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Introduction: Picea mongolica is an endangered conifer species endemic to
Hunshandak Sandy Land, uniquely adapted to extreme desert conditions.
However, it faces critical conservation challenges due to slow regeneration
rates, limited seed production, and high susceptibility to pathogens, which
collectively threaten its population sustainability and genetic diversity.
Methods: We performed long-read transcriptome sequencing of pooled
samples from various somatic embryogenesis stages using PacBio SMRT
technology. The obtained transcripts were functionally annotated using the Nr,
SwissProt, KEGG, and KOG databases. We conducted comprehensive transcript
structure analyses, including identification of alternative splicing, SSR loci,
INcRNAs, and transcription factors. Furthermore, we cloned the PmBBM gene
and analyzed its sequence characteristics. Expression patterns of PmBBM and
other AP2 transcription factor family members during somatic embryogenesis
were profiled.

Results: Our analysis generated 12,232 high-quality transcripts. We identified 83
genes with alternative splicing, 1,006 SSR loci, 35 IncRNAs, and 548 transcription
factors from 46 distinct families. The PmBBM gene was successfully cloned and
characterized. Expression profiling revealed dynamic expression patterns of
PmBBM and other AP2 family members across different stages of
somatic embryogenesis.

Discussion: This study establishes the first reference-quality transcriptome
database for P. mongolica using PacBio long-read sequencing, providing
essential genomic resources for this non-model species. Our findings not only
enhance the understanding of molecular mechanisms in somatic embryogenesis
but also lay a foundation for future functional genomics research, including gene
validation and molecular marker-assisted breeding. These results have significant
theoretical and practical implications for the conservation and sustainable
utilization of this endangered conifer.

Picea mongolica, long-read transcriptome, somatic embryogenesis, transcription
factors, BABY BOOM
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1 Introduction

Picea mongolica, a rare and endemic evergreen conifer species in
China that belongs to the Pinaceae family, is exclusively distributed in
the southeastern region of Hunshandake Sandy Land in Inner
Mongolia (Zou et al., 2001). Its wood is widely used for
papermaking and furniture production, and its bark serves as a
source of turpentine. This ecologically and economically valuable
species exhibits remarkable adaptations, including sand-burial
tolerance, cold resistance, and drought endurance (Zhang et al,
2013). Recognized for its robust protective functions, aesthetic
morphology, and high economic value, P. mongolica is an
important ecological-economic tree species (Habuer et al, 2021).
Due to low natural regeneration rates, high seedling mortality,
limited seed production, and susceptibility to pest infestations, the
population resources of P. mongolica have been continuously
declining. To address these conservation challenges, biotechnological
approaches such as somatic embryogenesis (SE) offer a promising
avenue for mass clonal propagation, germplasm preservation, and
genetic improvement. However, the SE protocol for P. mongolica
remains inefficient and unreliable, primarily due to a complete lack of
understanding of the molecular mechanisms governing this process.
Identifying key genes and regulatory networks controlling SE is
therefore a critical prerequisite for overcoming these technical barriers.

Early research on P. mongolica primarily focused on seedling
cultivation, afforestation techniques, introduction, cultivation, and its
physiological and biochemical characteristics (Liu et al., 2020; Zou
etal, 2003; Liu et al,, 2018; Tang et al,, 2016). Recently, the number of
molecular biology investigations has increased. Transcriptomic study
of zygotic embryos at various developmental stages revealed stage-
specific differential gene expression patterns, with the most
pronounced differences occurring between the early embryogenesis
and embryo maturation phases. Transcription factor families,
including MYB, WRKY, WOX, AP2, GATA, and TCP, exhibit
distinct expression profiles across various embryonic developmental
stages (Yan et al, 2021la). A transcriptome comparison of non-
embryogenic and embryogenic calli identified 13,267 differentially
expressed genes, demonstrating that phytohormone-related, stress-
responsive, and signal transduction genes collectively regulate
embryogenic competence in P. mongolica (Wang et al., 2023). To
address the challenges of root elongation and lateral root formation
during somatic embryo germination, single-cell transcriptomics was
employed to characterize cell types and specific expression patterns
during lateral root development, elucidate cellular evolutionary
trajectories, and construct molecular regulatory networks
(Wang, 2023).

SE is an effective in vitro regeneration system and an ideal
receptor for genetic transformation with significant
biotechnological potential (Guan et al., 2016). Extensive research
has established that plant SE is regulated by complex gene networks
controlled by phytohormones, including auxins, abscisic acid, and
cytokinins (Elhiti et al, 2013; Wojcik et al, 2020). The BABY
BOOM (BBM) gene, a member of the AP2 subfamily within the
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AP2/ERF superfamily, plays a crucial role in plant growth
regulation and stress responses (Jha and Kumar, 2018). BBM was
initially isolated from immature pollen grains of Brassica napus.
Ectopic BBM expression not only promotes cell proliferation and
morphogenesis in both B. napus and Arabidopsis thaliana, but also
successfully induces SE without exogenous hormone application
(Boutilier et al., 2002; Kulinska-Lukaszek et al., 2012). In Larix
kaempferi x L. olgensis, BBM plays a regulatory role in adventitious
root development (Li et al., 2014; Wang et al,, 2019). In Zea mays,
BBM promoted embryonic regeneration, thereby influencing
transformation efficiency (Du et al., 2019; Masters et al., 2020). In
Rosa canina, RcBBM overexpression promotes shoot regeneration
in both leaf and root explants (Yang et al, 2014). Accumulating
evidence has confirmed BBM’s multifaceted functions in SE
induction, cell proliferation and regeneration enhancement,
genetic transformation efficiency improvement, and apomixis
induction, establishing BBM as an embryo-specific gene and a
marker of embryogenic competence (Yuan et al, 2024; Yavuz
et al, 2020). Given the well-established conserved role of AP2
transcription factors, particularly the BBM, as master regulators of
cell pluripotency and SE, and given their prominent representation
in our preliminary transcriptome data, we focused our subsequent
analysis on this family.

While previous transcriptomic studies on P. mongolica SE (Dai
et al., 2025) have characterized gene expression across
developmental stages, a comprehensive catalog of long-read
transcript isoforms, which is crucial for accurate gene annotation,
alternative splicing analysis, and IncRNA identification, remains
lacking. The primary objective of this study was therefore to
establish a reference-quality, long-read transcriptome for P.
mongolica using PacBio SMRT sequencing. To achieve this, a
pooled sample strategy was employed to maximize the diversity
of transcripts captured for isoform discovery. Building upon this
foundational resource, we further sought to clone and characterize
the key SE-related gene PmBBM and to analyze its expression
pattern, thereby elucidating its regulatory role. Our ultimate goal is
to identify genetic targets for optimizing SE protocols, thereby
facilitating the conservation and sustainable utilization of this
endangered conifer.

2 Materials and methods
2.1 Plant materials

The immature seeds of P. mongolica were collected from the
Baiyinaobao Nature Reserve in Hexigten Banner, Chifeng, Inner
Mongolia, China. The SE of P. mongolica was induced using
immature zygotic embryos as explants, following the established
protocol developed by our research group (Yan et al., 2021b).
Samples of non-embryogenic callus (NEC), embryogenic callus
(EC), global somatic embryos (GSE), late somatic embryos (LSE),
mature somatic embryos (MSE), and somatic embryo-derived
plantlets (EP) were collected (Figure 1). The samples were

frontiersin.org


https://doi.org/10.3389/fpls.2025.1682365
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Dai et al.

10.3389/fpls.2025.1682365

FIGURE 1

Different stages of Picea mongolica somatic embryogenesis. (A) Non-embryogenic callus (NEC). (B) Embryogenic calli (EC). (C) Global Somatic
Embryos (GSE). (D) Late Somatic Embryos (LSE), (E) Mature Somatic Embryos (MSE), (F) Somatic Embryo Plantlets (EP). A-E Scale bars = 1 mm. F

Scale bars =1 cm.

immediately frozen in liquid nitrogen after collection and
subsequently stored at -80 C.

2.2 RNA extraction, library construction,
and sequencing

Total RNA was extracted by grinding the tissue using a TRIzol
reagent (Invitrogen, Carlsbad, CA, USA). RNA integrity was
determined using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) and agarose gel electrophoresis.
The purity and concentration of the RNA were determined with a
Nanodrop micro-spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA).long-read cDNA was synthesized from poly
(A)+ RNA using the Clontech SMARTer PCR ¢cDNA Synthesis Kit
(Takara, Osaka, Japan), which is specifically designed for PacBio Iso-
Seq library preparation. The resulting double-stranded cDNA was
PCR-amplified. The SMRTbell template library was constructed
following the standard Iso-Seq protocol, which included DNA
damage repair, end repair, and adapter ligation. The SMRTbell
template was annealed to sequencing primers, bound to
polymerase, and sequenced on a PacBio Sequence II platform
(Gene Denovo Biotechnology Co., Guangzhou, China).
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2.3 Data processing

The raw sequencing reads from the cDNA libraries were analyzed
using SMRT Link V8.0.0 ( )- A high-quality circular
consensus sequence (CCS) was extracted from the subread BAM file.
Primers, barcodes, poly A tail trimming, and a concatemer of full passes
were removed to obtain full-length nonchimeric (FLNC) reads. Similar
FLNC reads were used in minimap2 for hierarchical clustering to
obtain a consistency sequence. The quiver algorithm was then used to
correct the consistency sequence further. Based on the results, high-
quality isoforms (prediction accuracy is = 0.99) were used for
subsequent analyses ( ).

Isoforms were BLAST analyzed against the NCBI non-
redundant protein (Nr) database ( ),
Swiss-Prot protein database ( ), Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (

), and Clusters of Orthologous Genes/
Eukaryotic Orthologous Groups (COG/KOG) database (
) with BLASTx program (

). Sequence similarity with genes
of other species Gene Ontology (GO) annotation was analyzed
using Blast2GO software ( ) with the Nr
annotation results of the isoforms.
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Simple Sequence Repeats (SSR) analysis was performed using
MISA, followed by IncRNA identification of long-read transcripts
that were not annotated in the four major databases. Coding
potential was rigorously assessed using both CNCI (Sun et al,
2013) and CPC (Kong et al, 2007), and only transcripts
unanimously predicted as non-coding by both tools were
considered reliable IncRNAs. Cogent software was used to
assemble the coding sequences, which served as a reference for
alternative splicing (AS) analysis using SUPPA (Li et al,, 2017;
Alamancos et al., 2015). Finally, the predicted protein sequences
were subjected to hmmScan against the PlantTFDB database to
identify and quantify transcription factors (TFs).

2.4 Cloning of the PmBBM gene and
bioinformatics analysis

Using the long-read transcriptome data, we predicted the CDS
of the PmBBM gene (Isoform0001869). Gene-specific primers,
PmBBM-F (5-ATGGGGTCGACGAGCAATT-3’) and PmBBM-R
(5-TTATGTGTCGTTCCATACAGTGAAA-3’), were designed for
PCR amplification, followed by electrophoresis, gel recovery, T-
vector ligation, and transformation into Escherichia coli DH50
competent cells. The recombinant plasmids were subsequently
sent to Tsingke Biotechnology for sequencing.

The corresponding amino acid sequence was translated using
DNAMAN software. The physicochemical properties of the
PmBBM protein were analyzed using the online tool ProtParam
(https://web.expasy.org/protparam). Transmembrane domains
were predicted using DeepTMHMM (https://dtu.biolib.com/
DeepTMHMMY/) and hydrophobicity analysis was performed
using ProtScale (https://web.expasy.org/protscale/). Signal peptide
prediction was conducted using SignalP-6.0 (https://
services.healthtech.dtu.dk/services/SignalP-6.0/). The secondary
and tertiary structures of PmBBM were predicted using SOPMA
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?
page=npsa_sopma.html) and SWISS-MODEL (https://
swissmodel.expasy.org/), respectively. Phosphorylation sites were
predicted using NetPhos (https://services.healthtech.dtu.dk/
services/NetPhos-3.1/), and conserved domains were analyzed
using NCBI (https://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi). The homologous amino acid sequences of
PmBBM were obtained from NCBI database (https://
www.ncbinlm.nih.gov/). DNAMAN was used to the multiple
sequence alignments. A phylogenetic tree was built with MEGA®6.

2.5 Subcellular localization

The overexpression vector pBWA(V)H2STMVQ-3xflag-BBM
was created by connecting PmBBM to pBWA(V)H2STMVQ-
3xflag-ccdB-egfp. The overexpression vector was transformed
into DH50. receptor cells. Positive clones were identified via
colony PCR and sequenced for further identification. The correct
plasmid transformed into Agrobacterium GV3101 receptive cells
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was detected, pPBWA(V)H2STMVQ-3xflag-ccdB-egfp was used as a
negative control, positive clones were selected and propagated,
Agrobacterium infection solution was prepared, and the OD600
was adjusted to approximately 0.60. The lower epidermis of tobacco
leaves was injected with a syringe, cultured in the dark for 48 h, and
observed and photographed under a confocal laser microscope
(Nikon C2-ER).

2.6 Analysis of the expression patterns of
the PmBBM and AP2 transcription factor
family

Utilizing our team’s existing transcriptomic data from NEC,
EC, GSE, LSE, MSE, and EP developmental stages, we systematically
examined the expression profiles of PmBBM and AP2 family genes
throughout the six developmental phases. Gene expression patterns
were visualized via heatmap analysis using OmicSmart

(http://www.omicsmart.com).

3 Results

3.1 Overview of long-read transcript
sequencing data

We obtained 33.88 Gb of sequencing data using SMART
sequencing, comprising 15,586,833 subreads with an average
length of 2,173 bp and an N50 of 2,350 bp (Figure 2A). After
filtering subreads with Full Passes 21, we obtained 220,241 high-
accuracy CCS reads totaling 510,826,820 bases, with an average
length of 2,319 bp and mean Full Pass number of 42. Classification
of these CCS reads yielded 112,449 FLNC sequences (51.06%)
averaging 2,320.79 bp, 1441 full-length chimeric sequences
(0.65%), and 106,351 non-full-length reads (48.29%) (Figure 2B).
Hierarchical clustering of the FLNC reads generated consensus
sequences that were subsequently polished using the Quiver
algorithm to produce 14,823 high-quality and 36 low-quality
sequences. After redundancy removal, we obtained 12,232 long-
read transcript isoforms with an average length of 2,331.98 bp and
an N50 of 2,486 bp, with read lengths predominantly distributed
between 1000-4000 bp (Figure 2C).

3.2 Classification and functional annotation

Comparative analysis revealed successful annotation of 12,092
(98.86%) long-read transcripts across KEGG, KOG, Nr, and Swiss-
Prot databases. Specifically, 11,895 (97.24%) transcripts were
annotated in KEGG, 8,444 (69.03%) in KOG, 12,092 (98.86%) in
Nr, and 10,751 (87.89%) in Swiss-Prot, whereas 140
(1.14%) transcripts remained unannotated (Figure 3A). Notably,
8,151 transcripts were simultaneously annotated in all four
databases (Figure 3B).
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The 12,092 transcripts annotated from the Nr database were
compared with 253 species (Supplementary Table 1). Figure 4
displays the top 10 species by number of homologous sequences.
Among them, the number of genes compared to Picea sitchensis and
Taxus chinensis was the highest, at 5,099 and 3,597, respectively.
The next in line were plants such as Amborella trichopoda, Nelumbo
nucifera, and Nymphaea colorata, etc. Among the transcripts, the
species most similar to P. mongolica was P. sitchensis.

P. sitchensis is distributed along the Pacific coast of North
America, whereas P. mongolica is endemic to the Hunshandake
Sandy Land in Inner Mongolia, China. Despite their vast
geographical separation, molecular phylogenetic studies have
revealed that spruce species from western North America and
those from East Asia form a closely related clade. These species
share a relatively recent common ancestor, which accounts for the
high degree of sequence similarity observed in their genomes. In
contrast, P. abies, the predominant spruce species in Europe,
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FIGURE 3

belongs to a distinct evolutionary lineage. It diverged earlier from
the East Asian-North American clade, and prolonged independent
evolution has resulted in greater accumulation of genomic
divergence, leading to reduced sequence similarity in orthologous
genes. Consequently, only 107 highly similar transcripts were
identified. Although P. abies is currently the only species in the
genus Picea with a published reference genome (Nystedt et al.,
2013), the initial genome assembly suffers from relatively low
completeness and annotation quality, thereby limiting its utility as
a reference for phylogenetically distant species such as P. mongolica.

3.3 GO and KOG annotation

Functional annotation analysis successfully assigned 10,564
transcripts to GO categories that were classified into 48 functional
groups across three major domains: biological processes, cellular

—_ Swissprot

N\

Functional annotation of isoforms in Picea mongolica. (A) Annotation statistics of long-read transcripts in four datasets (B) Four database annotation
Venn diagram. KEGG, Kyoto Encyclopedia of Genes and Genomes; KOG, Eukaryotic Orthologous Groups; Nr, Non-redundant protein.
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The top ten Nr homologous species of transcripts compared to Picea mongolica. Nr, Non-redundant protein.

components, and molecular functions (Figure 5A). Within the
biological process domain, cellular process (8,347), metabolic
process (7,462), and responses to stimulus (3,089) were the most
abundant categories. The cellular component domain was dominated
by cellular anatomical entity (6,797), followed by protein-containing
complex (2,615) and virion components (63). In the molecular
function classification, binding (7,169) was the most prevalent
category, with catalytic activity (6,496) and transporter activity
(1,028) being the subsequent major groups. A total of 8,444
transcripts were functionally annotated in the KOG database and
classified into 25 distinct categories (Figure 5B). The most abundant
functional category was general function prediction (1,769), followed
by post-translational modifications, protein turnover, chaperones
(1,266), and signal transduction mechanisms (1,158). In contrast,
cell motility was the least populated category, with only six annotated
transcripts. The predominance of transcripts related to response to
stimulus and signal transduction mechanisms is particularly
noteworthy, as it may reflect the inherent stress adaptation
mechanisms of P. mongolica, a species native to a harsh desert
environment, which could be co-opted during the in vitro stress of SE.

3.4 Analysis of KEGG pathway annotation

The KEGG annotation analysis successfully assigned 11895 P.
mongolica transcripts to 134 metabolic pathways across five major
categories (Supplementary Table 2). The metabolism category had
the highest number of annotated genes (8,832), followed by genetic
information processing (1,583), cellular processes (319),
environmental information processing (299), and organism
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systems (213). Among the specific metabolic pathways, metabolic
pathways (2,187) represented the most abundant category, with
biosynthesis of secondary metabolites (1,301), carbon metabolism
(431), and biosynthesis of amino acids (353) also being prominently
represented within the metabolism category (Table 1). Notably,
previous studies have demonstrated that carbon source type and
concentration significantly influence SE, playing a crucial role
among the three key regulatory factors (plant hormones, carbon
sources, and nitrogen sources) in SE. The significant enrichment of
pathways such as carbon metabolism and starch and sucrose
metabolism underscores the massive metabolic reprogramming
and high energy demand required for the rapid cell proliferation
and differentiation that characterizes SE.

3.5 Analysis of the long-read transcript
structure

To develop molecular markers for future genetic studies and
breeding applications in this endangered species, we identified and
characterized SSR loci within the transcriptome assembly. SSR analysis
of the 12,232 isoforms from P. mongolica using MISA1.0 identified
1,006 sequences (8.22%) containing SSR loci. Among these, 159
sequences harbored two or more SSR loci, with 1,231 SSR loci
detected, including di-, tri-, tetra-, penta-, and hexanucleotide repeats
(Figure 6A). Trinucleotide repeats were the most abundant (846), with
AGC/CTG (242, 19.66%), AAG/CTT (184, 14.95%), and AGG/CCT
(149, 12.10%) being the predominant motifs (Figure 6B). Additionally,
123 sequences contained compound SSR loci. The majority of repeats
(1,138) exhibited 4-7 repeat units, followed by 8-11 repeats (84).
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GO and KOG enrichment analyses of Picea mongolica transcripts. (A) GO term classifications of transcript sequences. (B) KOG annotation of
transcript sequences. GO, Gene Ontology; KOG, Eukaryotic Orthologous Groups.

As demonstrated in Section 3.2, most of the long-read
sequences were well annotated. For the remaining unannotated
transcripts, a coding potential assessment using both CNCI and
CPC software identified 35 putative IncRNAs (Figure 7A). We used
INFERNAL for multiple sequence alignment, secondary structure
prediction, and covariance modeling based on conserved sequences
and structural features. However, none of the 35 IncRNAs exhibited
significant matches. This lack of annotation may be explained by
the high sequence divergence of IncRNAs, particularly in conifers
such as P. mongolica, which are evolutionarily distant from the
model plants well-represented in current databases. It is likely that
many of these IncRNAs are novel and species-specific, possibly
involved in lineage-specific regulatory processes during SE.
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Furthermore, existing databases remain biased toward model
organisms, limiting homology-based detection in non-model
species. These results suggest that P. mongolica may possess a set
of previously uncharacterized, rapidly evolving IncRNAs that could
play roles in its unique embryogenic programming. Future
functional studies are needed to clarify their biological significance.

AS analysis with SUPPA software revealed 83 AS events
belonging to four distinct types: two alternative first exons, 17
alternative 5 splice sites, 28 alternative 3’ splice sites, and 36 intron
retentions (Figure 7B). Furthermore, the research revealed that 65
(2.40%) unigenes had only one isoform. 1,365 (50.41%), 684
(25.26%), and 305 (11.26%) genes included two, three, and four
isoforms, respectively. Ten (0.37%) genes were discovered in more
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TABLE 1 Kyoto Encyclopedia of Genes and Genomes pathway
enrichment.

Pathwa The number and Pathway
Y proportion of genes ID
Metabolic pathways 2187 (53.45%) ko01100
Bi thesis of d
I;Z:Zglol,f:sls of secondaty 1301 (31.79%) ko01110
i
Carbon metabolism 431 (10.53%) ko01200
Biosynthesis of amino acids 353 (8.63%) ko01230
Protei L
rotein processing in 245 (5.99%) ko04141
endoplasmic reticulum
Glycolysi
yeolysis / 229 (5.6%) k000010
Gluconeogenesis
Starch and sucrose
i 193 (4.72%) ko00500
metabolism
Pyruvate metabolism 186 (4.55%) ko00620
Spliceosome 186 (4.55%) ko03040
Ribosome 171 (4.18%) ko03010
Amino sugar and
nucleotide sugar 166 (4.06%) ko00520
metabolism
RNA ill
mth survetfance 161 (3.93%) k003015
pathway
Plant-pathogen interaction 158 (3.86%) ko04626
Plant hormone signal
! 157 (3.84%) k004075
transduction
Endocytosis 150 (3.67%) ko04144
Cysteine and methionine
boll 142 (3.47%) k000270
metabolism
Glyoxylate and
ryoxylate afl ‘ 140 (3.42%) ko00630
dicarboxylate metabolism
RNA degradation 130 (3.18%) ko03018
Citrate cycle (TCA cycle) 123 (3.01%) k000020
Nucl lasmi
ucleocytoplasmic 122 (2.98%) ko03013
transport

than ten splice isoforms (Figure 7C). To further explore the
biological relevance of these AS events, we performed functional
enrichment analysis on the affected transcripts. KEGG pathway
analysis revealed that these isoforms were significantly enriched in
Starch and sucrose metabolism and Sphingolipid metabolism
(Supplementary Figure 1). The enrichment of starch and sucrose
metabolism is particularly noteworthy, as it aligns with our previous
transcriptomic and metabolomic findings (Dai et al., 2025) and
underscores the critical role of carbon source reprogramming in
supporting the high energy demands of SE. Additionally, GO
analysis showed enrichment in terms related to photosynthesis
(e.g., photosystem I/IT) and cellular components like the thylakoid
membrane, suggesting a role for AS in the metabolic restructuring
that accompanies embryogenic development.
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3.6 Prediction of transcription factor
families

Through a comprehensive analysis of the long-read
transcriptome sequencing data, we identified 548 TFs belonging
to 46 distinct TF families from 12,232 long-read transcripts using
hmmScan alignment against the TF database (Supplementary
Table 3). The C3H family was the most abundant TF group (46,
8.39%), followed by bHLH (37, 6.75%), trihelix (35, 6.39%), bZIP
(35, 6.39%), and MYB-related (34, 6.20%) families (Figure 8).
Beyond the overall catalog of TFs, we sought to identify key
regulators specifically associated with the acquisition of
embryogenic competence. By analyzing expression levels across
stages, we found that in addition to AP2, several TFs from the NAC,
NEF-Y, and LBD families exhibited pronounced upregulation
specifically in the EC compared to NEC (Supplementary Table 4).
For instance, ABI4 expression increased more than 104 fold in EC,
suggesting their potential as novel candidates involved in
initiating SE.

3.7 Cloning and bioinformatics analysis of
the PmBBM

Based on the long-read transcriptome sequencing data, a 2,367
bp gene encoding 788 amino acids was identified through screening
and comparative analysis (GenBank accession number PV941855)
(Supplementary Figure 2), and designated as PmBBM. The encoded
protein of PmBBM has a molecular weight of 86,633.16 Da and an
isoelectric point of 5.85. There were 82 negatively charged residues
and 68 positively charged residues. The amino acid with the highest
content is serine, which accounts for 12%, whereas cysteine and
tryptophan were the least abundant, accounting for 1%
(Supplementary Figure 3). The molecular formula of the protein
was determined to be Csg99Hs766N110401240934, With a total of
11,843 atoms. The aliphatic index of the protein was 61.50,
indicating high stability.

The results of the hydrophilicity/hydrophobicity indicated that
most regions scored negative values, suggesting predominant
hydrophilicity (Supplementary Figure 4A). Transmembrane
domain prediction revealed the absence of transmembrane helices
in PmBBM (Supplementary Figure 4B). Signal peptide analysis
confirmed the absence of signal peptides in this protein
(Supplementary Figure 4C).

The predicted secondary structure of the PmBBM protein
(Figure 9A) consisted of 13.96% oi-helices, 5.71% extended
strands, and 80.33% random coils. For tertiary structure
prediction (Figure 9B), a 3D model of PmBBM was constructed
using a template (PDB ID: AOA088BUCI.1. A), exhibiting a Global
Model Quality Estimation (GMQE) score of 0.45 and 93.27%
sequence similarity to AP2 domain-containing proteins. These
results indicated a structurally diverse protein with abundant coils
and helices. Phosphorylation site prediction (Figure 9C) revealed
107 potential sites, including 27 threonine, 71 serine, and 9 tyrosine
residues. Furthermore, a conserved domain analysis using SMART
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Distribution of SSR nucleotide classification in Picea mongolica transcriptome. (A) Distribution statistics of six types of SSRs. (B) Proportions of SSRs
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(Figure 9D) demonstrated that PmBBM contained two
AP2 domains.

The deduced amino acid sequences of PmBBM was compared
to other BBM proteins from A. thaliana, B. napus, Medicago
truncatula, R. canina, and Populus nigra using the DNAMAN
software. PmBBM possesses two AP2 domains (AP2-R1 and
AP2-R2) and a linker region lying between them (linker),
indicating that PmBBMs belong to the AP2 family. Moreover,
RcBBMs contained the bbm-1 motif, and all motifs were
conserved in the euANT lineage: euANT2, euANT3, euANT4,
euANT5, and euANT6 (Figure 10A). The phylogenetic tree
revealed that PmBBM has the closest genetic relationship with
Larix decidua BBM (Figure 10B). This close clustering with a BBM
ortholog from another conifer species strongly supports the identity
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of our cloned gene and suggests evolutionary conservation of its
function in conifer embryogenesis.

3.8 Subcellular localization of GFP-PmBBM
in transiently transformed tobacco

To determine the precise subcellular localization of PmBBM, we
developed the fusion expression vector p35S:PmBBM-GFP, which
enables the expression of the fusion protein in tobacco leaves
through Agrobacterium tumefaciens-mediated delivery. The
findings depicted in Figure 11 shows that the fluorescence signal
of p35S::PmBBM corresponded to that of the cell nucleus marker
RFP. As a result, it is expected to be largely found in the nucleus,
with minimal expression in the cytoplasm.
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3.9 PmBBM and AP2 transcription factor
family expression profiling during SE in P.
mongolica

Based on our transcriptome sequencing results for P. mongolica
SE at key stages, we analyzed the expression patterns of PmBBM and
other AP2 transcription factor family genes in NEC, EC, GSE, LSE,
MSE, and EP (Figure 12). PmBBM was shown to be strongly
expressed during somatic embryo formation and development,
with the highest levels in EC; however, its expression was minimal
in NEC and EP. The AP2 family of genes displays two distinct
expression patterns: genes highly expressed during SE, such as BBM,
WRII, and AIL5; and genes predominantly expressed in NEC or EP,
including ANT, EPF, and AP2. Our expression analysis reveals that
specific AP2/ERF genes (particularly PmBBM) are dynamically
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expressed during SE in P. mongolica, suggesting their potential
roles in regulating this specific developmental process.

4 Discussion

This study was designed to elucidate the molecular
underpinnings of SE in the endangered conifer P. mongolica, with
a particular focus on identifying key regulatory genes. By employing
PacBio SMRT sequencing, we established a foundational
transcriptome resource that enabled us to successfully clone and
characterize the dynamic expression of PmBBM, a central
transcription factor in SE. Phylogenetic analysis revealed that
PmBBM shares the closest evolutionary relationship with the BBM
protein from Larix decidua, another conifer species. This high degree
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of conservation suggests that the embryogenic function of BBM is
likely shared among conifers, providing a strong phylogenetic basis
for inferring PmBBM’s role in SE. Furthermore, expression profiling
demonstrated that PmBBM is predominantly expressed during early
somatic embryo formation, consistent with its putative role as an
inducer of embryogenic development.

These findings complements our previous work on stage-specific
expression dynamics during SE by providing the essential genomic
infrastructure for future functional studies. The PacBio long-read
sequencing approach employed here overcomes the inherent
limitations of short-read assemblies in distinguishing between
closely related paralogs and alternatively spliced isoforms. We have
accurately identified: 12,232 high-quality long-read transcript
sequences, which serve as a definitive reference for gene
annotation; 83 alternative splicing events and 35 IncRNAs, which
were previously uncharacterized; and the complete coding sequence
(CDS) and structure of key regulators like PmBBM, enabling its
functional cloning and characterization. The stage-specific expression
patterns of PmBBM, analyzed using the reference generated here, are
consistent with and extend our previous findings, highlighting the
sustained importance of this TF family throughout SE. The SSR
markers and IncRNAs identified herein provide a new set of tools and
targets for further investigating the mechanisms uncovered in our
prior multi-omics study.

In a comparable study, Li et al. (2020) employed an integrated
NGS-TGS approach to analyze pooled samples (23 specimens
across 10 developmental stages) from Bletilla striata suspension
cultures. Their study generated 100,276 high-quality long-read
transcripts, including 53,316 KOG-annotated unigenes (classified
into 26 functional categories) and 8,020 KEGG-mapped unigenes
(assigned to 363 pathways). Additionally, they identified 15,133
IncRNAs and 68,996 SSR-containing coding sequences. Similar
long-read transcriptome investigations have been reported for
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diverse plant species, including Platycladus orientalis (Liao et al,
2024), Solanum tuberosum (Yan et al., 2022), and Lilium pumilum
(Song et al, 2020). As demonstrated in these studies, TGS has
emerged as a powerful tool for developing genomic resources and
molecular markers in non-model plants.

AS is a key mechanism that regulates gene expression and
protein variety, as well as improving transcriptome complexity and
modifying developmental processes (Szakonyi and Duque, 2018).
During SE, AS participates in critical biological processes including
cell fate determination, morphogenesis, and signal transduction. Du
et al. (2019) systematically analyzed AS patterns across different
stages of callus induction in maize, identifying over 2,000 splicing
events per stage. Notably, the genes involved in spliceosome
assembly, metabolic pathways, and mRNA surveillance exhibited
pronounced AS dynamics during callus induction. Their findings
revealed that AS cooperates with transcriptional regulation to
facilitate callus formation. Similarly, in Larix kaempferi,
microRNA171 and its target gene LaSCL6 generate two
alternatively spliced isoforms that regulate SE (Zang et al., 2024).
Studies on Panax ginseng have further demonstrated that the
PgCDPK2d subfamily, particularly its alternatively spliced
variants, functionally contributes to the SE (Kiselev et al., 2009).
In this study, PacBio long-read transcriptome sequencing identified
188 isoforms exhibiting AS during SE in P. mongolica. KEGG
analysis found that these genes were primarily enriched in
pathways such as photosynthesis, starch and sucrose metabolism,
and sphingolipid metabolism (Supplementary Figure 1). In the
transcriptome and metabolome studies during the SE in P.
mongolica., we also found that the differentially expressed genes
and metabolites were significantly enriched in the starch and
sucrose synthesis pathways (Dai et al., 2025).

To address the stage-specificity of metabolic pathways, we
examined the expression patterns of genes within the plant
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hormone signal transduction pathway. Although the PacBio
sequencing was performed on a pooled sample, our stage-specific
RNA-seq data (Supplementary Figure 5) revealed distinct
phytohormone dynamics: auxin and cell growth response genes
(e.g., XTH, LAX) were predominantly expressed in the EC and NEC
stages, consistent with their roles in promoting cell division and
embryogenic induction. In contrast, genes associated with abscisic
acid (ABA) and gibberellic acid (GA) signaling (e.g., GAI, PYL,
SRK) showed elevated expression in the GSE and MSE stages,
aligning with their established functions in somatic embryo
maturation and preparation for desiccation tolerance.

The broader functional enrichment analysis of the entire
transcriptome further illuminated the key biological processes
underpinning SE in this desert-adapted conifer. The significant
enrichment of pathways such as carbon metabolism, starch and
sucrose metabolism, and biosynthesis of amino acids (Table 1)
highlights a massive demand for energy and biosynthetic precursors
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to drive the rapid cell proliferation and differentiation characteristic
of embryogenic development. This is particularly relevant for P.
mongolica, a species endemic to the nutrient-poor Hunshandake
Sandy Land, suggesting an efficient carbon allocation mechanism is
crucial for SE success. Furthermore, the enrichment of plant
hormone signal transduction pathways underscores the well-
established central role of phytohormones like auxins and
cytokinins in initiating and sustaining SE. Notably, the detection
of enriched stress-responsive GO terms (e.g., response to stimulus,
Figure 5A) may be intrinsically linked to the species” evolution in a
harsh desert environment. The inherent stress tolerance
mechanisms of P. mongolica might be co-opted during the in
vitro SE process, which itself imposes significant osmotic and
oxidative stresses on tissues.

Key transcription factors serve as primary mediators of SE by
initiating and regulating downstream gene expression in response
to phytohormone signals such as auxins and cytokinins, thereby
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The comparison of the deduced amino acid sequences and the phylogenetic tree analysis of PmBBM. (A) The comparison of the deduced amino
acid sequences of PmBBM and other BBM proteins. The numbers indicate the amino acid positions in the context of the entire protein. The euANT2,
eUANT3, euANT4, euANT5, euANT6, AP2-R1, Linker, AP2-R2, and bbm-1 are underlined. (B) The phylogenetic tree analysis of PmBBM and other
BBM proteins. The tree was constructed by the neighbor-joining method with the MEGA program. Branch numbers represent the percentage of
bootstrap values in 1000 sampling replicates and the scale indicates branch lengths.

triggering embryogenic transitions and controlling somatic embryo
development (Asghar et al, 2023). Several AP2/ERF family
members regulate somatic embryogenesis. The Arabidopsis ERF
homolog MtSERFI, an ethylene-inducible gene in Medicago sativa,
is expressed in rapidly proliferating embryogenic tissues, somatic
embryos, and zygotic embryos. MtSERFI knockout significantly
suppressed somatic embryo regeneration (Mantiri et al., 2008).
Another AP2/ERF member, EMK is specifically expressed in
Arabidopsis zygotic embryos and maintains embryogenic cell
identity. Ectopic expression of EMK in Arabidopsis cotyledons
induces SE (Tsuwamoto et al., 2010).
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Among AP2/ERF members, the BBM gene has been the most
extensively studied (Boutilier et al., 2002). The embryogenic
properties of BBM have been successfully used to improve the in
vitro regeneration and transformation systems in crops (Deng et al.,
2009; Florez et al., 2015). Co-overexpression of maize BBM and
WUS genes in immature embryo transformation systems
significantly increases the success rate of transgenic calli, with
most producing healthy, fertile plants (Lowe et al, 2016). The
ectopic expression of rice BBM1 in unfertilized egg cells can induce
parthenogenesis (Khanday et al., 2019). Recent studies have
identified LEC/AGLI15 genes as positive regulators in SE, with
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The subcellular localization of PmBBM in tobacco. Fluorescence images (A, F), nuclear marker (B, G), chlorophyll (C, H), bright-field images

(D, 1), and the merged images (E, J). bars = 100 um

BBM functioning as a transcription factor that directly activates
LECI, LEC2, and FUS3 transcription (Salaiin et al., 2021). Our
successful cloning and characterization of PmBBM establishes a
crucial foundation for future functional studies on this gene during
SE in this conifer species.

Although this work established the reference-quality
transcriptome resource for P. mongolica and provides initial
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insights into the expression dynamics of key regulators (e.g.,
PmBBM) during SE, several limitations must be considered. First,
the absence of a reference genome restricted our analysis to the
transcriptome level, potentially overlooking crucial non-coding
regulatory elements and unexpressed genes. Additionally, the
sampling strategy focused solely on specific stages of SE, thereby
limiting a comprehensive understanding of developmental
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processes and stress responses under natural conditions. Future
investigations should prioritize the assembly of chromosome-level
reference genomes and employ multi-omics approaches (including
metabolomics, proteomics, and epigenomics) to systematically
decipher the molecular mechanisms underlying desert adaptation
in P. mongolica. Complementary functional validation of key genes
through CRISPR-based editing or overexpression systems, coupled
with the development of molecular markers for assisted breeding,
will substantially contribute to the conservation and sustainable use
of this endangered conifer species. The identification of 1,006 SSR
loci within the transcriptome offers a valuable set of molecular
markers for future population genetics studies, assessing genetic
diversity, and supporting marker-assisted breeding programs in
P. mongolica.

5 Conclusion

This study successfully obtained sequence and structural
information on the long-read transcripts during SE in P.
mongolica using SMRT sequencing. The transcript sequences
were subjected to comprehensive analysis, which included KOG,
GO, and KEGG enrichment studies. Moreover, AS events, TFs,
IncRNAs, and SSRs were systematically predicted. Based on these
findings, the PmBBM gene was cloned and bioinformatically
characterized. Furthermore, expression patterns during SE were
analyzed. These findings not only enrich the genetic database of P.
mongolica but also provide a scientific foundation for identifying
key regulatory genes, molecular biological investigations, and
modern breeding programs related to SE in this species.
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