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Impact of shorter picking
intervals on the storability and
postharvest quality of rabbiteye
blueberries cv. ‘Brightwell’
Amit Godara †, Zilfina Rubio Ames and Angelos Deltsidis*

Department of Horticulture Sciences, University of Georgia, Tifton, GA, United States
The quality and shelf-life of fresh-market blueberries are crucial aspects for both

growers and consumers. Different picking intervals could be affecting these

factors, and understanding changes associated with these issues is essential to

optimize postharvest fruit performance. This study evaluated the impacts of

different picking intervals on the postharvest quality and storability of rabbiteye

blueberries (Vaccinium virgatum) cv. ‘Brightwell’ in Georgia, USA, during the 2023

and 2024 seasons. Harvesting was carried out at intervals of two days (Trt A),

three days (Trt B), and seven days (Trt C), with three harvests per treatment. The

main quality parameters assessed included berry damage (%), berry diameter,

weight loss, firmness, total soluble solids, titratable acidity, and total anthocyanin

concentration, measured over 21 days of storage at 1 °C and 85% relative

humidity. Results demonstrated that fruit harvested with the Trt C (seven days

interval) exhibited significantly higher weight loss of up to 15.5% at 21 days after

storage in 2024, greater berry damage (ranging from 27% to 41.5%), and lower

firmness (151.6-155.0 g·mm−1 at harvest 3) than shorter harvesting intervals

treatments. Conversely, the 7-day interval yielded higher total soluble solids at

harvest 3 (14.0%) versus 2- and 3-day intervals (12.5-13.2%), lower titratable

acidity than the 2-day interval (Trt A highest at 1.51-1.53% at Harvest 3), and the

highest total anthocyanins (Trt C: 258.9-267.2 mg·L−1). Frequent harvesting (Trt A

and B) helped maintain higher fruit firmness, reduced weight loss, and minimized

postharvest berry damage while maintaining optimal sugars and acid levels.

These findings highlight the importance of optimizing picking intervals,

indicating that a three-day picking interval (Trt B) is an effective option for

maintaining postharvest fruit quality and storage potential for fresh market

blueberries. The 7-day interval (Trt C) produced fruit with higher anthocyanin

content, total soluble solids, and lower firmness, indicating greater suitability for

processing rather than fresh market use. This study provides valuable insights for

blueberry growers aiming to improve the postharvest life of rabbiteye blueberries

under warm and humid climate conditions.
KEYWORDS

maturity, cold storage, delayed harvest, firmness, weight loss, total soluble solids,
anthocyanins, titratable acidity
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1 Introduction

Blueberries (Vaccinium spp.), native to North America, are now

cultivated in approximately 27 countries worldwide. The United

States is considered the largest blueberry producer globally, yielding

around 294 thousand metric tons from 41,683 harvested hectares in

2023 (US Department of Agriculture, 2024; USHBC, 2024). In

recent years, consumer demand and scientific interest in this fruit

have grown, particularly due to its nutritional value and antioxidant

properties. Maintaining fruit quality from harvest to the consumer

is essential for ensuring marketability and reducing postharvest

losses (Chen et al., 2015; Edger et al., 2022; Evans and Ballen, 2014).

Blueberry fruit development occurs in three stages: Stage I involves

rapid cell division after fruit set; Stage II is a lag phase focused on

seed maturation with minimal size change; and Stage III resumes

growth through cell expansion, leading into ripening (Darnell et al.,

1992; Godoy et al., 2008; Retamales, 2012). Ripening involves

significant changes in fruit biochemical and metabolite profiles.

This stage III marks the attainment of horticultural maturity,

characterized by optimal sensory quality, including cell wall

degradation, texture softening, modulation of organic acids, and

elevated levels of soluble sugars and aroma volatiles (Erkan and

Dogan, 2019). Visible changes that occur during the later stages of

ripening are minimal (Giacalone et al., 2000). However, in this

period, there are shifts in color, berry size, and internal fruit quality

parameters such as total soluble solids (TSS) and titratable acidity

(TA). For instance, as the fruit transitions from unripe to fully ripe,

TSS increases while TA decreases (Eichholz et al., 2015; Sargent

et al., 2006). Additionally, glucose and fructose are the primary

sugars present in blueberries, and citric acid is the predominant

organic acid, both of which contribute to the flavor profile of the

fruit (Forney et al., 2010).

Blueberries exhibit ripening asynchrony, meaning fruit within

the same cluster or on the same plant ripen at different times

(Daviet et al., 2023; Vander Kloet and Cabilio, 2010). The degree of

synchrony is influenced by both genetic factors, such as the

inheritance of ripening uniformity and its relationship to crop

load and environmental or management conditions, including

temperature, pollination, production systems, and management

practices (Lang and Danka, 1991; Luby and Finn, 1987; Nesmith,

2012; Ogden and van Iersel, 2009). Physiologically, asynchrony

reflects variation in regulatory processes involving ethylene and

abscisic acid (ABA) signaling, sugar and anthocyanin accumulation,

and cell wall remodeling (Acharya et al., 2024; Ban et al., 2007;

Wang et al., 2018; Zifkin et al., 2012). At the molecular level,

differential expression of ripening-related genes, including those

governing ethylene metabolism and anthocyanin biosynthesis (e.g.,

VcACS1, VcACO6, VcMYBA, VcUFGT), contributes to species

and cultivar specific variation in ripening patterns (Chung et al.,

2019; Li et al., 2024; Plunkett et al., 2018; Wang et al., 2022; Zifkin

et al., 2012).

These genetic and physiological mechanisms underlying

ripening asynchrony have direct implications for harvest

management, as fruit within a single cluster may differ markedly
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in texture, size, and biochemical composition. Additionally, the

sensory profile of blueberries remains relatively stable after harvest,

which further emphasizes the importance of harvest timing and

interval optimization to ensure consistent fruit quality during

storage (Heidelbeere et al., 2018; Vander Kloet and Cabilio, 2010).

The cuticular wax (“bloom”), which is present on the surface of the

fruit, varies by cultivar and increases during ripening, playing a vital

role in color appearance and postharvest quality (Chu et al., 2018;

Yang, 2018). For Georgia growers, the primary sign of blueberry

maturity is their color, with the berries generally deemed ready for

harvest when they turn completely blue. However, despite their

uniform appearance, blueberries at 100% blue stage within a cluster

can vary in maturity stages and physiological age, with some being

ripe and others overripe (Godara et al., 2023; Lobos et al., 2018;

Moggia et al., 2017b). Therefore, surface color alone may no longer

be a reliable indicator of physiological maturity (Lobos et al., 2018).

The maturity stages of berries at harvest significantly affect the

storage potential, as berries with an advanced maturity stage can

result in softening and decay during storage (Lobos et al., 2018;

Moggia et al., 2018). Blueberry growers are shifting to machine

harvesting due to high labor demands and costs. This change,

driven by labor shortages, has led to longer picking intervals to

reduce yield loss associated with the harvest of unripe (green) fruit

during frequent machine harvesting, often resulting in a higher

percentage of overripe fruit being harvested (Gallardo et al., 2018;

Lobos et al., 2018; Olmstead and Finn, 2014). Reducing the number

of harvests by increasing the interval between successive picks can

help reduce labor costs but may also negatively impact fruit quality,

leading to higher postharvest losses (Galinato et al., 2016; Lyrene,

2006; Takeda et al., 2008). Early harvesting, particularly in hand-

picked operations, may lead to firmer fruit with better shelf-life

(Bremer et al., 2008). Additionally, mechanical harvesting tends to

be performed at a more advanced maturity stage to maximize

picking efficiency, which can result in greater postharvest losses

due to reduced firmness and subsequent fruit damage (Olmstead

and Finn, 2014). In regions like Georgia, where climatic conditions

such as high temperatures and rainfall occur during harvesting

season, extending the picking interval can result in a higher

percentage of overripe berries, leading to increased weight loss

and fruit softening during storage. Furthermore, it can increase

issues such as fruit splitting, wet stem scar, sunburn, and loss of

firmness, ultimately reducing the storage life and marketability of

the fruit (Lobos et al., 2014; Lyrene, 2006; Marshall et al., 2006;

Yang, 2018).

This study aims to evaluate the effects of different picking

intervals on the postharvest quality of rabbiteye blueberries in

Georgia, USA, focusing on key quality attributes such as berry

diameter, firmness, weight loss, TSS, and TA over multiple storage

durations. We hypothesize that longer harvest intervals will reduce

berry firmness and increase postharvest weight loss due to the

harvest of more overripe berries, thus decreasing marketable fruit

postharvest. This research seeks to provide insights into optimizing

picking intervals to minimize spoilage and enhance the overall

quality and marketability of rabbiteye blueberries cv. ‘Brightwell.’
frontiersin.org

https://doi.org/10.3389/fpls.2025.1683940
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Godara et al. 10.3389/fpls.2025.1683940
2 Materials and methods

2.1 Experimental site

The field experiment on ‘Brightwell’ rabbiteye blueberries

(Vaccinium virgatum) was conducted over the 2023 and 2024

seasons at the University of Georgia blueberry research farm in

Alma, GA (lat. 31°32′05″N; long. 82°30′35″W). The cultivar

Brightwell was selected for this study because it is a widely

cultivated rabbiteye blueberry in Georgia and the Southeast,

known for superior berry quality. The research site experiences a

humid subtropical climate characterized by warm summers and

frequent rainfall during harvest (Figures 1A, B). All agronomic

practices, including fertilization, were conducted in accordance with

the commercial blueberry guidelines established by the University

of Georgia for blueberry production (Kissel and Sonon,

2018a, 2018).
2.2 Experimental design

The experiment was established using a randomized complete

block design with three picking intervals as the experimental factor:

every two days (Trt A), every three days (Trt B), and every seven

days (Trt C). Each treatment was replicated four times with 10

plants per replication. To simulate commercial harvesting

conditions, the first harvest for all treatments was conducted on

the same date, June 5 in 2023 and June 3 in 2024, corresponding to

the beginning of the commercial harvest season. This common

harvest date is referred to as Harvest 1, and it served as the starting

point for each treatment’s specific harvest schedule. Harvest 2 and

Harvest 3 represent the subsequent harvests for each treatment,
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based on their respective intervals. For example, Trt A (2-day

interval) harvested on Day 0, Day 2, and Day 4; Trt B (3-day

interval) on Day 0, Day 3, and Day 6; and Trt C (7-day interval) on

Day 0, Day 7, and Day 14 (Figure 2).

Fruits were hand-harvested and stored in a airconditioned

vehicle at ~19 °C during transportation to the Vidalia Onion

Research Laboratory (Postharvest Lab) in Tifton, Georgia. Upon

arrival, fruit were hand-sorted to retain only ripe berries, with small

green berries removed and filled into vented 0.55 L clamshellls (one

dry pint, Terra Box Florida LLC, Lakeland, FL) and stored at 1 °C

and 85% relative humidity (RH) for up to 21 days. Fruit parameters

were assessed at harvest and subsequently after 7, 14, and 21 days

after storage (DAS). For each evaluation time point, four clamshells

were used per replication, resulting in a total of 16 clamshells per

evaluation (four replications × four clamshells). Since each harvest

and treatment were evaluated four times during the study, a total of

64 clamshells (16 × 4) were used for quality assessments.

Additionally, a separate set of clamshells was designated

specifically for monitoring weight loss. These clamshells were

weighed non-destructively at each storage evaluation time point

(0, 7, 14, and 21 DAS), following the same storage conditions and

arrangement. We hypothesized that longer picking intervals would

lead to increased postharvest losses, particularly in firmness and

weight loss, due to a greater proportion of overripe fruit

being harvested.
2.3 Postharvest laboratory analysis

Weight loss was measured with a digital balance and calculated

by subtracting the initial weight of the clamshell from the final

weight of the clamshell containing fruit. Percentage (%) weight loss

was calculated according to the following equation:
FIGURE 1

Maximum and minimum daily air temperature (A) and daily precipitation (B) in 2023 and 2024 from June 1 to June 31 at Blueberry Research Farm,
Alma, Bacon County, GA. Weather data from the UGA Weather Network.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1683940
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Godara et al. 10.3389/fpls.2025.1683940
Weight Loss ( % ) :ðWi −Wf Þ ÷Wi� 100

Where;
Fron
• Wi is the initial weight at harvest

• Wf is the final weight after 21 days of storage (21 DAS).
The postharvest quality traits were analyzed at harvest and

subsequently weekly from the day of harvest (evaluation times of

fruit were 7, 14, and 21 DAS, as indicated above). Berry damage,

defined as splitting, juice leakage from the pedicel, wet scar, and

skin tearing, was evaluated on 100 fruit samples per replicate. The

Berry Damage percentage incidence was calculated as follows:

Berry damage ( % ) :
Number of oozing and splitting fruit

Total number of tested fruit
� 100

Berry diameter and firmness were measured in 25 fruit per

replication using a digital fruit firmness machine (FruitFirm® 500,

CVM Inc. Pleasanton, CA) equipped with a flat round compression

plate (2.5 cm diameter). Firmness values are reported in the device’s

original units (g·mm−1). The concentrations of total soluble solids

(TSS), titratable acidity (TA), and total anthocyanins were

determined using a 100 g aliquot of berries, homogenized with a

tissue homogenizer (PowerGen 500, Fisher Scientific, Schwerte,

Germany). The resulting slurry was centrifuged at 9,000 rpm at 4 °

C (Sorvall X4R Pro-MD, Thermo Scientific, Osterode, Germany).

The supernatant was filtered through cheesecloth, stored in plastic

vials, and frozen at -20 °C for further analysis. TSS was measured by

placing a small sample of blueberry supernatant on a digital

refractometer (ATAGO, PAL-1, Model 3810, Japan), and the

results were expressed as a percentage. For titratable acidity (TA), 6

mL of blueberry supernatant was diluted with 50 mL of deionized

water and titrated to a pH of 8.2 using 0.1 mol L−1 NaOH with a

titrator (916 Ti-Touch, Metrohm AG, Herisau, Switzerland). The TA

was reported as a percentage of citric acid equivalents. Anthocyanin

concentrations were measured according to the protocol described by

Giusti and Wrolstad (2001). Briefly, blueberry supernatant was

diluted separately with two different buffer solutions: a 0.025 M

potassium chloride (KCl) buffer at pH 1.0, followed by a 0.4 M
tiers in Plant Science 04
sodium acetate (CH3COONa) buffer at pH 4.5. Absorbance was

measured using a microplate spectrophotometer, (BioTek, Epoch 2,

Winooski, Vermont, USA) at two different wavelengths, 520 and 700

nm. A blank cell filled with deionized water was used as a reference.

The monomeric anthocyanin concentration in the sample was

calculated using the following formula:

Total Anthocyanin concentration (mg · L−1) :
A�MW � DF � 1000

e � 1

Where;
• A (Absorbance at a given wavelength) = A= (A520 nm - A700

nm) pH 1.0 – (A520 nm - A700 nm) pH 4.5

• (A520 nm - A700 nm) pH 1.0: Measures anthocyanin

absorbance at pH 1.0

• (A520 nm - A700 nm) pH 4.5: Measures anthocyanin absorbance

at pH 4.5

• MW: 449.2 (molecular weight of cyanidin-3-glucoside)

• DF: dilution factor

• Ɛ: 26,900 (molar absorptivity)
2.4 Statistical analysis

Data was subjected to analysis of variance (ANOVA), and one-

way analysis of variance was conducted using JMP Pro 17 software

(SAS Institute, Cary, NC) on variables measured at harvest and during

postharvest storage. Normality was evaluated using Q-Q plots, and

homogeneity of variances was confirmed using Levene’s test in JMP

before conducting ANOVA. Analyses were conducted separately by

year and by harvest. Comparisons were made between picking

intervals at harvest and at each storage duration (7, 14, and 21

DAS), separately. The Tukey’s honestly significant difference (HSD)

was used for mean separation at a significance level of a = 0.05.

Graphs were generated using SigmaPlot 16.0 (Systat Software Inc., San

Jose, CA) and RStudio software (RStudio, PBC, Vienna, Austria).
FIGURE 2

Experimental design for picking intervals. Three treatments were tested: Trt A (2-day), Trt B (3-day), and Trt C (7-day). Each treatment was harvested
three times (H1-H3) on the following days (relative to Day 0): Trt A: 0, 2, 4; Trt B: 0, 3, 6; Trt C: 0, 7, 14. Circles indicate harvest events.
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3 Results

Air temperatures in June of 2024 were elevated compared to

June 2023 (Figure 1A), pointing to a warmer harvesting season. In

contrast, precipitation levels throughout the month of June were

greater in 2023 than in 2024 (Figure 1B). These findings highlight

notable interannual fluctuations in both temperature and rainfall,

which are essential for interpreting regional climate patterns.
3.1 Berry weight loss (%)

Berry weight was not significantly different between treatments

after 21 days of cold storage in harvest 1 in 2023 and 2024. In 2023

and 2024, berries from Trt C (seven-day interval) consistently

exhibited the highest weight loss compared to Trt A and B (two

and three-day intervals, respectively) in harvests 2 and 3

(Figures 3A, B). Specifically, in 2024, 21 DAS weight loss for Trt

C berries reached 15.5%, significantly higher than Trt A and B in

harvest 3 (Figure 3B).
3.2 Berry damage (%)

The percentage of berry damage at harvest 1 showed no

significant differences between treatments during the 2023 and

2024 seasons (Figures 4A, C). In 2023, Trt A and B had the

lowest number of damaged berries at harvests 2 and 3, whereas

Trt C exhibited the highest damage rates, with 27% and 41.5% of

berries damaged at harvests 2 and 3, respectively (Figure 4A). In

2024, Trt C had a significantly higher percentage of damaged berries
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(30.5%) compared to Trt A at harvest 3 (Figure 4C). During storage,

harvest 1 did not show significant differences in berry damage

throughout storage duration (Table 1). In 2023, the damage

percentage 21 DAS was 37.5% for harvest 2 and 44.5% for harvest

3. In 2024, these percentages were lower, at 20% for harvest 2 and

31% for harvest 3 (Table 1).
3.3 Berry diameter

Berry diameter evaluated at harvest 1 and 2 was not significantly

affected by treatments in either year (Figures 4B, D). However, at

harvest 3 of 2023 and 2024, Trt A berries had significantly smaller

berry diameters compared to Trt B and C (Figures 4B, D). Berries

from harvest 1 during storage in 2023 and 2024 did not show any

significant differences (Table 1). After seven days of cold storage Trt

A and B berries from harvests 2 and 3 were significantly larger

compared to Trt C in 2023 and 2024 (Table 1). After 14 days of

storage, the berry diameter was significantly bigger in Trt C

compared to Trt A in harvest 2, while in harvest 3, Trt B berries

had a bigger diameter compared to Trt A and C in 2023 and 2024

(Table 1). It should be noted that after 21 days of storage, there were

no significant differences in berry diameter for harvests 2 and 3 in

both years.
3.4 Firmness

Firmness at harvest 1 was not significantly influenced by

treatments in 2023 and 2024 (Figures 5A, 6A). However, in both

years analyzed, berries from Trt B collected at harvest 2 exhibited
FIGURE 3

Effect of three different picking intervals on total weight loss (%) during 21 days of cold storage in 2023 (A) and 2024 (B). Comparisons were made
between treatments separately for each harvest. The means followed by the different letters are significantly different at p ≤ 0.05 based on Tukey’s
honestly significant difference (HSD). Corresponding p-values are provided in Supplementary Table 1.
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the highest firmness, while Trt C recorded the lowest firmness of

181.39 g·mm−1 in 2023 and 185.92 g·mm−1 in 2024. At harvest 3,

berries of Trt A and B resulted in the highest firmness, whereas Trt

C consistently showed the lowest firmness of 151.63 g·mm−1 in 2023

and 155.01 g·mm−1 in 2024 (Figures 5A, 6A). After seven days of

storage, berry firmness was significantly higher in Trt B berries

compared to Trt C in the harvests 2 and 3, in both years analyzed

(Table 2). Additionally, at the same harvest, firmness evaluated after

14 days of storage was significantly higher for Trt B compared to Trt

A and C. In 2023 and 2024, 21 DAS, berry firmness in berries from

harvest 2 was significantly higher for Trt B compared to Trt C. In

harvest 3, blueberries of Trt A and B had higher firmness compared

to Trt C (Table 2).
3.5 Total soluble solids (%)

The TSS assessed at harvest 1 did not exhibit significant

differences among the treatments in 2023 and 2024. However, in
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2023, Trt A and B berries showed higher TSS levels of 15% and

15.3% at harvest 2 compared to Trt C, whereas no significant

differences in TSS were observed at harvest 2 in 2024 (Figures 5B,

6B). It should be noted that at harvest 3, berries from Trt C showed

significantly higher TSS levels. Specifically, in 2023, TSS levels were

14% for Trt C, compared to 12.5% and 13.0% for Trt A and B,

respectively. A similar trend was observed in 2024, with Trt C

recording a TSS of 14%, while Trt A and B had TSS levels of 13%

and 13.2%, respectively. (Figures 5B, 6B).

Berries from harvest 1 did not show significant differences in

TSS levels at different storage dates (Table 2). In 2023 and 2024, TSS

after seven days of storage was not significantly affected by

treatments in berries from harvest 2; however, in harvest 3, Trt A

berries had significantly higher TSS compared to Trt C berries

(Table 2). After 14 days of storage in both years evaluated, Trt B

berries exhibited the highest TSS compared to Trt C in harvest 2,

while for harvest 3, Trt A berries had higher TSS compared to Trt B

and C (Table 2). After 21 days of storage in 2023 and 2024, no

significant differences in TSS in harvest 2 were observed among the
FIGURE 4

Effect of three different picking intervals on percentage of berry damage in 2023 (A) and in 2024 (C) and berry diameter in 2023 (B) and in 2024 (D) on
‘Brightwell’ cultivar at harvest. Comparisons were made between treatments separately for each harvest. The means followed by the different letters are
significantly different at p ≤ 0.05 based on Tukey’s honestly significant difference (HSD). Corresponding p-values are provided in Supplementary Table 1.
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treatments, but in harvest 3, Trt C berries showed significantly

lower TSS compared to Trt A and B in both years (Table 2).
3.6 Titratable acidity

Titratable acidity (TA) at harvests 1 and 2 was not significantly

affected by treatments in 2023 and 2024. However, at harvest 3

berries of Trt A showed significantly higher TA of 1.53% and 1.51%
Frontiers in Plant Science 07
compared to Trt B and C (Figures 5C, 6C). During the storage

period, the TA of blueberries remained relatively stable across the

harvests, but between treatments, significant differences were

observed. For instance, the TA of berries from harvest 2 after

seven days of storage was not significantly different, but in harvest 3,

Trt A berries had significantly higher TA compared to Trt C during

both years (Table 2). After 14 days of storage, the TA of berries was

significantly higher for Trt A and B compared to Trt C in harvests 2

and 3 in 2024. After 21 days of storage, no significant differences in
TABLE 1 Effects of picking intervals on fruit quality parameters of ‘Brightwell’ at each storage duration (7, 14, and 21 DAS) in 2023 and 2024.

Treatment1 Harvest Storage day
Berry damage2 (%) Berry diameter2 (mm)

2023 2024 2023 2024

Trt A Harvest 1 7 7.5 ± 1.1 a 5.5 ± 1.1 a 25.8 ± 0.4 a 26.1 ± 0.4 a

Trt B Harvest 1 7 10.5 ± 1.1 a 4.5 ± 1.1 a 25.3 ± 0.4 a 25.6 ± 0.4 a

Trt C Harvest 1 7 10 ± 1.1 a 4 ± 1.1 a 25.3 ± 0.4 a 25.6 ± 0.4 a

Trt A Harvest 1 14 15 ± 1.8 a 12 ± 2.8 a 25.2 ± 0.3 a 25.5 ± 0.3 a

Trt B Harvest 1 14 12.5 ± 1.8 a 11.5 ± 2.8 a 25.4 ± 0.3 a 25.7 ± 0.3 a

Trt C Harvest 1 14 13 ± 1.8 a 9 ± 2.8 a 24.6 ± 0.3 a 24.9 ± 0.3 a

Trt A Harvest 1 21 14.5 ± 2.5 a 11 ± 1.6 a 12.8 ± 0.4 a 12.9 ± 0.4 a

Trt B Harvest 1 21 16.5 ± 2.5 a 10.5 ± 1.6 a 12.9 ± 0.4 a 13.1 ± 0.4 a

Trt C Harvest 1 21 15.5 ± 2.5 a 7.5 ± 1.6 a 12.4 ± 0.4 a 12.6 ± 0.4 a

Trt A Harvest 2 7 21.5 ± 2.7 a 11 ± 2.4 b 30 ± 0.3 a 30.3 ± 0.3 a

Trt B Harvest 2 7 18 ± 2.7 a 8.5 ± 2.4 b 30.4 ± 0.3 a 30.8 ± 0.3 a

Trt C Harvest 2 7 27 ± 2.7 a 24.5 ± 2.4 a 24.8 ± 0.3 b 25.1 ± 0.3 b

Trt A Harvest 2 14 19 ± 2.2 ab 11.5 ± 1.8 ab 10.9 ± 0.3 b 11.2 ± 0.3 b

Trt B Harvest 2 14 15 ± 2.2 b 9 ± 1.8 b 11.4 ± 0.3 ab 11.7 ± 0.3 ab

Trt C Harvest 2 14 28.5 ± 2.2 a 16 ± 1.8 a 11.9 ± 0.3 a 12.3 ± 0.3 a

Trt A Harvest 2 21 18.5 ± 2.8 b 10.5 ± 1.8 b 14.4 ± 0.3 a 14.6 ± 0.4 a

Trt B Harvest 2 21 13.5 ± 2.8 b 7.5 ± 1.8 b 14.1 ± 0.3 a 14.3 ± 0.4 a

Trt C Harvest 2 21 37.5 ± 2.8 a 20 ± 1.8 a 14.2 ± 0.3 a 14.4 ± 0.4 a

Trt A Harvest 3 7 17.5 ± 2.5 b 14 ± 2.5 b 24 ± 0.3 a 24.2 ± 0.4 a

Trt B Harvest 3 7 8 ± 2.5 c 6.5 ± 2.5 b 23.5 ± 0.3 a 23.9 ± 0.4 a

Trt C Harvest 3 7 43.5 ± 2.5 a 29 ± 2.5 a 12.2 ± 0.3 b 12.3 ± 0.4 b

Trt A Harvest 3 14 19.5 ± 3 b 13.5 ± 2.2 b 11.3 ± 0.5 c 11.6 ± 0.5 b

Trt B Harvest 3 14 11.5 ± 3 b 6 ± 2.2 c 26.4 ± 0.5 a 26.8 ± 0.5 a

Trt C Harvest 3 14 45.5 ± 3 a 30.5 ± 2.2 a 14.3 ± 0.5 b 14.7 ± 0.5 c

Trt A Harvest 3 21 20 ± 2.8 b 6.5 ± 3 b 13.4 ± 0.8 a 13.6 ± 0.8 a

Trt B Harvest 3 21 12.5 ± 2.8 b 8.5 ± 3 b 13.3 ± 0.8 a 13.6 ± 0.8 a

Trt C Harvest 3 21 44.5 ± 2.8 a 31 ± 3 a 10.7 ± 0.8 a 10.9 ± 0.8 a
1Picking intervals where Trt A: 2 days. Trt B: 3 days, and Trt C: 7 days.
2100 berries from each replication were evaluated.
Fruit were stored at 1 °C and 85% RH. Parameters measured include berry damage (%) such as splitting, juice leakage from the pedicel, wet scar, and skin tearing, and berry diameter (mm).
Values are presented as mean ± standard error (SE) for each parameter. Comparisons are made between picking intervals within each storage duration and means followed by different letters are
significantly different at p ≤ 0.05 based (Supplementary Table 1) on Tukey’s honestly significant difference (HSD). Corresponding p-values are provided in Supplementary Table 1.
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TA were observed in harvest 2 between 2023 and 2024. However, in

harvest 3, Trt A and B maintained higher TA levels than Trt C in

both years (Table 2).
3.7 Anthocyanins concentration

In both 2023 and 2024, anthocyanin concentration was

significantly higher in blueberries in Trt C compared to Trt A

and B at harvests 2 and 3 (Figures 5D, 6D). Specifically, in 2023,

anthocyanin levels in Trt C were 258.89 mg·L−1 at harvest 2 and

267.19 mg·L−1 at harvest 3. Similarly, in 2024, anthocyanin levels in

Trt C were 259.84 mg·L−1 at harvest 2 and 265.42 mg·L−1 at harvest

3. This trend continued through 7, 14, and 21 DAS, with the berries

from Trt C consistently showing the highest anthocyanin

concentration across harvests 2 and 3 in both years (Table 2).
Frontiers in Plant Science 08
4 Discussion

The results of this study demonstrated that picking intervals

have a significant impact on the postharvest quality and storability

of rabbiteye blueberries cv. ‘Brightwell.’ The increase in weight loss

observed in Trt C, with longer picking intervals, across both years,

suggests that extended periods between harvests negatively affected

quality during the 21-day storage period. The advanced ripeness

stage in Trt C likely makes these berries more susceptible to

dehydration. As fruit ripens, cuticle thickness and cuticle wax

content decrease, leading to a higher water permeability (Yan and

Castellarin, 2022; Yan et al., 2024). Previous studies indicate that

blueberries are considered unmarketable once weight loss exceeds 5

to 8% (Sanford et al., 1991), with other research suggesting that the

acceptable limit during a 14 to 21-day storage period ranges

between 5% and 7% (Paniagua et al., 2014). More frequent
frontiersin.o
GURE 5FI

Effect of three different picking intervals on firmness (A) total soluble solids (B) titratable acidity (C) and anthocyanin concentration (D) on the
‘Brightwell’ cultivar at harvest in 2023. Comparisons were made between treatments separately for each harvest. The means followed by the
different letters are significantly different at p ≤ 0.05 based on Tukey’s honestly significant difference (HSD). Corresponding p-values are provided in
Supplementary Table 1.
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harvests, as seen in Trt A and B, helped mitigate the weight loss

issue by ensuring berries are collected at an optimal ripeness stage,

thus reducing postharvest weight loss.

Berries from Trt C exhibited lower firmness and higher berry

damage, which can be explained by internal structure changes that

occur during ripening and senescence. Blueberries undergo a softening

process driven by the enzymatic breakdown of cell wall components,

including pectin, cellulose, and hemicellulose (Chen et al., 2015;

Proctor and Miesle, 1991; Silva et al., 2005). Weakening cell walls

can make fruit more prone to softening and internal damage (Chen

et al., 2015; Silva et al., 2005). Thus, accumulation of soft and overripe

fruit could lead to increased softening incidence, damage, and decay

during storage, resulting in lower firmness and poor overall quality

(Lobos et al., 2018; Moggia et al., 2017b; Strik, 2019). Additionally,

Moggia et al. (2017a), reported that factors such as stem scar or berry

damage can also increase water loss and reduce firmness in blueberries

during storage. Firmness is crucial for marketability, as firmer berries

are less prone to mechanical damage and decay during postharvest
Frontiers in Plant Science 09
handling (Vicente et al., 2007). Our research shows that lower berry

damage rates in blueberries from Trt A and B highlight how frequent

harvesting helps maintain postharvest fruit quality. These outcomes

emphasize the importance of minimizing weight loss during storage

by using shorter picking intervals to maintain postharvest fruit quality.

These findings are consistent with those of Miller et al. (1988); Chen

(2006); Lobos et al. (2018), and Moggia et al. (2022), who reported

higher postharvest damage susceptibility in blueberries harvested at

weekly intervals due to the presence of overripe berries, which are

more prone to decay compared to ripe or immature berries. Recent

work from our group in southern highbush and rabbiteye blueberries

in Georgia confirmed that delaying harvests by one or two weeks

negatively impacts quality at harvest and during storage (Godara

et al., 2025).

Furthermore, Lobos et al. (2018), reported that six-day picking

intervals reduce firmness by increasing the proportion of overripe

fruit in northern highbush blueberries. According to Moggia et al.

(2017b), fruit that remains on the bush after maturity tends to be
FIGURE 6

Effect of three different picking intervals on firmness (A), total soluble solids (B), titratable acidity (C), and anthocyanin concentration (D) on the
‘Brightwell’ cultivar at harvest in 2024. Comparisons were made between treatments separately for each harvest. The means followed by the
different letters are significantly different at p ≤ 0.05 based on Tukey’s honestly significant difference (HSD). Corresponding p-values are provided in
Supplementary Table 1.
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TABLE 2 Effects of picking intervals on fruit quality parameters of ‘Brightwell’ at each storage duration (7, 14, and 21 DAS) in 2023 and 2024. Fruit were stored at 1°C and 85% RH.

Firmness (g·mm-1) Total soluble solids (%) T atable acidity2 (%) Anthocyanins concentration3

023 2024 2023 2024

± 0.1 a 0.8 ± 0.1 a 208.8 ± 1.8 a 208.5 ± 1.9 a

0.1 a 1 ± 0.1 a 207.4 ± 1.8 a 207.4 ± 1.9 a

± 0.1 a 0.9 ± 0.1 a 209.6 ± 1.8 a 210.3 ± 1.9 a

± 0.1 a 0.8 ± 0.1 a 208.4 ± 2.2 a 208.4 ± 2.7 a

0.1 a 1 ± 0.1 a 209.9 ± 2.2 a 210 ± 2.7 a

± 0.1 a 0.8 ± 0.1 a 208.3 ± 2.2 a 208.1 ± 2.7 a

± 0.1 a 0.8 ± 0.1 a 208.2 ± 2.3 a 208.3 ± 2.1 a

± 0.1 a 1.1 ± 0.1 a 208.5 ± 2.3 a 208.4 ± 2.1 a

0.1 a 1 ± 0.1 a 204.5 ± 2.3 a 204.7 ± 2.1 a

± 0.2 a 1.3 ± 0.2 a 223.2 ± 1.9 b 222.9 ± 2.3 b

± 0.2 a 1.2 ± 0.2 a 222.7 ± 1.9 b 222.3 ± 2.3 b

± 0.2 a 0.8 ± 0.2 a 248 ± 1.9 a 259.6 ± 2.3 a

± 0.1 ab 1.3 ± 0.1 a 222.2 ± 2 b 222.2 ± 1.3 b

± 0.1 a 1.4 ± 0.1 a 223.8 ± 2 b 223.8 ± 1.3 b

± 0.1 b 1 ± 0.1 b 249.5 ± 2 a 269.4 ± 1.3 a

± 0.1 a 1.1 ± 0.1 a 221.4 ± 1.7 b 221.6 ± 1.5 b

± 0.1 a 1.2 ± 0.1 a 222.3 ± 1.7 b 222 ± 1.5 b

± 0.1 a 1.1 ± 0.1 a 253.4 ± 1.7 a 261.6 ± 1.5 a

± 0.1 a 1.7 ± 0.1 a 224.7 ± 3 b 224.6 ± 3.5 b

± 0.1 ab 1.3 ± 0.1 b 225.3 ± 3 b 225.6 ± 3.5 b

0.1 b 1 ± 0.1 b 268.9 ± 3 a 262.2 ± 3.5 a

± 0.1 a 1.4 ± 0.1 a 225 ± 3.1 b 224.9 ± 2.9 b

± 0.1 a 1.4 ± 0.1 a 224.1 ± 3.1 b 223.9 ± 2.9 b

0.1 b 1 ± 0.1 b 257.9 ± 3.1 a 266 ± 2.9 a

± 0.1 a 1.7 ± 0.1 a 224.9 ± 3.9 b 224.5 ± 2.3 b
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Treatment1 Harvest Storage days
2023 2024 2023 2024

Trt A Harvest 1 7 161.4 ± 5.8 a 165.4 ± 6 a 12.6 ± 0.8 a 13 ± 0.7 b

Trt B Harvest 1 7 167.3 ± 5.8 a 171.5 ± 6 a 15.9 ± 0.8 a 16.1 ± 0.7 a

Trt C Harvest 1 7 154.6 ± 5.8 a 158.4 ± 6 a 14.8 ± 0.8 a 15 ± 0.7 ab

Trt A Harvest 1 14 143.4 ± 4.1 a 147 ± 4.3 a 14.2 ± 0.5 a 14.3 ± 0.5 a

Trt B Harvest 1 14 134.7 ± 4.1 a 138.8 ± 4.3 a 15.5 ± 0.5 a 15.7 ± 0.5 a

Trt C Harvest 1 14 126.7 ± 4.1 a 129.9 ± 4.3 a 14.5 ± 0.5 a 14.6 ± 0.5 a

Trt A Harvest 1 21 121.8 ± 4.6 a 124.8 ± 4.7 a 16.3 ± 0.7 a 15.9 ± 0.6 a

Trt B Harvest 1 21 131.5 ± 4.6 a 134.7 ± 4.7 a 15.5 ± 0.7 a 15.6 ± 0.6 a

Trt C Harvest 1 21 122.2 ± 4.6 a 125.3 ± 4.7 ab 15.1 ± 0.7 a 15.2 ± 0.6 a

Trt A Harvest 2 7 169 ± 3.3 ab 172.7 ± 3.4 a 13.7 ± 0.7 a 13.8 ± 0.7 a

Trt B Harvest 2 7 173.5 ± 3.3 a 177.7 ± 3.4 a 13.3 ± 0.7 a 13.4 ± 0.7 a

Trt C Harvest 2 7 157.6 ± 3.3 b 161.5 ± 3.4 b 14.2 ± 0.7 a 14.1 ± 0.7 a

Trt A Harvest 2 14 159.1 ± 4.3 b 163 ± 4.4 b 14.8 ± 0.4 b 15 ± 0.4 ab

Trt B Harvest 2 14 176.8 ± 4.3 a 181.3 ± 4.4 a 15.7 ± 0.4 a 15.7 ± 0.4 a

Trt C Harvest 2 14 147.1 ± 4.3 b 150.5 ± 4.4 b 14.1 ± 0.4 b 14.2 ± 0.4 b

Trt A Harvest 2 21 164.5 ± 5.9 ab 171.3 ± 6.5 ab 15.5 ± 0.4 a 15.7 ± 0.4 a

Trt B Harvest 2 21 191.3 ± 5.9 a 195.6 ± 6.5 a 15 ± 0.4 a 15.2 ± 0.4 a

Trt C Harvest 2 21 150.6 ± 5.9 b 154.3 ± 6.5 b 14.7 ± 0.4 a 14.9 ± 0.4 a

Trt A Harvest 3 7 196.1 ± 5.7 a 200.2 ± 6.2 a 14 ± 0.4 a 14.5 ± 0.3 a

Trt B Harvest 3 7 191.1 ± 5.8 a 193.2 ± 6.2 a 14 ± 0.4 a 14.2 ± 0.3 a

Trt C Harvest 3 7 145.3 ± 5.7 b 147.7 ± 6.2 b 12.4 ± 0.4 b 12.3 ± 0.3 b

Trt A Harvest 3 14 168.9 ± 5 b 173 ± 5.2 b 16.5 ± 0.5 a 16.7 ± 0.5 a

Trt B Harvest 3 14 193.1 ± 4.9 a 197.7 ± 5.2 a 14.1 ± 0.5 b 14.3 ± 0.5 b

Trt C Harvest 3 14 146.8 ± 5 c 148.7 ± 5.2 c 12.9 ± 0.5 b 12.8 ± 0.5 b

Trt A Harvest 3 21 186.1 ± 5 a 190.8 ± 4.9 a 16.5 ± 0.7 a 16.5 ± 0.8 a
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softer at harvest and during storage, which was also confirmed by a

similar trend in the present work. Strik (2019), reported that

harvesting frequencies of 8 and 12 days resulted in lower firmness

in northern highbush fruit. Similarly, the decline in firmness

observed in fruit harvested every seven days is the result of the

accumulation of overripe fruit (Lobos et al., 2018; Moggia et al.,

2018, 2022; Strik, 2019).

In fruits, total soluble solids (TSS) and titratable acidity (TA) are

the primary determinants of flavor, which change during fruit

ripening (Zhang et al., 2020). In this work, the increase in TSS

and decline in TA in blueberries across all treatments during

ripening and storage was consistent as soluble solids continued to

accumulate and acids were metabolized and declined as blueberries

ripened, an effect that has been previously reported by several

authors (Lin et al., 2020; Lobos et al., 2018; Moggia et al., 2018;

Sargent et al., 2006; Shi et al., 2023; Strik, 2019). The relatively

higher TSS values in blueberries from Trt C during harvest 3 can be

attributed to their advanced ripening stage (Lobos et al., 2018; Strik,

2019). Lobos et al. (2018) found that fruit harvested six days after

full maturity was high in TSS and low in TA compared to fruit

harvested at 100% blue stage. The overripe fruit exhibited a more

dramatic decline in TSS during a 45-day cold storage period.

Similarly, in the present study, TSS was higher in blueberries

harvested from Trt C at harvest 3, and it increased during storage

of 21 days, but remained significantly lower than Trt A. In addition

to the advanced stage of berry maturity, higher TSS values observed

in Trt C may also be partially attributed to elevated temperatures

during the second week of June, when the second and third harvests

for this treatment were conducted. While Trt A and Trt B harvests

occurred primarily during the first week of June, when average daily

temperatures were around 23 °C (2023) and 24 °C (2024), the later

harvests in Trt C coincided with higher temperatures, 26 °C in 2023

and 27 °C in 2024 (Figures 1A, B). These warmer conditions may

have promoted more rapid sugar accumulation in the fruit,

enhancing TSS alongside the effect of extended ripening time.

Anthocyanins are responsible for the blue pigmentation of

blueberries and consistently increase during fruit ripening (Zifkin

et al., 2012). The higher anthocyanin levels in Trt C can be

attributed to the longer ripening period before harvest, which

allows for greater pigment accumulation (Kalt et al., 2003). As

blueberries ripen, anthocyanin accumulation increases alongside

sugars, reaching peak concentration at stage eight, indicating full

pigment development (Acharya et al., 2024). In the present work,

the anthocyanin concentration was significantly higher in berries

from Trt C, which confirms the natural progression of anthocyanin

biosynthesis. This highlights the importance of balancing

anthocyanin content with other quality attributes like firmness,

berry weight, and susceptibility to decay, which can be effectively

achieved by optimizing picking intervals. While Trt C berries

accumulated higher anthocyanin concentrations, this came at the

cost of lower textural quality. This trade-off suggests that such fruit,

although less ideal for fresh markets, may be better suited for

processing applications such as juices, jams, or purees, where

pigment content is valued over textural quality (Olmstead and

Finn, 2014; Strik and Yarborough, 2005).
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5 Conclusions

In conclusion, optimizing picking intervals is critical for

maintaining the postharvest quality of rabbiteye blueberries

intended for the fresh market. This study highlights the

importance of frequent, timely harvesting, especially in warm,

humid climates like Georgia, where high temperatures and

precipitation can impact fruit ripening and postharvest

physiology. A moderate picking interval of three days, as seen in

Trt B, helps maintain postharvest quality by minimizing weight loss

and reducing damage, while maintaining optimal firmness, TSS,

and TA levels. In contrast, longer picking intervals (e.g., seven days)

may lead to increased anthocyanin concentrations but this comes at

the expense of firmness and higher postharvest damage incidence.

Based on the balance between postharvest quality, weight loss,

firmness, and flavor attributes, the 3-day picking interval (Trt B)

is recommended as the optimal hand-picking strategy for

maintaining marketability of fresh market rabbiteye blueberries.

However, the choice of interval may be market-dependent, with a 3-

day interval being optimal for fresh market berries, where fruit

texture is prioritized, while a 7-day interval could be viable for the

processing market despite the lower texture quality.

An alternative approach to reduce the labor-intensive and costly

nature of multiple harvests could involve different strategies to

achieve more synchronized ripening. The ripening asynchrony of

blueberries could be alleviated by utilizing appropriate preharvest

management practices as well as breeding efforts that can result in a

more concentrated ripening fashion, diminishing the need for

multiple, frequent harvests. This study was conducted on a single

rabbiteye blueberry cultivar (‘Brightwell’) grown under Georgia

conditions, and further research is needed to validate these

findings across additional cultivars and production regions.

Future research should also explore strategies to complement

optimal picking interval recommendations and further enhance

efficiency in blueberry production.
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