and
Turuspekov Y (2025) Dissecting adult plant
resistance to stem rust through multi-model
GWAS in a diverse barley germplasm panel.
Front. Plant Sci. 16:1681398.
doi: 10.3389/fpls.2025.1681398

COPYRIGHT

© 2025 Genievskaya, Maulenbay, Rsaliyev,
Abugalieva, Rsaliyev, Zatybekov and
Turuspekov. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 October 2025

DOI 10.3389/fpls.2025.1681398
Dissecting adult plant
resistance to stem rust through
multi-model GWAS in a diverse
barley germplasm panel
Yuliya Genievskaya1, Akerke Maulenbay2, Shynbolat Rsaliyev3,
Saule Abugalieva1, Aralbek Rsaliyev2, Alibek Zatybekov1

and Yerlan Turuspekov1*

1Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, National holding
“QazBioPharm”, Gvardeisky, Kazakhstan, 2Laboratory of Cereal Crops, Kazakh Research Institute of
Agriculture and Plant Growing, Almalybak, Kazakhstan, 3Laboratory of Cereal Crops, Kazakh Research
Institute of Agriculture and Plant Growing, Almalybak, Almaty, Kazakhstan
Introduction: Stem rust (SR), caused by Puccinia graminis f. sp. tritici (Pgt), remains

a major threat to global barley production, particularly in regions with conducive

environments and evolving pathogen populations. Despite progress in

understanding seedling resistance, adult plant resistance (APR) to SR remains

underexplored in diverse barley germplasm. This study aimed to dissect the

genetic architecture of APR to SR in a panel of diverse origins of two-row spring

barley using a genome-wide association study (GWAS).

Methods: A total of 273 barley accessions were evaluated for APR to SR in two

distinct environments in Kazakhstan. Phenotypic data were combined with high-

density SNP genotyping to perform GWAS using five statistical models (GLM,

MLM, MLMM, FarmCPU, and BLINK). Population structure and kinship were

accounted for to identify robust marker-trait associations (MTAs), followed by

haplotype-based QTL delineation. Transcriptomic data from 16 barley tissues

were used to identify candidate genes within major QTL regions. Substantial

phenotypic variation in SR severity was observed across environments.

Results: A total of 204MTAs were identified, among which 96 were stable across

models, resulting in 19 model-stable QTLs spanning all seven barley

chromosomes. Six QTLs co-localized with known SR-resistance QTLs and

genes, including Rpg1 and Rpg6. Q_rpg_7H.1 (coinciding with Rpg1) was one

of the strongest and most consistent QTL, harboring 42 highly expressed

candidate genes. A novel major-effect QTL on chromosome 5H, Q_rpg_5H.1

(3.5– 9.9 Mb), not previously associated with known resistance loci, contained 10

highly expressed genes grouped into three co-expression clusters, including

WRKY transcription factors and PR-5 proteins.

Conclusion: This study provides new insights into the complex,multilayered genetic

control of SR resistance in barley. The discovery of both known and novel QTLs

offers valuable targets for marker-assisted selection and lays the foundation for

breeding durable SR-resistant barley adapted to diverse agroecological conditions.
KEYWORDS

Hordeum vulgare L., disease resistance breeding, quantitative trait loci (QTLs), Puccinia
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1 Introduction

Barley (Hordeum vulgare L.) is one of the most important cereal

crops in Kazakhstan, occupying a significant share of the arable land

and contributing substantially to the national agricultural output. It

is predominantly grown in rain-fed agricultural zones, where its

exceptional adaptability to a wide range of abiotic stresses –

including drought, soil salinity, and low temperatures – makes it

a reliable crop under the region’s often harsh and variable climatic

conditions (Newton et al., 2011). These attributes are particularly

important for Kazakhstan, where environmental limitations

frequently constrain agricultural productivity. As the second most

widely cultivated cereal crop after wheat (Bureau of National

statistics, 2025), barley plays a crucial role in ensuring national

food security and rural livelihoods. It serves multiple purposes: as a

staple component of livestock feed, a valuable raw material for the

malting and brewing industries, and a food source for human

consumption, particularly in regions with limited wheat

availability (Verma et al., 2022).

Among the biotic stresses affecting barley, rust diseases,

including stem, leaf, and stripe rusts caused by fungal pathogens,

are among the most economically damaging (Paulitz and

Steffenson, 2010). However, stem rust (SR) ranks among the most

devastating (Dill-Macky et al., 1991). Barley is susceptible to two SR

pathogens: Puccinia graminis f. sp. tritici Eriks. and E. Henn. (Pgt),

also known as the wheat SR fungus, and P. graminis f. sp. secalis

Eriks and E. Henn. (Pgs), or the rye SR fungus. Of these, Pgt is a

significantly greater threat in most major barley production regions,

and historically, it has posed a major threat to barley production

worldwide (Harder and Legge, 2000).

The average yield losses of barley due to barley SR often reach

10–25% (Murray and Brennan, 2010; Al-Abdallat et al., 2017; Çelik

Oğuz and Karakaya, 2021). Recurrent Pgt epidemics are reported in

various regions and often result in substantial yield losses up to 60%

in susceptible cultivars and lower grain quality (Steffenson et al.,

2017). A comparative study showed that susceptible barley cultivars

experienced yield reductions of up to 58% during Pgt epidemics in

Australia (Dill-Macky et al., 1991). In the Great Plains of the USA

and Canada, Pgt epidemics have caused significant yield losses,

exceeding 50%, along with declines in grain quality (Steffenson,

1992). The emergence of Pgt race TTKSK (Ug99) in Uganda in 1999

triggered a wave of concern in East Africa (Babiker et al., 2015).

Barley SR epidemics caused by the Ug99 race of Pgt in Kenya caused

a significant threat to barley production (Mwando et al., 2012). SR

re-emerged in Europe in 2013, affecting wheat in Germany (Olivera

Firpo et al., 2017) and later appearing in southern Denmark, eastern

Sweden, and the UK (Lewis et al., 2018), followed by a major

outbreak in Sicily, Italy, in 2016 (Bhattacharya, 2017). Since then,

SR has been observed annually on wheat, barley, and rye in specific

areas of Sweden (Kjellström, 2021). Barley SR epidemics in

Kazakhstan are currently poorly described, but recent studies on

Pgt races on wheat in the region offer valuable insights into the

broader epidemiological landscape, suggesting a potential for

significant threat to barley. From 2015 to 2019, severe wheat SR

epidemics impacted northern Kazakhstan and western Siberia
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(Olivera et al., 2022). Analysis of 51 Pgt samples from Kazakhstan

between 2015 and 2017 revealed 112 diverse races with similarities

to races in Siberia, suggesting a shared epidemiological region and

indicating spore inflow from the west (Olivera et al., 2022). In total,

over 1900 cultivated barley accessions from across the globe were

extensively evaluated, revealing that more than 95% were

susceptible to TTKSK (Ug99) (Steffenson et al., 2017). The

widespread susceptibility of cultivated barley germplasm to a

single Pgt pathotype represents an unusually severe and

dangerous threat to global food security. Given the re-emergence

of Pgt epidemics in Europe and East Africa, understanding and

deploying SR resistance in barley has global implications for food

security under changing climate scenarios.

Nine SR resistance genes have been identified in barley: Rpg1

(chromosome 7H, encodes a receptor kinase-like protein with two

tandem protein kinase domains) (Brueggeman et al., 2006), Rpg2

(chromosome 2H) (Case et al., 2018) and Rpg3 (chromosome 5H)

(Case et al., 2018), rpg4 (chromosome 5H) (Steffenson et al., 2009)

and Rpg5 (chromosome 5H) (Sun et al., 1996), the RMRL (rpg4/

Rpg5, chromosome 5H) complex (Brueggeman et al., 2006;

Steffenson et al., 2009), Rpg6 (Hordeum bulbosum introgression,

chromosome 6H) (Fetch et al., 2009), Rpg7 (chromosome 3H)

(Henningsen et al., 2021), RpgU (unmapped) (Fox and Harder,

1995), and rpgBH (unmapped) (Steffenson et al., 1984). Although

resistance conferred by the Rpg1 gene has provided durable

protection since the 1940s (Steffenson, 1992), recent emergent

races such as QCCJB and TTKSK (Ug99) have demonstrated

virulence to this and other resistance genes (Roelfs et al., 1993;

Jin et al., 1994; Pretorius et al., 2000). The rpg4-mediated resistance,

although highly effective against TTKSK, is temperature sensitive

and acts recessively, making it challenging to incorporate into elite

cultivars (Jin et al., 1994; Sun et al., 1996). The most effective

immediate strategy for breeding SR-resistant barley involves

combining the Rpg1 gene with rpg4/Rpg5 (Sallam et al., 2017).

This genetic pyramid would safeguard the crop against the

dominant virulence types found in the Pgt population.

Additionally, genes Rrr1 and Rrr2 have been identified as

important factors for pyramiding Rpg1 and RMRL resistance

genes in barley (Sharma Poudel et al., 2018). However, the

identification of additional resistance loci remains a high priority,

particularly those conferring durable, adult plant resistance (APR),

which has been shown to offer broader and more sustainable

protection compared to race-specific seedling resistance (Kolmer,

1996; Martinez et al., 2001).

Genome-wide association studies (GWAS) have emerged as a

powerful approach to dissect the genetic basis of complex traits of

barley (Alqudah et al., 2020), including disease resistance (Dubey

and Mohanan, 2025), by leveraging the natural genetic variation

present in diverse germplasm collections. However, the number of

GWAS studies for SR resistance of barley is very limited. Unlike

biparental mapping, GWAS uses existing diversity panels, enabling

broader allele detection and finer mapping resolution due to

historical recombination events. A key factor in the success of

GWAS is the availability of high-density single-nucleotide

polymorphism (SNP) markers, which provide genome-wide
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coverage and enable precise localization of trait-associated loci.

GWAS of barley accessions grown in Kazakhstan have identified

loci associated with critical agronomic traits, such as flowering time

and plant architecture (Genievskaya et al., 2024), grain yield

(Genievskaya et al., 2025), and grain quality (Genievskaya et al.,

2022). As for the resistance to fungal diseases among cereal crops in

Kazakhstan, previous GWAS efforts have successfully identified

SNPs and QTLs associated with resistance to powdery mildew

(Genievskaya et al., 2023) and SR (Turuspekov et al., 2016) in

barley, showcasing the potential of this method for local

breeding programs.

Despite the identification of several SR resistance genes and loci,

the understanding of APR in diverse barley germplasm remains

limited, particularly in the context of Kazakhstan and Central Asia.

This study aimed to identify genetic loci associated with APR to SR

in a diverse barley panel using multiple GWAS models, with a focus

on uncovering candidate genes for durable resistance applicable to

Kazakhstan and beyond.
2 Materials and methods

2.1 Germplasm material and SNP
genotyping

A total of 273 spring two-row barley accessions, originating

from the USA, Kazakhstan, Europe, Africa, and the Middle East

(Supplementary Table 1), were cultivated under field conditions at

the Research Institute of Biological Safety Problems (RIBSP;

southern Kazakhstan, 43.576476° N, 75.213618° E) in 2024 and

Kazakh Research Institute of Agriculture and Plant Growing

(KRIAPG; southeastern Kazakhstan, 43.229402° N, 76.699168° E)

in 2025. This barley panel was previously utilized for studies on

adaptability and yield-related traits (Genievskaya et al., 2024, 2025).

Genotyping was performed using the 50K Illumina Infinium iSelect

SNP array (Bayer et al., 2017) (TraitGenetics GmbH, Gatersleben,

Germany). Genotyping results were used in the analysis of

population structure, linkage disequilibrium (LD), and further

GWAS analyses. SNP physical positions were retrieved from the

Morex v3 reference genome (The Triticeae Toolbox – Barley, 2025).
2.2 Evaluation of resistance to SR

To simulate SR epiphytotics in RIBSP, field plots were

artificially inoculated with a virulent composite of Pgt races.

These isolates were originally collected from Kazakhstan’s spring

wheat cultivars (Rsaliyev et al., 2020) and are maintained in the

microorganism collection of RIBSP. Prior to inoculation,

urediniospores were reactivated by heat-shock treatment at 50°C

for 30 minutes (following the protocol of Rsaliyev and Rsaliyev,

2019). A suspension of urediniospores (Supplementary Table 2) was

prepared in 3M™ Novec™ 7100 (3M, USA) and uniformly applied

to seedlings using an airbrush spray gun (Revell GmbH, Germany)
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(Patpour et al., 2022). Inoculations were conducted at the seedling

stage during evening hours (Roelfs et al., 1992), and irrigation was

applied immediately afterward to ensure adequate humidity for

spore germination and disease establishment. In KRIAPG,

assessment of SR resistance was conducted under natural

infection conditions, with epiphytotic development resulting from

an adjacent infected winter wheat field.

Field trials in both RIBSP and KRIAPG were established using a

randomized complete block design (RCBD) with two replications.

Each genotype was planted in two-row plots, 1.5m in length, with

30cm spacing between rows and 40cm between plots. In RIBSP, to

promote uniform disease pressure, susceptible spreader rows

(mixture of highly susceptible local cultivars) were planted after

every 10 test entries and also used as border rows surrounding the

experimental area. Resistant and susceptible checks were included

in each replication to validate the reliability of disease assessments.

Meteorological and environmental data from both fields are

presented in Supplementary Table 3.

In both environments, SR severity was assessed at the milky-

waxy seed development stage by estimating the percentage of

infection using a modified Cobb scale (Peterson et al., 1948).

Infection types were classified into five categories: immune (I),

resistant (R), moderately resistant (MR), moderately susceptible

(MS), and susceptible (S) (Roelfs et al., 1992). Traditional scoring

was converted into McNeal’s 9-point scale (McNeal et al., 1971)

for GWAS.

In RIBSP, prior to harvest, phenological traits (heading and

maturity dates, vegetation period) and agronomic parameters (flag

leaf area, plant height, upper internode, and spike length) were

recorded following CIMMYT protocols (Pask et al., 2012). After

natural grain drying, plot yield and thousand kernel weight were

assessed using the same methodology.
2.3 Population structure and association
analysis

Population structure was assessed using pairwise kinship

coefficients and principal component analysis (PCA). The kinship

matrix was calculated with GAPIT v3 (Wang and Zhang, 2021) and

visualized using the heatmap3 package, while eigenvalues and PCA

results were plotted with ggplot2 in R.

Using GAPIT, five GWAS models – GLM, MLM, MLMM,

BLINK, and FarmCPU – were utilized to identify stable marker-trait

associations (MTAs) for SR resistance. PCA.total=3 was used in all

GWAS models for the correction of population structure effect.

Consistency of significant signals across these methods determined

stability. A P-value threshold of 1.00E-4 was set to capture all potential

associations, acknowledging that the standard threshold may miss true

associations in studies with low-frequency variants or smaller

populations due to insufficient statistical power (Fadista et al., 2016).

Studies have shown that relaxing the p-value threshold can improve the

detection of associations with small effects, thereby capturing a broader

spectrum of true genetic signals (Chen et al., 2021).
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2.4 QTLs identification and candidate
genes analysis

To consolidate closely linked MTAs into distinct quantitative

trait loci (QTLs), the critical linkage disequilibrium (LD) distance at

R² = 0.2 was previously calculated for each chromosome

(Genievskaya et al., 2025) and used as the merging threshold.

Within each QTL region, the SNP showing the lowest P-value

was designated as the lead or peak SNP. Haplotype structure and

allele combinations within QTLs were visualized using the SRplot

online platform (SRplot, 2025).

Candidate gene identification was carried out by aligning the

physical positions of known Rpg barley genes with the identified

QTL intervals. A physical map displaying positions of identified

QTLs and mapped Rpg genes was generated using MapChart v2.3

(Voorrips, 2002). To identify protein-coding genes potentially

related to SR resistance within QTL regions, four databases were

used. IDs of genes located within QTL intervals were retrieved from

EnsemblPlants (Yates et al., 2022). Their expression profiles were

examined using BarleyExpDB (Li et al., 2023) and RNA-Seq

datasets from 16 tissues/organs of the Morex cultivar (Mascher

et al., 2017). Genes exhibiting expression levels above 100 TPM

(transcripts per million) were considered strong candidates.

Functional annotation of encoded proteins was performed using

UniProt (The UniProt Consortium, 2025) and QuickGO

(QuickGO, 2025), and gene expression patterns were visualized

via the “heatmap3” package for R. To investigate patterns of gene

co-expression across tissues and organs and identify functionally

coherent gene modules, a weighted gene co-expression network of
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highly expressed genes (TPM > 100) was constructed using

expression data from 16 tissues/organs (Mascher et al., 2017). A

Pearson correlation threshold of r ≥ 0.6 was applied to retain

biologically meaningful associations. The resulting correlation

matrix was converted to an undirected weighted network using

the igraph package for R. Gene clusters were detected using the

Walktrap community detection algorithm (Pons and Latapy, 2006).
3 Results

3.1 Field assessment of SR resistance

A total of 273 spring two-row barley accessions were evaluated

for SR severity. On average, the severity at the milky-waxy seed

development stage in RIBSP was 4.4 on a 9-point scale,

corresponding to a score of 70–90MR using the classical IT scale,

while in KRIAPG, the average score was 5.2, which corresponded to

10–30MS. Examples of susceptible cultivars from two environments

are provided in Figure 1.

In the RIBSP field, the barley collection displayed the full range

of reactions to SR, from 0 (immune) to 9 (highly susceptible), with a

standard deviation of 1.83 and a moderate CV of 40.6%

(Supplementary Table 4). The distribution of SR severity scores

on a 9-point scale (Figure 2A) approximated a normal curve,

centered around scores 4 and 5, with the highest frequency

observed at score 4 (64 counts). In the KRIAPG field, the

collection also exhibited the complete range of SR responses (0–

9), but with a higher standard deviation of 2.26 and a slightly greater
FIGURE 1

Barley cultivars susceptible to SR. Line QB_047 or 04WA-111-A from WA, USA, with 40S infection type in RIBSP (A), and line QB_275 or PLD 139
from Poland with 70S infection type in KRIAPG (B).
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CV of 43.15% (Supplementary Table 4). However, the distribution

pattern in KRIAPG was bimodal, with prominent peaks at severity

scores 3 and 7 (Figure 2B). In both environments, frequencies

declined toward the extremes of the scale (0 and 9), suggesting that

strong resistance or high susceptibility were less prevalent in the

evaluated population.

Among the 273 barley accessions evaluated at RIBSP, accession

QB_218 (breeding line ASHOS-168 from Kazakhstan) exhibited an

immune (I, 0) reaction to the local Pgt pathogen. In addition, 20

accessions originating from Kazakhstan and the USA displayed a

resistant (R, 1) type of reaction (Supplementary Table 4). The

highest level of susceptibility (S, 9) was observed in two

accessions from the USA: QB_054 (breeding line 04WA-123-G)

and QB_065 (breeding line 04WA-109). At KRIAPG, accession

QB_111 (breeding line 04AB093-A from the USA) also

demonstrated an immune (I, 0) response to the local Pgt

pathogen. Fourteen other accessions from the USA exhibited an R

(1) type reaction, while four accessions originating from

Kazakhstan, Europe, and the Middle East were found to be highly

susceptible (S, 9). Considering the results across both environments,

three accessions from the USA – QB_027 (04AB093-B), QB_111

(04AB093-A), and QB_112 (04AB016-A) – exhibited the highest

average level of resistance, classified as R (0.5 – 1). Five accessions

from the USA and three accessions from Kazakhstan demonstrated

an average S (7.5) type of reaction.

The correlation analysis in RIBSP demonstrated a significant (P

< 0.05) positive correlation between SR severity and PH, as well as a

negative correlation between SR and TKW (Figure 2C). The

remaining studied agronomical traits did not significantly

correlate with SR severity.
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3.2 Genotyping and population structure

SNP genotyping resulted in 44,040 markers, of which 31,834

polymorphic SNP markers were selected after filtering for a call rate

> 0.9 and minor allele frequency (MAF) ≥ 0.05 (Supplementary

Table 5). These SNPs were evenly distributed across the 7 barley

chromosomes, with 1,445 lacking positional information. The total

genome coverage was approximately 4.54 Gb, with chromosome 5H

showing the highest SNP density (average spacing 137.2 Kb) and

chromosome 4H the lowest (233.1 Kb) (Supplementary Figure 1).

The filtered SNP set was used for population structure analysis

and GWAS.

The dendrogram derived from the kinship heatmap (Figure 3A)

provided insights into the genetic structure of the barley population,

revealing distinct clusters based on genetic relatedness. PCA

showed that PC1, PC2, and PC3 explained 10.32%, 6.04%, and

5.59% of the total genetic variation, respectively (Figure 3B). The

PCA plot (Figure 3C) displayed three partially overlapping clusters

corresponding to germplasm from the USA, African barley

accessions, and the remaining genotypes. This clustering pattern

suggested the presence of at least two major groups – accessions

from the USA and the remaining barley accessions. Additionally,

smaller subclusters composed of closely related individuals were

observed within these primary groups in the kinship heatmap.
3.3 GWAS and haplotype analysis

In total, 204 significant (P < 1.00E-4) MTAs for SR resistance

were identified across the five models in two environments,
FIGURE 2

Frequency distribution of the barley accessions for stem rust resistance evaluated on a 9-point scale in RIBSP (A) and KRIAPG (B); the correlation
analysis among resistance to stem rust and key agronomic traits of barley in RIBSP (C). SR, stem rust (Pgt) severity; HT, days from seedling
emergence to heading; IT, infection type; HMT, days from heading to full grain maturity; FLA, flag leaf area; PH, plant height; PL, peduncle length;
SL, spike length; Y, kernels yield per plot; TKW, 1000 kernels weight. Correlations with P-value < 0.05 are shown. Blue and red colors represent
positive and negative correlations, respectively, with color intensity indicating the strength of the correlation; the scale bar at the bottom ranges r-
values from −1 (strong negative correlation) to +1 (strong positive correlation).
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including 62 MTAs for RIBSP and 142 from KRIAPG. The largest

number of MTAs were identified with the GLM model (n = 111),

followed by MLM (n = 44), FarmCPU (n = 30), BLINK (n = 14),

and MLMM (n = 5). Among these, 96 MTAs were considered

robust and stable, as they were consistently detected by at least two

of five GWAS models. To consolidate overlapping signals,

haplotype analysis was performed. MTAs located in close

proximity and exhibiting R2 > 0.2 were grouped into single QTL
Frontiers in Plant Science 06
intervals. This approach led to the identification of 19 model-stable

QTLs associated with SR resistance. Among these, 9 QTLs were

represented by multiple SNPs (ranging from 2 to 60) (Figure 4),

while the remaining 10 were detected by single SNPs.

Detailed information regarding MTAs, their positions within

QTLs, P-values, phenotypic values explained (PVE) values, and

effects is provided in Supplementary Table 6. Table 1 summarizes

19 QTLs for SR resistance identified across seven chromosomes.
FIGURE 3

Population structure of barley germplasm based on 31,834 SNPs, including a heat map of the kinship matrix (A), a scree plot of principal
components (B), and a PCA plot (C).
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Among the identified loci, Q_rpg_5H.3 and Q_rpg_7H.1 were

consistently detected by all five GWAS models across both

environments. The QTLs Q_rpg_3H.1, Q_rpg_6H.2 , and

Q_rpg_7H.4 were identified by four models, while nine QTLs

were detected using three models, and two models supported the

remaining 15 QTLs. The lowest P-values, below the Bonferroni-

corrected threshold (P=1.57E-6), were observed for five QTLs:

Q_rpg_2H.3, Q_rpg_4H.1, Q_rpg_5H.1, Q_rpg_5H.3, and

Q_rpg_7H.1 (Table 1), indicating a strong association with SR

resistance. The QTL Q_rpg_7H.1 encompassed the highest

number of associated SNPs, totaling 60.

Based on PVE values, QTLs were classified into four

categories: major-effect QTLs (PVE ≥ 0.10), moderate-effect
Frontiers in Plant Science 07
QTLs (0.05 ≤ PVE < 0.10), minor-effect QTLs (0.01 ≤ PVE <

0.05), and very small-effect QTLs (PVE < 0.01). According to this

classification, nine loci were categorized as minor-effect QTLs,

three loci as moderate-effect QTLs, and seven loci as major-effect

QTLs (Supplementary Table 6). The largest PVE was observed for

Q_rpg_5H.3 (0.3065) followed by Q_rpg_7H.1 (0.3063). PVE

values of the remaining major-effect QTLs varied from 0.1056 to

0.1215 (Supplementary Table 6).

The QQ plots for data from RIBSP and KRIAPG (Figures 5A, B)

showed moderate inflation across all models, with clear deviations

from the expected distribution in the upper tail, suggesting potential

true associations with SR resistance. In the RIBSP dataset, the most

significant peaks were located on chromosome 5H (Figure 5C),
FIGURE 4

Linkage disequilibrium (LD) heatmaps for stem rust resistance QTLs. The color intensity, as indicated by the R2 color key, along with numerical
values within the blocks, represents the strength of LD between marker pairs.
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TABLE 1 The list of stable QTLs for SR resistance identified using five GWAS models.

QTL SNP Chr Pos Effective GWAS model Environment Min P-value

RIBSP 8.38E-05

KRIAPG 9.08E-05

KRIAPG 9.08E-05

KRIAPG 5.45E-05

KRIAPG 7.07E-09

KRIAPG 1.35E-05

KRIAPG 5.15E-06

KRIAPG 5.15E-06

KRIAPG 2.44E-05

KRIAPG 3.53E-05

KRIAPG 7.28E-05

KRIAPG 1.70E-08

KRIAPG 1.22E-05

KRIAPG 6.21E-05

KRIAPG 4.75E-05

KRIAPG 2.86E-08

KRIAPG 2.10E-06

KRIAPG 2.78E-05

KRIAPG 2.88E-05

KRIAPG 1.41E-07

RIBSP 2.60E-05

RIBSP 2.60E-05

RIBSP 2.60E-05

LMM RIBSP 3.36E-09

KRIAPG 5.69E-05

KRIAPG 7.28E-05

KRIAPG 7.28E-05

(Continued)
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Q_rpg_1H.1 JHI-Hv50k-2016-450275 1H 24,930,749 BLINK, MLMM

Q_rpg_2H.1
JHI-Hv50k-2016-60953 2H 2,864,871 GLM, MLM, MLMM

SCRI_RS_135585 2H 2,876,150 GLM, MLM, MLMM

Q_rpg_2H.2 JHI-Hv50k-2016-96261 2H 529,553,885 GLM, MLM

Q_rpg_2H.3
JHI-Hv50k-2016-105024 2H 561,314,845 FarmCPU, GLM, MLMM

JHI-Hv50k-2016-105007 2H 561,317,792 FarmCPU, GLM, MLMM

Q_rpg_2H.4
JHI-Hv50k-2016-120493 2H 617,637,311 GLM, MLM

JHI-Hv50k-2016-120519 2H 617,794,503 GLM, MLM

Q_rpg_2H.5 JHI-Hv50k-2016-128164 2H 630,897,103 BLINK, GLM, MLMM

Q_rpg_2H.6 JHI-Hv50k-2016-137128 2H 744,899,559 GLM, MLM

Q_rpg_3H.1 JHI-Hv50k-2016-225043 3H 695,553,560 BLINK, GLM, MLM, MLMM

Q_rpg_4H.1
JHI-Hv50k-2016-275848 4H 607,720,695 FarmCPU, GLM, MLMM

JHI-Hv50k-2016-275849 4H 607,720,753 FarmCPU, GLM, MLMM

Q_rpg_5H.1

SCRI_RS_209607 5H 3,578,041 FarmCPU, MLMM

JHI-Hv50k-2016-278508 5H 3,626,994 BLINK, MLMM

JHI-Hv50k-2016-281115 5H 9,907,958 FarmCPU, MLM, MLMM

Q_rpg_5H.2 JHI-Hv50k-2016-303063 5H 416,597,383 GLM, MLM

Q_rpg_5H.3

SCRI_RS_140294 5H 453,313,031 GLM, MLM

JHI-Hv50k-2016-310061 5H 453,485,876 GLM, MLM

JHI-Hv50k-2016-440886 5H 454,345,120 GLM, MLM

JHI-Hv50k-2016-440885 5H 454,345,196 Farm CPU, GLM, MLM

JHI-Hv50k-2016-440881 5H 454,345,338 Farm CPU, GLM, MLM

JHI-Hv50k-2016-440878 5H 454,345,443 Farm CPU, GLM, MLM

JHI-Hv50k-2016-440481 5H 454,386,257 BLINK, FarmCPU, GLM, MLM,

Q_rpg_6H.1 JHI-Hv50k-2016-405915 6H 422,368,603 FarmCPU, GLM, MLM

Q_rpg_6H.2
JHI-Hv50k-2016-408820 6H 464,406,639 BLINK, GLM, MLM, MLMM

JHI-Hv50k-2016-408709 6H 464,461,224 BLINK, GLM, MLM, MLMM
M
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TABLE 1 Continued

QTL SNP Chr Pos Effective GWAS model Environment Min P-value

KRIAPG 6.20E-05

KRIAPG 9.87E-05

KRIAPG 5.29E-05

KRIAPG 2.31E-05

KRIAPG 2.67E-07

LMM KRIAPG 4.67E-13

KRIAPG 5.07E-05

KRIAPG 8.52E-06

RIBSP 2.57E-05

RIBSP 1.25E-05

KRIAPG 3.06E-05

RIBSP 6.27E-06

RIBSP 6.27E-06

KRIAPG 3.64E-05

KRIAPG 4.29E-07

KRIAPG 7.80E-07

RIBSP 7.47E-06

KRIAPG 4.29E-07

KRIAPG 4.29E-07

RIBSP 4.29E-06

KRIAPG 2.89E-06

RIBSP 7.47E-06

RIBSP 7.47E-06

KRIAPG 8.08E-07

KRIAPG 6.05E-06

KRIAPG 1.26E-05

KRIAPG 6.93E-06
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Q_rpg_6H.3 JHI-Hv50k-2016-434736 6H 561,746,668 GLM, MLM

Q_rpg_7H.1

JHI-Hv50k-2016-436941 7H 219,064 GLM, MLM

JHI-Hv50k-2016-437076 7H 934,727 GLM, MLM

JHI-Hv50k-2016-437077 7H 934,824 GLM, MLM

JHI-Hv50k-2016-435062 7H 2,540,126 FarmCPU, GLM, MLM

JHI-Hv50k-2016-435161 7H 2,549,430 BLINK, FarmCPU, GLM, MLM,

JHI-Hv50k-2016-435177 7H 2,550,374 GLM, MLM

JHI-Hv50k-2016-435274 7H 2,564,218 BLINK, GLM, MLM

JHI-Hv50k-2016-437935 7H 2,682,155 FarmCPU, GLM, MLM

SCRI_RS_8079 7H 2,877,097 FarmCPU, GLM, MLM

JHI-Hv50k-2016-437307 7H 2,877,915 GLM, MLM

JHI-Hv50k-2016-437598 7H 3,170,162 FarmCPU, GLM, MLM

JHI-Hv50k-2016-437597 7H 3,170,183 FarmCPU, GLM, MLM

JHI-Hv50k-2016-439043 7H 4,183,410 GLM, MLM

JHI-Hv50k-2016-439082 7H 4,186,736 GLM, MLM

JHI-Hv50k-2016-439213 7H 4,412,992 GLM, MLM

JHI-Hv50k-2016-439375 7H 4,417,609 FarmCPU, GLM, MLM

JHI-Hv50k-2016-439464 7H 4,440,986 GLM, MLM

JHI-Hv50k-2016-439341 7H 4,451,118 GLM, MLM

JHI-Hv50k-2016-439340 7H 4,451,198 FarmCPU, GLM, MLM

JHI-Hv50k-2016-439309 7H 4,452,490 GLM, MLM

JHI-Hv50k-2016-439545 7H 4,455,199 FarmCPU, GLM, MLM

JHI-Hv50k-2016-439559 7H 4,455,831 FarmCPU, GLM, MLM

JHI-Hv50k-2016-439565 7H 4,456,295 GLM, MLM

JHI-Hv50k-2016-439567 7H 4,456,340 GLM, MLM

BOPA1_1555-631 7H 4,580,292 GLM, MLM

JHI-Hv50k-2016-439829 7H 4,641,549 GLM, MLM
M
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TABLE 1 Continued

QTL SNP Chr Pos Effective GWAS model Environment Min P-value

RIBSP 2.56E-05

KRIAPG 5.40E-06

RIBSP 2.60E-05

RIBSP 2.60E-05

RIBSP 2.60E-05

KRIAPG 2.67E-07

KRIAPG 5.50E-05

KRIAPG 1.67E-05

KRIAPG 1.67E-05

KRIAPG 1.67E-05

RIBSP 3.18E-05

RIBSP 3.18E-05

RIBSP 3.18E-05

KRIAPG 3.85E-06

KRIAPG 6.95E-05

RIBSP 6.95E-05

KRIAPG 6.95E-05

KRIAPG 6.21E-05

KRIAPG 6.21E-05

KRIAPG 6.21E-05

KRIAPG 6.21E-05

KRIAPG 6.21E-05

KRIAPG 6.95E-05

KRIAPG 6.21E-05

KRIAPG 6.21E-05

KRIAPG 6.21E-05

KRIAPG 6.21E-05
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JHI-Hv50k-2016-439890 7H 4,686,449 FarmCPU, GLM, MLM

JHI-Hv50k-2016-440562 7H 5,134,684 GLM, MLM

JHI-Hv50k-2016-440879 7H 5,165,768 FarmCPU, GLM, MLM

JHI-Hv50k-2016-440882 7H 5,165,886 FarmCPU, GLM, MLM

JHI-Hv50k-2016-440888 7H 5,234,237 FarmCPU, GLM, MLM

JHI-Hv50k-2016-441670 7H 5,554,752 GLM, MLM

JHI-Hv50k-2016-441664 7H 5,555,314 GLM, MLM

JHI-Hv50k-2016-441653 7H 5,555,883 GLM, MLM

JHI-Hv50k-2016-441652 7H 5,555,965 GLM, MLM

JHI-Hv50k-2016-441643 7H 5,556,522 GLM, MLM

JHI-Hv50k-2016-441961 7H 6,572,207 FarmCPU, GLM, MLM

JHI-Hv50k-2016-441962 7H 6,572,420 FarmCPU, GLM, MLM

JHI-Hv50k-2016-441967 7H 6,573,267 FarmCPU, GLM, MLM

SCRI_RS_160297 7H 6,590,892 GLM, MLM

JHI-Hv50k-2016-442556 7H 7,130,958 GLM, MLM

JHI-Hv50k-2016-442574 7H 7,131,854 FarmCPU, GLM, MLM

JHI-Hv50k-2016-442878 7H 7,382,135 GLM, MLM

SCRI_RS_230060 7H 7,846,242 GLM, MLM

JHI-Hv50k-2016-443382 7H 7,894,665 GLM, MLM

JHI-Hv50k-2016-443385 7H 7,894,775 GLM, MLM

JHI-Hv50k-2016-443386 7H 7,894,836 GLM, MLM

JHI-Hv50k-2016-443408 7H 7,911,072 GLM, MLM

JHI-Hv50k-2016-443414 7H 7,911,233 GLM, MLM

JHI-Hv50k-2016-443540 7H 8,150,854 GLM, MLM

BOPA2_12_31411 7H 8,151,497 GLM, MLM

JHI-Hv50k-2016-443531 7H 8,152,062 GLM, MLM

JHI-Hv50k-2016-443528 7H 8,152,213 GLM, MLM
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TABLE 1 Continued

QTL SNP Chr Pos Effective GWAS model Environment Min P-value

8,152,219 GLM, MLM KRIAPG 6.21E-05

8,152,485 GLM, MLM KRIAPG 6.21E-05

8,152,542 GLM, MLM KRIAPG 6.21E-05

8,153,340 GLM, MLM KRIAPG 6.95E-05

8,153,864 GLM, MLM KRIAPG 2.55E-05

8,964,705 FarmCPU, GLM, MLM RIBSP 7.73E-05

11,788,159 GLM, MLM KRIAPG 7.04E-05

58,907,935 GLM, MLM KRIAPG 2.55E-05

584,358,525 GLM, MLM, MLMM KRIAPG 3.13E-05

584,388,608 GLM, MLM, MLMM KRIAPG 3.13E-05

584,388,714 GLM, MLM, MLMM KRIAPG 3.13E-05

584,395,482 GLM, MLM, MLMM KRIAPG 3.13E-05

584,395,756 GLM, MLM, MLMM KRIAPG 3.13E-05

602,014,442 FarmCPU, GLM, MLM, MLMM KRIAPG 4.03E-05
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JHI-Hv50k-2016-443527 7H

JHI-Hv50k-2016-443525 7H

JHI-Hv50k-2016-443524 7H

JHI-Hv50k-2016-443515 7H

JHI-Hv50k-2016-443502 7H

JHI-Hv50k-2016-443689 7H

JHI-Hv50k-2016-446949 7H

Q_rpg_7H.2 SCRI_RS_234502 7H

Q_rpg_7H.3

JHI-Hv50k-2016-498211 7H

JHI-Hv50k-2016-498293 7H

JHI-Hv50k-2016-498295 7H

JHI-Hv50k-2016-498322 7H

JHI-Hv50k-2016-498326 7H

Q_rpg_7H.4 JHI-Hv50k-2016-506060 7H
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whereas in the KRIAPG dataset, the highest peaks were observed on

chromosomes 2H, 4H, 5H, and 7H (Figure 5D), all surpassing the

Bonferroni threshold. These findings support the presence of strong

loci in the regions associated with SR resistance. Two major peaks

on chromosomes 5H and 7H were consistently highly significant in

both datasets.
Frontiers in Plant Science 12
The newly identified QTLs, along with known SR resistance

genes (Rpg1, rpg4, and Rpg5), were mapped onto the barley genome

across all seven chromosomes (Figure 6). The highest number of

QTLs was detected on chromosome 2H (n = 6). The QTL

Q_rpg_7H.1 overlapped with the known Rpg1 locus, indicating

either a linked association or potential allelic variation. The
tly associated with stem rust resistance in barley identified by GWAS with two or more models. Quantile-quantile plots wi
FIGURE 5

SNPs significan th data from
RIBSP (A) and KRIAPG (B). Chromosome-wise Manhattan plots with data from RIBSP (C) and KRIAPG (D). Associations stable across models are
highlighted with vertical grey lines. The green solid horizontal line denotes a P-value of 1.57E-6 (Bonferroni); the green dashed horizontal line
denotes a P-value of 1.00E-4.
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remaining QTLs were located in genomic regions distinct from

mapped Rpg loci, possibly representing novel resistance sources.
3.4 Candidate genes for stem rust
resistance QTLs

Genetic positions of 19 QTLs mapped across all seven barley

chromosomes were compared with positions of known Rpg genes

and SR-resistance QTLs from the literature (Table 2).

Six QTLs co-localized with genomic regions previously reported

in the literature, supporting their relevance in barley SR resistance.

The major resistance gene Rpg1 was located within the Q_rpg_7H.1

region, consistent with its known chromosomal position. The

remaining 13 QTLs likely represent novel genetic factors

associated with barley SR resistance.
Frontiers in Plant Science 13
Genes in stable QTL regions expressed in 16 barley tissues and

organs of different developmental stages and organs were selected. A

total of 531 candidate protein-coding genes with available expression

data were located in 13 QTL regions (Supplementary Table 7). The

remaining 6 QTLs were positioned in genomic regions not overlapping

with coding barley genes. By filtering the low-expressed genes (TPM <

100), 56 highly expressed candidate genes were identified for five QTLs:

Q_rpg_2H.3 (n = 1), Q_rpg_5H.1 (n = 11), Q_rpg_5H.3 (n = 1),

Q_rpg_6H.3 (n = 1), and Q_rpg_7H.1 (n = 42) (Figure 7).

The expression analysis revealed substantial variation in both

transcript abundance and tissue specificity, allowing the

prioritization of candidate genes potentially involved in SR

resistance. Extremely high expression levels (TPM > 1000) were

detected for eight genes located within two QTL regions.

In the Q_rpg_5H.1 region, HORVU.MOREX.r3.5HG0421460

exhibited peak expression in nearly all analyzed tissues and organs,
FIGURE 6

QTLs and their peak SNPs identified in the RIBSP dataset are shown in blue; QTLs from the KRIAPG dataset in green; and QTLs detected in both
environments are indicated in brown. Known Rpg genes are highlighted in purple. An asterisk (*) denotes a close-up view of the corresponding
segment on chromosome 7H.
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except for the 10cm shoot from seedlings (LEA, TPM=680.4) and

lemma at six weeks post-anthesis (LEM, TPM=815.88).

HORVU.MOREX.r3.5HG0421370 showed maximum expression in

the roots of 10cm seedlings (ROO2) and high expression (TPM > 100)

across all other organs and tissues. HORVU.MOREX.r3.5HG0424290

was highly expressed in the senescing leaf of 2-month-old plants (SEN),

with relatively high expression in all other organs and tissues, ranging

from 40.17 to 611.8 TPM (Figure 7). At the organ level, 9 out of 11

genes within Q_rpg_5H.1 exhibited high expression (TPM > 100) in

LEA, and 7 out of 11 in SEN.

In the Q_rpg_7H.1 region, HORVU.MOREX.r3.7HG0634340

showed peak expression in the 4-week-old epidermis (EPI) and SEN

(F i g u r e 7 ) . HORVU .MOREX . r 3 . 7HG063 9 3 1 0 a nd

HORVU.MOREX.r3.7HG0639320 were highly expressed in 15-day

post-anthesis grains (CAR15), while HORVU.MOREX.r3.

7HG0639380 peaked in 10-day-old etiolated seedlings (ETI).

HORVU.MOREX.r3.7HG0639980 was most strongly expressed in

LEM, developing tillers at the six-leaf stage (NOD), and palea at six

weeks post-anthesis (PAL). Additionally, four genes –

HORVU.MOREX.r3.7HG0639100, HORVU.MOREX.r3.7HG

0639380, HORVU.MOREX.r3.7HG0640180, and HORVU.MOREX.

r3.7HG0640790 – displayed consistently moderate to high expression

across all analyzed tissues and developmental stages, with transcript

levels ranging from 65.05 to 1000.45 TPM. Notably, 19 out of 42 genes

are within Q_rpg_7H.1 exhibited high expression (TPM > 100) in 5-

day post-anthesis grains (CAR5).
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In the Q_rpg_2H.3 region, HORVU.MOREX.r3.2HG0182210

demonstrated high expression (TPM > 100) in LEM, NOD, PAL, 5

weeks post-anthesis rachis (RAC), and ROO2 (Figure 7). From the

Q_rpg_3H.1 region, HORVU.MOREX.r3.3HG0225930 was

predominantly expressed in CAR15, while HORVU.MOREX.r3.

6HG0634290 exhibited peak expression in EPI.

GO classification of candidate protein-coding genes (TPM >

100) within SR resistance QTLs revealed distinct patterns in

biological processes, cellular localization, and molecular functions

(Supplementary Table 8, Supplementary Figure 2).

The GO analysis revealed that the most enriched biological process

categories were related to fatty acid and lipid metabolism, immune and

defense responses, and cell wall and structural organization, each

represented by 10 or more genes. These results suggested a

multifaceted role of metabolic pathways, structural remodeling, and

stress signaling in the response to SR resistance. In the molecular

function category, the predominant terms were catalytic activity and

nucleotide/ATP binding, followed by functions associated with electron

transport, glycosylation, and enzyme regulation, reflecting diverse

biochemical roles of the candidate genes. For the cellular component

category, the majority of gene products were localized to the

membrane, macromolecular complexes, and cytoplasmic

compartments, with additional enrichment in the cell wall,

mitochondrion, and Golgi apparatus.

Overall, the GO annotation suggested that the candidate genes

associated with SR resistance QTLs were primarily involved in
TABLE 2 The list of reference genes and QTLs for newly identified SR resistance loci.

QTL Position (interval) Reference gene and/or QTL for SR resistance

Q_rpg_1H.1 24,930,749 –

Q_rpg_2H.1 2,864,871 – 2,876,150 –

Q_rpg_2H.2 529,553,885 –

Q_rpg_2H.3 561,314,845 – 561,317,792 –

Q_rpg_2H.4 617,637,311 – 617,794,503 (Czembor et al., 2022; Amouzoune et al., 2022)

Q_rpg_2H.5 630,897,103 –

Q_rpg_2H.6 744,899,559 –

Q_rpg_3H.1 695,553,560 –

Q_rpg_4H.1 607,720,695 – 607,720,753 –

Q_rpg_5H.1 3,578,041 – 9,907,958 –

Q_rpg_5H.2 416,597,383 –

Q_rpg_5H.3 453,313,031 – 454,386,257 (Czembor et al., 2022)

Q_rpg_6H.1 422,368,603 Rpg6 (Henningsen et al., 2021)

Q_rpg_6H.2 464,406,639 – 464,461,224 (Turuspekov et al., 2016)

Q_rpg_6H.3 561,746,668 –

Q_rpg_7H.1 219,064 – 11,788,159 Rpg1 (Henningsen et al., 2021)

Q_rpg_7H.2 58,907,935 –

Q_rpg_7H.3 584,358,525 – 584,395,756 –

Q_rpg_7H.4 602,014,442 (Czembor et al., 2022)
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metabolic and enzymatic functions (especially lipid and

carbohydrate metabolism) and were distributed across key cellular

structures, including membranes, the cell wall, and the

extracellular matrix.

A weighted gene co-expression network (Figure 8) was

generated based on expression data from 16 tissues/organs to

uncover co-expression patterns and identify functionally related

gene clusters associated with two stable QTLs – Q_rpg_5H.1

and Q_rpg_7H.1.

For Q_rpg_5H.1, three gene co-expression clusters were

identified, comprising four (Cluster 1), three (Cluster 2), and two

(Cluster 3) genes, respectively (Figure 8A). Cluster 1 included genes

involved in transcriptional regulation (WRKY51), direct antifungal

activity (thaumatin-like protein), membrane transport (ALA-

interacting subunit), and supportive primary metabolism

(cysteine synthase). Cluster 2 also contained a thaumatin-like

protein, along with 15-cis-phytoene synthase and an
Frontiers in Plant Science 15
uncharacterized gene. Cluster 3 comprised a GRF-type domain-

containing protein and another uncharacterized gene.

For Q_rpg_7H.1, eight clusters were identified, with gene counts

ranging from 2 (Clusters 6–8) to 11 (Cluster 4) (Figure 8B). Clusters 2,

3, and 4 exhibited strong inter-cluster connectivity, forming a meta-

cluster. Cluster 4, the largest, contained genes related to cell wall

integrity maintenance, including multiple pectinesterase inhibitor

domain-containing proteins and a VWFA-domain-containing

protein. Cluster 3, interconnected with Cluster 4, comprised genes

associated with a metabolic defense module, encompassing energy

production and respiration (mitochondrial pyruvate carrier, pyruvate

dehydrogenase, oxidative pentose phosphate pathway), oxidative stress

responses (a-dioxygenase 1, ozone-responsive protein, NADPH-

generating enzymes), lipid-based signaling (PLAT and ACB domain-

containing proteins), calcium signaling and transport (GDT1), and

carbon storage and redistribution (fructosyltransferases). The smallest

member of the meta-cluster, Cluster 2, included three genes involved in
FIGURE 7

Expression heatmap (TPM > 100) of highly expressed candidate genes in QTLs associated with SR resistance at 16 plant developmental stages of
barley. CAR15, Grain, bracts removed, 15 days post-anthesis; CAR5, Grain, bracts removed, 5 days post-anthesis; EMB, Embryos, 4 days dissected
from germinating grains; EPI, 4-week-old epidermis; ETI, 10-day-old etiolated seedling; INF1, Young inflorescences, 5mm; INF2, Inflorescences,
1-1.5cm; LEA, 10cm shoot from the seedlings; LEM, Lemma, 6 weeks post-anthesis; LOD, Lodicule, 6 weeks post-anthesis; NOD, Six-leaf stage
developing tillers; PAL, Palea, 6 weeks post-anthesis; RAC, Rachis, 5 weeks post-anthesis; ROO, 4-week-old root; ROO2, Roots from 10cm
seedlings; SEN, 2-month-old senescing leaf.
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stress-induced signaling and regulation of programmed cell death.

Additionally, Cluster 1 consisted of six genes implicated in

photosynthetic energy supply, redox homeostasis, and pathogen-

triggered signaling, including an MLO-like protein.

Together, the clusters identified within the stable QTLs

Q_rpg_5H.1 and Q_rpg_7H.1 reveal a coordinated and

multilayered defense architecture in barley, integrating

transcriptional regulation, antifungal defense, reinforcement of

cell wall structure, energy and redox metabolism, lipid-mediated

and oxidative stress responses, and regulation of cell death –

underscoring their potential roles in enhancing basal and

inducible resistance to stem rust.
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4 Discussion

4.1 Phenotypic variation and trait
correlations in barley reaction to SR

The evaluation of 273 two-row spring barley accessions across

two distinct environments – RIBSP and KRIAPG – revealed

substantial phenotypic variation in response to SR, underscoring

the genetic diversity of the studied panel. The overall disease

severity was lower in RIBSP (mean score 4.4) than in KRIAPG

(mean score 5.2), suggesting environmental modulation of Pgt

development. Differences in inoculum pressure, microclimate, or
FIGURE 8

Gene co-expression network for highly-expressed genes (TPM > 100) in QTLs Q_rpg_5H.1 (A) and Q_rpg_7H.1 (B). Colored nodes denote genes.
Numbers on the edges are Pearson’s r-values.
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pathogen race composition between the two sites may have

contributed to these disparities (Abdelghany et al., 2024). This is

further supported by the variation in phenotypic distributions

(Figures 2A, B): while RIBSP displayed a near-normal distribution

centered around moderate scores (peaking at score 4), the bimodal

distribution observed in KRIAPG (peaks at 3 and 7) reflects the

interaction between genotype and more contrasting environmental

and pathogen-related conditions. In the study, 20 genotypes

exhibited an R reaction under field conditions of RIBSP and 14

genotypes – R reaction at KRIAPG; however, such responses are

typically conferred by major race-specific genes that, while effective,

are often rapidly overcome by pathogen evolution (Michel et al.,

2023). In contrast, 119 accessions showing MR and 128 accessions

with MS reactions at RIBSP, along with 95 MR and 118 MS

accessions at KRIAPG (Supplementary Table 4), are of greater

breeding relevance. These phenotypes are indicative of partial or

slow-rusting resistance mechanisms associated with APR genes.

Such resistance reduces the rate of pathogen development without

completely preventing infection, thereby providing a more durable

and stable defense against stem rust (Michel et al., 2023).

The correlation analysis revealed a significant positive association

between PH and SR severity in RIBSP, implying that taller plants were

more susceptible (Figure 2C). This could be attributed to microclimatic

factors within the canopy (Vidal et al., 2017) or differential exposure to

inoculum (Araujo et al., 2023). In contrast, a significant negative

correlation between TKW and SR severity (Figure 2C) suggests that

disease burden may adversely affect grain filling and productivity.

These findings are consistent with prior studies where rust infections

were associated with reduced grain yield and kernel weight due to

compromised photosynthate allocation and premature senescence

(Junk et al., 2016; He et al., 2019; Zhou et al., 2022a). The low

correlations between SR and other agronomic traits suggest that SR

resistance is most likely genetically independent, supporting the

rationale for performing a separate GWAS for this trait.
4.2 Identification of stable and novel QTLs
for stem rust resistance

Genotype-based population structure analysis based on kinship

and PCA revealed the presence of genetically distinct subgroups

within the germplasm collection, likely reflecting differences in

geographic origin and breeding history (Figure 3). Similar results

were obtained previously with similar barley germplasm

(Genievskaya et al., 2022, 2023).

The GWAS conducted using five statistical models across two

environments led to the identification of 204 MTAs, among which 96

were considered robust and stable due to their detection by multiple

models (Supplementary Table 5). The highest number of associations

was detected using the GLM model, although the MLM and multi-

locus models (MLMM, FarmCPU, BLINK) provided more stringent

control for confounding factors, thereby enhancing the reliability of

identified signals. Haplotype-based consolidation of associated SNPs

allowed the definition of 19 model-stable QTLs distributed across all

seven barley chromosomes. The QTLs Q_rpg_5H.3 and Q_rpg_7H.1
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were consistently detected by all five GWAS models in both

environments (Table 1), suggest ing their strong and

environmentally stable contribution to SR resistance. Although

only a limited number of studies have focused on QTL mapping

and GWAS for SR resistance in barley, the current study identified six

candidate SR-resistance QTLs and/or Rpg genes, confirming their

stability not only under Kazakhstan’s environmental conditions but

also across other global regions (Table 2). Among them, Q_rpg_2H.4

(617.6–617.7 Mb) was located near previously reported SR-resistance

QTLs at 612.5 Mb (Czembor et al., 2022) and 616.4 Mb (Amouzoune

et al., 2022). Q_rpg_5H.3 (453.3–454.4 Mb) overlapped with a QTL

reported at 453.6 Mb (Czembor et al., 2022), while Q_rpg_6H.2

(464.4 Mb) was proximal to an MTA for SR resistance at 471.3 Mb

previously identified in Kazakhstan (Turuspekov et al., 2016).

Similarly, Q_rpg_7H.4, positioned at 602.0 Mb, was close to a

known QTL at 606.1 Mb (Czembor et al., 2022).

The major-effect Q_rpg_7H.1 region encompassed the largest

number of linked MTAs (n = 60), which is due to the presence of the

strongest gene Rpg1 in this QTL (Figure 6). Position of Q_rpg_6H.1

matched with the position of recessive Rpg6 from H. bulbosum,

however, this QTL demonstrated a minor effect only. The remaining

QTLs were mapped to genomic regions not previously associated

with known Rpg genes and/or QTLs, suggesting the presence of novel

loci contributing to barley SR resistance (Table 2).

Together, the identification of both known and potentially

novel QTLs provides a valuable genomic resource for breeding

SR-resistant barley in Kazakhstan and globally. These findings

enhance our understanding of the genetic architecture underlying

SR resistance in the diverse barley germplasm grown in the

southern and southeastern regions of Kazakhstan, supporting

targeted improvement efforts under local agroecological conditions.
4.3 Transcriptional and functional insights
into Rpg1-associated QTL Q_rpg_7H.1

Plants manage their growth and defend against various

environmental challenges through an intricate regulatory network

(Li et al., 2020). Using expression data from 16 tissues across

developmental stages, a total of 531 candidate genes within 13 of

19 SR resistance QTL regions were initially identified (Supplementary

Table 7). After filtering for high transcript abundance (TPM > 100),

56 highly expressed genes were identified within five QTL regions

(Figure 7). Q_rpg_7H.1 and Q_rpg_5H.1 were prioritized as QTLs

with the largest number of highly expressed genes (n = 42 and 10,

respectively) (Supplementary Table 8) and highest PVE values

(0.3063 and 0.3065, respectively) (Supplementary Table 6).

Gene Ontology (GO) enrichment analysis of candidate genes

within Q_rpg_7H.1 (which includes Rpg1) revealed significant

associations with fatty acid and lipid metabolism, immune and

defense responses, and cell wall organization (Figure 8). These

findings align with recent studies in cereal rust resistance, where

coordinated metabolic changes and cell wall modifications – such

as lignin-based barriers in rice (Zhang et al., 2025) and the

phenylpropanoid pathway in wheat (Liu et al., 2022) – contribute
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to durable defense mechanisms. The Q_rpg_7H.1 region formed a

meta-cluster (Figure 8B) integrating modules related to cell wall

integrity (e.g., pectinesterase inhibitors, VWFA-domain proteins),

energy metabolism, oxidative stress response, lipid and calcium

signaling, and regulation of programmed cell death. This modular

defense architecture is consistent with previous findings in barley,

where coordinated gene modules have been implicated in

resistance dynamics (Yuan et al., 2018). The Rpg1 gene encodes a

receptor-like protein with two tandem serine/threonine protein

kinase domains (Brueggeman et al., 2006). Within Q_rpg_7H.1,

two candidate genes – HORVU.MOREX.r3.7HG0636000 and

HORVU.MOREX.r3.7HG0640060, encoding a protein kinase

domain-containing protein and a non-specific serine/threonine

kinase, respectively – were highly expressed during the SEN

developmental stage (Supplementary Table 8), coinciding with

the peak of stem rust infection. Notably, genes containing

pectinesterase inhibitor (PEI) domains from Cluster 4 of the

meta-cluster (Figure 8B) are implicated in cell wall-based defense

and mirror findings at the Rrs2 locus, where PEI genes co-

segregated with resistance to Rhynchosporium commune in barley

(Marzin et al., 2016), suggesting conserved mechanisms in

pathogen defense.

Collectively, the integration of cell wall-associated components

(e.g., pectinesterase inhibitors), metabolic pathways (energy

metabolism, lipid signaling), oxidative stress response, calcium

signaling, and regulators of programmed cell death in the co-

expressed clusters of Q_rpg_7H.1 highlights a robust, multilayered

defense strategy. This architecture supports both basal and inducible

immunity, consistent with the known mechanism of Rpg1-mediated

stem rust resistance, which involves early kinase signaling and

programmed cell death (Zhang et al., 2008; Shen et al., 2017;

Solanki et al., 2019). At the same time, SNPs identified within

Q_rpg_7H.1 in the current GWAS represent valuable markers for

marker-assisted selection (MAS) of SR-resistant barley genotypes.
4.4 Identification and functional analysis of
candidate genes within novel QTL
Q_rpg_5H.1

The QTL Q_rpg_5H.1, identified based on resistance data from

KRIAPG, was mapped to a 3.5 – 9.9 Mb interval on chromosome

5H, a region where no previously reported Rpg genes or SR

resistance QTLs have been described. This QTL includes three

linked MTAs detected by all five GWAS models, with P-values

ranging from 9.73E-04 to 2.86E-08 (Supplementary Table 6).

Expression profiling revealed 151 protein-coding genes within

this interval with available transcriptomic data from 16 barley

organs and developmental stages. Of these, 10 genes exhibited

high expression levels (TPM > 100) and were designated as

candidate genes for Q_rpg_5H.1.

Co-expression analysis of these highly expressed genes (Figure

8A) identified three distinct clusters, each potentially contributing to

SR resistance. The largest, Cluster 1, comprised four genes: a

WRKY51 transcription factor, a thaumatin-like protein, an ALA-
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interacting subunit, and cysteine synthase. WRKY transcription

factors are well-established regulators of plant immune responses,

orchestrating downstream signaling and secondary metabolism (Sari

et al., 2019). Thaumatin-like proteins, classified as PR-5 proteins,

possess direct antifungal properties and are typically upregulated

upon pathogen attack, including during powdery mildew infection in

wheat (Allario et al., 2023). Cysteine synthase is involved in sulfur

amino acid metabolism and has been implicated in redox regulation

and stress defense, as demonstrated for barley cystatins (Velasco-

Arroyo et al., 2018). The ALA-interacting subunit may contribute to

membrane transport or signaling processes associated with defense.

Cluster 2 contained a second thaumatin-like protein, 15-cis-

phytoene synthase, and one uncharacterized gene. Phytoene

synthase is a central enzyme in carotenoid biosynthesis, a pathway

linked to reactive oxygen species (ROS) scavenging and signaling

during defense responses (Zhou et al., 2022b), though its role in rust

resistance in barley remains to be clarified. Cluster 3 consisted of a

GRF-type domain-containing protein and another uncharacterized

gene. GRF transcription factors, typically associated with plant growth

and organ development, are increasingly recognized for their

involvement in stress adaptation and environmental response

modulation, including in wheat and rice (Cheng et al., 2023). Taken

together, these clusters represent a coordinated defense network

comprising classical immune regulators (e.g., WRKY, PR-5),

metabolic enzymes (e.g., cysteine synthase), and regulatory proteins

(e.g., GRF domains). The modular structure of this co-expression

architecture – linking transcriptional regulation, antifungal activity,

metabolism, and signaling – parallels systems biology models of

cereal-pathogen interactions, where network hubs predict resistance

phenotypes [for example, Fusarium head blight resistance in wheat

(Sari et al., 2019)]. These findings suggest that Q_rpg_5H.1 represents

a previously uncharacterized, multi-functional resistance locus with

strong potential for MAS and functional validation in breeding for SR

resistance in barley.
5 Conclusion

Among 273 barley accessions evaluated across two environments

in Kazakhstan, a wide range of responses to Pgtwas observed. Amulti-

model GWAS approach identified 204 MTAs, among which 96 were

considered robust and stable across models, resulting in the

delineation of 19 model-stable QTLs distributed across all barley

chromosomes. Six of these QTLs overlapped with known Rpg genes

or previously reported SR-resistance loci, confirming their stability

and effectiveness under diverse environmental conditions. The

strongest QTL, Q_rpg_7H.1, coincided with Rpg1, while

Q_rpg_6H.1 co-localized with Rpg6. Based on gene expression

profiles, major-effect Q_rpg_7H.1 (Rpg1) and the novel major-effect

QTL Q_rpg_5H.1 were prioritized due to the presence of the highest

number of highly expressed genes. Functional annotation revealed

that Q_rpg_7H.1 harbors 42 such genes, forming a multilayered co-

expression network associated with cell wall organization, lipid

metabolism, oxidative stress response, and programmed cell death –

processes central to Rpg1-mediated resistance. The novel QTL
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Q_rpg_5H.1 contained 10 highly expressed genes grouped into three

co-expression clusters, including WRKY transcription factors, PR-5

proteins, and regulatory genes involved in defense signaling and

metabolism. These findings support a modular, systems-level

defense architecture underlying SR resistance in barley. The study

enhances understanding of the genetic architecture of SR resistance in

germplasm adapted to the southern and southeastern regions of

Kazakhstan and identifies valuable targets for MAS in breeding

programs. Further fine-mapping and functional validation of

Q_rpg_5H.1 are needed to confirm its causal genes and effectiveness

against diverse Pgt races, ultimately contributing to durable resistance

under variable agroecological conditions.
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SUPPLEMENTARY FIGURE 1

Single nucleotide polymorphism (SNP) density plot across the seven
barley chromosomes.

SUPPLEMENTARY FIGURE 2

Gene Ontology (GO) annotation of identified genes in barley. The bar plots

show the distribution of functional categories across three GO domains:
Molecular Function (yellow), Cellular Component (purple), and Biological

Process (green). The x-axis represents the frequency (count) of annotated
genes in each category.
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