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Spatiotemporal heterogeneity is recognized as a key driver of functional diversity
in tissues. Spatial transcriptomics, which integrates high-throughput
transcriptomics with high-resolution tissue imaging, enables the precise
mapping of gene expression patterns at the tissue section level. This
technology overcomes the limitations of traditional transcriptomics by
providing spatial context and applying unbiased bioinformatics approaches.
With the rapid advancement of sequencing technologies, spatial
transcriptomics is a pivotal tool for exploring cell fate determination, tissue
development, and disease mechanisms, and its underlying principles, technical
variations, practical performance, and future directions collectively provide
robust theoretical and methodological support for systematically unveiling the
spatiotemporal regulation of life processes.
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1 Introduction

As the fundamental structural and functional units of organisms, cells display profound
spatiotemporal heterogeneity across developmental stages, spatial locations, and
microenvironments, rendering the dissection of intricate transcriptional regulatory
networks within multicellular systems a central challenge in modern life-science
research. Traditional bulk RNA sequencing, which analyzes whole tissues or organs, can
only obtain averaged gene expression levels, making it difficult to reveal rare cell
subpopulations and their subtle gene expression differences (Figure 1) (Jiang et al., 2022;
Li et al,, 2022; Cao et al., 2024a, 2024b, 2025; Jiang et al., 2025). While single-cell RNA
sequencing (scRNA-seq) overcomes this limitation by capturing expression profiles at the
single-cell level, the tissue dissociation, cell capture, and library construction processes
require cells to be removed from their native environment, preventing the recording of
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FIGURE 1

Comparison of transcriptomic technologies. Colored circles indicate distinct cell types, whereas gray circles show that RNA-seq cannot differentiate them.

their original spatial coordinates (Luo et al., 2025). Spatial
transcriptomics, propelled by advances in in-situ capture
chemistry, barcoded matrix multiplexing, optical imaging, and
high-throughput sequencing, now enables concurrent mapping of
gene expression and tissue architecture at single-cell resolution (Rao
et al, 2021; Tian et al, 2023). By integrating molecular tagging,
precise spatial indexing, and omics readouts, spatial transcriptomics
affords an unprecedented view of cellular heterogeneity and spatial
organization (Burgess, 2019; Rao et al,, 2021; Tian et al.,, 2023; Wang
et al, 2023b). Consequently, spatial transcriptomics has become
indispensable for dissecting cell-fate decisions, unraveling
mechanisms of tissue morphogenesis, and characterizing the
dynamic remodeling of disease microenvironments. In recent
years, spatial transcriptomics has advanced rapidly: matrix-
capture platforms such as Visium, Slide-seq, and HDST now
provide subcellular-resolution, two-dimensional transcriptomic
maps, while optical in-situ hybridization methods like MERFISH
and seqFISH+ use large probe libraries and iterative imaging to
approach whole-transcriptome spatial profiling (Burgess, 2019;
Wang et al., 2023a; Sun et al,, 2025). Building on this progress,
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technologies including STARmap and Stereo-seq couple single-cell
nucleic acid amplification with three-dimensional imaging, greatly
increasing sequencing depth and expanding the spatial dimension
of analysis (Bawa et al,, 2024; Fang et al., 2025). In conclusion, a
systematic review of the development, core principles, and
applications of spatial transcriptomics in diverse fields like plants
and microbiology not only offers novel perspectives for exploring
cell fate lineages and organogenesis mechanisms but also lays a
theoretical and practical foundation for subsequent technological
advancements and interdisciplinary integration.

2 Overview of spatial transcriptomics
technology

Spatial transcriptomics combines deep transcriptome profiling
with microscopy to map gene expression in intact tissues, revealing
cell identities, developmental lineages, and regulatory networks
beyond the reach of conventional single-cell methods (Longo

et al., 2021; Bawa et al., 2024; Zhao et al., 2024b). High-
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throughput chip-based platforms, such as 10x Visium, Slide-seq
V2, Stereo-seq and related technologies, now predominate because
they combine sub-cellular resolution, near-complete transcriptome
capture and automation, enabling quantitative, spatially explicit
analyses of tissue heterogeneity and phenotype-gene associations
(Figure 1) (Stéhl et al., 2016; Rodriques et al., 2019; Yin et al., 2023;
Bawa et al, 2024; Zhao et al, 2024b). By encoding positional
barcodes and unique molecular identifiers, these methods yield
absolute transcript counts instead of pseudo-temporal inferences
alone (Zhao et al,, 2024a). However, advancing spatial multi-omics
in plants is still constrained by structural and biochemical hurdles:
rigid cell walls impede clean cryosectioning, expansive vacuoles
dilute intracellular content, and abundant polyphenols inhibit
enzymatic reactions, while limited reference genomes hinder
precise read mapping (Giacomello and Lundeberg, 2018;
Gurazada et al.,, 2021; Chen et al.,, 2023; Yin et al., 2023).
Overcoming these obstacles will require coordinated advances in
sample preparation, reaction chemistry, microfluidic chip
engineering, and bioinformatic pipelines to align plant research
capabilities with those achieved in animal systems.

3 Spatiotemporal transcriptomics
technologies: principles and evolution

Spatial transcriptomics has progressed from low-throughput but
precise laser-capture microdissection (LCM), to in situ hybridization
and sequencing that map gene expression in tissue but are limited by
probe number and imaging depth, and finally to in situ capture with
high-throughput sequencing, which preserves spatial coordinates while
greatly expanding coverage and resolution (Emmert-Buck et al., 1996;
Femino et al., 1998; Ke et al., 2013; Nichterwitz et al., 2016; Stahl et al.,
2016; Chen et al., 2022). While these methodologies have
revolutionized our understanding of cellular heterogeneity in
mammalian systems, their adaptation to plants lags behind owing to
the presence of rigid cell walls, limited probe penetration, and the
frequent need for transgenic material in auxiliary techniques such as
FACS and INTACT (Deal and Henikoff, 2011; Giacomello and
Lundeberg, 2018; Gurazada et al., 2021; Chen et al,, 2022). Current
plant-focused efforts therefore pursue two parallel objectives:
optimizing existing spatial transcriptomic platforms-whether next-
generation sequencing-based or imaging-based-for botanical tissues,
and applying these refined tools to address fundamental questions in
plant development, physiology, and stress responses (Chen et al., 2023;
Yin et al,, 2023; Serrano et al., 2024). Continued innovation in probe
chemistry, tissue processing, and data integration is essential to
surmount plant-specific barriers and to unlock the full potential of
spatial transcriptomics across the plant kingdom.

3.1 Microdissection-based gene expression
technologies

Microanatomy-based gene expression technologies employ
laser or mechanical microdissection to isolate cells from precisely
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defined spatial regions within a tissue section (Deal and Henikoff,
2011; Nichterwitz et al., 2016; Luo et al., 2020). By capturing these
targeted cells directly, the method preserves the native
microenvironmental context while minimizing contamination
from neighboring cell types. The harvested material can then be
subjected to transcriptomic analyses, enabling high-resolution
profiling of gene expression patterns linked to specific histological
niches (Deal and Henikoff, 2011; Nichterwitz et al., 2016).

The earliest laser capture microdissection (LCM) laid the
foundation for direct cutting of target cells under a microscope
using lasers (Espina et al, 2006). Subsequently, researchers
prepared tissues into numerous frozen sections and sequenced
them separately to obtain regionalized transcriptome data. Tomo-
seq further improved quantitative accuracy and spatial resolution
by refining the cDNA library construction process. In vivo
transcriptomics analysis (TIVA) pioneered overcoming in vitro
limitations by utilizing cell-penetrating peptides to carry
photosensitive tags into living cells, capturing mRNA after light
activation to achieve spatiotemporal expression analysis of live cells
(Lovatt et al,, 2014). Geo-seq, combining LCM with single-cell
RNA-seq, enables the resolution of transcriptomes in specific
regions at the subcellular-level, while NICHE-seq, using GFP
labeling and flow cytometry sorting, achieves high-throughput
sequencing, though it struggles to resolve precise relative
positions between cells, despite locating to specific niches (Chen
et al., 2017; Medaglia et al, 2017). ProximID, through gentle
dissociation that preserves cell-cell interaction structures, coupled
with LCM sorting units, enables single-cell sequencing of local cell
interaction environments (Boisset et al., 2018; Asp et al.,, 2020).

3.2 In-situ hybridization technologies

In recent years, in-situ hybridization (ISH) has progressed rapidly,
evolving from rudimentary chromogenic assays to highly sensitive,
multiplexed fluorescent platforms that enable precise spatial mapping
of nucleic acids within intact tissues (Raj et al,, 2008). Early smFISH,
limited by probe number, detected only a few genes, though shorter,
more numerous probes raised throughput (Raj et al., 2008). SeqFISH
then used repeated hybridization-imaging-stripping cycles with binary
encoding to broaden transcript detection (Shah et al., 2018). MERFISH
followed, adding error-robust codes and combinatorial labeling to
improve accuracy and speed (Chen, 2015). Most recently, smHCR
and seqFISH+ expanded laser channels and encoding capacity,
enabling visualization of tens of thousands of genes in a single
experiment (Zhou et al, 2019). Besides barcode-based techniques,
osmFISH uses iterative hybridization and direct imaging to quickly
survey large tissues (Codeluppi et al., 2018). RNAscope employs paired
“Z” probes with signal amplification, achieving single-molecule
sensitivity and high specificity while preserving tissue architecture
(Wang et al, 2012). DNA microscopy dispenses with optics,
inferring molecular positions from ligation frequency data; its
resolution is still limited, but it inaugurates a novel paradigm for
spatiotemporal transcriptomics (Chang et al., 2006; Weinstein
et al., 2019).
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3.3 In-situ sequencing technologies

In-situ sequencing is a class of methods for directly detecting
and sequencing transcripts at high resolution within the spatial
context of cells, which core principle involves signal amplification
using DNA nanoballs at the micrometer to nanometer scale,
thereby enabling the acquisition of transcriptomic data at the
molecular level while preserving tissue structural information (Ke
etal., 2013). However, limited by inherent cellular crowding and the
resolution of optical systems, this technology has been restricted to
analyzing a limited number of transcripts simultaneously (Qian and
Lloyd, 2003). Consequently, researchers are continuously
developing diverse strategies to overcome this bottleneck (Qian
and Lloyd, 2003). In 2013, the first in-situ sequencing protocol used
padlock probes to capture reverse-transcribed cDNA, amplified it
into micrometer-scale rolling circle products (RCPs), and decoded
them by sequencing-by-ligation (SBL), laying the groundwork for
the field (Ke et al., 2013). Subsequently, BaristaSeq, while retaining
padlock probes, significantly improved signal stability and
sequencing read length by chemically crosslinking RCPs to the
cellular matrix and employing SBS for sequencing (Chen et al,
2018). HyblISS, on the other hand, integrated the process into a
microfluidic platform for automated operation and replaced
SBL with SBH to achieve a higher signal-to-noise ratio; this
refinement not only reduced background noise but also enhanced
experimental reproducibility (Gyllborg et al., 2020). Another
significant advancement, STARmap, directly deployed barcoded
padlock probes at the RNA level and added a second primer to
replace the traditional reverse transcription step, successfully
circumventing the limitations of ¢cDNA synthesis efficiency
(Lugmayr et al,, 2023). It also utilized secondary hybridization to
reduce noise, ultimately generating single-stranded DNA nanoballs
via RCA and employing SBL for decoding, thereby balancing
sensitivity and specificity (Lugmayr et al., 2023).

3.4 In-situ capture technologies

In-situ capture technology, centered around spatially barcoded
primers pre-fixed on tissue sections, achieves localized RNA capture
through in-situ recognition and hybridization (Miyazu et al., 2010;
Amini et al, 2025). Subsequently, the signals are amplified,
sequenced ex situ, and the three-dimensional spatiotemporal
distribution is reconstructed using barcode analysis. Compared to
traditional in-situ hybridization or in-situ sequencing methods, this
technology eliminates the need for large-scale fluorescent probe
libraries, significantly reducing probe throughput limitations.
Simultaneously, it utilizes barcode decoding instead of multiple
rounds of fluorescence imaging, avoiding spectral crosstalk and
enhancing imaging depth (Miyazu et al., 2010; Amini et al., 2025).
Since Stahl et al. introduced spatial transcriptomics in 2016, the
field has advanced from coarse regional analyses to whole-
transcriptome quantification within a single tissue section (Stihl
etal., 2016). 10x Genomics’ Visium streamlined workflows and data
analysis, enabling large, multi-center studies. To meet the demand
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for finer detail, NanoString’s GeoMx uses UV-released barcoded
probes to reach 10 um resolution and detect proteins (Hernandez
et al., 2022). Slide-seq employs micron-scale barcoded beads with
SBL and scRNA-seq for high-throughput profiling, while DBiT-seq
“prints” orthogonal barcodes onto tissue, capturing mRNA and
proteins in the same pixel-the first spatial multi-omics
demonstration (Rodriques et al., 2019). APEX-seq uses APEX2
peroxidase to biotinylate and isolate RNAs from specific
compartments in living cells, demonstrating subcellular
transcriptome capture, yet its dependence on recombinant
expression confines its application to in vitro systems (Fazal et al,
2019; Wu et al, 2021). High-definition spatial transcriptomics
(HDST) raised barcode density to 2 um, mapping hundreds of
thousands of transcripts with high precision (Vickovic et al., 2019;
Rao et al,, 2021). Stereo-seq delivers subcellular (~500 nm)
resolution across centimeter-scale areas to combine morphology
with molecular data (Wei et al, 2022), while Seq-Scope overlays
high-density barcodes on an Illumina flow cell to attain sub-micron
resolution and uncover organelle-level heterogeneity (Cho et al.,
2021; Kim et al.,, 2025). PIXEL-seq replaces discrete barcodes with
continuous polony patterns, enabling the detection of over 1,000
transcripts within a 10 um? area at 1 um resolution and markedly
enhancing sensitivity (Fu et al., 2022). In parallel, sci-Space merges
nuclear barcoding from sci-Plex with sci-RNA-seq, efficiently
linking single-cell transcriptomes to their spatial coordinates
(Srivatsan et al., 2021; Robles-Remacho et al., 2023).

4 Applications of spatiotemporal
transcriptomics in plant research

Spatial transcriptomics, with its exceptional spatiotemporal
resolution, enables the detailed characterization of plant
developmental programs, the identification of rare cell types, and
the analysis of stress response networks. Initially challenging to
apply directly to plant systems due to the cell wall and vacuole, the
technology has been successfully implemented in various plants and
organs through systematic optimization of key steps such as tissue
fixation, permeabilization, and sectioning. Since Giacomello et al.
first constructed a high-throughput plant spatial transcriptome atlas
in 2017, the technology has progressed from feasibility validation to
broad application across multiple species and tissues (Giacomello
etal., 2017), with modified protocols repeatedly validated in systems
such as Arabidopsis, lentil, Lotus japonicas, and wheat (Geng et al.,
2013; Du et al,, 2023; Yu et al,, 2023; Ye et al., 2024; Li et al., 2025;
Zhang et al., 2025). Spatial transcriptomics has not only deepened
our understanding of plant development, physiology, and
evolutionary mechanisms but also provided a novel molecular
perspective and technological platform for crop improvement and
precision breeding.

Meiosis, a highly conserved and critical division process during
the maturation of sexual reproductive cells, has long been a focal
point in plant reproductive and developmental biology research. By
precisely isolating maize male reproductive cells at distinct meiotic
stages with LCM and analyzing them via scRNA-seq, Nelms and
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Walbot (2019) systematically connected meiotic cell-cycle
dynamics to cellular physiology and developmental differentiation
trajectories, laying a robust data foundation for dissecting meiotic
regulatory networks (Nelms and Walbot, 2019). Buds, transient
structures formed during branch and floral organ development, are
governed by intricate signaling pathways; through spatiotemporal
transcriptomic profiling of Norway spruce female buds across
budding (August), elongation (September) and maturation/
dormancy (October) stages, Orozco (2020) pinpointed stage-
specific gene-expression loci that drive morphological and
functional transitions, thereby unveiling the spatial core
regulatory network of bud development (Orozco, 2020).
Concurrently, Lieben (2017) conducted a comparative
transcriptomic study on poplar leaf buds during dormancy and
regrowth, clarifying the distinct expression patterns of various cell
types at different developmental stages, providing valuable insights
into the molecular basis of bud dormancy and regeneration in
woody plants (Lieben, 2017). Recent breakthroughs in single-cell
spatial omics technologies have further pushed the resolution limits
of plant development research. The first application of Stereo-seq in
Arabidopsis leaves (Xia et al., 2022) achieved true single-cell
spatiotemporal transcriptome profiling, revealing the divergent
spatial developmental trajectories of microtubule cells and guard
cells in leaves (Xia et al, 2022). Significantly, Liu et al. (2022)
optimized the tissue permeabilization conditions for Stereo-seq
using a “two-step method” and successfully constructed high-
resolution spatiotemporal transcriptomic maps in the fruit pegs,
stems, roots, and hypocotyls of the non-model plant peanut (Liu
et al., 2022). Guo et al. used 10x Genomics spatial and single-
nucleus transcriptomics to map gene activity in early bamboo
shoots, reconstruct developmental trajectories, and identify genes
and pathways governing procambium differentiation, intercalary
meristem formation, and vascular development, thereby advancing
our understanding of bamboo growth and guiding molecular
improvement (Guo et al., 2024). Using spatial transcriptomics, Li
et al. dissected wheat grains 4-12 days after pollination, identified
10 distinct cell types with 192 marker genes, and, through WGCNA,
demonstrated that cell-type-specific highly expressed genes exhibit
differential functional enrichments that critically regulate grain
development and filling (Li et al.,, 2025).

5 Conclusion

While single-cell transcriptomics reveals cellular heterogeneity,
it lacks spatial and tissue-level context. Spatiotemporal
transcriptomics overcomes this limitation by simultaneously
capturing cellular time-space distribution and gene expression,
offering unprecedented insights into development, pathology, and
evolution. However, its application in plants lags due to limited
reference genomes, structural barriers like cell walls, and
incompatibility with animal-based platforms. Common
challenges, including balancing resolution and throughput,
standardizing sample preparation, algorithmic mining, multi-
omics integration, and cost control, remain prominent. With
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continued advancements in sequencing chemistry, micro-
nanofabrication, optical imaging, and artificial intelligence,
spatiotemporal omics holds the promise of mapping cellular and
even subcellular-level four-dimensional expression atlases, driving
profound innovations in precision breeding.
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