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Impact of shorter picking
Intervals on the storability and
postharvest quality of rabbiteye
blueberries cv. ‘Brightwell’

Amit Godara', Zilfina Rubio Ames and Angelos Deltsidis*

Department of Horticulture Sciences, University of Georgia, Tifton, GA, United States

The quality and shelf-life of fresh-market blueberries are crucial aspects for both
growers and consumers. Different picking intervals could be affecting these
factors, and understanding changes associated with these issues is essential to
optimize postharvest fruit performance. This study evaluated the impacts of
different picking intervals on the postharvest quality and storability of rabbiteye
blueberries (Vaccinium virgatum) cv. ‘Brightwell’ in Georgia, USA, during the 2023
and 2024 seasons. Harvesting was carried out at intervals of two days (Trt A),
three days (Trt B), and seven days (Trt C), with three harvests per treatment. The
main quality parameters assessed included berry damage (%), berry diameter,
weight loss, firmness, total soluble solids, titratable acidity, and total anthocyanin
concentration, measured over 21 days of storage at 1 °C and 85% relative
humidity. Results demonstrated that fruit harvested with the Trt C (seven days
interval) exhibited significantly higher weight loss of up to 15.5% at 21 days after
storage in 2024, greater berry damage (ranging from 27% to 41.5%), and lower
firmness (151.6-155.0 g-mm™ at harvest 3) than shorter harvesting intervals
treatments. Conversely, the 7-day interval yielded higher total soluble solids at
harvest 3 (14.0%) versus 2- and 3-day intervals (12.5-13.2%), lower titratable
acidity than the 2-day interval (Trt A highest at 1.51-1.53% at Harvest 3), and the
highest total anthocyanins (Trt C: 258.9-267.2 mg-L™%). Frequent harvesting (Trt A
and B) helped maintain higher fruit firmness, reduced weight loss, and minimized
postharvest berry damage while maintaining optimal sugars and acid levels.
These findings highlight the importance of optimizing picking intervals,
indicating that a three-day picking interval (Trt B) is an effective option for
maintaining postharvest fruit quality and storage potential for fresh market
blueberries. The 7-day interval (Trt C) produced fruit with higher anthocyanin
content, total soluble solids, and lower firmness, indicating greater suitability for
processing rather than fresh market use. This study provides valuable insights for
blueberry growers aiming to improve the postharvest life of rabbiteye blueberries
under warm and humid climate conditions.

maturity, cold storage, delayed harvest, firmness, weight loss, total soluble solids,
anthocyanins, titratable acidity

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1683940/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1683940/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1683940/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1683940/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1683940&domain=pdf&date_stamp=2025-10-17
mailto:adeltsidis@uga.edu
https://doi.org/10.3389/fpls.2025.1683940
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1683940
https://www.frontiersin.org/journals/plant-science

Godara et al.

1 Introduction

Blueberries (Vaccinium spp.), native to North America, are now
cultivated in approximately 27 countries worldwide. The United
States is considered the largest blueberry producer globally, yielding
around 294 thousand metric tons from 41,683 harvested hectares in
2023 (US Department of Agriculture, 2024; USHBC, 2024). In
recent years, consumer demand and scientific interest in this fruit
have grown, particularly due to its nutritional value and antioxidant
properties. Maintaining fruit quality from harvest to the consumer
is essential for ensuring marketability and reducing postharvest
losses (Chen et al., 2015; Edger et al., 2022; Evans and Ballen, 2014).
Blueberry fruit development occurs in three stages: Stage I involves
rapid cell division after fruit set; Stage II is a lag phase focused on
seed maturation with minimal size change; and Stage III resumes
growth through cell expansion, leading into ripening (Darnell et al.,
1992; Godoy et al., 2008; Retamales, 2012). Ripening involves
significant changes in fruit biochemical and metabolite profiles.
This stage III marks the attainment of horticultural maturity,
characterized by optimal sensory quality, including cell wall
degradation, texture softening, modulation of organic acids, and
elevated levels of soluble sugars and aroma volatiles (Erkan and
Dogan, 2019). Visible changes that occur during the later stages of
ripening are minimal (Giacalone et al, 2000). However, in this
period, there are shifts in color, berry size, and internal fruit quality
parameters such as total soluble solids (TSS) and titratable acidity
(TA). For instance, as the fruit transitions from unripe to fully ripe,
TSS increases while TA decreases (Eichholz et al., 2015; Sargent
et al,, 2006). Additionally, glucose and fructose are the primary
sugars present in blueberries, and citric acid is the predominant
organic acid, both of which contribute to the flavor profile of the
fruit (Forney et al., 2010).

Blueberries exhibit ripening asynchrony, meaning fruit within
the same cluster or on the same plant ripen at different times
(Daviet et al., 2023; Vander Kloet and Cabilio, 2010). The degree of
synchrony is influenced by both genetic factors, such as the
inheritance of ripening uniformity and its relationship to crop
load and environmental or management conditions, including
temperature, pollination, production systems, and management
practices (Lang and Danka, 1991; Luby and Finn, 1987; Nesmith,
2012; Ogden and van lersel, 2009). Physiologically, asynchrony
reflects variation in regulatory processes involving ethylene and
abscisic acid (ABA) signaling, sugar and anthocyanin accumulation,
and cell wall remodeling (Acharya et al, 2024; Ban et al., 2007;
Wang et al,, 2018; Zifkin et al., 2012). At the molecular level,
differential expression of ripening-related genes, including those
governing ethylene metabolism and anthocyanin biosynthesis (e.g.,
VcACS1, VcACO6, VeMYBA, VcUFGT), contributes to species
and cultivar specific variation in ripening patterns (Chung et al,
2019; Li et al., 2024; Plunkett et al., 2018; Wang et al., 2022; Zifkin
et al., 2012).

These genetic and physiological mechanisms underlying
ripening asynchrony have direct implications for harvest
management, as fruit within a single cluster may differ markedly
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in texture, size, and biochemical composition. Additionally, the
sensory profile of blueberries remains relatively stable after harvest,
which further emphasizes the importance of harvest timing and
interval optimization to ensure consistent fruit quality during
storage (Heidelbeere et al., 2018; Vander Kloet and Cabilio, 2010).
The cuticular wax (“bloom”), which is present on the surface of the
fruit, varies by cultivar and increases during ripening, playing a vital
role in color appearance and postharvest quality (Chu et al., 2018;
Yang, 2018). For Georgia growers, the primary sign of blueberry
maturity is their color, with the berries generally deemed ready for
harvest when they turn completely blue. However, despite their
uniform appearance, blueberries at 100% blue stage within a cluster
can vary in maturity stages and physiological age, with some being
ripe and others overripe (Godara et al., 2023; Lobos et al., 2018;
Moggia et al., 2017b). Therefore, surface color alone may no longer
be a reliable indicator of physiological maturity (Lobos et al., 2018).
The maturity stages of berries at harvest significantly affect the
storage potential, as berries with an advanced maturity stage can
result in softening and decay during storage (Lobos et al., 2018;
Moggia et al., 2018). Blueberry growers are shifting to machine
harvesting due to high labor demands and costs. This change,
driven by labor shortages, has led to longer picking intervals to
reduce yield loss associated with the harvest of unripe (green) fruit
during frequent machine harvesting, often resulting in a higher
percentage of overripe fruit being harvested (Gallardo et al., 2018;
Lobos et al., 2018; Olmstead and Finn, 2014). Reducing the number
of harvests by increasing the interval between successive picks can
help reduce labor costs but may also negatively impact fruit quality,
leading to higher postharvest losses (Galinato et al., 2016; Lyrene,
2006; Takeda et al., 2008). Early harvesting, particularly in hand-
picked operations, may lead to firmer fruit with better shelf-life
(Bremer et al., 2008). Additionally, mechanical harvesting tends to
be performed at a more advanced maturity stage to maximize
picking efficiency, which can result in greater postharvest losses
due to reduced firmness and subsequent fruit damage (Olmstead
and Finn, 2014). In regions like Georgia, where climatic conditions
such as high temperatures and rainfall occur during harvesting
season, extending the picking interval can result in a higher
percentage of overripe berries, leading to increased weight loss
and fruit softening during storage. Furthermore, it can increase
issues such as fruit splitting, wet stem scar, sunburn, and loss of
firmness, ultimately reducing the storage life and marketability of
the fruit (Lobos et al., 2014; Lyrene, 2006; Marshall et al., 2006;
Yang, 2018).

This study aims to evaluate the effects of different picking
intervals on the postharvest quality of rabbiteye blueberries in
Georgia, USA, focusing on key quality attributes such as berry
diameter, firmness, weight loss, TSS, and TA over multiple storage
durations. We hypothesize that longer harvest intervals will reduce
berry firmness and increase postharvest weight loss due to the
harvest of more overripe berries, thus decreasing marketable fruit
postharvest. This research seeks to provide insights into optimizing
picking intervals to minimize spoilage and enhance the overall
quality and marketability of rabbiteye blueberries cv. ‘Brightwell.’

frontiersin.org


https://doi.org/10.3389/fpls.2025.1683940
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Godara et al.

2 Materials and methods
2.1 Experimental site

The field experiment on ‘Brightwell’ rabbiteye blueberries
(Vaccinium virgatum) was conducted over the 2023 and 2024
seasons at the University of Georgia blueberry research farm in
Alma, GA (lat. 31°32°05"N; long. 82°30'35"W). The cultivar
Brightwell was selected for this study because it is a widely
cultivated rabbiteye blueberry in Georgia and the Southeast,
known for superior berry quality. The research site experiences a
humid subtropical climate characterized by warm summers and
frequent rainfall during harvest (Figures 1A, B). All agronomic
practices, including fertilization, were conducted in accordance with
the commercial blueberry guidelines established by the University
of Georgia for blueberry production (Kissel and Sonon,
2018a, 2018).

2.2 Experimental design

The experiment was established using a randomized complete
block design with three picking intervals as the experimental factor:
every two days (Trt A), every three days (Trt B), and every seven
days (Trt C). Each treatment was replicated four times with 10
plants per replication. To simulate commercial harvesting
conditions, the first harvest for all treatments was conducted on
the same date, June 5 in 2023 and June 3 in 2024, corresponding to
the beginning of the commercial harvest season. This common
harvest date is referred to as Harvest 1, and it served as the starting
point for each treatment’s specific harvest schedule. Harvest 2 and
Harvest 3 represent the subsequent harvests for each treatment,
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based on their respective intervals. For example, Trt A (2-day
interval) harvested on Day 0, Day 2, and Day 4; Trt B (3-day
interval) on Day 0, Day 3, and Day 6; and Trt C (7-day interval) on
Day 0, Day 7, and Day 14 (Figure 2).

Fruits were hand-harvested and stored in a airconditioned
vehicle at ~19 °C during transportation to the Vidalia Onion
Research Laboratory (Postharvest Lab) in Tifton, Georgia. Upon
arrival, fruit were hand-sorted to retain only ripe berries, with small
green berries removed and filled into vented 0.55 L clamshellls (one
dry pint, Terra Box Florida LLC, Lakeland, FL) and stored at 1 °C
and 85% relative humidity (RH) for up to 21 days. Fruit parameters
were assessed at harvest and subsequently after 7, 14, and 21 days
after storage (DAS). For each evaluation time point, four clamshells
were used per replication, resulting in a total of 16 clamshells per
evaluation (four replications x four clamshells). Since each harvest
and treatment were evaluated four times during the study, a total of
64 clamshells (16 x 4) were used for quality assessments.
Additionally, a separate set of clamshells was designated
specifically for monitoring weight loss. These clamshells were
weighed non-destructively at each storage evaluation time point
(0, 7, 14, and 21 DAS), following the same storage conditions and
arrangement. We hypothesized that longer picking intervals would
lead to increased postharvest losses, particularly in firmness and
weight loss, due to a greater proportion of overripe fruit
being harvested.

2.3 Postharvest laboratory analysis

Weight loss was measured with a digital balance and calculated
by subtracting the initial weight of the clamshell from the final
weight of the clamshell containing fruit. Percentage (%) weight loss
was calculated according to the following equation:
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Maximum and minimum daily air temperature (A) and daily precipitation (B) in 2023 and 2024 from June 1 to June 31 at Blueberry Research Farm,

Alma, Bacon County, GA. Weather data from the UGA Weather Network.
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Picking Intervals Experimental Design Schematic
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FIGURE 2

Experimental design for picking intervals. Three treatments were tested: Trt A (2-day), Trt B (3-day), and Trt C (7-day). Each treatment was harvested
three times (H1-H3) on the following days (relative to Day 0): Trt A: 0, 2, 4; Trt B: 0, 3, 6; Trt C: 0, 7, 14. Circles indicate harvest events.

Weight Loss (% ) :(Wi — Wf) + Wi x 100

Where;

* W; is the initial weight at harvest
*  Wreis the final weight after 21 days of storage (21 DAS).

The postharvest quality traits were analyzed at harvest and
subsequently weekly from the day of harvest (evaluation times of
fruit were 7, 14, and 21 DAS, as indicated above). Berry damage,
defined as splitting, juice leakage from the pedicel, wet scar, and
skin tearing, was evaluated on 100 fruit samples per replicate. The
Berry Damage percentage incidence was calculated as follows:

Number of oozing and splitting fruit 100

B d %) :
erry damage (%) Total number of tested fruit

Berry diameter and firmness were measured in 25 fruit per
replication using a digital fruit firmness machine (FruitFirm® 500,
CVM Inc. Pleasanton, CA) equipped with a flat round compression
plate (2.5 cm diameter). Firmness values are reported in the device’s
original units (g-mm™"). The concentrations of total soluble solids
(TSS), titratable acidity (TA), and total anthocyanins were
determined using a 100 g aliquot of berries, homogenized with a
tissue homogenizer (PowerGen 500, Fisher Scientific, Schwerte,
Germany). The resulting slurry was centrifuged at 9,000 rpm at 4 °
C (Sorvall X4R Pro-MD, Thermo Scientific, Osterode, Germany).
The supernatant was filtered through cheesecloth, stored in plastic
vials, and frozen at -20 °C for further analysis. TSS was measured by
placing a small sample of blueberry supernatant on a digital
refractometer (ATAGO, PAL-1, Model 3810, Japan), and the
results were expressed as a percentage. For titratable acidity (TA), 6
mL of blueberry supernatant was diluted with 50 mL of deionized
water and titrated to a pH of 8.2 using 0.1 mol L' NaOH with a
titrator (916 Ti-Touch, Metrohm AG, Herisau, Switzerland). The TA
was reported as a percentage of citric acid equivalents. Anthocyanin
concentrations were measured according to the protocol described by
Giusti and Wrolstad (2001). Briefly, blueberry supernatant was
diluted separately with two different buffer solutions: a 0.025 M
potassium chloride (KCI) buffer at pH 1.0, followed by a 04 M
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sodium acetate (CH;COONa) buffer at pH 4.5. Absorbance was
measured using a microplate spectrophotometer, (BioTek, Epoch 2,
Winooski, Vermont, USA) at two different wavelengths, 520 and 700
nm. A blank cell filled with deionized water was used as a reference.
The monomeric anthocyanin concentration in the sample was
calculated using the following formula:

Total Anthocyanin concentration (mg - L™!):
A x MW x DF x 1000
ex1

Where;

* A (Absorbance at a given wavelength) = A= (As0 um - A700

am) pH 1.0 = (A520 nm = A700 nm) pH 4.5

(As20 nm - A700 nm) pH 1.0¢ Measures anthocyanin
absorbance at pH 1.0

* (As520 nm - A700 nm) pH 4.5: Measures anthocyanin absorbance
at pH 4.5

* MW: 449.2 (molecular weight of cyanidin-3-glucoside)

* DF: dilution factor

* £:26,900 (molar absorptivity)

2.4 Statistical analysis

Data was subjected to analysis of variance (ANOVA), and one-
way analysis of variance was conducted using JMP Pro 17 software
(SAS Institute, Cary, NC) on variables measured at harvest and during
postharvest storage. Normality was evaluated using Q-Q plots, and
homogeneity of variances was confirmed using Levene’s test in JMP
before conducting ANOVA. Analyses were conducted separately by
year and by harvest. Comparisons were made between picking
intervals at harvest and at each storage duration (7, 14, and 21
DAS), separately. The Tukey’s honestly significant difference (HSD)
was used for mean separation at a significance level of o. = 0.05.
Graphs were generated using SigmaPlot 16.0 (Systat Software Inc., San
Jose, CA) and RStudio software (RStudio, PBC, Vienna, Austria).

frontiersin.org


https://doi.org/10.3389/fpls.2025.1683940
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Godara et al.

3 Results

Air temperatures in June of 2024 were elevated compared to
June 2023 (Figure 1A), pointing to a warmer harvesting season. In
contrast, precipitation levels throughout the month of June were
greater in 2023 than in 2024 (Figure 1B). These findings highlight
notable interannual fluctuations in both temperature and rainfall,
which are essential for interpreting regional climate patterns.

3.1 Berry weight loss (%)

Berry weight was not significantly different between treatments
after 21 days of cold storage in harvest 1 in 2023 and 2024. In 2023
and 2024, berries from Trt C (seven-day interval) consistently
exhibited the highest weight loss compared to Trt A and B (two
and three-day intervals, respectively) in harvests 2 and 3
(Figures 3A, B). Specifically, in 2024, 21 DAS weight loss for Trt
C berries reached 15.5%, significantly higher than Trt A and B in
harvest 3 (Figure 3B).

3.2 Berry damage (%)

The percentage of berry damage at harvest 1 showed no
significant differences between treatments during the 2023 and
2024 seasons (Figures 4A, C). In 2023, Trt A and B had the
lowest number of damaged berries at harvests 2 and 3, whereas
Trt C exhibited the highest damage rates, with 27% and 41.5% of
berries damaged at harvests 2 and 3, respectively (Figure 4A). In
2024, Trt C had a significantly higher percentage of damaged berries

10.3389/fpls.2025.1683940

(30.5%) compared to Trt A at harvest 3 (Figure 4C). During storage,
harvest 1 did not show significant differences in berry damage
throughout storage duration (Table 1). In 2023, the damage
percentage 21 DAS was 37.5% for harvest 2 and 44.5% for harvest
3. In 2024, these percentages were lower, at 20% for harvest 2 and
31% for harvest 3 (Table 1).

3.3 Berry diameter

Berry diameter evaluated at harvest 1 and 2 was not significantly
affected by treatments in either year (Figures 4B, D). However, at
harvest 3 of 2023 and 2024, Trt A berries had significantly smaller
berry diameters compared to Trt B and C (Figures 4B, D). Berries
from harvest 1 during storage in 2023 and 2024 did not show any
significant differences (T'able 1). After seven days of cold storage Trt
A and B berries from harvests 2 and 3 were significantly larger
compared to Trt C in 2023 and 2024 (Table 1). After 14 days of
storage, the berry diameter was significantly bigger in Trt C
compared to Trt A in harvest 2, while in harvest 3, Trt B berries
had a bigger diameter compared to Trt A and C in 2023 and 2024
(Table 1). It should be noted that after 21 days of storage, there were
no significant differences in berry diameter for harvests 2 and 3 in
both years.

3.4 Firmness

Firmness at harvest 1 was not significantly influenced by
treatments in 2023 and 2024 (Figures 5A, 6A). However, in both
years analyzed, berries from Trt B collected at harvest 2 exhibited

20 A
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Effect of three different picking intervals on total weight loss (%) during 21 days of cold storage in 2023 (A) and 2024 (B). Comparisons were made
between treatments separately for each harvest. The means followed by the different letters are significantly different at p < 0.05 based on Tukey's
honestly significant difference (HSD). Corresponding p-values are provided in Supplementary Table 1.
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Effect of three different picking intervals on percentage of berry damage in 2023 (A) and in 2024 (C) and berry diameter in 2023 (B) and in 2024 (D) on
‘Brightwell’ cultivar at harvest. Comparisons were made between treatments separately for each harvest. The means followed by the different letters are
significantly different at p < 0.05 based on Tukey's honestly significant difference (HSD). Corresponding p-values are provided in Supplementary Table 1.

the highest firmness, while Trt C recorded the lowest firmness of
181.39 gomm™" in 2023 and 185.92 g-mm™" in 2024. At harvest 3,
berries of Trt A and B resulted in the highest firmness, whereas Trt
C consistently showed the lowest firmness of 151.63 g-mm ™" in 2023
and 155.01 gomm™" in 2024 (Figures 5A, 6A). After seven days of
storage, berry firmness was significantly higher in Trt B berries
compared to Trt C in the harvests 2 and 3, in both years analyzed
(Table 2). Additionally, at the same harvest, firmness evaluated after
14 days of storage was significantly higher for Trt B compared to Trt
A and C. In 2023 and 2024, 21 DAS, berry firmness in berries from
harvest 2 was significantly higher for Trt B compared to Trt C. In
harvest 3, blueberries of Trt A and B had higher firmness compared
to Trt C (Table 2).

3.5 Total soluble solids (%)

The TSS assessed at harvest 1 did not exhibit significant
differences among the treatments in 2023 and 2024. However, in
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2023, Trt A and B berries showed higher TSS levels of 15% and
15.3% at harvest 2 compared to Trt C, whereas no significant
differences in TSS were observed at harvest 2 in 2024 (Figures 5B,
6B). It should be noted that at harvest 3, berries from Trt C showed
significantly higher TSS levels. Specifically, in 2023, TSS levels were
14% for Trt C, compared to 12.5% and 13.0% for Trt A and B,
respectively. A similar trend was observed in 2024, with Trt C
recording a TSS of 14%, while Trt A and B had TSS levels of 13%
and 13.2%, respectively. (Figures 5B, 6B).

Berries from harvest 1 did not show significant differences in
TSS levels at different storage dates (Table 2). In 2023 and 2024, TSS
after seven days of storage was not significantly affected by
treatments in berries from harvest 2; however, in harvest 3, Trt A
berries had significantly higher TSS compared to Trt C berries
(Table 2). After 14 days of storage in both years evaluated, Trt B
berries exhibited the highest TSS compared to Trt C in harvest 2,
while for harvest 3, Trt A berries had higher TSS compared to Trt B
and C (Table 2). After 21 days of storage in 2023 and 2024, no
significant differences in TSS in harvest 2 were observed among the
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TABLE 1 Effects of picking intervals on fruit quality parameters of ‘Brightwell’ at each storage duration (7, 14, and 21 DAS) in 2023 and 2024.

Berry damage? (%)

Berry diameter? (mm)

Treatment* Harvest Storage day
2023 2024 2023 2024
Trt A Harvest 1 7 75+11a 55+1.1a 258 +04a 261 +04a
Trt B Harvest 1 7 105+ 1.1a 45+11a 253 +04a 256 £04a
Trt C Harvest 1 7 10+11a 4+1la 253+04a 25604 a
Trt A Harvest 1 14 15+18a 12+28a 252+03a 255+03a
Trt B Harvest 1 14 125+ 18a 115+28a 254 +£03a 257+03a
Trt C Harvest 1 14 13+18a 9+28a 246 +03a 249+03a
Trt A Harvest 1 21 145+25a 11+16a 128 £ 04 a 129+ 04a
Trt B Harvest 1 21 165+25a 105+ 16a 129+ 04a 13.1+04a
Trt C Harvest 1 21 155+25a 75+ 16a 124 £ 04 a 126 £ 0.4 a
Trt A Harvest 2 7 215+27a 11+24b 30+03a 303+03a
Trt B Harvest 2 7 18+27a 85+24b 304 +03a 308+03a
Trt C Harvest 2 7 27 +£27a 245+24a 248+ 03b 251+03b
Trt A Harvest 2 14 19 £2.2ab 115+ 1.8 ab 10.9+03b 112+03b
Trt B Harvest 2 14 15£22b 9+18b 114 £ 0.3 ab 11.7 + 0.3 ab
Trt C Harvest 2 14 285+22a 16+18a 119+ 03 a 123+ 03 a
Trt A Harvest 2 21 185+28b 105+ 1.8 b 144+03a 146 +04 a
Trt B Harvest 2 21 135+28b 75+18b 141+03a 143+ 04 a
Trt C Harvest 2 21 375+28a 20+ 18a 142 +03a 144+ 04 a
Trt A Harvest 3 7 17.5+25b 14+25Db 24+03a 242 +04a
Trt B Harvest 3 7 8+25¢ 6.5+25b 235+03a 239+04a
Trt C Harvest 3 7 435+25a 29+25a 122+03b 123+04b
Trt A Harvest 3 14 195+3b 135+22b 113+ 05¢ 11.6 £ 05 b
Trt B Harvest 3 14 115+3b 6+22c¢ 264 +05a 268+ 05a
Trt C Harvest 3 14 455+3a 305+22a 143+ 05b 147 £ 05 ¢
Trt A Harvest 3 21 20+28b 65+3b 134+08a 136 +08a
Trt B Harvest 3 21 125+28b 85+3b 133+08a 136+ 08 a
Trt C Harvest 3 21 445+ 28a 31£3a 107 £ 0.8 a 109 £ 0.8 a

'Picking intervals where Trt A: 2 days. Trt B: 3 days, and Trt C: 7 days.
2100 berries from each replication were evaluated.

Fruit were stored at 1 °C and 85% RH. Parameters measured include berry damage (%) such as splitting, juice leakage from the pedicel, wet scar, and skin tearing, and berry diameter (mm).
Values are presented as mean + standard error (SE) for each parameter. Comparisons are made between picking intervals within each storage duration and means followed by different letters are
significantly different at p < 0.05 based (Supplementary Table 1) on Tukey’s honestly significant difference (HSD). Corresponding p-values are provided in Supplementary Table 1.

treatments, but in harvest 3, Trt C berries showed significantly
lower TSS compared to Trt A and B in both years (Table 2).

3.6 Titratable acidity

Titratable acidity (TA) at harvests 1 and 2 was not significantly
affected by treatments in 2023 and 2024. However, at harvest 3
berries of Trt A showed significantly higher TA of 1.53% and 1.51%
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compared to Trt B and C (Figures 5C, 6C). During the storage
period, the TA of blueberries remained relatively stable across the
harvests, but between treatments, significant differences were
observed. For instance, the TA of berries from harvest 2 after
seven days of storage was not significantly different, but in harvest 3,
Trt A berries had significantly higher TA compared to Trt C during
both years (Table 2). After 14 days of storage, the TA of berries was
significantly higher for Trt A and B compared to Trt C in harvests 2
and 3 in 2024. After 21 days of storage, no significant differences in
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FIGURE 5

Effect of three different picking intervals on firmness (A) total soluble solids (B) titratable acidity (C) and anthocyanin concentration (D) on the
‘Brightwell’ cultivar at harvest in 2023. Comparisons were made between treatments separately for each harvest. The means followed by the
different letters are significantly different at p < 0.05 based on Tukey's honestly significant difference (HSD). Corresponding p-values are provided in

Supplementary Table 1.

TA were observed in harvest 2 between 2023 and 2024. However, in
harvest 3, Trt A and B maintained higher TA levels than Trt C in
both years (Table 2).

3.7 Anthocyanins concentration

In both 2023 and 2024, anthocyanin concentration was
significantly higher in blueberries in Trt C compared to Trt A
and B at harvests 2 and 3 (Figures 5D, 6D). Specifically, in 2023,
anthocyanin levels in Trt C were 258.89 mg-L™" at harvest 2 and
267.19 mg-L™" at harvest 3. Similarly, in 2024, anthocyanin levels in
Trt C were 259.84 mg-L™" at harvest 2 and 265.42 mg-L™" at harvest
3. This trend continued through 7, 14, and 21 DAS, with the berries
from Trt C consistently showing the highest anthocyanin
concentration across harvests 2 and 3 in both years (Table 2).

Frontiers in Plant Science

4 Discussion

The results of this study demonstrated that picking intervals
have a significant impact on the postharvest quality and storability
of rabbiteye blueberries cv. ‘Brightwell.” The increase in weight loss
observed in Trt C, with longer picking intervals, across both years,
suggests that extended periods between harvests negatively affected
quality during the 21-day storage period. The advanced ripeness
stage in Trt C likely makes these berries more susceptible to
dehydration. As fruit ripens, cuticle thickness and cuticle wax
content decrease, leading to a higher water permeability (Yan and
Castellarin, 2022; Yan et al., 2024). Previous studies indicate that
blueberries are considered unmarketable once weight loss exceeds 5
to 8% (Sanford et al., 1991), with other research suggesting that the
acceptable limit during a 14 to 21-day storage period ranges
between 5% and 7% (Paniagua et al., 2014). More frequent
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FIGURE 6

Effect of three different picking intervals on firmness (A), total soluble solids (B), titratable acidity (C), and anthocyanin concentration (D) on the
‘Brightwell’ cultivar at harvest in 2024. Comparisons were made between treatments separately for each harvest. The means followed by the
different letters are significantly different at p < 0.05 based on Tukey's honestly significant difference (HSD). Corresponding p-values are provided in

Supplementary Table 1.

harvests, as seen in Trt A and B, helped mitigate the weight loss
issue by ensuring berries are collected at an optimal ripeness stage,
thus reducing postharvest weight loss.

Berries from Trt C exhibited lower firmness and higher berry
damage, which can be explained by internal structure changes that
occur during ripening and senescence. Blueberries undergo a softening
process driven by the enzymatic breakdown of cell wall components,
including pectin, cellulose, and hemicellulose (Chen et al., 2015;
Proctor and Miesle, 19915 Silva et al,, 2005). Weakening cell walls
can make fruit more prone to softening and internal damage (Chen
etal, 2015; Silva et al,, 2005). Thus, accumulation of soft and overripe
fruit could lead to increased softening incidence, damage, and decay
during storage, resulting in lower firmness and poor overall quality
(Lobos et al,, 2018; Moggia et al., 2017b; Strik, 2019). Additionally,
Moggia et al. (2017a), reported that factors such as stem scar or berry
damage can also increase water loss and reduce firmness in blueberries
during storage. Firmness is crucial for marketability, as firmer berries
are less prone to mechanical damage and decay during postharvest
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handling (Vicente et al., 2007). Our research shows that lower berry
damage rates in blueberries from Trt A and B highlight how frequent
harvesting helps maintain postharvest fruit quality. These outcomes
emphasize the importance of minimizing weight loss during storage
by using shorter picking intervals to maintain postharvest fruit quality.
These findings are consistent with those of Miller et al. (1988); Chen
(2006); Lobos et al. (2018), and Moggia et al. (2022), who reported
higher postharvest damage susceptibility in blueberries harvested at
weekly intervals due to the presence of overripe berries, which are
more prone to decay compared to ripe or immature berries. Recent
work from our group in southern highbush and rabbiteye blueberries
in Georgia confirmed that delaying harvests by one or two weeks
negatively impacts quality at harvest and during storage (Godara
et al., 2025).

Furthermore, Lobos et al. (2018), reported that six-day picking
intervals reduce firmness by increasing the proportion of overripe
fruit in northern highbush blueberries. According to Moggia et al.
(2017b), fruit that remains on the bush after maturity tends to be
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TABLE 2 Effects of picking intervals on fruit quality parameters of ‘Brightwell’ at each storage duration (7, 14, and 21 DAS) in 2023 and 2024. Fruit were stored at 1°C and 85% RH.

Firmness (g-mm™)

Total soluble solids (%)

Titratable acidity? (%

Anthocyanins concentration®

Treatment! Harvest Storage days
23 2024 2023 2024 2023 2024 2023 2024
Trt A Harvest 1 7 1614 £ 58 a 1654 £ 6 a 126 £ 0.8 a 13+£07b 08+0.1a 08+0.1a 2088 £18a 2085+19a
Trt B Harvest 1 7 167.3 £ 58 a 1715+ 6a 159+0.8a 16.1 £ 0.7 a 1+01a 1+01a 2074 +18a 2074+19a
Trt C Harvest 1 7 1546 + 58 a 1584 +6a 148 £ 0.8 a 15 + 0.7 ab 09+01a 09+01a 2096 +18a 2103 +19a
Trt A Harvest 1 14 1434 +41a 147 43 a 142 +£05a 143 +05a 08+01a 08+01a 2084 +22a 2084 +27a
Trt B Harvest 1 14 1347 + 41 a 1388 + 43 a 155+05a 157 +05a 1+01a 1+£01a 2099 +22a 210 +£27a
Trt C Harvest 1 14 1267 + 4.1 a 1299 £ 43 a 145+05a 146 £ 05 a 08+01a 08+01a 2083 +£22a 2081 +27a
Trt A Harvest 1 21 121.8 + 46 a 1248 £ 4.7 a 163 £0.7 a 159+ 06a 09+01a 08+0.1a 2082+23a 2083 +21a
Trt B Harvest 1 21 1315+ 46a 1347 £ 4.7 a 155+£0.7 a 156 £ 0.6 a 1.1+01a 1.1+01a 2085+23a 2084 +21a
Trt C Harvest 1 21 1222 +46a 125.3 + 4.7 ab 151 +£0.7 a 152+ 06a 1+01a 1+01a 2045+23a 2047 +21a
Trt A Harvest 2 7 169 + 3.3 ab 1727 + 34 a 13.7£0.7 a 13.8 +0.7 a 1.3+02a 13+02a 2232+19b 2229 +23b
Trt B Harvest 2 7 1735+33 a 1777 + 34 a 133 +£0.7a 134+0.7 a 12+02a 12+02a 2227 +19b 2223 +23b
Trt C Harvest 2 7 157.6 £33 b 161.5+ 34D 142 £ 0.7 a 14.1 £ 0.7 a 09+02a 08+02a 248 £ 19a 2596 +23a
Trt A Harvest 2 14 159.1 £ 43D 163 +44b 148 £ 04 b 15 £ 0.4 ab 1.3 £0.1ab 13£01a 2222+2b 2222+13b
Trt B Harvest 2 14 1768 + 43 a 1813 +44a 157 £ 04 a 157+ 04 a 14+0.1a 14+01a 2238+2b 2238+13Db
Trt C Harvest 2 14 147.1 £ 43 b 150.5 + 44 b 141 +04Db 142+04b 1.1£01b 1+0.1b 2495+ 2a 2694+ 13a
Trt A Harvest 2 21 1645 +59ab | 171.3 + 6.5 ab 155+ 04 a 157+ 04 a 12+01a 1.1+01a 2214+ 1.7b 2216 +15b
Trt B Harvest 2 21 1913 +59a 1956 + 6.5 a 15+04a 152+ 04 a 12+01a 12+01a 2223+ 1.7b 222+ 15b
Trt C Harvest 2 21 150.6 £ 59 b 1543 £ 6.5b 147 £ 04 a 149+ 04 a 12+01a 11+01a 2534+17a 2616+15a
Trt A Harvest 3 7 196.1 £5.7 a 2002 £6.2a 14+04a 145+03a 1.7+0.1a 1.7+0.1a 2247 +3b 2246 +35b
Trt B Harvest 3 7 191.1 +58a 193.2+62a 14+04a 142+03a 1.3+ 0.1 ab 13+0.1b 2253+3b 2256 +35b
Trt C Harvest 3 7 1453 £ 57 b 147.7 £ 6.2 b 124+ 04 Db 123+ 03 b 1+01b 1+0.1b 2689 +3a 2622 +35a
Trt A Harvest 3 14 1689 £5b 173 £52b 165+05a 16.7 £ 0.5 a 14+01a 14+01a 225+3.1b 2249 £29b
Trt B Harvest 3 14 193.1 +49a 1977 £ 52 a 141+ 05b 143 +£05b 14+01a 14+01a 2241 +31b 2239 +29b
Trt C Harvest 3 14 146.8 £ 5 ¢ 148.7 £ 52 ¢ 129+ 0.5b 128 £ 0.5b 1+0.1b 1+0.1b 2579 +3.1a 266 £29a
Trt A Harvest 3 21 186.1 +5a 190.8 £49 a 165+ 0.7 a 16.5+0.8 a 1.7+0.1a 1.7+01a 2249 +39b 2245 +23b
(Continued)
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W £ softer at harvest and during storage, which was also confirmed by a
é 2l s é similar trend in the present work. Strik (2019), reported that
o AN g harvesting frequencies of 8 and 12 days resulted in lower firmness
% E E ;; in northern highbush fruit. Similarly, the decline in firmness
% AN i observed in fruit harvested every seven days is the result of the
: § accumulation of overripe fruit (Lobos et al,, 2018; Moggia et al.,
= al e 2 2018, 2022; Strik, 2019).
g R 2 In fruits, total soluble solids (TSS) and titratable acidity (TA) are
O + + £
9 § § % the primary determinants of flavor, which change during fruit
€ )| e ripening (Zhang et al., 2020). In this work, the increase in TSS
= gf and decline in TA in blueberries across all treatments during
= ® s S ‘5 ripening and storage was consistent as soluble solids continued to
5 b 5 %g é accumulate and acids were metabolized and declined as blueberries
© L~ g E ripened, an effect that has been previously reported by several
b —— —g? authors (Lin et al., 2020; Lobos et al., 2018; Moggia et al., 2018;
% Bt é :g Sargent et al., 2006; Shi et al., 2023; Strik, 2019). The relatively
% I g2 higher TSS values in blueberries from Trt C during harvest 3 can be
E %8 g § attributed to their advanced ripening stage (Lobos et al., 2018; Strik,
-~ 1 g T’;’ 2019). Lobos et al. (2018) found that fruit harvested six days after
R el= g 5 full maturity was high in TSS and low in TA compared to fruit
38 b I E 'g harvested at 100% blue stage. The overripe fruit exhibited a more
§ R g g dramatic decline in TSS during a 45-day cold storage period.
% g § Similarly, in the present study, TSS was higher in blueberries
% 2l g % harvested from Trt C at harvest 3, and it increased during storage
2 S S S of 21 days, but remained significantly lower than Trt A. In addition
*g 3 4 § E to the advanced stage of berry maturity, higher TSS values observed
= =% in Trt C may also be partially attributed to elevated temperatures
- Sle T: é during the second week of June, when the second and third harvests
‘_"E I g5 for this treatment were conducted. While Trt A and Trt B harvests
= § 9 g ?: occurred primarily during the first week of June, when average daily
RS R f:: E temperatures were around 23 °C (2023) and 24 °C (2024), the later
§ ® s é é‘ harvests in Trt C coincided with higher temperatures, 26 °C in 2023
g Z: 3 § ‘E and 27 °C in 2024 (Figures 1A, B). These warmer conditions may
T ; o 5?: have promoted more rapid sugar accumulation in the fruit,
- E g enhancing TSS alongside the effect of extended ripening time.
Ea Anthocyanins are responsible for the blue pigmentation of
% § by blueberries and consistently increase during fruit ripening (Zifkin
g . ‘é g et al, 2012). The higher anthocyanin levels in Trt C can be
g “pe i; b= attributed to the longer ripening period before harvest, which
o £ “; allows for greater pigment accumulation (Kalt et al, 2003). As
= £. g“é blueberries ripen, anthocyanin accumulation increases alongside
T S :é g sugars, reaching peak concentration at stage eight, indicating full
E st pigment development (Acharya et al., 2024). In the present work,
o o ETETE the anthocyanin concentration was significantly higher in berries
fg 'ég‘ % = :;bg E from Trt C, which confirms the natural progression of anthocyanin
S8 p é _57;:; biosynthesis. This highlights the importance of balancing
b § %@g anthocyanin content with other quality attributes like firmness,
é}é “_DL g f; berry weight, and susceptibility to decay, which can be effectively
] B éi £ E achieved by optimizing picking intervals. While Trt C berries
. . E 2 § :% _E accumulated higher anthocyanin concentrations, this came at the
§ "qc'; § z g S E cost of lower textural quality. This trade-off suggests that such fruit,
= = 2 (é é = g 5 % although less ideal for fresh markets, may be better suited for
'3 § FE g‘é é g’i processing applications such as juices, jams, or purees, where
; = ;aé: g8z pigment content is valued over textural quality (Olmstead and
E E ‘E "‘5 § —f; Finn, 2014; Strik and Yarborough, 2005).
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5 Conclusions

In conclusion, optimizing picking intervals is critical for
maintaining the postharvest quality of rabbiteye blueberries
intended for the fresh market. This study highlights the
importance of frequent, timely harvesting, especially in warm,
humid climates like Georgia, where high temperatures and
precipitation can impact fruit ripening and postharvest
physiology. A moderate picking interval of three days, as seen in
Trt B, helps maintain postharvest quality by minimizing weight loss
and reducing damage, while maintaining optimal firmness, TSS,
and TA levels. In contrast, longer picking intervals (e.g., seven days)
may lead to increased anthocyanin concentrations but this comes at
the expense of firmness and higher postharvest damage incidence.
Based on the balance between postharvest quality, weight loss,
firmness, and flavor attributes, the 3-day picking interval (Trt B)
is recommended as the optimal hand-picking strategy for
maintaining marketability of fresh market rabbiteye blueberries.
However, the choice of interval may be market-dependent, with a 3-
day interval being optimal for fresh market berries, where fruit
texture is prioritized, while a 7-day interval could be viable for the
processing market despite the lower texture quality.

An alternative approach to reduce the labor-intensive and costly
nature of multiple harvests could involve different strategies to
achieve more synchronized ripening. The ripening asynchrony of
blueberries could be alleviated by utilizing appropriate preharvest
management practices as well as breeding efforts that can result in a
more concentrated ripening fashion, diminishing the need for
multiple, frequent harvests. This study was conducted on a single
rabbiteye blueberry cultivar (‘Brightwell’) grown under Georgia
conditions, and further research is needed to validate these
findings across additional cultivars and production regions.
Future research should also explore strategies to complement
optimal picking interval recommendations and further enhance
efficiency in blueberry production.
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