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compensation mechanism based
on improved YOLOvSs for potato
seed-metering devices
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Wei Sun, Guanping Wang, Quan Feng and Sen Yang

College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China

This study addresses the issue of miss seeding in spoon-chain potato seed-
metering devices, which impacts planting efficiency and quality, by proposing a
miss-seeding detection and compensation system based on an improved
YOLOvV5s model integrated with a preparatory seed scraper-belt compensation
mechanism. The enhanced model incorporates the Convolutional Block
Attention Module (CBAM) and Soft Non-Maximum Suppression (Soft-NMS),
achieving a mean average precision (mAP) of 99.40% in complex field
environments. The system combines visual recognition with mechanical
compensation. Experimental results demonstrate that at operating speeds of
0.2-0.4 m/s, the original miss-seeding rate of 5.28%—-9.40% is reduced to
0.70%—-1.68%, with a reseeding success rate of 82.14%-86.67% and a
preparatory seed reseeding success rate exceeding 96%. The study validates
the system’s efficiency and reliability under medium-low speeds, with slight
performance degradation at higher speeds due to vibrations. This solution offers
an intelligent upgrade path for traditional potato seed-metering devices and
advances precision agriculture technologies.

potato, spoon-chain seed-metering device, visual detection, automatic reseeding,
improved YOLOVS5s

1 Introduction

The potato is a crucial food crop globally, and the level of mechanized planting
significantly impacts its yield and profitability. The spoon-chain seed metering device is
commonly employed in potato planter due to its uncomplicated design and versatility.
Nevertheless, challenges arise from the inherent physical attributes of seeds, such as uneven
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size and surface viscosity, as well as operational factors like
vibration and dust. Consequently, miss-seeding occurrences are
common, resulting in uneven emergence and reduced yields in the
field (Wang et al., 2020). Hence, the exploration of effective
detection and compensation technologies for miss-seeding is
essential to enhance the efficiency of mechanized potato planting.

Traditional miss-seeding detection methods predominantly rely
on photoelectric sensors, ultrasonic sensors, or mechanical contact
detection. For instance, Zhang et al. (2013) designed a miss-seeding
detection system based on infrared photoelectric sensors combined
with a stepper motor for reseeding. However, this approach is
susceptible to interference from field dust during operation. Wen
et al. (2022) proposed a miss-seeding detection and reseeding
system for belt-spoon type seed-metering devices, utilizing
photoelectric sensors and electromagnetic actuators. It achieved a
100% detection success rate and 83% reseeding success rate within a
speed range of 0.14-0.54 m/s. While the system benefits from rapid
response, its adaptability to complex field environments remains
limited. Additionally, Guan et al. (2021) explored multi-sensor
fusion for miss-seeding detection, which improved robustness but
increased system complexity and cost.

To address the insufficient anti-interference capability of
photoelectric sensors, recent studies have shifted toward
alternative detection techniques. Wang et al. (2023) developed a
miss-seeding detection method based on spatial capacitive sensors,
employing the AD7745 high-precision capacitive chip to determine
miss-seeding status by detecting net changes in capacitance values
as seed spoons pass through capacitive electrode plates. Lei et al.
(2022) designed a miss-seeding detection and reseeding system
using a “displacement positioning method,” integrating permanent
magnet arrays, Hall sensors, and diffuse-reflective photoelectric
switches, achieving a detection accuracy of 96.54%. While
these methods perform well under specific conditions, they
exhibit limitations in high-speed operations or dynamically
variable environments.

In recent years, the application of deep learning in agricultural
machinery has introduced novel technical pathways for miss-
seeding detection (Rizvi et al., 2024; Thomas et al., 2021). Object
detection algorithms based on Convolutional Neural Networks
(CNNs) have been widely adopted in agricultural scenarios due to
their efficiency and accuracy. For example, Faster R-CNN, utilizing
a Region Proposal Network (RPN), achieves high precision in crop
disease detection. Liang et al. (2024) applied this algorithm to
identify corn leaf disease spots, attaining a mean average
precision (mAP) of 92.8%. At the same time, numerous new
technologies have emerged in object detection. Joint detection
and tracking methods based on reinforcement learning have
demonstrated substantial potential in radar target recognition (Li
et al,, 2024b). Additionally, significant breakthroughs in
hyperspectral image analysis, open set recognition, and
underwater color difference studies have provided crucial insights
for visual perception in complex environments (Xu et al., 2025a, Xu
etal, 2025b; Li et al,, 2025). These technological advancements offer
new possibilities for enhancing the performance of agricultural
visual detection tasks.
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In agricultural applications with high real-time requirements,
YOLO series algorithms are highly favored due to their outstanding
speed advantage. Kang et al. (2020); Deng et al. (2025) developed a
vision system for fruit-picking robots based on YOLOV3, achieving
a detection speed of 25 frames per second (FPS) and an 87%
recognition rate in complex orchard environments. As the latest
iteration, YOLOV5 further optimizes network architecture and
computational efficiency (Sun et al,, 2025). Its lightweight design
makes it particularly suitable for deployment on embedded
platforms (e.g., NVIDIA Jetson series) and widely used in fields
such as autonomous agricultural machinery and crop growth
monitoring (Jocher et al., 2020, Nnadozie et al., 2023). Despite
the YOLO series advancing to YOLOv13, YOLOVS5s retains notable
advantages, particularly on resource-constrained embedded
hardware platforms (Lawal et al., 2023; Li et al, 2024b).
Compared to YOLOv13, YOLOvVS5s significantly reduces
computational requirements, which make it more suitable for
efficient real-time detection on low-power devices (Lazarevich
et al,, 2023). In the agricultural sector, especially in mechanized
planting, there is a need for deploying systems on low-cost, high-
performance compact devices. The optimized YOLOvV5s
model structure enhances real-time processing and reduces
computational costs, effectively meeting the detection demands of
agricultural machinery in dynamic environments. It is particularly
well-suited for embedded systems (e.g., NVIDIA Jetson TX2) and
can perform real-time miss-seeding detection tasks, without
adversely affecting the device’s power consumption or
performance (Wu et al., 2023).

However, the original YOLOVS5 still faces limitations in complex
field environments. Due to background noise (e.g., weeds, soil
texture, lighting variations) and target diversity (e.g., visual
similarity between seeds and soil), the model is prone to missed
or false detections (Tan et al., 2025), leading to reduced accuracy
(Xu et al,, 2024; Liu et al., 2025). To address this, researchers have
proposed various improvements. The integration of attention
mechanisms significantly enhances the model’s ability to focus on
critical features. Woo et al. (2018) proposed the Convolutional
Block Attention Module (CBAM), which strengthens the
representational capacity of target regions through spatial and
channel attention, improving mAP by approximately 2%-3% in
object detection tasks. Bodla et al. (2017) validated its effectiveness
on the COCO dataset. These enhancements broaden YOLOV5’s
applicability in complex agricultural scenarios.

Notably, visual-based research on miss-seeding detection for
potato seed-metering devices remains scarce. Existing technologies
predominantly focus on traditional sensor-based methods (Wang
et al., 2024; Zhang et al,, 2022; Qiu et al,, 2023), which struggle to
meet the demand for efficient detection under complex field
conditions. This gap underscores the vast potential for deep
learning in advancing potato miss-seeding detection technologies.

In summary, potato seed-metering devices still face challenges
in miss-seeding detection and compensation technology:

In response to the above challenges, this study proposes a miss-
seeding detection and preparatory seed scraper-belt compensation
mechanism based on improved YOLOv5s model for a spoon-chain
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FIGURE 1

Structural scheme diagram of the miss-seeding detection and compensation system of spoon-chain metering device. 1. Storage box; 2. Miss-
seeding detection device; 3. Seed spoon; 4. Seed-metering chain; 5. Seed box; 6. Seed protection groove; 7. Reseeding device.

potato seed-metering device, At the software level, integrating the
CBAM attention mechanism and the Soft-NMS optimization
algorithm enhances the model’s feature extraction capability in
dusty, complex backgrounds, and overlapping seed conditions,
significantly improving the accuracy and robustness of miss-
seeding detection. At the hardware level, the innovative scraper-
belt compensation mechanism, which involves precise seed
presetting and rapid reseeding, substantially enhances stability
and efficiency during high-speed operations. The collaboration
between the NVIDIA Jetson TX2 (for visual inference) and the
STM32 microcontroller (for mechanical control) creates a
‘perception-decision-execution’ closed-loop control system. This
integration effectively addresses the disconnection between
detection and reseeding phases in existing methods, resulting in
efficient miss-seeding detection and accurate compensation in
complex operational environments.

2 Overall design
2.1 The basic structure of the system

The spoon-chain seed-metering device primarily consists of a
seed box, seed spoons, seed-protecting grooves, and a seed-metering
chain. As shown in Figure 1, each device is equipped with a miss-
seeding detection unit and a preparatory seed scraper-belt
compensation mechanism unit.When a potato seed is lifted to its
highest point using a seed spoon, it naturally falls back down due to
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gravity onto the backside of the previous spoon and a compensation
port is located at this natural drop point. A reseeding belt with L-
type scrapers is installed on the seed-protecting groove near the
compensation port. A fiber optic sensor is mounted at the front end
of the reseeding belt to monitor seed availability. A reseeding box is
installed above the end of the reseeding belt, featuring a seed outlet
at its bottom. To prevent potato seeds from jamming, the outlet size
is designed to accommodate a single potato seed. The reseeding box
also houses a storage box containing the NVIDIA Jetson TX2 (for
model deployment), a microcontroller, motor driver, and an
LCD display.

1.Storage box 2.Miss-seeding detection device 3.Seed spoon
4.Seed-metering chain 5.Seed box 6.Seed protection groove 7.
Reseeding device.

2.2 Hardware composition

The hardware structure of the miss-seeding detection and
reseeding system is shown in Figure 2. The hardware components
of the miss-seeding and compensation system mainly include a
miss-seeding detection module, a reseeding module, and a control
module. Among these, the miss-seeding detection module includes
an embedded AI computing device (NVIDIA Jetson TX2), a CCD
industrial camera, and ring light; the reseeding module comprises a
fiber optic sensor, driver, stepper motor, and reseeding mechanism
(reseeding belt and reseeding box). The STM32F103ZET6
microcontroller is selected as the lower-level controller, which
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FIGURE 2

The hardware structure diagram of the system. The hardware structure includes three modules with Detection, Control, and Reseeding. Detection
uses CCD camera, NVIDIA Jetson TX2 and ring light; Control involves MCU, human-computer interaction, and liquid crystal display, Reseeding
employs motor driver, stepper motor, fiber optic sensors and reseeding mechanism.

controls the reseeding device to prepare and replenish seeds based
on detection results from the fiber optic sensor and the upper-level
controller NVIDIA Jetson TX2. The system is powered by a 12V
DC vehicle power supply from the tractor.

2.3 Working principle

The spoon-chain seed-metering device moves upward with the
implement during operation. When a seed spoon enters the field of
view of the CCD industrial camera, the camera captures real-time
video of the spoon’s motion. The video stream is transmitted to the
NVIDIA Jetson TX2 development board via a USB 3.0 interface.
The Jetson TX2, running an improved YOLOvV5s miss-seeding
detection algorithm, analyzes whether the seed spoon contains a
potato seed. If a seed is detected, the system proceeds with normal
seeding. If no seed is detected (empty spoon), the Jetson TX2 sends
a signal to the STM32 microcontroller which generates a reseeding
pulse. This pulse drives the stepper motor through a driver,
activating the reseeding mechanism to replenish the missed seed.

Prior to reseeding, the system prepares seeds through the
following process: The distance between two L-type scrapers on
the reseeding belt defines a working interval. Upon system startup,
the stepper motor drives the reseeding belt to move. The L-type
scrapers push potato seeds from the seed outlet toward the seed-
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metering device. When a working interval reaches the fiber optic
sensor’s detection position, the sensor checks for seed presence by
monitoring light path obstruction. If no seed is detected, the stepper
motor advances the belt to the next interval. The process continues
until a seed is detected within the working interval, at this point, the
motor stops, completing seed preparation and waiting for
reseeding signals.

3 Design of miss-seeding detection
and reseeding system

This system adopts a serial workflow of “visual detection first,
followed by mechanical compensation,” which is determined based
on a comprehensive consideration of system reliability, timing
synchronization, and implementation complexity. The
fundamental principle of this method is that miss seeding
depends on accurate identification through visual detection. The
detection process inherently includes delays in image capture,
model analysis, and data transmission. Additionally, the
mechanical reseeding system needs clear instructions and a strict
time frame to perform its tasks. The serial design ensures that
compensation is triggered only after the detection results are
reliably confirmed, thus preventing ineffective compensation or
misactions due to data uncertainty or immature timing. In
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FIGURE 3

Miss-seeding detection control flowchart. This diagram presents the closed-loop process in chronological order, including data collection and
annotation, server-side training and model conversion, edge-side inference and instruction issuance, and the execution of supplementary
broadcasting. After the detection module outputs the target box and category, the control module determines whether supplementary broadcasting
is required based on the particle’s state and displacement information, and sends action instructions to the stepper motor driver.

contrast, while parallel or reverse designs may theoretically reduce
response time, they increase the risk of misactions in high-speed
agricultural operations, resulting in seed wastage or inaccurate
compensation. Therefore, the serial workflow chosen in this study
balances reliability, accuracy, and feasibility under current
technological conditions.

3.1 Miss-seeding detection module

The operation of the detection system consists of two stages:
server training and model deployment, as shown in Figure 3. Firstly,
a dataset of seed spoons is collected and annotated under various
scenarios, followed by offline model training using the custom
dataset on the server. Subsequently, the NVIDIA Jetson TX2
development board, specifically designed for visual applications
and machine learning tasks, is selected to deploy the neural
network model. The converted model is optimized using NVIDIA
TensorRT to enhance inference performance. During operation, the
spoon-chain seed-metering device moves upward sequentially with
the implement. When a seed spoon reaches the monitoring camera
module, the camera captures real-time motion video of the seed-
metering device. The YOLOV5s object detection algorithm deployed
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on the Jetson TX2 is then utilized to detect potato seeds. By
integrating the RS-485 interface and Modbus RTU protocol,
commands are sent to the lower-level STM32 microcontroller to
obtain information on whether the current spoon has missed
seeding. If a potato seed is detected in the spoon, the model
continues monitoring. Otherwise, upon receiving the miss-seeding
data, the microcontroller executes a program to send a reseeding
command to the compensation system, completing the
reseeding process.

The structural schematic of the miss-seeding detection module
is shown in Figure 4. The CCD industrial camera is mounted at the
front end of an aluminum alloy bracket above the seed box, with its
lens angled downward at 25 to align with the motion trajectory of
the seed spoons on the seed-metering chain, enabling real-time
detection of whether the upward-moving spoons are properly
loaded with potato seeds. The center of the camera lens maintains
a horizontal distance of 15 cm from the seed-metering chain with a
field of view covering a detection area of approximately 10 cm x 8
cm. An LED ring light is installed at the same horizontal level as the
camera to provide supplemental illumination. Both camera and ring
light unit are enclosed in an IP65-rated transparent dustproof
enclosure. The bracket is fixed with vibration-damping pads to
ensure stability under demanding operating conditions.
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FIGURE 4

Structural diagram of the miss-seeding detection module. 1. Ring light; 2. CCD camera; 3. Aluminum alloy bracket; 4. Seed-metering chain; 5.

Potato seed; 6. Seed spoon.

3.2 Reseeding module

The control flowchart of reseeding system is illustrated in
Figure 5, encompassing seed preparation and reseeding processes.
Upon system power-up, the microcontroller sends a signal to
activate the stepper motor via the driver, driving the reseeding
belt into motion while simultaneously initiating the fiber optic
sensor. The system determines whether seeds are present on the
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reseeding belt at the detection position based on changes in the
sensor signal. If no seeds are detected by the fiber optic sensor, the
stepper motor continues moving the reseeding belt; otherwise, the
motor halts, completing seed preparation and awaiting the
microcontroller’s reseeding command. Once the microcontroller
issues a reseeding pulse, the stepper motor drives the reseeding belt
to advance by one working interval, completing the reseeding action
before cycling to the next operation.
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Stepper motor drives the reseeding belt to pick up
seeds from the reseeding box
Fiber optic detection
sensor activation
v
Detecting the presence of
] Stepper motor sto
potato seeds at the location PP P
Is there a signal
for reseeding
The stepper motor drives the reseeding belt to Drive the stepper motor fo
continue moving move the rese.edu?g belt for
one reseeding interval
FIGURE 5

Flowchart illustrating a reseeding process using a stepper motor and fiber optic detection sensor. The process starts with the motor driving the
reseeding belt to pick up seeds. After activation of the sensor, the system checks for the presence of potato seeds. If detected, the motor stops.If
not, the motor continues moving. Upon stopping, a check for a reseeding signal occurs. If there is a signal, the motor advances the belt for one

reseeding interval. If no signal, the process repeats.

The reseeding device, as shown in Figure 6, primarily comprises
a fiber optic sensor, driver, stepper motor, reseeding box, reseeding
belt with L-type scrapers, and seed-protecting groove. The stepper
motor driver is directly powered by the tractor’s 12V DC
vehicle power.

3.3 Control circuit

The control circuit, as shown in Figure 7, centers on the
STM32F103ZET6 microcontroller, selected for its Cortex-M3
core, 72 MHz clock speed, and rich peripheral resources (e.g.,
UART, PWM, GPIO), which meet real-time control
requirements. The fiber optic detection circuit employs a
through-beam fiber optic sensor (MEIJIDENKI, PD-62)
connected to the microcontroller via the PB2 port to monitor the
seed preparation status of the reseeding belt. The driver circuit,
paired with the HY42DJ60 stepper motor, uses a TB6600 driver,
with PWM signals from the PBO port controlling motor speed and
the PBI port setting motor direction. Two buttons connected to
PB4 and PB5 enable manual start/stop and mode switching. The
liquid crystal display utilizes a 3.5-inch TFT-LCD module supplied
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by ALIENTEK to provide real-time feedback on miss-seeding
count, reseeding success rate, and system status. The
microcontroller’s UART interface communicates with the upper-
level NVIDIA Jetson TX2 via differential signal conversion using a
MAX485 chip, operating at a baud rate of 9600 bps and supporting
remote monitoring via the Modbus protocol. An LDO voltage
regulator steps down the 5V power supply to 3.3V for the
microcontroller. All modules are integrated via a PCB, with
shielded cables ensuring stable communication and coordinated
control in complex field environments.

4 Design of miss-seeding detection
algorithms

4.1 Potato seed image acquisition

This experiment was conducted at the Potato Cultivation Base
of Gansu Agricultural University during 2023-2024. A high-
resolution CCD industrial camera (Model: WP-UT320/M, frame
rate: 120 FPS) was used to capture images of potato seeds, with an
image resolution of 2048x1536. Static images were obtained by
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FIGURE 6

Structural diagram of the reseeding device. 1. L-type scraper; 2. Reseeding belt; 3. Fiber optic sensor; 4. Seed compensation port; 5. Stepper motor;

6. Reseeding follower wheel; 7. Seed outlet; 8. Reseeding box.

extracting frames from videos of moving seed spoons, and high-
quality samples were selected through data filtering to construct the
image dataset. Image annotation, a critical step for model training,
employed a manual labeling method, where “Potato seed” and
“Miss seeding” tags were assigned to indicate the presence of
potato seeds and miss-seeding status, respectively. A total of 5,000
annotated images were generated. The final dataset was divided into
training, validation, and test sets in an 8:1:1 ratio. Specifically, the
training set comprises 4,000 images, the validation set contains
1,000 images, and the test set includes 1,000 images, with each
subset meeting specific requirements for data quality and quantity.

4.2 YOLOv5s algorithm overview

To meet the operational requirements of agricultural
machinery, this study employs the YOLOv5s algorithm, known
for its higher accuracy, stronger generalization, and lightweight
design. The network architecture, illustrated in Figure 8,
comprises four main components: Input, Backbone, Neck, and
Head (Li et al., 2024a). After preprocessing the seed spoon images
to match the model’s input dimensions, forward propagation is
performed through the backbone network. YOLOV5s utilizes
CSPDarknet53 as its backbone to extract image features. The
Neck module integrates an FPN+PAN structure, where the
Feature Pyramid Network (FPN) propagates semantic
information top-down, and the Path Aggregation Network
(PAN) transmits localization information bottom-up, generating
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multi-scale feature maps for the Head module. The Head module,
designed for lightweight efficiency, combines multi-scale
convolutions and upsampling operations to output predictions
for each grid cell, including a fixed number of bounding boxes and
their class confidence scores. To reduce redundant detections, the
Non-Maximum Suppression (NMS) algorithm is applied to retain
the highest-confidence bounding boxes while suppressing others
with Intersection over Union (IoU) exceeding a preset threshold
(Symeonidis et al., 2023).

The objective function during the training phase consists of three
components: boundary box regression, object confidence, and class
classification. Let the i-th anchor and its corresponding ground truth
box be b; and b?, respectively. Let p; represent the predicted
probability of object presence, y;€{0,1} be the indicator variable,
and g; be the predicted class distribution. The total loss is given by
Equation 1. Here, BCE(a,b) represents the binary cross-entropy
loss, as shown in Equation 2. The boundary box regression is based
on the Complete Intersection over Union (CloU), as described in
Equations 3-5. In these equations, (x, y, w, h) and (x*, y*, w*, h*)
denote the center and scale of the predicted and ground truth boxes,
respectively, p is the Euclidean distance between the center points,
and c is the diagonal length of the smallest enclosing box. Ay, Aopj»
Ags are the loss weights. To align with the baseline, the training
strategy and weight settings remain consistent.

L= lboxEﬂCIoU(bi) b:(.) + 2'ohjEBCE(ﬁi)yi) + A’CBE (Iyz

= 1)BCE(§;,q, ) 1)
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FIGURE 7

Diagrams of electronic circuits. Diagrams of electronic circuits for various modules including optical fiber sensor, key circuit, RS485 bus, LCD display,
start mode, reset, crystal oscillator, USB-powered network, motor drive, and 5V to 3.3V. The central section displays a detailed microcontroller unit

(MCU) pinout. Each diagram includes labeled components and connections.
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FIGURE 8

Diagram of YOLOvV5s network architecture. The network architecture consisting of input, backbone, neck, and head stages. The backbone includes
Focus, CBL, CSP modules, and an SPP block, progressing through upsample layers. The neck features CSP2 modules connected by concatenation.
The head comprises convolution layers outputting three distinct dimensions: 80x80x255, 40x40x255, and 20x20x255. Detailed sections show the

internal structure of CBL, Res Unit, CSP modules, and SPP block.
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BCE(a,b) = —[bIn(a) + (1-b)In(1 - a)] )
LcloU(b,b*) = 1 -1oU(b, b*) + p*((x,3), (x*,y")) /S +av (3)
v = 4/n*(arctan(w” /1) — arctan(w /h))? (4)

o=v/(1-IoU(b,b") +v) (5)

4.3 Algorithmic improvements

4.3.1 Introduce the CBAM attention mechanism
To mitigate the impact of complex field backgrounds and high-
dust environments on potato miss-seeding detection performance
during agricultural operations and enhance the model’s adaptability
to challenging scenarios, this study integrates the Convolutional
Block Attention Module (CBAM) into the original YOLOv5s
framework, as illustrated in Figure 9. The CBAM comprises two
submodules: the Channel Attention Module (CAM, Figure 9A) and
the Spatial Attention Module (SAM, Figure 9B). The CAM
enhances feature representation of critical channels by applying
attention weights to each channel of the feature map, while the SAM
assigns spatial attention weights to prioritize key spatial regions.
The combined CBAM (Figure 9C) dynamically learns both
channel-wise and spatial attention distributions through the
synergistic interaction of CAM and SAM, thereby improving
feature extraction efficiency and network representational
capacity, ultimately optimizing model performance (Zeng and He,
2024, Lv and Su, 2024). To enhance the model’s performance and
adaptability in potato miss-seeding detection under complex field
backgrounds and high-dust environments during agricultural
operations, this study incorporates an attention module into the
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final fusion output of three-scale branches, corresponding to the
output of the CSP module. The features are subsequently passed
directly to the detection head. The channel branch first computes
two sets of statistics, with a length of C, using global average pooling
(AvgPool) and global max pooling (MaxPool). These statistics are
then mapped non-linearly using a shared two-layer perceptron and
processed through a sigmoid function to obtain the channel
weights. The input features are then re-weighted channel-wise to
generate intermediate features. The spatial branch concatenates
the averaged-pooled intermediate features and max-pooled
intermediate features along the channel dimension, applies a 7x7
convolution, and processes the result through a sigmoid function to
obtain spatial weights. These spatial weights are then element-wise
multiplied with the intermediate features to produce the output
features. To control model complexity, the channel compression
ratio is set to 16. This modification does not alter the anchor box or
post-processing configuration, nor does it affect the loss function or
training strategy, facilitating direct reuse and deployment on
embedded platforms.

Let the fused neck feature be FERAN(CxHxW). In the
channel branch, global average and max pooling are used to
extract statistics, which are then passed through a shared two-
layer perceptron to obtain the channel weights as shown in
Equation 6.

M (F) = c(MLP(AvgPool(F)) + MLP(MaxPool(F))) (6)

Where o denotes the sigmoid function M, eRA(Cx1x1),
producing F'=-M_(F) ® F. In the spatial branch, the intermediate
feature is averaged-pooled and max-pooled along the channel
dimension, concatenated, and convolved to generate the spatial
weightsas shown in Equation 7.

M,(F') = o(f*® ([AvgPool (F'); MaxPool,(F')))) 7)
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Where M,ERN(1xHx W), yielding the final output F”-=- M (F')
® F'. In this study, the module is inserted sequentially at the output
of the CSP module, with a channel compression ratio r = 16 and a
spatial convolution kernel size k = 7

The YOLOvV5s object detection framework employs the
weighted Non-Maximum Suppression (NMS) algorithm, with its
calculation formula provided in Equation 8. This algorithm filters
candidate bounding boxes based on Intersection over Union (IoU)
through the following steps: firstly, all bounding boxes within the
same category are sorted by confidence scores in descending order;
subsequently, the bounding box with the highest score is selected;
finally, the IoU between this box and the remaining boxes is
calculated, and those exceeding a preset threshold are discarded.
In potato miss-seeding detection, due to the similar shapes and sizes
of potato seeds, the detection algorithm often generates multiple
overlapping bounding boxes, resulting in increased IoU values.
When applying weighted NMS, only one bounding box may be
retained while other overlapping potato seed bounding boxes are
erroneously excluded, leading to biased detection results.

»

Where S; represents the score of the i-th detection box, M

Si»
0,

IoU(M, b;) < N,
IoU(M,b,) = N,

®)

denotes the detection box with the highest score, b; corresponds to
the i-th detection box, and N; is the preset IoU threshold.

The performance of NMS is highly sensitive to the selection of
N, an overly high threshold may lead to missed detection, while an
excessively low threshold risks false positives. To address the loss of
detection targets caused by improper threshold settings, this study
adopts Soft-NMS to refine the original NMS algorithm, with its
calculation formula detailed in Equation 9.

IoU(M, b;) < N,
1oU(M,b;) = N,

S; )

S,
Si(1 - IoU(M, by)),
Soft-NMS enhances detection performance by progressively
reducing the scores of overlapping detection boxes instead of
directly discarding low-score boxes, offering a more flexible
processing approach (Ma et al., 2024; Zhang et al., 2022).

4.4 Model training

4.4.1 Test rig and model parameters

This experiment was conducted on an Ubuntu 16.04 operating
system using PyCharm 1.13.0 as the development environment with
Python 3.9. The computer configuration included an Intel Core i7-
8700 CPU, NVIDIA GTX 3070Ti GPU, and 32 GB RAM. The
model training parameters were set as follows: input image
dimensions for potato miss-seeding detection were 2048x1536,
the SGD optimizer was used for gradient optimization with a
momentum of 0.9, an initial learning rate of 0.01 (maintained at
0.01 throughout training), weight decay of 0.0005, a batch size of 8,
and 150 epochs of training.
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4.4.2 Indicators for model evaluation

To validate the effectiveness of the detection model, this study
employs Precision (P), Recall (R), and mean Average Precision
(mAP) as evaluation metrics, with their calculation formulas
provided in Equations 10-12. Precision reflects the accuracy of
predictions for both proper seed placement and miss-seeding status
in the seed spoons. Recall measures the model’s ability to detect
these two states, while mAP serves as a comprehensive metric for
evaluating the model’s overall accuracy. The closer the above metric
values are to 1, the better the detection performance of the model.

pP= L (10)
" TP +FP
TP
R=—"— 11
TP + FN (D)
1 N
mAP = — AP, (12)
Ni:l

Where, TP (True Positive) represents the number of positive
samples correctly identified by the model; FP (False Positive)
denotes the number of negative samples incorrectly classified as
positive; FN (False Negative) indicates the number of positive
samples that the model failed to detect; mAP (Average Precision)
is the area under the Precision-Recall (P-R) curve for each category;
and N is the total number of detection categories.

4.4.3 Ablation experiment

Based on the original YOLOV5s algorithm, the CBAM attention
mechanism and improved non-maximum suppression (NMS) are
respectively introduced. Ablation experiments numbered I, II, III,
and IV are designed on a custom dataset, with the experimental
results shown in Table 1 Results of ablation tests.

In Test I (original YOLOV5s), the precision (P), recall (R), and
mean average precision (mAP) were 96.02%, 96.31%, and 99.12%,
respectively, demonstrating high baseline performance. In Test II
with the addition of CBAM, P increased by 0.88% to 96.90%, R
improved by 0.19% to 96.50%, and mAP rose by 0.08% to 99.20%,
indicating that CBAM enhances feature extraction capabilities and
improves detection accuracy in complex backgrounds. In Test IIT
using Soft-NMS, P significantly increased by 2.28% to 98.30%, mAP
reached 99.20%, but R decreased by 0.21% to 96.10%, validating the
advantage of Soft-NMS in reducing false positives while suggesting
a potential weakening of recall capability for some samples. In Test
IV combining CBAM and Soft-NMS, P reached 98.30%, R achieved
99.40%, and mAP attained 99.40%, respectively representing
improvements of 2.28%, 3.09%, and 0.28% over Test I,
demonstrating that the synergistic interaction of the two modules
significantly optimizes model performance, particularly in

minimizing missed and false detections.

4.4.4 Test result display
Analysis of the loss variation curve of the improved network
reveals that the loss value decreases significantly within the first 50
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TABLE 1 Results of ablation tests.

Module setting

Test no.
CBAM @ Soft_NMS
I - - 96.02 96.31 99.12
il v - 96.90 96.50 99.20
I - v/ 98.30 96.10 99.20
v v v/ 98.30 99.40 99.40

“¥” indicates that the module is added; “-” indicates that the module is not added.

epochs, gradually converges between 50 and 100 epochs, indicating that
the proposed model achieves loss convergence with fewer training
cycles. After 100 epochs, the network integrating the CBAM attention
mechanism and the improved non-maximum suppression (Soft-NMS)
demonstrates higher accuracy stability during training, approaching a
stable value more closely compared to the original YOLOV5s algorithm,
as shown in Figure 10.

Compared to existing methods, the improved YOLOV5s algorithm
proposed in this study demonstrates more pronounced advantages in
target feature extraction and overlapping target suppression. The
traditional YOLOv5s framework is often affected by background
interference such as soil, shadows, and weeds in complex field
environments, leading to insufficient feature representation and,
consequently, limited detection accuracy. Moreover, the standard
Non-Maximum Suppression (NMS) method it relies on often causes
missed detections due to “hard rejection” when processing highly
overlapping potato seed bounding boxes, negatively impacting recall
rate. To address these issues, this study introduces the CBAM attention
mechanism and the Soft-NMS algorithm into YOLOv5s. The CBAM
(Convolutional Block Attention Module) enhances the expression of

train/box_loss train/cls_loss

train/obj_loss

10.3389/fpls.2025.1686174

key features through channel and spatial attention weighting,
significantly improving robustness in complex backgrounds. The
Soft-NMS algorithm softens the suppression strategy, reducing false
positives while mitigating missed detections, which greatly improves
the recognition ability of overlapping targets. Ablation experiments
further validate the effectiveness of these improvements. After
integrating CBAM and Soft-NMS, the model demonstrates
substantial improvements in precision, recall rate, and mean Average
Precision (mAP). These results indicate that the improved YOLOv5s
model offers superior performance and adaptability in agricultural
miss-seeding detection tasks compared to existing approaches.

5 Performance tests
5.1 Test condition

Building upon the aforementioned principles, systematic
hardware and software designs were implemented, completing the
manufacturing of the potato planter. The miss-seeding detection,
automatic compensation, and control systems were installed and
debugged. Powered by tractor traction, experimental validation
confirmed the system’s feasibility and reliability, with the testing
process illustrated in Figure 11.

5.2 Test content and indicators

5.2.1 Reseeding system test
The primary objective of this experiment was to simulate
scenarios where the reseeding belt lacked potato seeds, testing

metrics/precision(B) metrics/recall(B)
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FIGURE 10

Loss and evaluation metric change charts of the improved model training. During the training of the improved detection model, the loss decreases
with each epoch, and metrics such as precision and recall are good and stable, indicating that the model training is effective.
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FIGURE 11
Field testing diagram. The diagram illustrates the field testing process after the installation and debugging of the miss-seeding, automatic
compensation, and control system.

TABLE 2 Reseeding system test results.

Test Preparatory seeds Preparatory seeds Preparatory seeds Number of Reseeding
batch (theoretical) (actual) success rate reseeding success success rate
1 50 50 100% 45 90%
2 50 50 100% 44 88%
3 50 49 98% 42 86%
4 50 48 96% 41 85%
5 50 50 100% 43 86%

whether the preparatory seed preparation system could 0.3 m/s, and 0.4 m/s, representing low-speed, medium-speed, and
automatically replenish seeds and whether the reseeding system  high-speed operating conditions, respectively. Each speed level was
could effectively reseed. A total of five batches were conducted, with  tested three times, with a theoretical seed count of 300 potatoes per
each batch controlled to have 50 miss-seeding instances; thus, the  trial. The objective was to validate the reliability of the improved
theoretical number of preparatory seeds per batch was also 50.  YOLOv5s-based detection system, preparatory seed preparation
Table 2 Reseeding system test results presents the experimental  system, and reseeding mechanism under dynamic conditions. To
results of the reseeding system. The data indicate that while the  ensure accurate data collection, the experiment recorded the
preparatory seed reseeding success rate was high, there were 1and2  original seeding count, original miss-seeding count, reseeding
unsuccessful cases in batches 3 and 4, respectively, caused by  count, final seeding count, and final theoretical seeding count,
mechanical jamming. The preparatory seed reseeding success rate  with their relationships defined as shown in Equation 13.

was calculated as the number of reseeding success divided by the

actual number of preparatory seeds. The reseeding success rate of ng =Ny +n

preparatory seeds in Table 2 demonstrate high performance (no less { . (13)
than 85% across trials), with failures primarily attributed to potato

seed bouncing or collisions during the compensation process, which n° represents the original seeding count (unit: grain), which is
significantly altered the trajectory of the potato seeds, leading to  the actual number of seeds sown by seed-metering device without
unsuccessful reseeding. any compensatory measures; n' represents the original miss-

seeding count (unit: grain), which is the number of seeds missed

5.2.2 Performance test of miss-seeding detection  due to seed pickup failure during the seeding process; n” represents
and reseeding system the reseeding count (unit: grain), which is the additional number of
The miss-seeding detection and reseeding system must not  seeds placed by the reseeding mechanism after miss-seeding
compromise the operational quality of the seed-metering device, ~ detection; n’ represents the final seeding count (unit: grain),
so its performance is evaluated based on the reseeding success rate  which equals the sum of the original seeding and reseeding
under varying linear speeds of the seed-metering chain. In this  numbers, reflecting the actual final seeding result in the field; n*
experiment, the planting spacing was fixed at 110 mm using cut  represents final theoretical seeding count (unit: grain), which equals
potato seeds, with seed-metering chain linear speeds set to 0.2 m/s,  the sum of the original seeding and the original miss-seeding
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TABLE 3 Results of seed taking and reseeding performance tests.

10.3389/fpls.2025.1686174

Seeding speed Test number ng Ny n, N o N3
1 272 17 14 5.88% 1.04% 82.35%
2 266 15 13 5.34% 0.71% 86.67%
0.2m/s
3 269 15 12 5.28% 1.06% 80.00%
Averages 269 15 13 5.28% 0.70% 86.67%
1 270 19 16 6.57% 1.04% 84.21%
2 269 17 14 5.94% 1.05% 82.35%
0.3m/s
3 273 21 18 7.14% 1.02% 85.71%
Averages 270 19 16 6.57% 1.04% 84.21%
1 265 27 22 9.25% 1.71% 81.48%
2 274 30 24 9.87% 1.97% 80.00%
0.4m/s
3 271 29 23 9.67% 2.00% 79.31%
Averages 270 28 23 9.40% 1.68% 82.14%

numbers, representing the total number of seeds that should be
sown under ideal conditions without any missed seeding. This value
is used as a theoretical benchmark to evaluate the seeding accuracy
of the system.

Based on statistical data, the original miss-seeding rate (7;)
could be calculated as the ratio of miss-seeding count to the
theoretical seeding count without the system as shown in
Equation 14.

n =" % 100% (14)

Ny

The final miss-seeding rate (1,) after using the miss-seeding

detection and reseeding system was calculated as the final miss-

seeding count divided by the theoretical seeding count as shown in
Equation 15.

m

-n, .
——= % 100 %
Ny

m= (15)

The reseeding success rate (17;) of the system is shown in
Equation 16.

)
N =—x 100 %
my

(16)

By recording the seed-taking process of the seed-metering
device, the miss-seeding detection process, and the reseeding
process during each trial group, statistical analysis was conducted
for each trial group, and the results are presented in Table 3 Results
of seed taking and reseeding performance tests.

Based on the data in Table 3 Results of seed taking and
reseeding performance tests, the performance of the improved
YOLOV5s-based spoon-chain potato seed-metering device’s miss-
seeding detection and scraper-belt compensation system exhibits
distinct patterns under different sprocket linear speeds. At a low
speed of 0.2 m/s, the original miss-seeding rate remained within
5.28%-5.88% across three repeated trials, averaging 5.28%,
indicating a low probability of missed seeding. With the
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intervention of the reseeding system, the final miss-seeding rate
fluctuated between 0.70% and 1.04%, averaging 0.70%, while the
reseeding success rate stabilized at 80.00%-86.67%, averaging
86.67%. This demonstrates that the improved YOLOv5s model
efficiently identifies miss-seeding positions at low speeds with
minimal false positives or negatives, and the scraper-belt
compensation mechanism achieves high operational precision,
ensuring stable detection and reseeding performance under low-
speed conditions.

When the sprocket linear speed increased to 0.3 m/s, the system
exhibited slight performance variations. The original miss-seeding
rate rose moderately to 6.57%-7.14% (average: 6.57%), and the final
miss-seeding rate increased slightly to 1.02%-1.05% (average:
1.04%), yet remained low. The reseeding success rate ranged from
82.35% to 85.71% (average: 84.21%), showing a minor decline
compared to low-speed conditions but maintaining high
effectiveness. This confirms that the improved YOLOv5s model
retains strong detection capabilities at medium speeds, and the
compensation mechanism remains stable.

However, at a high speed of 0.4 m/s, system performance
degraded significantly. The original miss-seeding rate surged to
9.25%-9.87% (average: 9.40%), aligning with findings from (Zhang,
2024), where faster speeds reduce seed population refill efficiency
between adjacent holes in the seed-filling zone, increasing miss-
seeding rate. The final miss-seeding rate rose to 1.71%-2.00%
(average: 1.68%), reflecting amplified mechanical vibrations and
dynamic instability in the seed-metering device under high-speed
operation, which complicates detection. The reseeding success rate
declined to 79.31%-81.48% (average: 82.14%), indicating delays in
the dynamic response of detection and compensation components
under high-speed conditions, impairing reseeding accuracy.

Performance trends across speeds reveal the system’s strengths
and limitations. At low speed (0.2 m/s), the integration of the
improved YOLOv5s model with CBAM, Soft-NMS, and the
scraper-belt mechanism achieves near-ideal balance between
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detection precision and reseeding efficiency, making it highly
suitable for precision planting scenarios with low speed
requirements. Medium-speed (0.3 m/s) results confirm the
system’s viability under typical field conditions, with only minor
performance degradation. However, the increased miss-seeding rate
and reduced reseeding success at high speed (0.4 m/s) highlight
current design limitations under dynamic stress, necessitating
further optimization for high-speed applications.

6 Conclusion

This study developed an improved YOLOv5s-based spoon-
chain potato seed-metering device miss-seeding detection and
reseeding system, integrating a preparatory seed scraper-belt
mechanism to achieve precise miss-seeding identification and
rapid reseeding. By incorporating the CBAM attention
mechanism and Soft-NMS, the model’s detection accuracy was
enhanced, with ablation experiments demonstrating precision,
recall, and mAP of 98.30%, 99.40%, and 99.40%, respectively. The
system operates in real time on the NVIDIA Jetson TX2 platform,
meeting embedded application requirements. Tests showed that at
low speed (0.2 m/s), the original miss-seeding rate was 5.28%,
reduced to 0.70% after reseeding, with a reseeding success rate of
86.67%; at medium speed (0.3 m/s), the original miss-seeding rate
was 6.57%, reduced to 1.04%, with a success rate of 84.21%; at high
speed (0.4 m/s), the original miss-seeding rate was 9.40%, reduced
to 1.68%, with a success rate of 82.14%. The system performed
excellently at low-to-medium speeds but slightly declined at high
speeds due to vibrations. The scraper-belt mechanism achieved a
preparatory seed preparation success rate exceeding 96%,which
effectively improved the continuity and stability of the operation.

The experimental results not only validated the system’s
performance across varying speed conditions but also uncovered
several critical patterns. The system maintained high stability and
precision at low and medium speeds, demonstrating the strong
robustness of the improved algorithm in complex environments.
However, performance deteriorated under high speeds, highlighting
that the interplay between detection-compensation response time and
vibration suppression capacity constituted a major limiting factor.
These findings further demonstrates that the sequential collaborative
design of visual detection and mechanical compensation is feasible and
effective in agricultural scenarios, though improvements remained
necessary under extreme operating conditions.

Despite the significant progress achieved, several limitations
persist. Performance decline during high-speed operations
indicated that both the real-time responsiveness of detection—
compensation and the dynamic stability of the mechanical
structure under intense vibrations require further enhancement.
In addition, the method primarily relied on visual sensors, which
were susceptible to interference from changes in lighting, dust
occlusion, and motion blur, potentially affecting detection
reliability in extreme field environments. The system’s decision-
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making solely relies on visual information, without fusion
feedback from multimodal sensors such as infrared and pressure
sensors, which limits its robustness and adaptability across
different environments. Future research will focus on lightweight
optimization and heterogeneous acceleration of detection algorithms
to reduce inference latency and enhance responsiveness under high
speeds. At the same time, a multi-sensor fusion strategy will be
introduced to enhance the system’s perception redundancy and
reliability. Furthermore, the system’s generalizability will be further
validated in different crop sowing scenarios, and, when combined
with intelligent operational planning in precision agriculture, its
application potential and value for broader deployment will be
significantly expanded.
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