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Design and experiment of
miss-seeding detection and
preparatory seed scraper-belt
compensation mechanism based
on improved YOLOv5s for potato
seed-metering devices
Hongling Li, Hua Zhang*, Xiaolong Liu, Hui Li , Shangyun Jia,
Wei Sun, Guanping Wang, Quan Feng and Sen Yang

College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
This study addresses the issue of miss seeding in spoon-chain potato seed-

metering devices, which impacts planting efficiency and quality, by proposing a

miss-seeding detection and compensation system based on an improved

YOLOv5s model integrated with a preparatory seed scraper-belt compensation

mechanism. The enhanced model incorporates the Convolutional Block

Attention Module (CBAM) and Soft Non-Maximum Suppression (Soft-NMS),

achieving a mean average precision (mAP) of 99.40% in complex field

environments. The system combines visual recognition with mechanical

compensation. Experimental results demonstrate that at operating speeds of

0.2–0.4 m/s, the original miss-seeding rate of 5.28%–9.40% is reduced to

0.70%–1.68%, with a reseeding success rate of 82.14%–86.67% and a

preparatory seed reseeding success rate exceeding 96%. The study validates

the system’s efficiency and reliability under medium-low speeds, with slight

performance degradation at higher speeds due to vibrations. This solution offers

an intelligent upgrade path for traditional potato seed-metering devices and

advances precision agriculture technologies.
KEYWORDS

potato, spoon-chain seed-metering device, visual detection, automatic reseeding,
improved YOLOv5s
1 Introduction

The potato is a crucial food crop globally, and the level of mechanized planting

significantly impacts its yield and profitability. The spoon-chain seed metering device is

commonly employed in potato planter due to its uncomplicated design and versatility.

Nevertheless, challenges arise from the inherent physical attributes of seeds, such as uneven
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size and surface viscosity, as well as operational factors like

vibration and dust. Consequently, miss-seeding occurrences are

common, resulting in uneven emergence and reduced yields in the

field (Wang et al., 2020). Hence, the exploration of effective

detection and compensation technologies for miss-seeding is

essential to enhance the efficiency of mechanized potato planting.

Traditional miss-seeding detection methods predominantly rely

on photoelectric sensors, ultrasonic sensors, or mechanical contact

detection. For instance, Zhang et al. (2013) designed a miss-seeding

detection system based on infrared photoelectric sensors combined

with a stepper motor for reseeding. However, this approach is

susceptible to interference from field dust during operation. Wen

et al. (2022) proposed a miss-seeding detection and reseeding

system for belt-spoon type seed-metering devices, utilizing

photoelectric sensors and electromagnetic actuators. It achieved a

100% detection success rate and 83% reseeding success rate within a

speed range of 0.14–0.54 m/s. While the system benefits from rapid

response, its adaptability to complex field environments remains

limited. Additionally, Guan et al. (2021) explored multi-sensor

fusion for miss-seeding detection, which improved robustness but

increased system complexity and cost.

To address the insufficient anti-interference capability of

photoelectric sensors, recent studies have shifted toward

alternative detection techniques. Wang et al. (2023) developed a

miss-seeding detection method based on spatial capacitive sensors,

employing the AD7745 high-precision capacitive chip to determine

miss-seeding status by detecting net changes in capacitance values

as seed spoons pass through capacitive electrode plates. Lei et al.

(2022) designed a miss-seeding detection and reseeding system

using a “displacement positioning method,” integrating permanent

magnet arrays, Hall sensors, and diffuse-reflective photoelectric

switches, achieving a detection accuracy of 96.54%. While

these methods perform well under specific conditions, they

exhibit limitations in high-speed operations or dynamically

variable environments.

In recent years, the application of deep learning in agricultural

machinery has introduced novel technical pathways for miss-

seeding detection (Rizvi et al., 2024; Thomas et al., 2021). Object

detection algorithms based on Convolutional Neural Networks

(CNNs) have been widely adopted in agricultural scenarios due to

their efficiency and accuracy. For example, Faster R-CNN, utilizing

a Region Proposal Network (RPN), achieves high precision in crop

disease detection. Liang et al. (2024) applied this algorithm to

identify corn leaf disease spots, attaining a mean average

precision (mAP) of 92.8%. At the same time, numerous new

technologies have emerged in object detection. Joint detection

and tracking methods based on reinforcement learning have

demonstrated substantial potential in radar target recognition (Li

et al., 2024b). Additionally, significant breakthroughs in

hyperspectral image analysis, open set recognition, and

underwater color difference studies have provided crucial insights

for visual perception in complex environments (Xu et al., 2025a, Xu

et al., 2025b; Li et al., 2025). These technological advancements offer

new possibilities for enhancing the performance of agricultural

visual detection tasks.
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In agricultural applications with high real-time requirements,

YOLO series algorithms are highly favored due to their outstanding

speed advantage. Kang et al. (2020); Deng et al. (2025) developed a

vision system for fruit-picking robots based on YOLOv3, achieving

a detection speed of 25 frames per second (FPS) and an 87%

recognition rate in complex orchard environments. As the latest

iteration, YOLOv5 further optimizes network architecture and

computational efficiency (Sun et al., 2025). Its lightweight design

makes it particularly suitable for deployment on embedded

platforms (e.g., NVIDIA Jetson series) and widely used in fields

such as autonomous agricultural machinery and crop growth

monitoring (Jocher et al., 2020, Nnadozie et al., 2023). Despite

the YOLO series advancing to YOLOv13, YOLOv5s retains notable

advantages, particularly on resource-constrained embedded

hardware platforms (Lawal et al., 2023; Li et al, 2024b).

Compared to YOLOv13, YOLOv5s significantly reduces

computational requirements, which make it more suitable for

efficient real-time detection on low-power devices (Lazarevich

et al., 2023). In the agricultural sector, especially in mechanized

planting, there is a need for deploying systems on low-cost, high-

performance compact devices. The optimized YOLOv5s

model structure enhances real-time processing and reduces

computational costs, effectively meeting the detection demands of

agricultural machinery in dynamic environments. It is particularly

well-suited for embedded systems (e.g., NVIDIA Jetson TX2) and

can perform real-time miss-seeding detection tasks, without

adversely affecting the device ’s power consumption or

performance (Wu et al., 2023).

However, the original YOLOv5 still faces limitations in complex

field environments. Due to background noise (e.g., weeds, soil

texture, lighting variations) and target diversity (e.g., visual

similarity between seeds and soil), the model is prone to missed

or false detections (Tan et al., 2025), leading to reduced accuracy

(Xu et al., 2024; Liu et al., 2025). To address this, researchers have

proposed various improvements. The integration of attention

mechanisms significantly enhances the model’s ability to focus on

critical features. Woo et al. (2018) proposed the Convolutional

Block Attention Module (CBAM), which strengthens the

representational capacity of target regions through spatial and

channel attention, improving mAP by approximately 2%–3% in

object detection tasks. Bodla et al. (2017) validated its effectiveness

on the COCO dataset. These enhancements broaden YOLOv5’s

applicability in complex agricultural scenarios.

Notably, visual-based research on miss-seeding detection for

potato seed-metering devices remains scarce. Existing technologies

predominantly focus on traditional sensor-based methods (Wang

et al., 2024; Zhang et al., 2022; Qiu et al., 2023), which struggle to

meet the demand for efficient detection under complex field

conditions. This gap underscores the vast potential for deep

learning in advancing potato miss-seeding detection technologies.

In summary, potato seed-metering devices still face challenges

in miss-seeding detection and compensation technology:

In response to the above challenges, this study proposes a miss-

seeding detection and preparatory seed scraper-belt compensation

mechanism based on improved YOLOv5s model for a spoon-chain
frontiersin.org
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potato seed-metering device, At the software level, integrating the

CBAM attention mechanism and the Soft-NMS optimization

algorithm enhances the model’s feature extraction capability in

dusty, complex backgrounds, and overlapping seed conditions,

significantly improving the accuracy and robustness of miss-

seeding detection. At the hardware level, the innovative scraper-

belt compensation mechanism, which involves precise seed

presetting and rapid reseeding, substantially enhances stability

and efficiency during high-speed operations. The collaboration

between the NVIDIA Jetson TX2 (for visual inference) and the

STM32 microcontroller (for mechanical control) creates a

‘perception-decision-execution’ closed-loop control system. This

integration effectively addresses the disconnection between

detection and reseeding phases in existing methods, resulting in

efficient miss-seeding detection and accurate compensation in

complex operational environments.
2 Overall design

2.1 The basic structure of the system

The spoon-chain seed-metering device primarily consists of a

seed box, seed spoons, seed-protecting grooves, and a seed-metering

chain. As shown in Figure 1, each device is equipped with a miss-

seeding detection unit and a preparatory seed scraper-belt

compensation mechanism unit.When a potato seed is lifted to its

highest point using a seed spoon, it naturally falls back down due to
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gravity onto the backside of the previous spoon and a compensation

port is located at this natural drop point. A reseeding belt with L-

type scrapers is installed on the seed-protecting groove near the

compensation port. A fiber optic sensor is mounted at the front end

of the reseeding belt to monitor seed availability. A reseeding box is

installed above the end of the reseeding belt, featuring a seed outlet

at its bottom. To prevent potato seeds from jamming, the outlet size

is designed to accommodate a single potato seed. The reseeding box

also houses a storage box containing the NVIDIA Jetson TX2 (for

model deployment), a microcontroller, motor driver, and an

LCD display.

1.Storage box 2.Miss-seeding detection device 3.Seed spoon

4.Seed-metering chain 5.Seed box 6.Seed protection groove 7.

Reseeding device.
2.2 Hardware composition

The hardware structure of the miss-seeding detection and

reseeding system is shown in Figure 2. The hardware components

of the miss-seeding and compensation system mainly include a

miss-seeding detection module, a reseeding module, and a control

module. Among these, the miss-seeding detection module includes

an embedded AI computing device (NVIDIA Jetson TX2), a CCD

industrial camera, and ring light; the reseeding module comprises a

fiber optic sensor, driver, stepper motor, and reseeding mechanism

(reseeding belt and reseeding box). The STM32F103ZET6

microcontroller is selected as the lower-level controller, which
FIGURE 1

Structural scheme diagram of the miss-seeding detection and compensation system of spoon-chain metering device. 1. Storage box; 2. Miss-
seeding detection device; 3. Seed spoon; 4. Seed-metering chain; 5. Seed box; 6. Seed protection groove; 7. Reseeding device.
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controls the reseeding device to prepare and replenish seeds based

on detection results from the fiber optic sensor and the upper-level

controller NVIDIA Jetson TX2. The system is powered by a 12V

DC vehicle power supply from the tractor.
2.3 Working principle

The spoon-chain seed-metering device moves upward with the

implement during operation. When a seed spoon enters the field of

view of the CCD industrial camera, the camera captures real-time

video of the spoon’s motion. The video stream is transmitted to the

NVIDIA Jetson TX2 development board via a USB 3.0 interface.

The Jetson TX2, running an improved YOLOv5s miss-seeding

detection algorithm, analyzes whether the seed spoon contains a

potato seed. If a seed is detected, the system proceeds with normal

seeding. If no seed is detected (empty spoon), the Jetson TX2 sends

a signal to the STM32 microcontroller which generates a reseeding

pulse. This pulse drives the stepper motor through a driver,

activating the reseeding mechanism to replenish the missed seed.

Prior to reseeding, the system prepares seeds through the

following process: The distance between two L-type scrapers on

the reseeding belt defines a working interval. Upon system startup,

the stepper motor drives the reseeding belt to move. The L-type

scrapers push potato seeds from the seed outlet toward the seed-
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metering device. When a working interval reaches the fiber optic

sensor’s detection position, the sensor checks for seed presence by

monitoring light path obstruction. If no seed is detected, the stepper

motor advances the belt to the next interval. The process continues

until a seed is detected within the working interval, at this point, the

motor stops, completing seed preparation and waiting for

reseeding signals.
3 Design of miss-seeding detection
and reseeding system

This system adopts a serial workflow of “visual detection first,

followed by mechanical compensation,” which is determined based

on a comprehensive consideration of system reliability, timing

synchronization, and implementation complexity. The

fundamental principle of this method is that miss seeding

depends on accurate identification through visual detection. The

detection process inherently includes delays in image capture,

model analysis, and data transmission. Additionally, the

mechanical reseeding system needs clear instructions and a strict

time frame to perform its tasks. The serial design ensures that

compensation is triggered only after the detection results are

reliably confirmed, thus preventing ineffective compensation or

misactions due to data uncertainty or immature timing. In
FIGURE 2

The hardware structure diagram of the system. The hardware structure includes three modules with Detection, Control, and Reseeding. Detection
uses CCD camera, NVIDIA Jetson TX2 and ring light; Control involves MCU, human-computer interaction, and liquid crystal display, Reseeding
employs motor driver, stepper motor, fiber optic sensors and reseeding mechanism.
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contrast, while parallel or reverse designs may theoretically reduce

response time, they increase the risk of misactions in high-speed

agricultural operations, resulting in seed wastage or inaccurate

compensation. Therefore, the serial workflow chosen in this study

balances reliability, accuracy, and feasibility under current

technological conditions.
3.1 Miss-seeding detection module

The operation of the detection system consists of two stages:

server training and model deployment, as shown in Figure 3. Firstly,

a dataset of seed spoons is collected and annotated under various

scenarios, followed by offline model training using the custom

dataset on the server. Subsequently, the NVIDIA Jetson TX2

development board, specifically designed for visual applications

and machine learning tasks, is selected to deploy the neural

network model. The converted model is optimized using NVIDIA

TensorRT to enhance inference performance. During operation, the

spoon-chain seed-metering device moves upward sequentially with

the implement. When a seed spoon reaches the monitoring camera

module, the camera captures real-time motion video of the seed-

metering device. The YOLOv5s object detection algorithm deployed
Frontiers in Plant Science 05
on the Jetson TX2 is then utilized to detect potato seeds. By

integrating the RS-485 interface and Modbus RTU protocol,

commands are sent to the lower-level STM32 microcontroller to

obtain information on whether the current spoon has missed

seeding. If a potato seed is detected in the spoon, the model

continues monitoring. Otherwise, upon receiving the miss-seeding

data, the microcontroller executes a program to send a reseeding

command to the compensation system, completing the

reseeding process.

The structural schematic of the miss-seeding detection module

is shown in Figure 4. The CCD industrial camera is mounted at the

front end of an aluminum alloy bracket above the seed box, with its

lens angled downward at 25 to align with the motion trajectory of

the seed spoons on the seed-metering chain, enabling real-time

detection of whether the upward-moving spoons are properly

loaded with potato seeds. The center of the camera lens maintains

a horizontal distance of 15 cm from the seed-metering chain with a

field of view covering a detection area of approximately 10 cm × 8

cm. An LED ring light is installed at the same horizontal level as the

camera to provide supplemental illumination. Both camera and ring

light unit are enclosed in an IP65-rated transparent dustproof

enclosure. The bracket is fixed with vibration-damping pads to

ensure stability under demanding operating conditions.
FIGURE 3

Miss-seeding detection control flowchart. This diagram presents the closed-loop process in chronological order, including data collection and
annotation, server-side training and model conversion, edge-side inference and instruction issuance, and the execution of supplementary
broadcasting. After the detection module outputs the target box and category, the control module determines whether supplementary broadcasting
is required based on the particle’s state and displacement information, and sends action instructions to the stepper motor driver.
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3.2 Reseeding module

The control flowchart of reseeding system is illustrated in

Figure 5, encompassing seed preparation and reseeding processes.

Upon system power-up, the microcontroller sends a signal to

activate the stepper motor via the driver, driving the reseeding

belt into motion while simultaneously initiating the fiber optic

sensor. The system determines whether seeds are present on the
Frontiers in Plant Science 06
reseeding belt at the detection position based on changes in the

sensor signal. If no seeds are detected by the fiber optic sensor, the

stepper motor continues moving the reseeding belt; otherwise, the

motor halts, completing seed preparation and awaiting the

microcontroller’s reseeding command. Once the microcontroller

issues a reseeding pulse, the stepper motor drives the reseeding belt

to advance by one working interval, completing the reseeding action

before cycling to the next operation.
FIGURE 4

Structural diagram of the miss-seeding detection module. 1. Ring light; 2. CCD camera; 3. Aluminum alloy bracket; 4. Seed-metering chain; 5.
Potato seed; 6. Seed spoon.
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The reseeding device, as shown in Figure 6, primarily comprises

a fiber optic sensor, driver, stepper motor, reseeding box, reseeding

belt with L-type scrapers, and seed-protecting groove. The stepper

motor driver is directly powered by the tractor’s 12V DC

vehicle power.
3.3 Control circuit

The control circuit, as shown in Figure 7, centers on the

STM32F103ZET6 microcontroller, selected for its Cortex-M3

core, 72 MHz clock speed, and rich peripheral resources (e.g.,

UART, PWM, GPIO) , which meet rea l- t ime contro l

requirements. The fiber optic detection circuit employs a

through-beam fiber optic sensor (MEIJIDENKI, PD-62)

connected to the microcontroller via the PB2 port to monitor the

seed preparation status of the reseeding belt. The driver circuit,

paired with the HY42DJ60 stepper motor, uses a TB6600 driver,

with PWM signals from the PB0 port controlling motor speed and

the PB1 port setting motor direction. Two buttons connected to

PB4 and PB5 enable manual start/stop and mode switching. The

liquid crystal display utilizes a 3.5-inch TFT-LCD module supplied
Frontiers in Plant Science 07
by ALIENTEK to provide real-time feedback on miss-seeding

count, reseeding success rate, and system status. The

microcontroller’s UART interface communicates with the upper-

level NVIDIA Jetson TX2 via differential signal conversion using a

MAX485 chip, operating at a baud rate of 9600 bps and supporting

remote monitoring via the Modbus protocol. An LDO voltage

regulator steps down the 5V power supply to 3.3V for the

microcontroller. All modules are integrated via a PCB, with

shielded cables ensuring stable communication and coordinated

control in complex field environments.
4 Design of miss-seeding detection
algorithms

4.1 Potato seed image acquisition

This experiment was conducted at the Potato Cultivation Base

of Gansu Agricultural University during 2023–2024. A high-

resolution CCD industrial camera (Model: WP-UT320/M, frame

rate: 120 FPS) was used to capture images of potato seeds, with an

image resolution of 2048×1536. Static images were obtained by
FIGURE 5

Flowchart illustrating a reseeding process using a stepper motor and fiber optic detection sensor. The process starts with the motor driving the
reseeding belt to pick up seeds. After activation of the sensor, the system checks for the presence of potato seeds. If detected, the motor stops.If
not, the motor continues moving. Upon stopping, a check for a reseeding signal occurs. If there is a signal, the motor advances the belt for one
reseeding interval. If no signal, the process repeats.
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extracting frames from videos of moving seed spoons, and high-

quality samples were selected through data filtering to construct the

image dataset. Image annotation, a critical step for model training,

employed a manual labeling method, where “Potato seed” and

“Miss seeding” tags were assigned to indicate the presence of

potato seeds and miss-seeding status, respectively. A total of 5,000

annotated images were generated. The final dataset was divided into

training, validation, and test sets in an 8:1:1 ratio. Specifically, the

training set comprises 4,000 images, the validation set contains

1,000 images, and the test set includes 1,000 images, with each

subset meeting specific requirements for data quality and quantity.
4.2 YOLOv5s algorithm overview

To meet the operational requirements of agricultural

machinery, this study employs the YOLOv5s algorithm, known

for its higher accuracy, stronger generalization, and lightweight

design. The network architecture, illustrated in Figure 8,

comprises four main components: Input, Backbone, Neck, and

Head (Li et al., 2024a). After preprocessing the seed spoon images

to match the model’s input dimensions, forward propagation is

performed through the backbone network. YOLOv5s utilizes

CSPDarknet53 as its backbone to extract image features. The

Neck module integrates an FPN+PAN structure, where the

Feature Pyramid Network (FPN) propagates semantic

information top-down, and the Path Aggregation Network

(PAN) transmits localization information bottom-up, generating
Frontiers in Plant Science 08
multi-scale feature maps for the Head module. The Head module,

designed for lightweight efficiency, combines multi-scale

convolutions and upsampling operations to output predictions

for each grid cell, including a fixed number of bounding boxes and

their class confidence scores. To reduce redundant detections, the

Non-Maximum Suppression (NMS) algorithm is applied to retain

the highest-confidence bounding boxes while suppressing others

with Intersection over Union (IoU) exceeding a preset threshold

(Symeonidis et al., 2023).

The objective function during the training phase consists of three

components: boundary box regression, object confidence, and class

classification. Let the i-th anchor and its corresponding ground truth

box be bi and b*i , respectively. Let p̂ i represent the predicted

probability of object presence, yi∈{0,1} be the indicator variable,

and q̂ i be the predicted class distribution. The total loss is given by

Equation 1. Here, BCE(a,b) represents the binary cross-entropy

loss, as shown in Equation 2. The boundary box regression is based

on the Complete Intersection over Union (CIoU), as described in

Equations 3–5. In these equations, (x, y, w, h) and (x*, y*, w*, h*)

denote the center and scale of the predicted and ground truth boxes,

respectively, r is the Euclidean distance between the center points,

and c is the diagonal length of the smallest enclosing box. lbox ,   lobj,
lcls are the loss weights. To align with the baseline, the training

strategy and weight settings remain consistent.

L = lboxo
i
LCIoU(bi, b*i ) + lobjo

i
BCE(p̂ i, yi) + lclso​(i : yi

= 1)BCE(q̂ i, q*i ) (1)
FIGURE 6

Structural diagram of the reseeding device. 1. L-type scraper; 2. Reseeding belt; 3. Fiber optic sensor; 4. Seed compensation port; 5. Stepper motor;
6. Reseeding follower wheel; 7. Seed outlet; 8. Reseeding box.
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FIGURE 7

Diagrams of electronic circuits. Diagrams of electronic circuits for various modules including optical fiber sensor, key circuit, RS485 bus, LCD display,
start mode, reset, crystal oscillator, USB-powered network, motor drive, and 5V to 3.3V. The central section displays a detailed microcontroller unit
(MCU) pinout. Each diagram includes labeled components and connections.
FIGURE 8

Diagram of YOLOv5s network architecture. The network architecture consisting of input, backbone, neck, and head stages. The backbone includes
Focus, CBL, CSP modules, and an SPP block, progressing through upsample layers. The neck features CSP2 modules connected by concatenation.
The head comprises convolution layers outputting three distinct dimensions: 80×80×255, 40×40×255, and 20×20×255. Detailed sections show the
internal structure of CBL, Res Unit, CSP modules, and SPP block.
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BCE(a, b) = −½b ln(a)  +  (1 − b) ln(1 − a)� (2)

LCIoU(b, b*) = 1 − IoU(b, b*) + r2((x, y), (x*, y*))=c2 + av (3)

v = 4=p2(arctan(w*=h*) − arctan(w=h))2 (4)

a = v=(1 − IoU(b, b*) + v) (5)
4.3 Algorithmic improvements

4.3.1 Introduce the CBAM attention mechanism
To mitigate the impact of complex field backgrounds and high-

dust environments on potato miss-seeding detection performance

during agricultural operations and enhance the model’s adaptability

to challenging scenarios, this study integrates the Convolutional

Block Attention Module (CBAM) into the original YOLOv5s

framework, as illustrated in Figure 9. The CBAM comprises two

submodules: the Channel Attention Module (CAM, Figure 9A) and

the Spatial Attention Module (SAM, Figure 9B). The CAM

enhances feature representation of critical channels by applying

attention weights to each channel of the feature map, while the SAM

assigns spatial attention weights to prioritize key spatial regions.

The combined CBAM (Figure 9C) dynamically learns both

channel-wise and spatial attention distributions through the

synergistic interaction of CAM and SAM, thereby improving

feature extraction efficiency and network representational

capacity, ultimately optimizing model performance (Zeng and He,

2024, Lv and Su, 2024). To enhance the model’s performance and

adaptability in potato miss-seeding detection under complex field

backgrounds and high-dust environments during agricultural

operations, this study incorporates an attention module into the
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final fusion output of three-scale branches, corresponding to the

output of the CSP module. The features are subsequently passed

directly to the detection head. The channel branch first computes

two sets of statistics, with a length of C, using global average pooling

(AvgPool) and global max pooling (MaxPool). These statistics are

then mapped non-linearly using a shared two-layer perceptron and

processed through a sigmoid function to obtain the channel

weights. The input features are then re-weighted channel-wise to

generate intermediate features. The spatial branch concatenates

the averaged-pooled intermediate features and max-pooled

intermediate features along the channel dimension, applies a 7×7

convolution, and processes the result through a sigmoid function to

obtain spatial weights. These spatial weights are then element-wise

multiplied with the intermediate features to produce the output

features. To control model complexity, the channel compression

ratio is set to 16. This modification does not alter the anchor box or

post-processing configuration, nor does it affect the loss function or

training strategy, facilitating direct reuse and deployment on

embedded platforms.

Let the fused neck feature be F∈R^(C×H×W). In the

channel branch, global average and max pooling are used to

extract statistics, which are then passed through a shared two-

layer perceptron to obtain the channel weights as shown in

Equation 6.

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F))) (6)

Where s denotes the sigmoid function Mc∈R^(C×1×1),
producing F0=·Mc(F) ⊗ F. In the spatial branch, the intermediate

feature is averaged-pooled and max-pooled along the channel

dimension, concatenated, and convolved to generate the spatial

weightsas shown in Equation 7.

Ms(F
0) = s (f (k�k)(½AvgPoolc(F0);MaxPoolc(F

0)�)) (7)
FIGURE 9

Structural diagram of CBAM. (A) Channel attention module; (B) Spatial attention module; (C) Convolutional block attention module.
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WhereMs∈R^(1×H×W), yielding the final output F″ ·=·Ms(F
0)

⊗ F0. In this study, the module is inserted sequentially at the output

of the CSP module, with a channel compression ratio r = 16 and a

spatial convolution kernel size k = 7

The YOLOv5s object detection framework employs the

weighted Non-Maximum Suppression (NMS) algorithm, with its

calculation formula provided in Equation 8. This algorithm filters

candidate bounding boxes based on Intersection over Union (IoU)

through the following steps: firstly, all bounding boxes within the

same category are sorted by confidence scores in descending order;

subsequently, the bounding box with the highest score is selected;

finally, the IoU between this box and the remaining boxes is

calculated, and those exceeding a preset threshold are discarded.

In potato miss-seeding detection, due to the similar shapes and sizes

of potato seeds, the detection algorithm often generates multiple

overlapping bounding boxes, resulting in increased IoU values.

When applying weighted NMS, only one bounding box may be

retained while other overlapping potato seed bounding boxes are

erroneously excluded, leading to biased detection results.

Si =
Si,               IoU(M, bi) < Nt

0,                 IoU(M, bi) ≥ Nt

(
(8)

Where Si represents the score of the i-th detection box, M

denotes the detection box with the highest score, bi corresponds to

the i-th detection box, and Nt is the preset IoU threshold.

The performance of NMS is highly sensitive to the selection of

Nt, an overly high threshold may lead to missed detection, while an

excessively low threshold risks false positives. To address the loss of

detection targets caused by improper threshold settings, this study

adopts Soft-NMS to refine the original NMS algorithm, with its

calculation formula detailed in Equation 9.

Si =
Si,                                    IoU(M, bi) < Nt

Si(1 − IoU(M, bi)),          IoU(M, bi)   ≥ Nt

(
(9)

Soft-NMS enhances detection performance by progressively

reducing the scores of overlapping detection boxes instead of

directly discarding low-score boxes, offering a more flexible

processing approach (Ma et al., 2024; Zhang et al., 2022).
4.4 Model training

4.4.1 Test rig and model parameters
This experiment was conducted on an Ubuntu 16.04 operating

system using PyCharm 1.13.0 as the development environment with

Python 3.9. The computer configuration included an Intel Core i7–

8700 CPU, NVIDIA GTX 3070Ti GPU, and 32 GB RAM. The

model training parameters were set as follows: input image

dimensions for potato miss-seeding detection were 2048×1536,

the SGD optimizer was used for gradient optimization with a

momentum of 0.9, an initial learning rate of 0.01 (maintained at

0.01 throughout training), weight decay of 0.0005, a batch size of 8,

and 150 epochs of training.
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4.4.2 Indicators for model evaluation
To validate the effectiveness of the detection model, this study

employs Precision (P), Recall (R), and mean Average Precision

(mAP) as evaluation metrics, with their calculation formulas

provided in Equations 10–12. Precision reflects the accuracy of

predictions for both proper seed placement and miss-seeding status

in the seed spoons. Recall measures the model’s ability to detect

these two states, while mAP serves as a comprehensive metric for

evaluating the model’s overall accuracy. The closer the above metric

values are to 1, the better the detection performance of the model.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

mAP =
1
No

N

i=1
APi (12)

Where, TP (True Positive) represents the number of positive

samples correctly identified by the model; FP (False Positive)

denotes the number of negative samples incorrectly classified as

positive; FN (False Negative) indicates the number of positive

samples that the model failed to detect; mAP (Average Precision)

is the area under the Precision-Recall (P-R) curve for each category;

and N is the total number of detection categories.

4.4.3 Ablation experiment
Based on the original YOLOv5s algorithm, the CBAM attention

mechanism and improved non-maximum suppression (NMS) are

respectively introduced. Ablation experiments numbered I, II, III,

and IV are designed on a custom dataset, with the experimental

results shown in Table 1 Results of ablation tests.

In Test I (original YOLOv5s), the precision (P), recall (R), and

mean average precision (mAP) were 96.02%, 96.31%, and 99.12%,

respectively, demonstrating high baseline performance. In Test II

with the addition of CBAM, P increased by 0.88% to 96.90%, R

improved by 0.19% to 96.50%, and mAP rose by 0.08% to 99.20%,

indicating that CBAM enhances feature extraction capabilities and

improves detection accuracy in complex backgrounds. In Test III

using Soft-NMS, P significantly increased by 2.28% to 98.30%,mAP

reached 99.20%, but R decreased by 0.21% to 96.10%, validating the

advantage of Soft-NMS in reducing false positives while suggesting

a potential weakening of recall capability for some samples. In Test

IV combining CBAM and Soft-NMS, P reached 98.30%, R achieved

99.40%, and mAP attained 99.40%, respectively representing

improvements of 2.28%, 3.09%, and 0.28% over Test I,

demonstrating that the synergistic interaction of the two modules

significantly optimizes model performance, particularly in

minimizing missed and false detections.

4.4.4 Test result display
Analysis of the loss variation curve of the improved network

reveals that the loss value decreases significantly within the first 50
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epochs, gradually converges between 50 and 100 epochs, indicating that

the proposed model achieves loss convergence with fewer training

cycles. After 100 epochs, the network integrating the CBAM attention

mechanism and the improved non-maximum suppression (Soft-NMS)

demonstrates higher accuracy stability during training, approaching a

stable valuemore closely compared to the original YOLOv5s algorithm,

as shown in Figure 10.

Compared to existing methods, the improved YOLOv5s algorithm

proposed in this study demonstrates more pronounced advantages in

target feature extraction and overlapping target suppression. The

traditional YOLOv5s framework is often affected by background

interference such as soil, shadows, and weeds in complex field

environments, leading to insufficient feature representation and,

consequently, limited detection accuracy. Moreover, the standard

Non-Maximum Suppression (NMS) method it relies on often causes

missed detections due to “hard rejection” when processing highly

overlapping potato seed bounding boxes, negatively impacting recall

rate. To address these issues, this study introduces the CBAM attention

mechanism and the Soft-NMS algorithm into YOLOv5s. The CBAM

(Convolutional Block Attention Module) enhances the expression of
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key features through channel and spatial attention weighting,

significantly improving robustness in complex backgrounds. The

Soft-NMS algorithm softens the suppression strategy, reducing false

positives while mitigating missed detections, which greatly improves

the recognition ability of overlapping targets. Ablation experiments

further validate the effectiveness of these improvements. After

integrating CBAM and Soft-NMS, the model demonstrates

substantial improvements in precision, recall rate, and mean Average

Precision (mAP). These results indicate that the improved YOLOv5s

model offers superior performance and adaptability in agricultural

miss-seeding detection tasks compared to existing approaches.
5 Performance tests

5.1 Test condition

Building upon the aforementioned principles, systematic

hardware and software designs were implemented, completing the

manufacturing of the potato planter. The miss-seeding detection,

automatic compensation, and control systems were installed and

debugged. Powered by tractor traction, experimental validation

confirmed the system’s feasibility and reliability, with the testing

process illustrated in Figure 11.
5.2 Test content and indicators

5.2.1 Reseeding system test
The primary objective of this experiment was to simulate

scenarios where the reseeding belt lacked potato seeds, testing
TABLE 1 Results of ablation tests.

Test no.
Module setting

P/% R/%
mAP/
%CBAM Soft_NMS

I – – 96.02 96.31 99.12

II ✓ – 96.90 96.50 99.20

III – ✓ 98.30 96.10 99.20

IV ✓ ✓ 98.30 99.40 99.40
“√” indicates that the module is added; “-” indicates that the module is not added.
FIGURE 10

Loss and evaluation metric change charts of the improved model training. During the training of the improved detection model, the loss decreases
with each epoch, and metrics such as precision and recall are good and stable, indicating that the model training is effective.
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whether the preparatory seed preparation system could

automatically replenish seeds and whether the reseeding system

could effectively reseed. A total of five batches were conducted, with

each batch controlled to have 50 miss-seeding instances; thus, the

theoretical number of preparatory seeds per batch was also 50.

Table 2 Reseeding system test results presents the experimental

results of the reseeding system. The data indicate that while the

preparatory seed reseeding success rate was high, there were 1 and 2

unsuccessful cases in batches 3 and 4, respectively, caused by

mechanical jamming. The preparatory seed reseeding success rate

was calculated as the number of reseeding success divided by the

actual number of preparatory seeds. The reseeding success rate of

preparatory seeds in Table 2 demonstrate high performance (no less

than 85% across trials), with failures primarily attributed to potato

seed bouncing or collisions during the compensation process, which

significantly altered the trajectory of the potato seeds, leading to

unsuccessful reseeding.

5.2.2 Performance test of miss-seeding detection
and reseeding system

The miss-seeding detection and reseeding system must not

compromise the operational quality of the seed-metering device,

so its performance is evaluated based on the reseeding success rate

under varying linear speeds of the seed-metering chain. In this

experiment, the planting spacing was fixed at 110 mm using cut

potato seeds, with seed-metering chain linear speeds set to 0.2 m/s,
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0.3 m/s, and 0.4 m/s, representing low-speed, medium-speed, and

high-speed operating conditions, respectively. Each speed level was

tested three times, with a theoretical seed count of 300 potatoes per

trial. The objective was to validate the reliability of the improved

YOLOv5s-based detection system, preparatory seed preparation

system, and reseeding mechanism under dynamic conditions. To

ensure accurate data collection, the experiment recorded the

original seeding count, original miss-seeding count, reseeding

count, final seeding count, and final theoretical seeding count,

with their relationships defined as shown in Equation 13.

n4 = n0 + n1

n3 = n4 − n1 + n2

(
(13)

no represents the original seeding count (unit: grain), which is

the actual number of seeds sown by seed-metering device without

any compensatory measures; n1 represents the original miss-

seeding count (unit: grain), which is the number of seeds missed

due to seed pickup failure during the seeding process; n2 represents

the reseeding count (unit: grain), which is the additional number of

seeds placed by the reseeding mechanism after miss-seeding

detection; n3 represents the final seeding count (unit: grain),

which equals the sum of the original seeding and reseeding

numbers, reflecting the actual final seeding result in the field; n4

represents final theoretical seeding count (unit: grain), which equals

the sum of the original seeding and the original miss-seeding
FIGURE 11

Field testing diagram. The diagram illustrates the field testing process after the installation and debugging of the miss-seeding, automatic
compensation, and control system.
TABLE 2 Reseeding system test results.

Test
batch

Preparatory seeds
(theoretical)

Preparatory seeds
(actual)

Preparatory seeds
success rate

Number of
reseeding success

Reseeding
success rate

1 50 50 100% 45 90%

2 50 50 100% 44 88%

3 50 49 98% 42 86%

4 50 48 96% 41 85%

5 50 50 100% 43 86%
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numbers, representing the total number of seeds that should be

sown under ideal conditions without any missed seeding. This value

is used as a theoretical benchmark to evaluate the seeding accuracy

of the system.

Based on statistical data, the original miss-seeding rate (h1)

could be calculated as the ratio of miss-seeding count to the

theoretical seeding count without the system as shown in

Equation 14.

h1 =
n1
n4

� 100% (14)

The final miss-seeding rate (h2) after using the miss-seeding

detection and reseeding system was calculated as the final miss-

seeding count divided by the theoretical seeding count as shown in

Equation 15.

h2 =
n1 − n2
n4

� 100% (15)

The reseeding success rate (h3) of the system is shown in

Equation 16.

h3 =
n2
n1

� 100% (16)

By recording the seed-taking process of the seed-metering

device, the miss-seeding detection process, and the reseeding

process during each trial group, statistical analysis was conducted

for each trial group, and the results are presented in Table 3 Results

of seed taking and reseeding performance tests.

Based on the data in Table 3 Results of seed taking and

reseeding performance tests, the performance of the improved

YOLOv5s-based spoon-chain potato seed-metering device’s miss-

seeding detection and scraper-belt compensation system exhibits

distinct patterns under different sprocket linear speeds. At a low

speed of 0.2 m/s, the original miss-seeding rate remained within

5.28%–5.88% across three repeated trials, averaging 5.28%,

indicating a low probability of missed seeding. With the
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intervention of the reseeding system, the final miss-seeding rate

fluctuated between 0.70% and 1.04%, averaging 0.70%, while the

reseeding success rate stabilized at 80.00%–86.67%, averaging

86.67%. This demonstrates that the improved YOLOv5s model

efficiently identifies miss-seeding positions at low speeds with

minimal false positives or negatives, and the scraper-belt

compensation mechanism achieves high operational precision,

ensuring stable detection and reseeding performance under low-

speed conditions.

When the sprocket linear speed increased to 0.3 m/s, the system

exhibited slight performance variations. The original miss-seeding

rate rose moderately to 6.57%–7.14% (average: 6.57%), and the final

miss-seeding rate increased slightly to 1.02%-1.05% (average:

1.04%), yet remained low. The reseeding success rate ranged from

82.35% to 85.71% (average: 84.21%), showing a minor decline

compared to low-speed conditions but maintaining high

effectiveness. This confirms that the improved YOLOv5s model

retains strong detection capabilities at medium speeds, and the

compensation mechanism remains stable.

However, at a high speed of 0.4 m/s, system performance

degraded significantly. The original miss-seeding rate surged to

9.25%–9.87% (average: 9.40%), aligning with findings from (Zhang,

2024), where faster speeds reduce seed population refill efficiency

between adjacent holes in the seed-filling zone, increasing miss-

seeding rate. The final miss-seeding rate rose to 1.71%–2.00%

(average: 1.68%), reflecting amplified mechanical vibrations and

dynamic instability in the seed-metering device under high-speed

operation, which complicates detection. The reseeding success rate

declined to 79.31%–81.48% (average: 82.14%), indicating delays in

the dynamic response of detection and compensation components

under high-speed conditions, impairing reseeding accuracy.

Performance trends across speeds reveal the system’s strengths

and limitations. At low speed (0.2 m/s), the integration of the

improved YOLOv5s model with CBAM, Soft-NMS, and the

scraper-belt mechanism achieves near-ideal balance between
TABLE 3 Results of seed taking and reseeding performance tests.

Seeding speed Test number n0 n1 n2 h1 h2 h3

0.2m/s

1 272 17 14 5.88% 1.04% 82.35%

2 266 15 13 5.34% 0.71% 86.67%

3 269 15 12 5.28% 1.06% 80.00%

Averages 269 15 13 5.28% 0.70% 86.67%

0.3m/s

1 270 19 16 6.57% 1.04% 84.21%

2 269 17 14 5.94% 1.05% 82.35%

3 273 21 18 7.14% 1.02% 85.71%

Averages 270 19 16 6.57% 1.04% 84.21%

0.4m/s

1 265 27 22 9.25% 1.71% 81.48%

2 274 30 24 9.87% 1.97% 80.00%

3 271 29 23 9.67% 2.00% 79.31%

Averages 270 28 23 9.40% 1.68% 82.14%
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detection precision and reseeding efficiency, making it highly

suitable for precision planting scenarios with low speed

requirements. Medium-speed (0.3 m/s) results confirm the

system’s viability under typical field conditions, with only minor

performance degradation. However, the increased miss-seeding rate

and reduced reseeding success at high speed (0.4 m/s) highlight

current design limitations under dynamic stress, necessitating

further optimization for high-speed applications.
6 Conclusion

This study developed an improved YOLOv5s-based spoon-

chain potato seed-metering device miss-seeding detection and

reseeding system, integrating a preparatory seed scraper-belt

mechanism to achieve precise miss-seeding identification and

rapid reseeding. By incorporating the CBAM attention

mechanism and Soft-NMS, the model’s detection accuracy was

enhanced, with ablation experiments demonstrating precision,

recall, and mAP of 98.30%, 99.40%, and 99.40%, respectively. The

system operates in real time on the NVIDIA Jetson TX2 platform,

meeting embedded application requirements. Tests showed that at

low speed (0.2 m/s), the original miss-seeding rate was 5.28%,

reduced to 0.70% after reseeding, with a reseeding success rate of

86.67%; at medium speed (0.3 m/s), the original miss-seeding rate

was 6.57%, reduced to 1.04%, with a success rate of 84.21%; at high

speed (0.4 m/s), the original miss-seeding rate was 9.40%, reduced

to 1.68%, with a success rate of 82.14%. The system performed

excellently at low-to-medium speeds but slightly declined at high

speeds due to vibrations. The scraper-belt mechanism achieved a

preparatory seed preparation success rate exceeding 96%,which

effectively improved the continuity and stability of the operation.

The experimental results not only validated the system’s

performance across varying speed conditions but also uncovered

several critical patterns. The system maintained high stability and

precision at low and medium speeds, demonstrating the strong

robustness of the improved algorithm in complex environments.

However, performance deteriorated under high speeds, highlighting

that the interplay between detection–compensation response time and

vibration suppression capacity constituted a major limiting factor.

These findings further demonstrates that the sequential collaborative

design of visual detection and mechanical compensation is feasible and

effective in agricultural scenarios, though improvements remained

necessary under extreme operating conditions.

Despite the significant progress achieved, several limitations

persist. Performance decline during high-speed operations

indicated that both the real-time responsiveness of detection–

compensation and the dynamic stability of the mechanical

structure under intense vibrations require further enhancement.

In addition, the method primarily relied on visual sensors, which

were susceptible to interference from changes in lighting, dust

occlusion, and motion blur, potentially affecting detection

reliability in extreme field environments. The system’s decision-
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making solely relies on visual information, without fusion

feedback from multimodal sensors such as infrared and pressure

sensors, which limits its robustness and adaptability across

different environments. Future research will focus on lightweight

optimization and heterogeneous acceleration of detection algorithms

to reduce inference latency and enhance responsiveness under high

speeds. At the same time, a multi-sensor fusion strategy will be

introduced to enhance the system’s perception redundancy and

reliability. Furthermore, the system’s generalizability will be further

validated in different crop sowing scenarios, and, when combined

with intelligent operational planning in precision agriculture, its

application potential and value for broader deployment will be

significantly expanded.
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