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Overexpression of the Salix
matsudana aquaporin gene
SmPIP1;3 enhances plant
resistance to abiotic stresses
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Plasma membrane intrinsic proteins (PIPs) are involved in plant growth and stress
adaptation through their dynamic gating mechanism. Nevertheless, pinpointing
the specific roles of individual isoforms remains challenging because of their
functional pleiotropy and integrated responses to diverse cues. In this study, we
characterized a salt-responsive aquaporin gene, designated SmPIP1, 3, isolated
from a salt-resistant Salix matsudana variety. Bioinformatics analysis confirmed
that it encodes a protein that possesses canonical PIP features with six
transmembrane domains, five interhelical loops, and seven serine
phosphorylation sites involved in phosphorylation-mediated regulation. The
SmPIP1;3 gene was introduced in tobacco plants, and its heterologous
expression conferred significant morphological improvements, including taller
plant height, larger leaves, longer roots, and increased biomass. Under salt,
drought, cold, and heat stresses, transgenic plants showed substantially
alleviated membrane damage, as evidenced by weakened Evans blue staining.
Consistently, their malondialdehyde contents were 1.48-, 1.47-, 1.57-, and 1.62-
fold lower, while relative electrolyte leakage values were 1.56-, 1.35-, 1.53-, and
1.61-fold lower than those of wild-type plants, respectively. SmPIP1;3
orchestrates multi-stress tolerance by sustaining physiological homeostasis
and limiting membrane damage. Its performance positions it as a valuable
genetic asset for molecular breeding programs.

KEYWORDS

plasma membrane intrinsic proteins (PIPs), Salix matsudana, SmPIP1;3, overexpression,
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Introduction

Water uptake and transmembrane water transport are fundamental physiological
processes underlying plant growth and development and also serve as a crucial
regulatory pathway for plant adaptation to abiotic stress (Gill et al., 2021). Water
movement across cellular membranes is a well-established, osmotic-driven process.
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Aquaporins (AQPs), specialized water-channel proteins located in
biological membranes, selectively facilitate water flux while largely
preventing proton leakage and, in some cases, allowing the passage
of small solutes such as glycerol or CO, (Eisenbarth and Weig, 2005;
Sohail et al, 2022). Based on the phylogenetic relationship and
subcellular localization, AQPs in higher plants can be classified into
five subfamilies: plasma membrane intrinsic proteins (PIPs),
tonoplast intrinsic proteins (TIPs), nodulin 26-like intrinsic
proteins (NIPs), small basic intrinsic proteins (SIPs), and X-
intrinsic proteins (XIPs) (Kaldenhoff and Fischer, 2006). Among
these, PIPs are among the most extensively studied groups,
exhibiting high sequence conservation, and can be systematically
classified into two phylogenetic clades, designated as PIP1s and
PIP2s (Tornroth-Horsefield et al., 2006).

Abiotic stress factors, such as drought, salinity, cold, and heavy
metals, can disrupt a plant’s water homeostasis, leading to severe
dehydration and death, thereby limiting plant growth,
development, and productivity (Suslov et al., 2024). Recent
studies have highlighted the functional versatility of AQPs,
particularly PIPs, which exhibit bidirectional water transport
driven by transmembrane osmotic gradients, with dynamic gating
mechanisms being regulated by phosphorylation and osmotic
stimuli (Horie et al., 2011). The expression patterns of PIPs vary
substantially across various plant organs (e.g., roots and leaves) and
along different durations of stress (Horie et al., 2011). For example,
a study focused on Arabidopsis found that most PIP genes were
downregulated in the leaves under drought, except for AtPIPI;4 and
AtPIP2;5, which were upregulated (Alexandersson et al., 2005). The
overexpression of AtPIP1;4 or AtPIP2;5 in Arabidopsis also
improved resistance to cold stress (Rahman et al, 2020). The
GoPIP1 gene identified from Galega orientalis was significantly
induced by 200 mmol/L NaCl or 20% polyethylene glycol (PEG)
6000 treatment. The overexpression of this gene in Arabidopsis
increased vulnerability to drought stress but not to salinity (Li et al.,
2015). Transgenic tobacco expressing BnPIP1 from Brassica napus
exhibited enhanced drought tolerance, improved growth, and
higher seed germination rates, whereas antisense plants
demonstrated developmental defects and heightened drought
susceptibility (Yu et al., 2005). The overexpression of OsPIPI;1, a
salt-inducible PIP gene from rice, conferred improved resistance to
salinity in Arabidopsis (Guo et al., 2006). Moreover, transgenic
bananas overexpressing MusaPIPI1;2 demonstrated enhanced
tolerance to cold, salinity, and drought compared to wild-type
(WT) plants (Sreedharan et al., 2013). While substantial
experimental evidence underscores the roles of PIP aquaporins in
stress responses, elucidating the precise contributions of individual
genes or isoforms is still difficult owing to their functional
pleiotropy and integrated regulation under different
environmental stimuli (Afzal et al., 2016). Consequently,
systematic characterization of PIP family members is imperative
to decipher the molecular basis of plant stress resilience.

Salix matsudana is an important afforestation and industrial
timber tree species. A previous transcriptome analysis revealed that
the expression of SmPIPI;3 was induced by salt stress in the salt-
resistance 9901 variety of S. matsudana (Wang et al., 2024). In this
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study, we aimed to characterize the SmPIPI;3 gene to elucidate its
evolutionary attributes and to assess its functional roles in plant
growth and environmental stress resistance through genetic
transformation. Our findings enrich the existing understanding of
the stress resistance process in willow trees and offer a valuable gene
resource for future molecular breeding strategies.

Materials and methods
Plant materials and treatment

Cuttings of Salix mandshurica 9901 were cultivated in pots (20
cm X 20 cm) filled with sandy soil in a growth chamber (2,000 lux
light intensity, a 16-hour light/8-hour dark cycle, 70% relative
humidity, 25°C). Plants were irrigated with water once every 4
days and with Hoagland solution (Hoagland and Arnon, 1950) once
a week. After 1 month, they were irrigated with 300 mL of 200
mmol/L NaCl solution per pot. Leaves and roots were harvested at 0
and 24 h after salt application for RNA extraction.

Expression assessment of SmPIP1,;3 in
willow

The total RNAs were extracted from the leaves and root samples
using the polysaccharide polyphenol kit (Tiangen, Beijing). Then, RNA
was transcribed into cDNA using the Hifair®[IT 1st Strand cDNA
Synthesis SuperMix for polymerase chain reaction (PCR) kit (Yeasen
Biotech, Shanghai, China). Based on the genome sequence data of S.
mandshurica, the specific primers were designed for SmPIPL;3 gene
fragment (SmPIPI;3F, 5-TGGCCTTGGTGCTGAGATAA-3;
SmPIP1L;3R, 5'-CTCCTTGCTGGGTTAATGCC-3"). The gRT-PCR
assay was conducted for expression test with the following
procedure: 95°C for 5 min, 40 cycles of 95°C for 10 s, and 58°C for
30 s. Ubiquitin (UBQ) was used as the reference gene (UBQF, 5'-
AGAAGGAGTCAGCAACGATG-3"; UBQR, 5'-
CATTAGGTTCTGAACAGCAGG-3').

Gene cloning of SmPIP1,;3

Based on the genome data of S. mandshurica, the specific
primers were designed at both sides of SmPIPI1;3 gene fragment
with additional restriction enzyme digestion sites
(SmPIP1;3HindIIIF, 5'-cccaagcttATGGAAGGCAAAGAAGA
GGA-3’, the lowercase letters mean HindIII digestion bases;
SmPIP1;3XbalR, 5'-tgctctagaTTAAGCTCTGCTCTTGAAAG-3;
the lowercase letters mean Xbal digestion bases). The full-length
gene fragment was amplified from the cDNA sample of 9901 willow
at 4-day salt treatment and ligated to the pGEM-T easy vector
(Promega, Madison, WI, USA) following the manufacturer’s
instructions. The recombinant plasmid was transformed into the
bacterial strain TOP10, and the positive strain was used for
plasmid sequencing.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1685356
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xu et al.

Sequence characterization of SmPIP1,;3

The PIP1 sequences in Populus trichocarpa v3.1 genome were
obtained (https://phytozome-next.jgi.doe.gov/info/
Ptrichocarpa_v3_1), and homologs of PIP1;3 from seven plant
species (P. trichocarpa, S. matsudana, Hevea brasiliensis, Solanum
lycopersicum, Vitis vinifera, Oryza sativa, and Zea mays) were
obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/
). Multiple sequence alignment was conducted using the DNAMAN
v7.0 software. The phylogenetic tree was performed using MEGA7
with the bootstrap value set at 1,000 repetitions. The online software
ProtParam (https://web.expasy.org/protparam/) was used to
analyze the physical and chemical properties of SmPIPI;3
proteins. Transmembrane helices were predicted using TMHMM
Server v 2.0 (http://www.cbs.dtu.dk/servicess TMHMM/).

SmPIP1;3 gene transformation to tobacco
plants

The recombinant plasmids and gene expression vector pEZR(K)-
LC were digested with restriction enzymes HindIIl and Xbal and
ligated to form the recombinant expression plasmids. The resulting
constructs were introduced into Agrobacterium tumefaciens strain
GV3101 using the electroporation method. The positive strain was
identified and cultured in Yeast Extract Broth (YEB) medium
containing 50 mg/L kanamycin and 10 mg/L rifampicin at 28 °C
overnight and then transferred to antibiotic-free YEB liquid medium
until OD600 0.6-0.8. The healthy tobacco (Nicotiana tabacum L.)
leaves were cut and immersed in the bacterial solution for 10 min,
transferred to the co-cultivation medium [Murashige and Skoog
(MS) medium supplemented with 2 mg/L 6-benzylaminopurine (6-
BA), 0.2 mg/L 1-naphthaleneacetic acid (NAA), 3% sucrose, and
0.55% agar] in darkness for 3 days, and transferred to the screening
medium (MS with 2 mg/L 6-BA, 0.2 mg/L NAA, 3% sucrose, 0.55%
agar, 100 mg/L kanamycin, and 200 mg/L timentin) in light for 30
days. The regenerated buds were transferred to the rooting medium
(MS with 3% sucrose, 0.55% agar, 50 mg/L kanamycin, and 200 mg/L
timentin) for 20 days to obtain the transgenic seedlings.

Genomic DNA was extracted from the leaves of regenerated
plants and screened by PCR tests using the specific primer pair
SmPIP1;3HindIIIF/SmPIP1;3XbalR. Further, the total RNAs were
extracted from the DNA-positive lines, reverse-transcribed into
cDNA, and assayed for SmPIPI;3 gene expression by RT-PCR.
The lines with the overexpression of SmPIP1;3 were recognized as
transgenic and used for subsequent assays.

Physiological index tests of tobacco plants

The transgenic and WT tobacco plants were propagated by
stem cutting. Seedlings were transplanted into pots (10 cm x 10 cm)
filled with vermiculite and maintained in the growth chamber
(2,000 lux light intensity, a 16-hour light/8-hour dark cycle, 70%
relative humidity, 25°C) for 1 month. The plants were irrigated with
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water every 3 days and supplied with Hoagland solution once a
week. Salt treatment was conducted with 150 mL NaCl solution
(200 mmol/L) per pot. Leaves were harvested after 0- and 4-day
treatments for physiological index tests. Three replicates for each
line/treatment were conducted. Statistical analyses were performed
using the SPSS 23.0 software. One-way ANOVA followed by
Duncan’s multiple-range test was applied, * and ** indicate
significant differences at p < 0.05 and p < 0.01, respectively.

Relative electrolyte leakage (REL): 0.1 g fresh leaves were cut
into small pieces (0.5 cm X 0.5 cm), soaked in 30 mL deionized
water, and shaken at 25 °C at 180 rpm overnight. The electrical
conductivity was measured as R1 using the electrical conductivity
meter (DDS-11C). The solutions with the samples were then
autoclaved at 121°C for 20 min, cooled naturally to room
temperature, and then re-measured as R2. Relative conductivity
was calculated as R1/R2.

Malondialdehyde content (MDA): 0.1 g of fresh leaves were
homogenized in 1 mL of 10% trichloroacetic acid (TCA). The
homogenate was centrifuged at 12,000 rpm for 5 min. The
supernatant was collected, mixed with 1 mL of 0.6% thiobarbituric
acid (TBA), and boiled for 15 min. After centrifugation at 12,000 rpm
for 5 min, the supernatant was collected for absorbance measurement
at 450, 532, and 600 nm. MDA content was calculated as follows:
[6.45 x (OD532 — OD600) — 0.56 x OD450] x total extract volume/
fresh weight of sample.

Results

Expression pattern of SmPIP1,;3 in
S. matsudana

The expression pattern of SmPIPI;3 in the salt-resistant
S. matsudana 9901 variety was examined using gene-specific
primers SmPIP1;3-F/SmPIP1;3-R (Figure 1). SmPIPI;3 transcripts
were expressed at comparable levels in the leaves and roots under
control conditions. When subjected to salt treatment, the SmPIP1;3
transcript abundance significantly increased in both leaf and root
tissues by more than 1.30- and 1.33-fold, respectively. This indicates
that SmPIPI;3 may be involved in resisting salt stress in S. matsudana.

Characterization of the properties of
SmPIP1;3

The full-length fragment of SmPIPI;3 was amplified and cloned
from the 9901 c¢cDNA sample with the SmPIP1;3HindIIIF/
SmPIP1;3XbalR primers. The sequencing results revealed a length
of 867 bp, encoding 288 amino acids (Figure 2A). Amino acid
composition analysis showed that Gly, Ala, and Ile were abundantly
present in SmPIPL;3 in proportions of 12.2%, 11.8%, and 8.7%,
respectively. The two amino acids that are critical for PIP function,
Ser and His, were present in proportions of 4.5% and 2.8%,
respectively. SmPIP1;3 had a predicted molecular weight of 30.73
kDa, an isoelectric point of 8.99, an aliphatic index of 96.25, a grand
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FIGURE 1

Expression pattern of SmPIP1;3 in 9901 willow under salt treatment. UBQ), ubiquitin gene used as an internal reference for normalization; LO and
L24, leaf samples at 0 and 24 h, respectively, of salt treatment; RO and R24, root samples at 0 and 24 h, respectively, of salt treatment. ** indicates a
statistically significant difference (p < 0.01) between 0 and 24 h of salt treatment.

average of hydropathicity of 0.374, and an instability index of 25.07.
These parameters indicate that SmPIP1;3 is a basic, moderately
hydrophobic, thermostable, and overall stable protein.

Phosphorylation is a gating mechanism that regulates the plant
plasma membrane AQP activity. In SmPIPI;3, 19 putative
phosphorylation sites were predicted (Figure 2B), including seven
Ser (S) residues (S16, S49, S81, S129, S196, S207, and S241), three
Tyr (Y) residues (Y31, Y136, and Y147), and nine Thr (T) residues
(T23, T27, T71, T76, T85, T131, T193, T198, and T234), spreading
in the protein sequence randomly.

Further sequence alignment revealed a high level of
conservation among the PIPs. SmPIP1;3 showed the highest
sequence identity (98.61%) with PtPIP1;3 (Figure 3A). Several
amino acids were revealed to be specific to the Salicaceae family,
such as T82, P84, and G85, or the dicot family, such as D28, A100,
E165, F252, D259, and 1281. PIP1;3 thus exhibited evolutionary
characteristics, and it could be used for species classification.

Based on protein sequences from seven species, a phylogenetic
tree was constructed (Figure 3B). SmPIP1;3 was found to cluster
closely with PtPIP1;3, and they are both members of the Salicaceae
family but are far from the other family species. The PIP1;3 proteins
from the dicot species were grouped further from those of monocot
species, such as maize and rice. All PIP1;3 proteins were grouped
and separated from other PIP1 subfamily members, such as PIP1;1,
PIP1;2, PIP1;4, and PIP1;5, indicating that each PIP1 subfamily has
its own evolutionary identity.

The secondary protein structure prediction showed that
SmPIP1;3 mainly included random coils in the proportion of
48.61%, while o-helix, extended chain, and B-bend were in the
ratios of 28.82%, 19.79%, and 2.78%, respectively (Figure 4A).
Further protein domain analysis revealed SmPIP1;3 as a typical
PIP1 aquaporin, containing six transmembrane domains (TM1-
TM6) and five interhelical loops (Loop A-Loop E) (Figure 4B).
Each o-helix was associated with a membrane-intrinsic connecting
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loop and a membrane-extrinsic connecting loop on both sides to
form an hourglass and a rotating symmetric structure. The
transmembrane o-helices were not parallelly arranged but
staggered at an angle between 25° and 40°, forming a structure
connecting the cells inside and outside.

Effect of SmPIP1,3 on plant growth

SmPIPI;3 was successively introduced in tobacco plants, and three
independent SmPIPI;3-overexpressed tobacco lines (L1, L2, and L3)
were obtained and further propagated (Figure 5C). One-month-old
seedlings were used for the growth index evaluation (Figures 5A, B).
Under normal conditions, the transgenic lines had a height between
3.0 and 3.8 cm, which was significantly higher than that of WT
(2.6 cm). Meanwhile, the transgenic plants’ leaf length ranged from
5.0 to 5.6 cm and leaf width from 3.2 to 4.0 cm—an average increase
of 1.15- and 1.16-fold compared to WT, respectively. The root length
of the transgenic plants ranged from 11.5 to 12.3 cm—an increase of
1.44- to 1.54-fold over WT. The number of roots, however, was
similar in both transgenic plants and WT. In addition, the average
fresh weight and dry weight of the transgenic plants were 1.43 and
0.05 g, respectively—1.70- and 2.30-fold increase over WT,
respectively (Figure 5D). Collectively, these results demonstrate that
SmPIPI;3 overexpression significantly improved plant growth.

SmPIP1;3 enhanced plant resistance to
abiotic stresses

Under normal growth conditions, both transgenic and WT
tobacco seedlings performed well and showed no obvious
morphological abnormalities. When exposed to stress, the WT
tobacco plants manifested severe symptoms, including wilted
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FIGURE 2

SmPIP1,;3 nucleotide and amino acid sequence (A) and phosphorylation amino acids (B). The x-axis represents the amino acid order.

leaves, chlorosis, and turgor loss, while the transgenic plants fared
better (Figure 6A). Moreover, the Evans blue staining assays showed
no background signal under control conditions; however, after being
exposed to stress conditions, a few interspersed blue spots appeared
(Figure 6B). Compared with WT, the transgenic lines had less stained
dye, especially under salt treatment, indicating reduced cell damage.

Physiological measurements further supported these
observations. While no significant differences were detected
between transgenic and WT plants under normal conditions,
clear differences emerged under stress. Of them, MDA content in
the transgenic plants was reduced by 1.48-, 1.47-, 1.57-, and 1.62-
fold than WT under salt, drought, cold, and heat treatment,
respectively (Figure 6C). Similarly, REL values of the transgenic
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plants showed decreases of 1.56-, 1.35-, 1.53-, and 1.61-fold
compared with WT under the same stress (Figure 6D). Evidently,
the overexpression of SmPIPI;3 effectively improves plants’
physiological state and enhances their tolerance to various stresses.

Discussion

PIPs are widely involved in environmental
stress resistance

As pivotal regulators of transmembrane water flux, PIPs play
crucial roles in plant adaptation to environmental challenges. The
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members of this aquaporin family not only significantly enhance
bidirectional membrane water permeability but also facilitate the
transport of glycerol, urea, metalloids, CO,, and H,0,, maintaining
water homeostasis, thereby establishing a fundamental adaptive
mechanism for abiotic stress tolerance (Gautam and Pandey, 2021;
Kumar et al., 2018). Abiotic stresses such as salinity, drought, and
cold exposure differentially modulate PIP gene expression profiles.
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In Arabidopsis thaliana, most PIPs exhibited downregulated
expression, except for AtPIPI;3, AtPIPI;4, AtPIP2;1, and
AtPIP2;5, whose expression increased after 4 h or 2 days of
drought treatment (0.25 mol/L mannitol) (Jang et al., 2004). In Z.
mays, salt stress induced a general downregulation of ZmPIP1 and
ZmPIP2, while ZmPIP1;1, ZmPIP1;5, and ZmPIP2;4 exhibited
transient upregulation patterns (Zhu et al, 2005). In S.
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SmPIP1;3 protein secondary structure (A) and transmembrane structural domain (B).

lycopersicum, coordinated upregulation of SIPIPI;1, SIPIPI;3,
SIPIP1;7, SIPIP2;10, and SIPIP2;12 was observed during salt stress
and the recovery phase, implying the critical role of PIPs in
regulating water transport (Jia et al, 2020). In O. sativa, the
expression level of OsPIP1-3 was upregulated in response to 150
mmol/L salt treatment (Abdelkader et al., 2012). Similarly, this
study observed significant induction of SmPIPI;3 transcripts in
both leaf and root tissues of the salt-tolerant willow species
following 200 mmol/L salt stress. These stress-induced
modulation patterns of PIP isoforms indicate their adaptive
regulation mechanisms for preserving water balance during
abiotic stress.

Comprehensive functional studies employing transgenic
approaches, including both overexpression and loss-of-function
mutant analyses, have provided compelling evidence for the
pivotal role of PIPs in mediating plant responses to abiotic stress
(Kumar et al.,, 2018). For example, SpPIPI is a drought-induced
gene in Stipa purpurea, and its ectopic expression in Arabidopsis
bestowed plants with superior drought tolerance as evidenced by
longer roots, improved photosynthetic efficiency, increased survival
rates, elevated leaf Relative Water Content (RWC), and reduced
electrolyte leakage (Chen et al., 2018). Similarly, VfPIPI-
overexpressing transgenic Arabidopsis plants exhibited a faster
growth rate and enhanced drought resistance by reducing
transpiration rates through stomatal closure (Cui et al, 2008).
The overexpression of EuPIPI;2 conferred significant drought and
salinity tolerance in transgenic tobacco, manifesting as superior
germination, root development, and survival rates, which were
mechanistically linked to reduced oxidative membrane damage
and improved osmotic adjustment. In this study, the
overexpression of SmPIP1;3 in transgenic tobacco lines enhanced
growth under normal conditions, including taller plant height,
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larger leaves, longer roots, and increased biomass when compared
with the wild type. Notably, these lines demonstrated robust multi-
stress tolerance when subjected to salt, drought, cold, and heat
challenges, as quantified by substantially reduced membrane
damage indicators compared to wild-type controls.

These findings highlight PIP aquaporins’ functions as master
regulators of abiotic stress responses, acting through mechanisms
such as maintenance of membrane integrity, facilitation of osmotic
adjustment, and promotion of stress-resilient growth. Further
investigations are required to elucidate the regulatory networks
and signaling pathways by which PIPs mediate these
adaptive functions.

SmPIP1,3 displays pleiotropism against
various stresses

Plant abiotic stress tolerance relies on complex molecular
networks in which different genes contribute through distinct
mechanisms. For example, expansin genes have been
demonstrated to relax the cell wall components and release stress.
The overexpression of the S. matsudana expansin gene SmEXPA23
in tobacco decreased REL and MDA contents by 9.87% and 19.26%,
respectively, compared with WT plants under salt treatment (Yang
et al,, 2023). Similarly, DNA damage repair tolerance (DRT) genes
can promote the repair of stress-induced DNA damage, thus
maintaining cell viability. The overexpression of ZsDRT102 from
Zelkova schneideriana significantly improved the plants’ chilling
resistance, with MDA and REL levels decreasing by 10.3%-26.2%
and 24.5%-35.3%, respectively, in transgenic plants relative to WT
(Wang et al., 2025). PIPs constitute an efficient gene resource that
can facilitate stress resistance by improving the water channel of the
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Growth performance of SmPIP1,3-transgenic lines (L1, L2, and L3) and wild-type plants (WT). (A) One-month-old tobacco leaves. (B) One-month-
old tobacco roots. (C) RT-PCR detection of SmPIP1,;3 in transgenic lines. (D) Growth indexes. PH, plant height; LL, leaf length; LW, leaf width; MRL,

maximum root length; FW, fresh weight; DW, dry weight. The data were obtained in three replicates. * and ** mean the significant difference

between the transgenic lines and WT at p < 0.05 and p < 0.01, respectively

cell membrane (Maurel et al., 2008). In this study, the
overexpression of SmPIPI;3 in tobacco alleviated stress-induced
injury by salt, drought, cold, or heat stress: the REL values declined
by 1.56-, 1.35-, 1.53-, and 1.61-fold, and the MDA content fell by
1.48-, 1.47-, 1.57-, and 1.62-fold compared with WT, together with
reduced Evans blue staining, indicating diminished cell damage.
Although pleiotropic genes are common, their stress spectra
and directions differ markedly. PttEXPAS8 from Populus tomentosa
was introduced into tobacco plants, and it improved the plants’
resistance to drought, heat, and cold; however, it had no significant
contribution to salt and Cd stress resistance (Zhang et al., 2019).
Cotton GhWRKY25 elevated salt tolerance but reduced drought
resistance (Liu et al, 2016). Moreover, the overexpression of
AtbZIP60 in tobacco enhanced its salt tolerance (Tang et al.,
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2012), but the overexpression of wheat TabZIP6 and tea CsbZIP6
in Arabidopsis lowered the plants’ tolerance to cold (Wang et al.,
2017), thus suggesting that the homologous genes play different
roles in different stress conditions. SmPIP1;3 had a broad-spectrum
resistance to all four tested stresses, making it a more versatile
candidate for molecular breeding. The synergistic potential of these

multi-mechanism genes warrants further exploration.

PIPs’ function depends on their sequences
and structures
Numerous studies have indicated that AQP activity is

modulated by phosphorylation (Chaumont et al., 2005), which
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stresses: 200 mmol/L NaCl for 6 days, drought for 6 days, 4°C for 12 h, or 42°C for 4 days. (A) Morphological performance. (B) Evans blue dyeing.
(C) Malondialdehyde content (MDA). (D) Relative electrolyte leakage (REL). ** mean the significant difference between the transgenic tobacco lines

and WT at p < 0.01.

may affect AQP’s trafficking through the secretory pathway to the
plasma membrane or the opening and closing of pores (Tornroth-
Horsefield et al., 2006). In particular, the phosphorylation at Ser
residues within the N- or C-terminal regions of PIP was more
closely examined and recognized as crucial to the protein function.
For example, phosphorylation at S115, S188, and S274 of SoPIP2;1
promoted the expansion of water-conducting pores in spinach
(Johansson et al,, 1996). In wheat, TaPIP2;10 phosphorylated at
§280 facilitated CO, transport into the cells, thereby resulting in
enhanced photosynthesis and increasing yield, whereas the same
protein phosphorylated at S121 was related to H,O, transport into
the cytoplasm (Lu et al., 2022). Several mutant assays have also
confirmed the role of serine phosphorylation. The substitution of
S115E in SoPIP2;1 led to a half-turn extension of transmembrane
helix 1, thereby disrupting the divalent cation binding site in the
gating mechanism (Nyblom et al., 2009). By contrast, the S188E
mutant increased the water transport activity and supported the
contribution of S188 phosphorylation to open channel formation.
In our study, 19 phosphorylation sites in SmPIP1;3—seven Ser,
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three Tyr, and nine Thr—were determined. A sequence alignment
among SmPIPI1;3 and the PIPs from seven species revealed that
most of them were conserved. A previous study found that
the homologous mutations of S129 and S207 in ZmPIP2;1,
S126A, and S203A did not affect the targeting of the plasma
membrane but decreased its activity by 30% to 50% (Wilder et al.,
2008). Further exploration of the changes in amino acid
phosphorylation in SmPIP1;3 is necessary to better understand
how the water channel activity responds to various
growth conditions.

The loop feature was also recognized as an important factor for
the functioning of the PIP channel. One study revealed that loop C
residues contribute to the selectivity of solute transport (Wilder
et al., 2008). We compared the residues of the PIP1 proteins and
found that loop C contained a large number of Gly residues (6-8),
indicating that these PIPls are much more flexible members
(Casino et al, 2014). The sequence alignment of PIP1;3 among
the seven species also demonstrated more polymorphism in loop C
than the others. These performances may support the diversity of
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PIP1;3 against various environmental stresses, like the transported
solutes. More research attention on loop C and the other domains is
essential for future gene modification and molecular
breeding programs.
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