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Design and experimental
investigation of the
grasping system of an
agricultural soft manipulator
based on FMDS-YOLOv8
Yu Zhuang, Kunlin Xu, Ziqi Liu, Jiayi Li , Liuyang Shen
and Jinfeng Wang*

College of Engineering, Northeast Agricultural University, Harbin, China
In response to the need for non-destructive sorting and grasping of fruits and

vegetables with diverse sizes and shapes, this study presents a novel design for an

agricultural manipulator grasping system (MGS). The system includes a variable-

structure soft manipulator equipped with three independently rotatable and

distance-adjustable soft actuators. The manipulator can grasp objects with a

diameter of ≤140 mm in the center grasping configuration and ≤105 mm in the

parallel grasping configuration. An improved FMDS-YOLOv8 vision recognition

algorithm was used to detect the type, contour and positional coordinates of the

target fruit. AMATLAB-based programwas developed to extract the contours of the

target fruit and calculate the visualization of the optimal attitude of the soft

manipulator. This program facilitated autonomous structural adjustments and

precise control during grasping operations. The variable-structure soft MGS was

evaluated based on the performance of each component. The experimental results

showed a grasping success rate of 95.83%, a grasping damage rate of 4.17%, and a

grasping time of about 6.36 s under multi-objective conditions. This verifies the

effectiveness and adaptability of the MGS. By adjusting the drive pressure and servo

angle, the MGS can grasp fruit and vegetables of different sizes and shapes within its

working range, while minimizing damage during the grasping process.
KEYWORDS

variable-structure manipulator, grasping system, visual recognition, motion control,
FMDS-YOLOv8 model
1 Introduction

Fruit and vegetables are indispensable components of the human diet. Ensuring their

quality and safety not only impacts agricultural economic development and farmers’

income growth (Li et al., 2019), but also serves as a crucial driver for agricultural

modernization. The harvesting and sorting of fruit and vegetables heavily rely on
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manual labor, ranking among the most labor-intensive and time-

consuming processes in agricultural production (Ma et al., 2024).

Given the intensifying shortage of agricultural labor and the

continuous rise in labor costs, the development of efficient and

intelligent harvesting equipment has become an urgent necessity

(Mana et al., 2024; Treeamnuk et al., 2010).

Machine vision technology, as a key perception method for

agricultural robots, has significantly enhanced operational

capabilities in complex environments (Zhang and Xu, 2018).

However, the growth state, morphological diversity, light

variations, and mutual occlusion of fruit and vegetables in natural

settings severely impact the recognition accuracy and robustness of

visual recognition systems (Tang et al., 2020; Lin et al., 2020).

Existing detection algorithms are primarily optimized for single-

category fruits. For instance, Zheng et al. (2021) and Xiong et al.

(2020) achieved citrus recognition and small object detection based

on YOLO BP and Des-YOLO v3, respectively. Nevertheless, these

approaches still exhibit insufficient generalization capabilities in

scenarios involving the mixed harvesting of heterogeneous, multi-

category fruit and vegetables.

As the component directly manipulating fruit and vegetables,

the performance of end effectors directly impacts grasping success

rates and fruit yield (Yuseung et al., 2024; Gao et al., 2022). The

wide variety of produce, coupled with significant morphology and

structure differences, as well as their fragile and easily damaged

nature, necessitates effectors that are compliant, adaptive, and

precisely controllable effectors (Chang and Huang, 2024).

Although traditional rigid manipulators can perform grasping

tasks, they often cause mechanical damage. For instance, the

tomato-picking robot developed by Tang (2018) had a grasping

success rate of only 76.3%, highlighting the limitations of rigid

structures when handling living objects.

The emergence of soft robotics technology offers new avenues

for reducing harvest damage (Jones et al., 2021; Choe et al., 2023).

Feng et al. (2018) designed a pneumatic end-effector (Figure 1A)

that utilizes negative pressure suction and pneumatic envelopment

to harvest tomatoes. While this achieves low damage rates, it

exhibits poor grasping stability. Its adaptability to non-spherical

targets (e.g., cucumbers) is severely limited, with a success rate of

only 65%, indicating significant constraints in its configuration and

actuation method. The strawberry-picking actuator (Figure 1B)
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developed by Octinion (Hemming et al., 2016), employs silicone

material to enhance conformability. However, its fixed structure

and inability to adjust grasping modes make it difficult to adapt to

fruit and vegetables of varying sizes and shapes (Jin and Han, 2024).

The 3D-printed pneumatic soft gripper (Figure 1C) proposed by

Hohimer et al. (2019) adapts well to the curved surface of apples,

but it cannot handle clustered or elongated objects effectively due to

its limited degrees of freedom. Shi et al. (2025) designed a cable-

driven underactuated soft gripper (Figure 1D) that can measure the

diameter of mushroom in real time during grasping. Through

position control alone, the gripper achieved non-destructive

mushroom harvesting, supported grading operations and

averaged 7.5 s per mushroom.

These studies indicate that soft actuators currently suffer from

common issues such as limited functionality, low environmental

robustness, and poor control precision. During actual harvesting

operations, for example, the diverse morphologies of different crops

and the complex, dynamic scenarios demand that actuators possess

not only compliant and safe characteristics, but also multimodal

grasping capabilities and excellent shape adaptability.

In response to the aforementioned research, this study proposes

an intelligent MGS that integrates variable-structure soft actuators

with multimodal visual perception. the system dynamically adjusts

its grasping configuration based on target morphology by designing

a pneumatic variable-structure soft end-effector, enabling multi-

mode operations ranging from enveloping to pinching. This

significantly enhances adaptability and grasping stability for

diverse fruit and vegetables. Subsequently, a multimodal vision

system based on an enhanced YOLOv8 was developed. By

incorporating attention mechanisms and multi-scale feature

fusion strategies, it effectively enhances detection capabilities for

occluded, low-light, and small-sized fruits. Finally, a vision-grasping

collaborative control framework was established, enabling adaptive

matching of fruit/vegetable type recognition, localization, and

grasping parameters. This provides a comprehensive solution for

the unmanned harvesting of diverse crops. Through structural

innovation and algorithmic optimization, this study systematically

enhances the picking robot’s adaptability to complex produce

objects and operational environments. This has significant

implications for reducing post-harvest damage and advancing the

universalization and intelligence of agricultural robotics.
FIGURE 1

(A) Tomato picking end effector; (B) Strawberry picker claw; (C) Pneumatic end effector; (D) Underactuated soft gripper.
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2 Materials and methods

2.1 Overall design of the grasping system

The soft MGS is mainly composed of pneumatic control system,

electronic control system, six-axis robotic arm and variable-

structure manipulator (Figure 2). Specifically, the pneumatic

control system is connected to the manipulator through air hoses

and air fittings, including air pumps, pressure regulators and

solenoid valves. The electronic control system is mainly

composed of ROS host, STM32 microcontroller and DAC module.

Software development plays a key role in realizing the targeted

functionality. The software in this study is written in C++ and

Python, utilizing ROS Melodic on Ubuntu 18.04. Most of the

programs are deployed on the platform’s main computer, which

is equipped with a micro-server featuring an AMD Ryzen TM 7

4800H processor with 8 cores and 16 threads. To improve

performance, functions such as target detection are processed on

the main computer’s graphics processor.

The schematic diagram of the soft manipulator control system

is shown in Figure 3. First, the visual recognition system captures

the visual signals and transmits them to the host computer for

image processing. Subsequently, the ROS host computer

coordinates the operation of the six-axis robotic arm to drive the

soft manipulator. After reaching the specified target position, the

grasping action starts. the STM32 microcontroller sends drive

signals to the servo, thus controlling the structural changes of the

soft manipulator. Meanwhile, the air source is provided by an air

pump, and the input pressure is regulated by a solenoid valve and a
Frontiers in Plant Science 03
precision control valve, both of which are controlled by the

microcontroller in order to achieve controllable adjustment of the

bending angle under different pressure conditions. By integrating

the electrical and pneumatic circuits, the grasping function of the

manipulator is fully realized.

2.1.1 Workflow of picking operations
For the detection method of fruit and vegetables, this study

used a visual recognition system to detect the key information

such as the center and contour of the fruit and vegetables and keep

their positions within the predetermined area of the camera

image. Based on the visual recognition data, an independently

controlled robotic arm and a variable structure soft manipulator

complete the grasping of the target products (Figure 4). The whole

operation process is as follows: firstly, after detecting the target,

the agricultural robot transfers the captured image to the main

computer to run the developed MATLAB program for image

processing, so as to obtain detailed information such as the type,

contour and size of the fruit and vegetables. Subsequently, the

structure of the manipulator is adjusted according to the detected

contours while keeping in line with the position of the

manipulator arm in the vicinity of the target. Upon reaching the

specified position, the soft actuator is lowered and the drive air

pressure is activated, which bends the soft actuator and

immobilizes the target. Finally, the manipulator moves to the

target position, drops the fruit or vegetable, and then moves to the

next target position, repeating the process of recognition, image

processing, structure adjustment, and grasping until the picking

task is completed.
FIGURE 2

Soft manipulator grasping system.
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2.1.2 End-effector structural design
In order to adapt to the grasping operation of various fruit and

vegetables, a variable structure soft manipulator is proposed in this

paper (Figure 5A). The manipulator mainly consists of servo motor,

flange, rotary table, U-shaped crank, soft actuator and other

components. The flange groove is equipped with a V-shaped

guideway. The manipulator uses four independent servomotors

and three pneumatic soft actuators as the drive mechanism,

which is activated by delivering pressurized air through three

different pneumatic tubes connected to the pneumatic

control system.

The variable-structure soft manipulator is mounted on the

GLUON-2L6-4L3 six-axis manipulator via a rotating plate

(Figure 5B). A central motor, affixed to the substrate, connects to
Frontiers in Plant Science 04
this rotating plate. By controlling the rotation of this central motor,

the spacing between the individual software actuators can be

adjusted, thereby enabling the expansion and contraction of the

entire mechanism. Clockwise rotation of the four components

results in the mechanism opening, while counterclockwise

rotation causes it to close. The expansion range is defined as Omax

- Omin=3/2×Rf, where Rf represents the flange radius, with a

designed range of 36~70 mm. Four independent servo motors are

secured to a motor base, which is itself fixed to a slider. This

assembly moves along a guide rail together with the slider. The

principle and movement of the variable structure are shown

in Figure 5C.

Because of the complexity and irregularity of the fruit and

vegetables to be grasped in reality, we used three independently
FIGURE 4

Flowchart for adaptive adjustment control of manipulator grasping posture.
FIGURE 3

Schematic diagram of the soft manipulator control system.
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controlled servo motors mounted on the telescopic mechanism and

independently rotated to adapt to the shape of the grasped object,

allowing the mechanism to better grasp the direction and position.

Three servo motors are connected to the soft actuator, and each soft

actuator is controlled separately. The rotation of the servo motor

drives the rotation of the three soft actuators, allowing for the

variable structure grab of various types of special-shaped fruit and

vegetables. As shown in Figure 5D, when designing the grasping

range of the soft manipulator, this study comprehensively

considered the grasping stability of the pneumatic soft actuator

and the size range of common fruit and vegetables (such as apples,

chillis, oranges, etc., whose large fruit size is generally about

80 mm), so the parallel grasping range was set at 105 mm and

the centripetal grasping range was expanded to 140 mm, ensuring

applicability within the aforementioned size spectrum.

2.1.3 Manufacture of soft actuators
In this study, we proposed a pneumatic method to enable the

single finger actuator to achieve bending motion. Given that fiber-

reinforced and multi-cavity fingers are the most prevalent

pneumatic soft finger structures, and considering that multi-

cavity fingers exhibit a larger bending angle compared to fiber-

reinforced fingers, they are better suited for grasping fruit of various

shapes and sizes.

The detailed internal architecture of the soft actuator is shown

in Figure 6A. Each soft actuator primarily consists of three

components: the strain layer, the channel, and the bottom

section. These components are designed with an integrated

structure, which allows for significant overall deformation while

maintaining relatively low local strain. The overall dimensions of
Frontiers in Plant Science 05
the soft actuator are as follows: 105 mm × 18 mm × 30 mm. Upon

an increase in air pressure, the air flows through the channel and

fills the chamber, causing the soft actuator to deform and bend. The

structural parameters of the soft actuator have been optimized

based on our previous research (Zhuang et al., 2023) to minimize

energy loss associated with thin-wall radial expansion of the air

cavity, thereby limiting radial expansion and enhancing the

bending moment.

The rigid components, such as the designed flange and crank

telescopic mechanism, are 3D printed using durable PETG material

with an Ender-3 S1 Pro printer (Creative 3D Technology Co., LTD.,

Shenzhen, China). The soft actuator, is fabricated from silicone

photopolymer (Resione F80) using a UV 270 light-curing 3D

printer (Beijing 3D Robot Technology Co., LTD., Beijing, China).

The photocurable resin material was subjected to testing in

accordance with the ASTM D412–06 standard, yielding a tensile

strength of 7.9 MPa, an elastic modulus of 2.0 MPa, and an

elongation at break of 225.1%.

The fabrication process is shown in Figure 6B. This includes

importing the 3D model of the flexible actuator into Cura software

for editing and slicing. The sliced files are then sent to an SLA 3D

printer with specific molding parameters set (0.035 mm layer

thickness, 8 layers, 30 s bottom layer exposure time, and 10 s

exposure time for each layer). F80 silicone resin is poured into the

material tray for printing. Post-printing, the soft actuator is cleaned

with alcohol and undergoes secondary curing in an oven. Once

cured, the solid model of the soft actuator is obtained. Subsequently,

the soft actuator is assembled with all mechanical arm parts using

bolts, bearings, and other external components to finalize the

construction of the variable-structure soft manipulator.
FIGURE 5

(A) Schematic diagram of soft manipulator structure; (B) Six-axis mechanical arm architecture; (C) Schematic diagram of variable structure motion
principle for the soft manipulator; (D) The working range of soft manipulator grasping.
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2.1.4 Kinematic modeling of a soft manipulator
platform with variable structure

The center coordinates of the soft manipulator platform and the

position coordinates of each actuator root are shown in Figure 7.

Each kinematic model matrix is represented as follows:

A =

0 L0 �Rf cos q4 LA0 0

−(L0 �Rf cos q4) cos p
6 −(L0 �Rf cos q4) sin p

6 LA0 0

(L0 �Rf cos q4) cos p
6 −(L0 �Rf cos q4) sin p

6 LA0 0

2
664

3
775 (1)
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B =

fx(P1) sin q1 fx(P1) cos q1 fz(P1) q1
fx(P2) cos (

p
6 − q2) fx(P2) sin ( p6 − q2) fz(P2) q2

fx(P3) sin (
p
3 − q3) fx(P3) cos ( p3 − q3) fz(P3) q3

2
664

3
775 (2)

C =

− sin q1
abs sin q1ð Þ

− cos q1
abs cos q1ð Þ −1 1

cos p
6−q2ð Þ

abs cos p
6−q2ð Þ½ �

sin p
6−q2ð Þ

abs sin p
6−q2ð Þ½ � −1 1

− sin p
3−q3ð Þ

abs sin p
3−q3ð Þ½ �

cos p
3−q3ð Þ

abs cos p
3−q3ð Þ½ � −1 1

2
6666664

3
7777775

(3)

D =

xt1 yt1 zt1 q t
1

xt2 yt2 zt2 q t
2

xt3 yt3 zt3 q t
3

2
664

3
775 = A + B : *C (4)

Among these, the symbols for the variables in each kinematic

model matrix are detailed in Table 1. Given that the size of the

target object grasped by the variable-structure soft manipulator

designed in this study is contingent upon the flange radius Rf and

the bending degree of the software actuator, we have established the

flange radius Rf within the range of 36~70 mm and set the effective

working length of the soft actuators at 85 mm.
2.2 Fruit and vegetable testing

2.2.1 Data collection and dataset creation
The images used were collected from Xiangyang Farm of

Northeast Agricultural University between late May and late

September 2024, during the time slots of 10:00–12:00 and 14:00–

17:00. To address the “domain gap” issue arising from the transition

of agricultural harvesting robots from structured laboratory
FIGURE 7

Manipulator and soft actuators coordinate in perpendicular mode.
FIGURE 6

(A) The detailed internal architecture of the soft actuator; (B) Integrated manufacturing process for the soft actuators.
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environments to unstructured field environments, this study

strategically incorporated images captured under laboratory

conditions during data construction. This strategy aims to

provide the model with a progressive learning framework,

transitioning from simple, controlled conditions to complex,
Frontiers in Plant Science 07
variable conditions. This enhances its fundamental feature

extraction capabilities, laying a solid foundation for eventual real-

world field deployment. Images were captured using a smartphone

at a resolution of 4016 pixels × 3012 pixels. During capture, images

were taken from multiple angles—including overhead, side, and

upward views—at distances ranging from 0.3 to 2.5 meters from the

fruit, simulating the perspective of field operations. This covered

typical lighting scenarios such as strong midday sunlight on clear

days, diffuse light under cloudy conditions, and shadow obstruction.

After screening, 400 valid sample images were retained for each

category of fruit and vegetable data, totaling 2,000 images. The data

information is shown in Figure 8.

From the raw dataset, 1,600 images were randomly selected at

an 8:1:1 ratio to form the training set, 200 images for the

validation set, and 200 images for the test set. All images were

uniformly resized to 640 pixels × 640 pixels. Subsequently,

labeling was employed to annotate the images, yielding a label

matrix. After annotation, the RoboFlow platform implemented

multimodal data augmentation strategies including random

rotation, perspective transformation, brightness and contrast

adjustment, noise injection, and motion blur. This enhanced the

model’s robustness to lighting fluctuations and motion blur.

Following augmentation, the total dataset expanded to

6,000 images.
2.2.2 Improvements to the YOLOv8 model
Although YOLOv8 has been widely adopted as an advanced

detection model, it still faces challenges such as sample overlap,

blurred imaging, and target occlusion in detection tasks of fruit and

vegetables. The issue of blurred object boundaries under dense

distribution conditions significantly reduces detection and

localization accuracy, directly impacting the grasping success rate

of agricultural harvesting robots.
FIGURE 8

Homemade datasets: (A) Tomato; (B) Cucumber; (C) Chilli; (D) Apple; (E) Orange; (F) Single fruit; (G) Various types of fruits with similar
characteristics; (H) Same species multiple fruits; (I) Various types and multiple fruits.
TABLE 1 Nomenclature for kinematicmodelof variable structureplatform.

Symbol Description

q1 ∼ q3 Servomotor rotation angle for controlling soft actuator, when the
pointer points (O0) to the origin, q1 ∼ q3 = 0°, clockwise is
positive and counterclockwise is negative

q4 The rotation angle of the middle servo motor, When the variable-
structure soft manipulator is in the grasping position, q4 = 0°,
clockwise is positive and counterclockwise is negative

P1~P3 Input air pressure of soft actuator

L0 The maximum distance between the center of soft actuator and
the origin when t the variable structure soft manipulator is fully
extended

Rf Radius of the flange (The soft actuator allows for adjustable
distance settings based on the flange center)

LA0 Initial length of soft actuator

fx(P) The horizontal displacement of the end of the soft actuator during
its bending movement

fz(P) The vertical displacement of the end of the soft actuator during its
bending movement

A XY plane transformation matrix driven by servomotor 4. As
shown in Equation 1

B XYZ space matrix caused by the soft actuator. As shown in
Equation 2

C Transfer matrix generated by servomotors 1 ~ 3. As shown in
Equation 3

D Spatial location and direction matrix of the soft actuators ends. As
shown in Equation 4
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To achieve high-precision harvesting, this study proposes a

two-stage detection framework based on YOLOv8, named FMDS-

YOLOv8 (structure shown in Figure 9). This framework first

employs an enhanced YOLO model for rapid identification and

preliminary localization of fruit and vegetable targets. The detection

results are then fed as anchor box proposals into the SAM2

segmentation model to obtain pixel-level segmentation masks and

contour information. Finally, by integrating the physical structure

and motion constraints of the robotic gripper, the optimal picking

point is calculated. By coupling recognition and segmentation

modules, this method enhances grasping accuracy and robustness

in complex scenarios.

In order to achieve accurate and efficient fruit and vegetable

target detection, this study proposes an enhanced fruit and

vegetable target detection network FMDS-YOLOv8 based on

YOLOv8, as shown in Figure 9. The main improvements are

as follows:
Fron
1. This study proposes an improved model FMDS-YOLOv8

based on YOLOv8, which aims to improve the recognition

accuracy and localization speed of targets in grasping

scenarios of fruit and vegetables.

2. FMDS-YOLOv8 incorporates three core innovative

modules: FocalModulation spatial pyramid pooling,

C2PSA_MSDA multiscale feature fusion module, and
tiers in Plant Science 08
C3k2_DFF efficient feature extraction structure.

Experimental validation shows that the model has

significant advantages in recognition accuracy and

inference speed.

3. FMDS-YOLOv8 is used for the automation of grasping for

fruit and vegetables as well as the intelligent development of

agricultural robots, providing a reference for future

research in this field.
2.2.3 Feature extraction optimization
2.2.3.1 FocalModulation module

The integration of FocalModulation into the YOLOv8

framework represents a key advancement in enhancing the

model’s fruit and vegetable recognition capabilities, especially in

complex orchard picking environments. By replacing the original

Fas t Fea ture Pyramid Pool ing (SPPF) module wi th

FocalModulation, the model significantly improves the processing

efficiency and accuracy of fruit and vegetable target recognition and

localization, even in complex contexts with branch and leaf

occlusion, overlapping fruits, or varying illumination.

The core of FocalModulation lies in its dynamic focus

adjustment mechanism designed to enhance the model’s

perception of key features in the image. This innovative approach

allows for meticulous modulation of the model’s focus to direct
FIGURE 9

FMDS-YOLOv8 network structure diagram.
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attention to fruits, specific features, or critical areas, leading to more

accurate fruit and vegetable classification, localization, and

condition assessment. As shown in Figure 10, the structure of

FocalModulation demonstrates its unique ability to dynamically

adjust the focus of the model, ensuring that the fruit itself and its

key attributes are effectively captured and emphasized.

FocalModulation distinguishes itself from the SPPF module by

prioritizing the extraction and analysis of core fruit and vegetable

features in the image. While SPPF enhances the model’s ability to

process multi-scale inputs, FocalModulation goes deeper and

improves the model’s focus to increase the accuracy of detection

and localization of fruit and vegetable targets. This targeted

approach ensures that the diversity of input data is preserved, but

the focus is on the elements most critical to accurate fruit and

vegetable identification and status determination.

The use of FocalModulation in the YOLOv8 architecture

enables the model to exhibit higher discrimination and good

performance in fruit and vegetable recognition tasks, especially in

scenarios involving densely arranged, occluded, or similar-looking

different fruit and vegetable classes. The model’s enhanced

adaptability to various input image sizes and its enhanced ability

to pinpoint individual fruits or key regions greatly improves its

recognition accuracy and robustness.

2.2.3.2 C2PSA_MSDA module

In the YOLOv8 model, the C2PSA module dynamically weights

the feature map with Point-wise Spatial Attention (PSA) blocks to

enhance feature extraction and representation. This mechanism

enables the model to selectively focus on key regions in the image,

effectively enhancing the ability to capture subtle key details while

suppressing redundant information in the background or

interference regions. However, in real-world scenarios of fruit and

vegetable recognition, target objects often face complex challenges
Frontiers in Plant Science 09
such as multi-scale variations, branch and leaf occlusion, overlap

between fruits, uneven lighting conditions, and confusion of similar

appearance categories. These factors impose higher requirements

for constructing robust feature representations.

To address these challenges, as shown in Figure 11, this study

further integrates the Multi-Scale Dilated Attention (MSDA)

mechanism into the PSA block to construct the enhanced

C2PSA_MSDA module. The core of the MSDA mechanism lies

in its dynamic adaptive sensory field adjustment capability, which

distinguishes it from the traditional attention mechanism that relies

on fixed spatial transformations of traditional attention

mechanisms. Enhancing the network’s ability to extract multi-

scale contextual information. This adaptive approach enables the

model to adaptively adjust the effective receptive field size in the face

of drastic changes in target scale, severe partial occlusion, dense

overlapping arrangement, uneven lighting conditions or similar

category confusion, and accurately retain and utilize key structural

details at different scales.

This adaptive fusion of multi-scale contextual information

guided by PSA and realized by MSDC greatly enhances the

discriminative and robustness of feature representation. It enables

the network to localize fruit and vegetable recognition more

accurately in complex and changing agricultural environments,

and is especially effective in mitigating the negative impacts of

image blurring, occlusion and uneven illumination. The parallel

sensitivity of the model to fine-grained details and large-scale

semantic context synergistically improves the localization

accuracy and classification accuracy of detection.

Figure 10 illustrates the working of the Multiscale Expanded

Attention (MSDA) mechanism in the C2PSA_MSDA module. As

shown in Figure 12, The core objective of MSDA is to enhance the

model’s ability to capture fine-grained target features and high-level

contextual information in complex fruit and vegetable picking
FIGURE 10

FocalModulation structure.
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environments through the Multiscale Expanded Attention (MSDA)

mechanism, which is particularly suitable for handling targets with

large scale differences and variable textures.

By embedding MSDA into the C2PSA module, the model

achieves more efficient multi-scale feature fusion, significantly

extends the model’s receptive field, and enhances robustness to

occlusions and complex background interference. This

improvement is crucial for high-precision fruit and vegetable

recognition and localization, as targets in picking scenes often

exhibit dense clusters of growth, are partially occluded by

branches and leaves, or have blurred boundaries due to uneven

illumination/shadowing. The C2PSA_MSDA module enables the

model to adaptively focus on key regions at different scales,

significantly improving detection accuracy in complex natural

environments with dense branches and leaves and overlapping

fruits and robustness.

2.2.4 Feature fusion optimization
In order to optimize the multi-scale feature fusion effectiveness

of the model in complex agricultural environments, this paper

introduces the Dynamic Feature Fusion (DFF) module, as shown

in Figure 13, as an alternative to the fixed-weight fusion approach of
Frontiers in Plant Science 10
the traditional Feature Pyramid Network (FPN). The core of the

DFF module lies in the use of global context information to drive

the dynamic generation of feature fusion weights.

In view of the highly similar and often densely distributed or

overlapping appearance of fruit for the same category in fruit and

vegetable grasping scenarios, the DFF module, by virtue of its global

context-awareness capability, can more effectively integrate

complementary information at different scales, adaptively enhance

the key feature channels for distinguishing the boundaries of

densely neighboring fruit or the subtle texture differences, or

strengthen the semantic information channels required for

recognizing partially occluded fruit contours, so as to improve the

model’s recognition accuracy of the recognition accuracy of densely

distributed individuals with high similarity targets. Meanwhile, in

the face of uneven illumination, changing shadows and complex

background interference prevalent in the agricultural field, the

global guidance mechanism of DFF enables the model to perceive

the overall impact of environmental factors on the feature

distribution and dynamically compensate or inhibit them in the

fusion stage, which helps maintain the consistency of the target

feature representations and reduces the impact of environmental

interference on the detection stability.
FIGURE 11

C2PSA_MSDA module structure.
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2.3 Grasping point determination

The grasping position and posture of the soft manipulator are

determined based on the geometric characteristics of the fruit and

vegetables to be grasped. To enhance the efficiency and precision of

fruit and vegetable screening, this study aims to improve the

stability and success rate of the manipulator’s grasping actions. By
Frontiers in Plant Science 11
integrating the FMDS-YOLOv8 algorithm with the SAM2 model,

we perform contour extraction and boundary optimization for the

target produce. Utilizing a “detection-first, segmentation-second”

strategy, the system predicts bounding boxes and category

information for all potential targets in the image, thereby

achieving high-precis ion segmentat ion results . These

segmentation outcomes undergo cross-validation and parameter
FIGURE 13

DFF module structure.
2FIGURE 1

MSDA module structure.
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tuning to ensure robust generalization of the model. Since the

segmentation outcomes are refined through the grasping point

recognition algorithm for fruit and vegetables (Figure 14A). This

algorithm identifies optimal grasping positions for various types of

fruit and vegetables, marking their centroids and contours. The

visual recognition processing program developed using MATLAB

software (Figure 14B) then calculates the grasping point positions

and orientations for each actuator of the robotic manipulator,

thereby obtaining the optimal grasping posture information. The

underlying principles and operational steps are as follows:

The processing flow first utilizes the FMDS-YOLOv8 model for

target detection and localization of fruits and vegetables in the

image; subsequently, the detected bounding box is input into

Segment Anything Model 2 (SAM2), which utilizes its ViT-H-

based encoder-decoder architecture to generate a pixel-level

segmentation mask of the target and extracts an accurate contour

through the edge detection algorithm. A polygon representing the

shape of the target is constructed by extracting an accurate set of
Frontiers in Plant Science 12
contours through an edge detection algorithm. After selecting a

point P as a reference point on this polygon, the entire polygon is

rotated clockwise by 60° around point P. This rotation results in a

rotated polygon. This rotation causes part of the rotated polygon to

fall inside the original polygon and part of it to lie outside, which

inevitably causes the boundaries of the two to intersect, creating at

least one new intersection point Q. Next, the intersection point Q is

rotated 60° counterclockwise around point P to give point R (which

also lies on the boundary of the original polygon). Finally, points P,

Q, and R form an equilateral triangle PQR.

The grasping point coordinates (P, Q, R) output by the vision

system are located in a two-dimensional pixel coordinate system.

These coordinates are converted into three-dimensional

coordinates within the robot’s base coordinate system to guide

the robotic arm’s motion. Through hand-eye calibration, the

homogeneous transformation matrix T from the camera

coordinate system to the robot’s base coordinate system is

obtained. Using this matrix, points Pcam, Qcam, and Rcam can be
FIGURE 14

(A) Principle of calculating grasping points for fruit and vegetables; (B) Visual recognition processor.
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transformed into the base coordinate system. Subsequently, the

posture of the soft actuator is calculated. The end-effector’s posture

must ensure that when the three soft fingers contact the produce,

their fingertips approach perpendicular to the tangent line at points

P, Q, and R along the fruit’s contour, thereby closing along the

normal direction to complete the grasping.
2.4 Training setup and evaluation
indicators

Computer resources are NVIDIA RTX3060 graphics card

(12GB), Inter(R) Core(TM) i7 CPU processor. The deep learning

framework was Pytorch 2.5.1, programming language Python

3.11.11, CUDA version 11.8, cuDNN version 8.9.7. The specific

training parameters were set as follows: image input size of 640

pixels × 640 pixels, batch size of 16, multithreading set to 8, initial

learning rate of 0.01, minimum learning rate of 0.0001, optimizer

selection of SGD, number of training rounds set to 300, and mosaic

data enhancement turned off in the last 10 rounds.

In order to accurately assess the performance of the model, this

paper adopts Precision (P), Recall (R) and Mean Average Precision

(mAP) as the metrics for assessing the detection accuracy of

the model. In addition, the effectiveness of model lightweighting

is evaluated based on FPS (Frames Per Second), inference time,

and the number of model parameters (Params). Together, these

metrics provide a comprehensive and detailed analysis of

model performance.
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2.5 Grasping experiments of fruit and
vegetables

To evaluate the functionality of the soft MGS and the feasibility

of harvesting fruit and vegetables, this study presents preliminary

experiments that integrate the soft MGS onto a pre-established

harvesting robot platform. The platform consists of an

omnidirectional mobile base, a six-axis robotic arm, a variable-

structure soft manipulator, a binocular vision recognition system, a

ROS-based upper computer, and an STM32-based lower computer

control system. The following sections describe the overall structure

and the grasping process (Figure 15):

In the recognition stage, the binocular vision system obtains the

position, type, morphology and size information of the target fruit

and vegetables in real time, and the control system calculates the

optimal angle of the actuator and the maximum grasping force

parameters based on the feature data. After entering the grasping

preparation stage, the ROS host drives the six-axis robotic arm to

position the soft robot to the target coordinates, while the STM32

microcontroller dynamically adjusts the four-actuator

configuration according to the morphology of the fruit and

vegetables: for apples, oranges and other spheres, the fingers

converge to the center of mass; for cucumbers and other long

targets, the special grasping posture with two fingers on the same

side and the third finger opposite is adopted. When the contact

phase is initiated, the STM32 controls the pneumatic system to

drive the soft actuator to bend with an initial air pressure of 90 kPa,

and stabilized contact is achieved through the collaborative control
FIGURE 15

The process of soft manipulator systems for harvesting fruit and vegetables.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1683380
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhuang et al. 10.3389/fpls.2025.1683380
of multiple fingers. Finally, in the picking and transportation phase,

the end motor applies a tensile-torsional load to separate the fruits

from the off-layer, and the soft manipulator transfers the fruits to

the collection container to complete the operation.

In order to further evaluate the grasping performance of the soft

manipulator adapted to the variable structure of objects of different

sizes, we have conducted the grasping experiments of fruit and

vegetables. In this study, we considered several representative fruit

and vegetables based on factors such as size, shape, and hardness, all

of which have economic value and may affect the grasping

performance of the soft manipulator. Specifically, we selected

cucumbers (elongated and rough surface), apples (smooth and

hard surface), tomatoes (smooth and easily damaged surface),

peppers and oranges (relatively soft texture) for the grasping

experiments. Five samples of each fruit and vegetable were

selected for the grasping experiment.

Fifty fresh samples without significant defects were prepared for

each type of fruit and vegetable, totaling 250 samples to ensure

statistical validity of the experiment. To prevent cumulative damage

from multiple grips introducing errors into the results, each

independent sample was used only for one set of specific pressure

conditions during the grasping test, and the number of grips per

sample was strictly limited to three. The experiment employed a

controlled variable method. For each fruit or vegetable type, its 50

samples were randomly divided into 5 groups (n=10 per group),

corresponding to 5 distinct grasping drive pressure levels (70 kPa,

80 kPa, 90 kPa, 100 kPa, and 110 kPa). Sample size, quantities and

the number of experimental runs is shown in Table 2.
2.6 Grasping damage experiment of fruit
and vegetables

The experiment was carried out in September 2024 in a

photoplant factory of Northeast Agricultural University, Harbin,

China. Ambient temperature was 24~26°C. In the grasping

experiment, we observed that once the air pressure reaches a

certain threshold, further increases in air pressure have minimal

impact on the success rate of grasping fruit and vegetables.

However, as the driving air pressure continues to rise, it can

cause damage to the skin of fruit and vegetables, particularly

those that are tender and more susceptible to injury. This damage
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manifests as surface indentations and also reduces the operational

lifespan of the soft actuator.

Due to the firm texture of apples and cucumbers, the hollow

internal structure of bell peppers, and the tendency of smaller

oranges to slide upward when grasping force increases. In this

study, these fruit and vegetables sustained minimal damage when

handled by the flexible robotic arm. Therefore, we conducted

grasping damage tests exclusively on tomato fruits. However, it

must be noted that for fruit and vegetables other than tomatoes, the

precise, microscopic, or long-term storage-related damage observed

here is qualitative in nature. Quantifying such damage requires

future rigorous experimental designs.

Prior to conducting the grasping damage test, the target fruit

was meticulously examined to ensure that the selected sample was

intact and exhibited no signs of pre-existing damage. In this study,

51 tomatoes were selected as test subjects, comprising 48 tomatoes

for the grasping test and 3 tomatoes for the control group. The sizes

of the selected tomatoes were controlled within a range of 60 to

90 mm. Each tomato was held for 5 s before being released, after

which damage was assessed. The grasping success rate was defined

to evaluate the performance of the end effector. The damage process

in tomatoes typically involves two stages: (1) mechanical damage to

the fruit cell membrane and cell wall, which leads to the release of

cell wall-modifying enzymes; and (2) contact between the enzyme

and substrate, promoting degradation and resulting in softening

and browning in the affected areas. An immediate inspection was

conducted post-grasping to check for surface damage. If no obvious

damage was detected, all tomatoes were stored in a controlled

temperature environment for 7 days to observe potential internal

damage. This study indirectly assessed internal damage through the

browning rate in 72 h and shelf life of the fruit, while using the

direct damage rate as an indicator of non-destructive grasping.

Observations of browning rate within 72 hours are mainly for fruit

and vegetable species that are susceptible to oxidative browning

(e.g., tomatoes and apples), but browning may be significantly

delayed for some fruit and vegetables with low PPO activity. In

this study, the index of the direct damage is whether there is

indentation on the fruit surface, if there is indentation, it means

that some cells inside the fruit have broken (Zhang, 2021). The

indicators are defined as follows:

s =
n
m

� 100% (5)
TABLE 2 Comparison of the accuracy of each model.

Grabbing
target

Weight (g)
Mean Height

(mm)

Mean
Diameter
(mm)

Quantity
Number of
captures at

each pressure

Total number of
experiments

Apple 218.51 ± 29.38 77.88 79.14 50 3 150

Orange 124.26 ± 13.28 59.81 69.94 50 3 150

Tomato 139.65 ± 18.45 66.63 69.14 50 3 150

Chilli 124.15 ± 8.58 74.12 74.46 50 3 150

Cucumber 209.59 ± 29.38 298.3 38.22 50 3 150
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Dd =
p
m

� 100% (6)

Bs =
q
n
� 100% (7)

Where s is the grasping success rate, % as shown in Equation 5.

In this study, if the target fruit does not fall during the grasping

process, the grasping is considered successful; n is the number of

successful grasping; m is the total number of experimental samples;

Dd is the direct damage rate, %, as shown in Equation 6 and the

direct damage primarily encompasses mechanical injury inflicted by

the end-effector on the tomatoes, as well as damage resulting from

the tomatoes falling during the grasping process; p is the direct

damage quantity; Bs is the browning rate within 72 h, % as shown in

Equation 7. Following the completion of the experiment, the

tomatoes were stored for a period of 72 hours to visually assess

the development of browning. Observable brown spots emerged

and the affected areas exhibited softening, thereby confirming the

occurrence of the browning phenomenon; q is the number of

browned tomatoes.
3 Results and discussion

3.1 Comparison of detection models

In order to comprehensively evaluate the applicability of

FMDS-YOLOv8n in fruit and vegetable grasping scenarios, this

study compares and analyzes it with mainstream lightweight

detection models under unified experimental conditions.

Table 3 shows that FMDS-YOLOv8n has a combined advantage

in key performance metrics. The model has a precision rate of

94.1% and a recall rate of 91.0%, which are 3.4% and 7.1% higher

than the base architecture YOLOv8n, respectively. In grasping

operations, the higher precision rate helps to reduce the

probability of false picking of immature fruits or background

objects, and the improved recall rate directly reduces the

omission of ripe fruits. Its mAP@50 reach 94.0% provides a more

accurate localization basis for the grasping robotic arm. On the

mAP@50–90 metric, which evaluates multi-scale adaptability, the

model leads the baseline model by 2.5~4.3 percentage points with a

precision of 78.4%, indicating its stability in typical orchard

environments, such as differences in fruit sizes, branch and leaf

shading, and changes in light. In terms of parameter count and

inference speed, the FMDS-YOLOv8n model contains 3.12 million
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parameters, which is slightly higher than that of the baseline

YOLOv8n (3.01 million). This increase suggests the incorporation

of additional structural components aimed at enhancing detection

capability. Despite the growth in parameter size, the model

maintains a competitive inference rate of 59.5 FPS. While this is

lower than YOLOv8n’s 71.8 FPS, it remains considerably higher

than that of YOLOv9t, which operates at 33.2 FPS, indicating that

the model remains suitable for real-time applications.

The results also show that the baseline model has obvious

limitations. YOLOv9t has the highest precision but the lowest

recall, making it easy to miss target fruit in grasping scenarios; the

mAP@50 of YOLOv5n is lower than that of the iterative version

of YOLOv8n, indicating that its localization precision is

insufficient in the area of overlapping fruit. And the original

YOLOv11n has the lowest values of mAP@50 and mAP@50-90,

which can hardly satisfy the precision of the grasping operation,

which is difficult to meet the accuracy and robustness

requirements of grasping operations. In this study, through

feature fusion enhancement and dynamic sampling strategy,

FMDS-YOLOv8n realizes the synergistic enhancement of

precision and recall. An increase of 7.1% in the recall rate can

effectively decrease the fruit loss rate, and the improvement of

mAP@50–90 enhances the adaptability to complex grasping

environments, which provides an effective solution for the

automated grasping system.
3.2 Ablation experiment

In order to validate the effectiveness of the FMDS-YOLOv8 fruit

and vegetable recognition network model, we conducted a series of

ablation experiments on dataset based on the YOLOv8

enhancement method proposed in this study. These experiments

aim to systematically assess the contribution of each enhancement

to the model performance.

The ablation experiments are essential to clarify the role of each

independent module on the overall model performance. By

selectively removing or modifying specific modules of the model,

their effects are isolated and their relative importance assessed. This

study focuses on evaluating the following three enhancements: the

introduction of a feature pyramid pooling module with higher

accuracy, an enhanced feature extraction module, and a more

flexible feature fusion module. The specific experimental

configurations are detailed in Table 4.
TABLE 3 Comparison of the accuracy of each model.

Number Detection models P/% R/% mAP@50/% mAP@50-90/% Parameters FPS

1 YOLOv8n 90.7 83.9 93.7 75.9 3,006,623 71.8

2 YOLOv5n 92.3 83.9 91.4 74.1 2,503,919 61.8

3 YOLOv9t 95.1 81.8 91.3 75.5 1,971,759 33.2

4 YOLOv11n 91.9 84.3 90.6 74.2 2,583,127 64.6

5 FMDS- YOLOv8n 94.1 91.0 94.0 78.4 3,119,530 59.5
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The experimental results evaluate the performance contributions of

three innovative modules, FocalModulation, C2PSA_MSDAmultiscale

domain attention and C3k2_DFF deep feature fusion. The

experimental results show that the eighth-row configuration, i.e., the

model that simultaneously integrates FocalModulation,

C2PSA_MSDA and C3k2_DFF, exhibits the best overall

performance. The model reaches its maximum value with 93.3%

precision and 91.0% recall, and its precision and recall differ by only

2.3%, which is significantly better than the other combinations. In

terms of the average precision mean of the core metrics, the model

reaches a global maximum of 94.0%, which is only 0.3% lower than the

94.3% of the 7th rowmodel, but 3.9% higher than the 90.1% of the base

model. Particularly worth emphasizing, it achieved a good performance

of 78.4% on the mAP@50–90 index of the rigorous high-threshold

detection task is a 2.5% improvement over the third-row configuration

that only adds the attention module. In terms of parameter efficiency,

the model achieves this excellent performance with only 3.12M

parameters. Although the number of parameters increases by 3.6%

from the seventh row, it is significantly lower than the 3.27M

parameters of the third-row configuration enhanced with the

attention module only. This balanced property of achieving peak

accuracy with moderate number of parameters makes the 8th-row

model an ideal architecture for accuracy-sensitive application scenarios.

The analysis of the module synergy mechanism shows that

FocalModulation lays the foundation of feature expression,

C2PSA_MSDA significantly improves the recall capability, and

C3k2_DFF drives the final precision breakthrough. Compared to

the third-row configuration without introducing deep feature

fusion, the 8th row model increases the average precision mean

by 0.4% while reducing the number of parameters by 4.6%. This

optimal configuration will serve as the baseline architecture for

subsequent experiments.
3.3 Results and analysis of grasping
experiment

Based on FMDS-YOLOv8 visual recognition processing

algorithm, MATLAB software was used to identify and grasp a

variety of fruit and vegetables. Through the operation method in
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Section 2.3, the fruit outline can be identified, and the radius and

tangent point of the circle of the equilateral triangle inside the fruit

can be determined. Consequently, parameters such as the distance

between the fingers of the software manipulator and the rotational

angles of the three fingers can be accurately calculated. This

approach enables the effective identification of the optimal

grasping point for each target fruit (Figure 16), thereby ensuring

the stability and efficiency of the grasping operation.

The physical parameters and experimental results

corresponding to the captured objects are shown in Table 5, and

some representative captured results are shown in Figure 17.

Table 5 exhibits excellent adaptability when grasping fruit and

vegetables with varying characteristics. For instance, lightweight

fruit such as oranges and bell peppers can be stably gripped using

only 70 kPa of driving pressure. Conversely, for smooth-surfaced,

heavier items like apples and tomatoes, the driving pressure must be

appropriately increased to provide sufficient grasping force and

prevent slippage. Specifically, when handling cucumbers—which

are heavy yet small in diameter—the grasping success rate at 90 kPa

pressure was 70%. When pressure was increased to 110 kPa, the

success rate significantly improved to 90%. This demonstrates that

the grasping point locations identified by the vision system closely

coordinate with the gripper’s grasping parameters. By dynamically

adjusting the drive pressure, reliable grasping of diverse fruit and

vegetables can be achieved.

Analyzing the reasons, in addition to the intrinsic attributes of

the fruit such as its weight and shape, the instability in grasping

operations is also attributed to the variable structure algorithm

designed in this study. The potential misalignment of the center of

mass for elongated fruits may lead to unstable grasping and

consequently increase the risk of fruit drop. Therefore, future

research efforts should focus on optimizing visual recognition and

processing algorithms or enhancing the driving air pressure to

ensure stable manipulation of long fruit and vegetables.

The experimental results presented above demonstrate that the

soft manipulator for fruit and vegetables harvesting designed in this

study exhibits excellent flexibility and adaptability. By appropriately

adjusting the driving air pressure and steering gear angle, the

manipulator can effectively capture fruit and vegetables of various

shapes and sizes.
TABLE 4 Comparison of ablation test accuracy.

FocalModulation C2PSA_MSDA C3k2_DFF P/% R/% mAP/% mAP@50-90/% Parameters

90.7 83.9 93.7 75.9 3,006,623

✓ 90.9 77.9 86.9 72.3 3,115,042

✓ 91.8 89.5 93.6 75.9 3,271,071

✓ 89.7 85.6 91.1 74.3 2,922,135

✓ ✓ 92.7 86.7 93.0 76.8 3,189,650

✓ ✓ 90.3 90.2 92.7 74.3 3,030,554

✓ ✓ 92.7 90.8 94.3 77.2 3,011,111

✓ ✓ ✓ 94.1 91.0 94.0 78.4 3,119,530
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3.4 Results and analysis of grasping
damage experiment

The results of grasping damage experiment are shown in

Table 6. It can be calculated from the experimental data that the

overall grasping success rate is 96%, while the direct grasping

damage rate stands at 4.17%. The majority of failed grasping

occurred with tomatoes that have a larger fruit diameter. This is

primarily attributed to the greater weight of these larger tomatoes,

which, in conjunction with insufficient grasping force from the

manipulator under low driving pressure, leads to reduced clamping

stability and consequently results in instances of tomato drop.

Among the 48 tomatoes in the grasping damage experiment, the

browning rate at 72 hours was 6.25%. Browning or softening at 72

hours was significantly influenced by both the magnitude of the

grasping force and the maturity level of the tomatoes. This study

focused solely on ripe tomatoes for the grasping experiment,

without investigating the effects of varying degrees of ripeness.

Therefore, based on the results of the grasping success rate, direct

damage rate, and browning rate, it is evident that the variable
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structure soft manipulator developed in this study exhibits an

effective non-destructive clamping performance. In addition to

fruit maturity and driving air pressure, the fruit damage rate is

also influenced by factors such as the width of the mechanical

gripper and the grasping contact area. For example, an insufficient

finger contact area may lead to excessive localized pressure,

potentially causing fruit damage. Therefore, subsequent research

will focus on optimizing these structural parameters of the

robotic manipulator.

The performance comparison between the variable structure

soft manipulator designed in this study and the fruit and vegetable

grasping device studied by previous scholars is shown in Table 7. Its

main advantage is that it achieves multi-target compatibility

grasping through variable structure (success rate is 96.0%), which

is comparable to the performance of specialized rigid manipulators

[e.g., tomato picking 96.03% (Chen et al., 2021)] and single soft

structure [e.g., citrus grasping 96.67% (Li et al., 2024)], and it also

supports diversified targets, such as spherical and irregular shapes,

which significantly extends the application scenarios. The

disadvantage is reflected in the fact that the grasping elapsed time
TABLE 5 Grasping target characteristics.

Grasping target
Grasping success rate (%)

70 kPa 80 kPa 90 kPa 100 kPa 110 kPa

Apple 0 86.0% 100% 100% 100%

Orange 100% 100% 100% 100% 100%

Tomato 0 88.0% 100% 100% 100%

Chilli 100% 100% 100% 100% 100%

Cucumber 0 70% 73.6% 84.7% 90%
FIGURE 16

The optimal grasping point of the target fruit is determined through precise calculation.
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TABLE 6 Statistics of grasping damage results of tomato.

Driving air
pressure

Number
Success rate of
grasping (%)

Direct damage rate
of clamping (%)

Browning rate in
72h (%)

Shelf life (Day)

Control group 3 – – – 6-7

80 kPa 16 88.0% 0 0 6-7

100 kPa 16 100% 0 0 4-6

120 kPa 16 100% 12.5% 18.75% 3-5

Average – 96.0% 4.17% 6.25% –
F
rontiers in Plant Science
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FIGURE 17

A partial and representative snapshot of the experimental outcomes.
TABLE 7 The main grasping performance and characteristics of the grasping manipulators.

End-effector
structural form

Number of
fingers

Success rate of
grasping

Time-
intensive

Grasping target
Test

scenario
Ref. number

Rigid Manipulator 2 76.3% 5.588 s Tomatoes
Field

experiment
(Tang, 2018)

Rigid Manipulator 2 ≥80% 9.6 s Globular fruits Laboratory (Li et al., 2023)

Rigid Manipulator 3 96.03% 5 s Tomatoes
Field

experiment
(Chen et al., 2021)

Pneumatic soft manipulator 3 96.67% 3.54 s Citrus Laboratory (Li et al., 2024)

Fin-shaped soft manipulator 3

96%

4.63 s Citrus

Laboratory

(Xiao, 2022)
86%

Field
experiment

Soft sleeve – 83.9% 5.588 s Tomatoes
Field

experiment
(Brown and

Sukkarieh, 2021)

Pneumatic soft manipulator 4 85% 5.34 s Cauliflower Laboratory (Ye et al., 2024)

Variable structure
soft manipulator

3 96.0% 6.36 s
Different shaped fruits

and vegetables
Laboratory This manuscript
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(6.36 s) is 21-80% longer than the comparative study, which mainly

stems from the computation and execution delays of the structure

transformation, reflecting the inherent contradiction between

efficiency and generalizability in adaptive grasping. Notably, the

current test data are all based on laboratory environments, while the

field success rates of similar studies in the table generally decrease

by 5-13% (Tang, 2018; Feng et al., 2018; Xiao, 2022), highlighting

the necessity of unstructured scenario validation. Compared with

the prior art, this study reduces the driving complexity through the

3-finger optimized design comparing with the 4-finger structure (Ye

et al., 2024) while maintaining a high success rate, and the

comprehensive performance can be further improved through

algorithm optimization and cross-scenario testing in the future.

Furthermore, the variable-structure soft manipulator in this

study primarily targets the grasping of irregular and fragile fruits

and vegetables. Consequently, during the development of the visual

recognition algorithm and design of the robotic hand structure,

emphasis was placed on enhancing the adaptability and robustness

of the grasping system for agricultural robots. However, factors such

as occlusion of fruit and vegetables and variations in lighting

conditions in real-world picking environments were not fully

considered during the recognition and picking processes.

Therefore, future research should focus on optimizing the visual

recognition algorithms and grasping control strategies to better

address these challenges and meet the practical requirements of

harvesting a wider variety of fruit and vegetables.
4 Conclusions

In this study, we designed and fabricated a variable-structure

soft manipulator. This innovation optimizes the grasping strategy

for irregularly shaped and delicate fruit and vegetables by actively

adapting to varying structural requirements, thereby addressing the

current limitations in adaptability observed in existing harvesting

manipulators. To evaluate the adaptability and performance of the

soft manipulator, we developed a variable structure grasping

strategy based on the FMDS-YOLOv8 visual recognition

algorithm. We conducted the grasping experiments on five

different types of fruit and vegetables. The results indicate that the

designed variable-structure soft manipulator can achieve adaptive

grasping of elongated and nearly spherical fruit and vegetables

through angle and spacing adjustments. Additionally, damage tests

on soft and delicate tomatoes confirmed the non-destructive

grasping capability of the variable structure soft manipulator.

Through this research, we have successfully achieved automatic

recognition and grasping of various fruit and vegetables, providing

an effective solution for the automation of agricultural harvesting.

However , cer ta in l imi ta t ions remain . Laboratory

environments still cannot fully replicate the complex challenges

encountered in field operations, such as rapidly changing light

conditions, interference from rain and fog, highly dense fruit

occlusion, and motion blur caused by mobile platforms.

Therefore, current performance metrics primarily reflect the

model’s potential under controlled conditions, with potential
Frontiers in Plant Science 19
performance degradation in fully open environments. To

address these limitations, our future work will focus on field

sys t em dep loyment and tes t ing , cons t ruc t ing more

comprehensive field datasets that include extreme scenarios, and

exploring domain adaptation methods to enhance the model’s

robustness in real-world environments.
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