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panzarova@psi.cz

†These authors have contributed
equally to this work

RECEIVED 15 August 2025
ACCEPTED 22 September 2025

PUBLISHED 14 October 2025

CITATION

Tietze H, Abdelhakim L, Pleskačová B,
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Prediction of harvest-related
traits in barley using high-
throughput phenotyping
data and machine learning
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and Klára Panzarová2*

1Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam,
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Developing crop varieties that maintain productivity under drought is essential

for future food security. Here, we investigated the potential of time-resolved

high-throughput phenotyping to predict harvest-related traits and identify

drought-stressed plants. Six barley lines (Hordeum vulgare) were grown in a

greenhouse environment with well-watered and drought treatments, and

dynamically phenotyped using RGB, thermal infrared, chlorophyll fluorescence,

and hyperspectral imaging sensors. A temporal phenomic classification model

accurately distinguished between drought-treated and control plants, achieving

high accuracy (classification accuracy ≥0.97) even when relying solely on

predictors from the early drought response phase. Canopy temperature

depression at the early stage and RGB-derived plant size estimates at the late

stage emerged as key classification features. A temporal phenomic prediction

model of harvest-related traits achieved particularly high mean R2 values for total

biomass dry weight (0.97) and total spike weight (0.93), with RGB plant size

estimators emerging as important predictors. Importantly, prediction accuracy

for these traits remained high (R2
≥ 0.84) even when restricted to early

developmental phase data, including the stem elongation stage. Models

trained on pooled drought and control data outperformed single-treatment

models and maintained high predictive power across treatments. Together,

these findings highlight the value of integrating high-throughput phenotyping

with temporal modeling to enable earlier, more cost-effective selection of

drought-resilient genotypes and demonstrate the broader potential of

phenomics-driven strategies for accelerating crop improvement under stress-

prone environments.
KEYWORDS
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Introduction

Climate change influences agricultural productivity and

negatively affects crop yield, making the breeding of resilient crop

varieties essential. The development of such stress-resilient varieties

is challenging due to the interaction between genotype and

environment that shapes complex traits, like grain yield. As a

result, enhancing breeding programs for resilient crops requires

accurate yield prediction across diverse environments (Cooper and

Messina, 2023). Developing predictive models that integrate diverse

data sets, e.g., genomics along with spatiotemporal phenomics and

enviromics, can support this goal by enabling more accurate

prediction of crop phenotypes (Xu et al., 2022). In addition, the

implementation of advanced breeding techniques demands the

development and deployment of high-throughput phenotyping

(HTP) platforms in breeding programs. The resulting data along

with the computational and machine learning approaches can

improve future yield performance and help in developing resilient

crop varieties that can withstand a variety of stresses, typical of field

conditions (Varshney et al., 2021).

HTP is one of the techniques that has transformed and

accelerated plant breeding by enabling large-scale, rapid screening

of different phenotypic traits of interest, including automated data

acquisition and trait analysis (Song et al., 2021; Yang et al., 2020).

The use of multi-imaging sensors is essential for the non-invasive

and precise assessment of plant growth dynamics as well as

physiological responses. This approach provides a comprehensive

view of plant development, enabling the monitoring and assessment

of plant performance and stress responses (Cai et al., 2020; Humplıḱ

et al., 2015). Many studies have investigated the effect of abiotic

stress, including drought, aiming at identifying the key phenotypic

traits and physiological mechanisms that enhance stress tolerance

(Al-Tamimi et al., 2022; Chen et al., 2014; Findurová et al., 2023).

However, the complex nature of genotype-by-environment

interactions remains a major challenge and demands further

investigation. Moreover, a better understanding of drought

adaptation requires recognizing that the impact of stress on

physiological traits linked to grain yield can vary depending on

stress intensity, genotype susceptibility, and developmental stage

(Khadka et al., 2020). Along these lines, advances in high-

throughput and precision phenotyping techniques have

contributed to improving the strategies for mitigating the adverse

effects of drought stress on plants and enhancing their resilience

and productivity (Farooq et al., 2024).

One of the main challenges in harnessing the potential of high-

throughput data lies in the management and analysis to identify

traits of interest and reveal plant responses to stress (Langstroff

et al., 2022; Leonelli et al., 2017). Data generated at multiple spatial

and temporal scales requires robust analytical pipelines capable of

handling such complex phenotypic datasets (Tardieu et al., 2017).

Moreover, in phenotyping studies focusing on stress response

across developmental stages, models are often modified to capture

the dynamic changes of plant response to stress over time (Li et al.,

2020). Recent pioneering advances have facilitated the prediction of

the dynamics of multiple traits given genetic markers alone (Hobby
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et al., 2025). Thus, while the development of analytical pipelines

that explicitly capture the temporal dynamics of stress response in

plants is highly demanded, our study advances the state of the art by

integrating HTP with temporal modeling of harvest-related traits to

enable predictions across developmental stages.

Machine learning techniques play a transformative role in

phenotypic data analysis by linking large, complex datasets to

traits of interest (Singh et al., 2016). Combining image-based

phenotyping with machine learning approaches has enabled the

extraction of new insights from curated, annotated, high-

dimensional data sets across various crops and stress conditions

(Singh et al., 2021). Machine learning encompasses a range of

techniques, including feature extraction, pattern recognition,

classification, and prediction. Some of these approaches facilitate

the analysis of complex phenotypic data sets by considering

multiple traits simultaneously, accounting for trait integration

(Mbebi et al., 2025). As such, applying machine learning to

phenomic data provides a powerful framework for uncovering

patterns and extracting biologically meaningful insights (Gill

et al., 2022). In this study, we focus on two widely used

approaches: Random Forests, applied for both classification and

regression, and least absolute shrinkage and selection operator

(LASSO) regression, which provides a linear, regularized

framework well suited to high-dimensional predictor sets.

Using the HTP platform equipped with multiple imaging

sensors, we aimed to develop an advanced data analysis pipeline

and apply it to perform a phenotypic data analysis of different

barley (Hordeum vulgare) lines exposed to drought stress. We

focused on barley as it is a model cereal crop (FAO, 2023;

Newton et al., 2011), and we aimed to investigate the impact of

drought as a predominant stress in future climate scenarios (IPCC,

2021). This was achieved by (i) using a classification model to

identify distinct traits that differentiate drought-stressed from well-

watered plants and (ii) using regression models to accurately predict

harvest-related traits. The applied modeling approach enabled

pinpointing the most predictive traits at specific time points.

Moreover, early detection of such traits can support breeders in

selecting stress-tolerant genotypes more efficiently, potentially

accelerating the development of resilient crop varieties and

improving resource use in breeding programs.
Materials and methods

Plant material and growth conditions

Six genetically homogenous barley lines were selected in this

study, including one elite cultivar line (Barke) (L1) and five lines

originating from the CMPP (Cytonuclear MultiParent Population)

(L2-L5) and HEB-25 (Halle exotic barley) (L6) populations

(HÜbner et al., 2009) (Supplementary Table S1).

After seeds were stratified at 4 °C in darkness, seedlings were

transferred to light in the walk-in chamber (FytoScope FS-WI,

Photon Systems Instruments (PSI), Drásov, Czech Republic) and

were grown under a short-day regime, until the emergence of the
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fifth leaf. One seedling was transplanted per 3-L pot filled with 1,850

g of Klasmann Substrate-2:sand (3:1). Plants were transferred to the

greenhouse under a long day regime (16-h photoperiod), 22 ± 3

(mean ± standard deviation)/17 ± 2 °C for day/night temperature,

and 51 ± 8/62 ± 4% for day/night relative humidity.
Phenotyping protocol

The experiment was conducted in a greenhouse that is

connected to the PlantScreen™ Modular phenotyping platform

(PSI, Czech Republic), where pots were placed on transportation

disks carried from the growth area toward the multi-imaging and

irrigation units. Plant performance, including morphological and

physiological responses, was assessed throughout the whole life

cycle with an overall duration of plant cultivation of 97 days after

transfer to light (DAT) and kept until reaching the full maturation

stage (126 DAT). Over the course of 10 weeks, the daily

phenotyping protocol was conducted to extract morpho-

physiological and spectral-related traits in plants cultivated in

semi-controlled greenhouse conditions under two watering

regimes, control and progressive drought stress regime. Pots were

weighed and watered daily by maintaining pots at target soil relative

water content (SRWC) levels based on pot weight. Drought-stressed

plants were maintained at 25% SRWC until the flowering stage, and

then watering was further reduced to 20% SRWC (Supplementary

Figure S1). We used nine biological replicates per treatment for

most of the lines, and 20 replicates per treatment for the HEB line

and elite line (Barke), which served as the reference line. The

reduced watering regime was induced at the tillering stage (24

DAT) and remained reduced for the stressed group for the whole

cultivation period. On a daily basis, plants were randomized in the

cultivation greenhouse to avoid positional effects, environmental

conditions were recorded with minute resolution, and daily

watering and weighing of the plants were performed. Plants were

phenotyped daily up to the maturity stage using multi-imaging

sensors of the PlantScreen™ Modular phenotyping platform (PSI,

Czech Republic), including RGB, thermal infrared (IR), chlorophyll

fluorescence, and hyperspectral imaging, as described in

Abdelhakim et al. (2024). Referring to chlorophyll fluorescence

imaging, different measuring protocols were selected for capturing

more insights into the photosynthetic performance, including a

morning protocol and two different evening protocols

(Supplementary Figure S1). During the day (light-adapted state),

measuring protocols were optimized to measure the quantum yield

of PSII (QY_Lss) under two light steady-state (Lss) intensities,

including high light (HL, Lss1 at 1,200 μmol·m−2 s−1) and low light

(LL, Lss2 at 130 μmol·m−2 s−1). To estimate the plasticity index of

QY under different light intensities, the ratio between QY_Lss

measured under low (Lss2) to high (Lss1) light was calculated.

Moreover, measurement on dark-adapted plants was conducted to

assess the photosynthesis induction and relaxation kinetics during

the night period at two different-light-intensity protocols, i.e., high
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light (HL) at 1,200 μmol·m−2s−1 and conditional light (CL) at 360

μmol·m−2 s−1 (Figure 1). At the end of the maturation stage, the

total biomass of the plants was manually harvested, including

analysis of the total tiller number, spike number, and other spike-

related traits (Supplementary Table S2).
Data processing pipeline

The gathered dataset consists of dynamic phenotypical data

from 70 time points captured for the six barley lines that were

grown under two conditions, including 9–20 replicates per

treatment per line. Overall, 145 image-based and post-harvest

traits were extracted (Supplementary Table S2) and subjected to

further data analysis. Of these, 52 traits from chlorophyll

fluorescence and thermal IR imaging were excluded from

downstream analysis, as they represented raw measurements used

solely in the calculation of more biologically meaningful derived

indices. The full data analysis pipeline was conducted using R studio

(version 4.3.2).

Due to differing assumptions about input data across methods,

preprocessing followed multiple branching paths. For analyses that

separated drought and control treatments (harvest prediction per

treatment), data were partitioned before outlier detection and

transformation. In contrast, pooled-treatment analyses (i.e.,

variance decomposition, treatment classification, pooled-

treatment harvest prediction) preserved treatment-induced

variance by avoiding such partitioning. For temporal traits, each

measurement time point was treated as a separate data group.

To maximize sample size and model robustness for the

genotype-agnostic methods, including temporal phenomic

classification (TPC) and prediction (TPP), three additional

genotypic lines (L7-L9) were used in part of the analysis pipeline

with the six genetically homogeneous lines (L1-L6) (Supplementary

Table S1). However, as a result of heterogeneity, those three lines

were excluded from analyses that assumed genetic homogeneity

(i.e., clustering of samples, drought tolerance ranking, and trait

variance decomposition).
Handling of missing values

Data preprocessing began with the imputation of 10 missing

values across 267 plant samples in harvest traits, which were later

used as response traits in TPP. Missing values were found in spike

weight (nine samples) and total biomass dry weight (one sample).

These were evenly distributed among samples, except for one

sample (L8_D_15, Drought) with missing values in two traits.

Missing values were imputed using MissForest imputation

(Stekhoven and Bühlmann, 2011), implemented using the R

package missForest (version 1.4), leveraging the remaining

harvest traits. The out-of-bag (OOB) error for these imputations

is provided in Supplementary Table S3.
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FIGURE 1

Overview of the experimental design and measurements performed. (A) Summary of the experimental design, including six barley lines. Two different
water regime treatments were applied, control and drought stress at 60% and 25%-20% soil relative water content, respectively. Phenotyping was

conducted from the tillering stage to the maturity stage, followed by final harvest. (B) Automated image-based phenotyping using the PlantScreen™

Modular phenotyping platform at PSI Research Center, where plants are moved from the greenhouse growing area toward imaging units. The
phenotyping protocol was conducted daily with different protocols. In chlorophyll fluorescence imaging using FluorCam (FC), 1FC morning
measurement, 2FC night measurement, and 3FC chlorophyll content were conducted, as well as thermal infrared imaging (IR), RGB including two
angles from the RGB1 side view and one angle RGB2 top view, and hyperspectral imaging (HS) including SWIR and VNIR imaging. (C) Automated
image segmentation process. (D) Extracting traits, including measured and calculated parameters, among the developmental stages. (E) Data analysis
using a machine learning approach to assess tolerance of plants under drought stress, discriminating between the two water regimes and finding the
most predictive traits of the final yield.
Frontiers in Plant Science frontiersin.org04
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Outlier handling

Outliers were identified as data points exceeding three times the

interquartile range (IQR) of a given data group. These values were

removed and re-imputed using missing forest imputation. The

OOB errors for these imputations were reported (Supplementary

Table S4). At this stage, the processed data were exported for

variance decomposition.
Data transformation

A Shapiro–Wilk test for normality was applied to every data

group, and p-values were corrected using the Bonferroni method.

Those groups whose distribution was deemed non-normal had a

Box–Cox transformation and were tested for normality again. Cases

of non-normality before and after correction were reported

(Supplementary Table S5). Following Box–Cox transformation of

some groups, a Z-score transformation was applied to all groups. At

this point, the transformed data were used for treatment

classification and harvest trait prediction.
Week-wise aggregation of predictors

The same preprocessing steps used with the non-aggregated

data set were also employed with the aggregated data set, including

group-wise Random Forest imputation using missForest, outlier

detection based on the IQR with a threshold of 3, re-imputation of

extreme values after their removal, and transformation of non-

normal trait distributions using Box–Cox followed by z-score

normalization. Branching preprocessing paths were also applied,

where treatment-specific analyses were conducted on partitioned

data, while pooled-treatment analyses preserved treatment-induced

variance by processing all samples jointly. A key difference lies in

the temporal structuring of the data, whereas the original pipeline

treated each measurement daily time point (DAT) as a separate data

group; this pipeline uses weekly phases (WP) for grouping and

aggregation. This approach reduces temporal noise while

maintaining biological resolution, particularly relevant for trait

dynamics across stress and recovery phases. The mapping

between the DAT and the corresponding WP was defined in

Supplementary Table S6. For each numeric variable, the average

(mean), minimum, and maximum values were calculated. To

reduce redundancy, if all three values were identical within a

group, indicating no variation, the minimum and maximum

columns were removed, leaving only the average as the

sole predictor.
Clustering of samples

All temporal traits from weekly aggregated data were combined,

and principal component analysis (PCA) was performed using two

R packages, prcomp and PCAtools, with scaled and centered data to
Frontiers in Plant Science 05
explore the underlying structure. Unsupervised clustering using k-

means was then applied to the scaled trait data. Trait means were

computed for each genotype-treatment combination and scaled.

The optimal number of clusters was determined using the silhouette

method with the R package factoextra (fviz_nbclust function).

Clustering results were visualized using the fviz_cluster function

and projected onto PCA space. Clusters were annotated by

genotype and treatment, with PCA coordinates overlaid with

confidence hulls to enhance interpretability.
Drought tolerance ranking of lines

The barley lines were ranked based on the magnitude of

drought-induced effects on phenotypic traits. A permutational

multivariate analysis of variance (PERMANOVA) with 3,000

permutations was applied separately to temporal and harvest

traits, comparing drought-treated and control plants within each

genotype (Anderson, 2017). This analysis was conducted using the

R package vegan (version 2.6-8). Generalized eta squared (h²) was
used to quantify the treatment effect size, providing a measure of

how strongly drought influenced each genotype’s temporal or

harvest traits.
Temporal phenomic classification of
treatment

Random Forest (RF) binary classification of plant treatment was

performed using temporal traits as predictors. Models were trained

using the R packages caret (version 6.0-94) and randomForest

(version 4.7-1.1). Each trait at each time point was used as an

independent predictor. Models were trained using a threefold five-

repeat cross validation (CV) scheme. In each repeat, data points

were split randomly into three folds. For each split, two folds were

used for training the model, and the last was reserved for testing.

This was repeated three times, leaving each fold out for testing once.

To optimize model performance, the number of predictors

randomly selected at each decision tree split was treated as a

tunable parameter. A range of candidate values was systematically

evaluated, and model performance was assessed across the 15

different test sets (three folds × five repeats) to ensure robustness.

The final selection was based on the average performance across all

repetitions, with the best-performing setting chosen to balance

accuracy and model complexity.

Temporal phenomic classification (TPC) of treatment was

conducted using temporal traits from all time points (npredictors =

850) and using predictors from each separate week of the

experiment (53 ≤ npredictors ≤ 92, depending on the week). Model

accuracies were reported as classification accuracy (i.e., the

proportion of correctly classified samples out of the total number

of samples tested) and compared using one-way ANOVA and a

pairwise t-test with Holm’s method for p-value correction.

To assess the variable importance of predictors, a permutation-

based approach was used. For each tree in the forest, the
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classification accuracy was first recorded using the out-of-bag

(OOB) data, which consists of observations left out during

bootstrap sampling. Then, the values of a given predictor were

randomly permuted in the OOB data, and classification accuracy

was re-evaluated. The drop in accuracy due to this permutation,

relative to the original OOB accuracy, was computed for each tree.

This accuracy difference was averaged across all trees, normalized

by the standard deviation of the differences, and then scaled so that

the most important variable received an importance score of 100.

To test whether the validation procedure affected the results, we

also performed a leave-one-line-out CV. In this scheme, the models

were trained while leaving out all replicates of one genetic line and

then tested on that unseen line (nine validations). This directly

evaluated model performance on previously unseen genetic lines.
Y
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d
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e

Y

μ

d
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e

Temporal phenomic prediction of harvest
traits

Temporal phenomic prediction (TPP) of harvest traits was

performed using least absolute shrinkage and selection operator

(LASSO) with R package glmnet (version 4.1-8) and RF with R

package randomForest (version 4.7-1.1) regression models.

Training was done using the R package caret (version 6.0-94).

The internal CV schedule was largely equivalent to the one used in

TPC, except that LASSO models were optimized for the

regularization strength parameter, rather than the number of

variables considered at each split. In addition, the threefold CV

procedure was repeated 15 times instead of 5 (3 folds × 15 repeats =

45 validations). The increased number of repeats was chosen based

on preliminary testing, which showed greater variability in

performance estimates for TPP models compared with TPC. For

parameter optimization, model performance was evaluated using

root mean squared error (RMSE). Finally, after the internal CV

procedure had determined the optimal parameter, a final model was

trained on the full predictor data set.

Separate models were trained to predict each of the 13 harvest

traits using data from the control treatment (nplants = 133), drought

treatment (nplants = 134), or a pooled dataset containing both

treatments (nplants = 267). Each temporal trait at each time point

was treated as an independent predictor.

To assess whether the choice of validation strategy influenced

results, TPP was also repeated using a leave-one-line-out CV

scheme described in the TPC section. This procedure directly

evaluated the robustness of harvest trait prediction when applied

to genetic lines not included during training.

Harvest trait prediction models were trained using all traits

measured at all time points (npredictors = 850) and using only

measurements from the first half of the experiment (npredictors =

368). Model performance was compared using R² values originating

from the repeated internal CV using the final optimal parameter,

with statistical significance assessed using either ANOVA followed

by multiple pairwise t-tests or a Kruskal–Wallis test followed by
Frontiers in Plant Science 06
multiple pairwise Wilcoxon rank-sum tests, depending on the

normality of R² distributions. To correct for multiple testing,

Holm’s method was applied to adjust p-values.

Final models were tested on their training data set as well as the

other data groups after readjusting them to the fitting

z-transformation.
Variance decomposition of traits

Mixed effects linear models were used to model the temporal

and harvest traits. Temporal and harvest traits were modeled

similarly, except that the model used for temporal traits

(Equation 1) included a temporal term, which was not the case

for the harvest trait model (Equation 2). In addition, for harvest

traits, the genetic repeatability (GR) was estimated using the genetic

and residual variance components (Equation 3).

Yijk = m + bi + di(k) +Wi(j) + eijk (1)

where
temporal trait value

overall mean trait value for all plants

i random effect of the ith measuring time point

~ N(0,s2b_i)

i(k) random effect of the treatment within ith time point

~ N(0,s2d_i(k))

i(j) the random effect of jth genetic line within ith time point

~ N(0,s2W_i(j))

ijk pooled error of the individual at ith time point

~ N(0,s2e_ijk)
Yjk = m + dk +Wj + ejk (2)

where
harvest trait value

overall mean trait value for all plants

k random effect of the kth treatment

~ N(0,s2d_i(k))

j the random effect of jth genetic line

~ N(0,s2W_i(j))

jk pooled error of the individual at ith time point

~ N(0,s2e_jk)
GR =
s2
Wj

s2
Wj
+

s2
ejk
n

(3)

where

GR The genetic repeatability of a harvest trait

s 2
Wj

The genotypic variance

s 2
ejk The residual variance

n The number of replications
frontiersin.org

https://doi.org/10.3389/fpls.2025.1686506
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tietze et al. 10.3389/fpls.2025.1686506
Results

Genotypic clustering and drought
tolerance ranking of barley lines

To visualize the genotypic and treatment-specific grouping

patterns, k-mean clustering (with k = 2) was applied on PCA-

projected data. The results showed that separation of clusters can be

observed based on PC1 (36.6%) and PC2 (31.3%) (Figure 2A).

Notably, among the genetic lines, L6 (from HEB population)

clustered separately from the other lines, highlighting potential

differences in response to treatment conditions. Moreover, plants

grown under control conditions were separated from drought-

stressed plants, highlighting that treatment effects contribute to

variance in the data.

Tolerance ranking, i.e., quantifying the effect of drought on

temporal or harvest traits, found that drought has a highly

significant effect (p< 0.001) on temporal traits in all lines

(Figure 2B). By effect size, L1 appeared most tolerant in temporal

traits (h2 = 0.228), closely followed by L3 (h2 = 0.248) and L5 (h2 =

0.274). The same three lines appeared most tolerant when harvest

traits were analyzed instead of temporal traits (Supplementary

Figure S2), with lines L2, L4, and L6 exhibiting the least amount

of tolerance with respect to both harvest and temporal traits.
Temporal phenomic classification of
treatment

Temporal phenomic classification (TPC) of plant treatment

(drought vs. control) was performed using all temporal predictors

from daily time points across the full duration of the experiment

(non-aggregated predictors) where model mean classification

accuracy was 0.99 (Figure 3A). Using leave-one-line-out

validation instead of the repeated threefold CV resulted in a
Frontiers in Plant Science 07
similarly high mean accuracy of 0.983. In another approach,

predictors were aggregated by week using summary statistics

(mean, minimum, and maximum), as described in the methods

section, resulting in a slightly lower but maintained high mean

accuracy of 0.98 compared with daily time points (Figure 3B).

Variable importance analysis revealed that canopy temperature

depression (DT) at the early stage (3 weeks of drought stress),

along with, as expected, RGB-based plant size estimates (area from

the RGB side view and plant volume) at the late stage (longer

duration of drought stress) were the most influential predictors of

treatment classification, regardless of daily or weekly aggregated

data (Figure 3).

In addition, TPC using daily (non-aggregated) predictors was

also performed by training separate models using only the data

from individual weeks. All week-specific models, except the one

based solely on week 0 (during which the drought treatment was

initiated), achieved high accuracy in distinguishing treatments

(0.973 ≤ mean accuracy ≤ 0.99; Supplementary Figure S3). The

model trained exclusively on week 0 data had lower performance

(mean accuracy = 0.695), likely due to the limited physiological

response at this early stage. Notably, classification models using

only the second and third weeks of measurements (corresponding

to week 1 and 2 after inducing drought stress) relied almost entirely

on DT estimates, along with traits from chlorophyll fluorescence

and visible-near-infrared (VNIR) imaging (Supplementary Figure

S4). This finding underscores the importance of these traits in early

drought stress detection.

By comparing predictors derived from the daily and weekly

aggregated data, we found that both contributed to identifying

critical time points in the stress response, where common traits at

specific time points were identified. Notably, from the chlorophyll

fluorescence (morning protocol), the ratio of quantum yield under

low to high light (FC1 HL LL QY Lss2/Lss1) was selected at day 90

and week 9, reflecting the severe impact of stress responses at the

late stage (Figure 3).
FIGURE 2

Treatment separation and ranking of the barley lines according to their susceptibility to drought stress. (A) k-means clustering using a two-
dimensional PCA based on all traits across all time points for the six barley lines. Treatments are represented as control (circle shape) and drought
(triangle shape). (B) Tolerance ranking of genotype to drought stress using PERMANOVA quantifying significance and effect size of treatment on
temporal traits. The asterisks represent a significance level P-value< 0.001.
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Temporal phenomic prediction of harvest
traits

Temporal phenomic prediction (TPP) was also performed for all

harvest traits using RF regression and LASSO models, with training

data from the control treatment, drought treatment, or the pooled data

set containing both treatments. Among the predicted traits, total

biomass dry weight, spike number, total spike weight, and five spikes

weight were generally the most predictable based on R² values

(Figure 4A). Therefore, our subsequent comparisons of prediction

accuracy focus on these four traits. Among these traits, total biomass

exhibited substantially higher predictability compared with the other

traits. Using leave-one-line-out validation instead of the repeated

threefold CV resulted in similar mean accuracy values (pooled

treatment LASSO results shown in Supplementary Figure S5), but

larger variance, especially in poorly predictable traits. The high variance

can likely be attributed to the smaller number of validation folds, the

reduced sample size within each fold, and genuine differences in how

well models generalize across individual genetic lines.

The relative performance of RF compared with LASSO depended

on the training data set (i.e., control, drought, or the pooled treatment

data) and the response trait, with only minor differences in overall

accuracy between the two models (Supplementary Figure S6). Due to

the small and unsystematic difference in performance between these

model types, the rest of the findings reported will focus on the LASSO

models, as they are facile to interpret without additional feature

importance scoring. The choice of training data set (i.e., drought,

control, or pooled) had a more pronounced effect on model

performance than the choice of modeling approach. Models trained

on the pooled dataset generally performed best, followed by those

trained on drought data (Supplementary Figure S7). There is a slight

overlap between useful predictors in pooled data TPP and TPC of

treatment, suggesting that these models, by implicitly capturing

treatment-related variance, leveraged the drought-induced variability
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in both predictors and response traits to improve robustness (e.g., TPC,

Figure 3A and biomass prediction, Figure 4B). This finding is further

supported by the fact that many harvest traits, especially total biomass,

spike weight, and spike number, showed a large variance contribution

from treatment (Supplementary Figure S8). However, when using the

pooled model to predict harvest traits using only drought or control

data, the performance was marginally affected (Supplementary Table

S7), indicating a reasonable degree of transferability of the model.

LASSO coefficients for pooled and drought treatment biomass

prediction were generally associated with plant size estimates (e.g.,

plant area) derived from RGB imaging at late time points

(Figure 4B). These predictors not only had the largest absolute

coefficient values but also showed high variance contributions

linked to the treatment (Figures 4B, C and Supplementary Figure

S9). Aggregating predictors by week caused a slight drop in model

performance during TPP, but accuracies were still similar to those

found in the original daily data set (Supplementary Figure S10).

To evaluate the feasibility of early prediction of harvest traits and to

identify informative early predictors, models were retrained using only

measurements from the first half of the experiment (early phase

including stem elongation) (Supplementary Figure S11). Compared

with models trained on all time points, R² prediction accuracy was

decreased and had higher variance in all models. However, despite this

reduction in accuracy, predictions remained reasonably effective,

particularly for biomass dry weight (mean R2 = 0.924 for pooled-

treatment LASSO model) and total spike weight (mean R2 = 0.837 for

pooled-treatment LASSOmodel) (Supplementary Figure S12). In these

early-timepoint models, pooled-treatment models still resulted in the

highest overall accuracy. RGB plant size estimates were again found to

be important predictors, but their contribution was complemented by

predictors from other sensors. Biomass prediction incorporated

hyperspectral indices (MCARI1, LWVI2, NDVI) (Supplementary

Figure S12A), whereas total spike weight relied more strongly on

photosynthetic efficiency from chlorophyll fluorescence, supplemented
FIGURE 3

Variable importance for classification of treatment. The importance of the temporal traits was assessed using a random forest model with a mean
accuracy metric for (A) non-aggregated data set and (B) aggregated data set composed of minimum, maximum, and average per week, and top 20
traits differentiating between treatments. Variable importance was determined using a permutation-based method, where the model’s prediction
accuracy was compared before and after shuffling each variable. Higher importance values indicate a greater decrease in accuracy when a variable is
permuted, signifying its stronger contribution to classification performance.
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by plant senescence estimation from RGB color indices at 49 DAT and

DT from thermal IR imaging (Supplementary Figure S12B).
Discussion

This study demonstrates the utility of temporal high-throughput

phenotyping in dissecting drought stress responses and predicting

agronomically relevant traits in different barley lines. By analyzing a

comprehensive set of temporal phenotypic features collected

throughout the growth cycle, we developed models that accurately

classified drought treatments and predicted harvest-related traits such

as biomass dry weight, spike weight, and spike number. Classification
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accuracy was consistently high (mean accuracy ≥0.97) when using

temporal predictors from any week following drought initiation, with

reduced performance only during the initial week when stress

responses were not yet fully established.
Model accuracy and cross validation

An important outcome of the harvest trait prediction analysis was

the clear superiority of models trained on the pooled dataset. This

increase in accuracy was likely due to structured variability in

temporal and harvest traits introduced by treatment, as can be seen

in the substantial treatment-induced variance in predictors and
FIGURE 4

Performance of the prediction models for harvest traits. (A) Boxplots showing the accuracy (determined by R2) among all the harvested traits using a
least absolute shrinkage and selection operator (LASSO) model trained on the pooled non-aggregated dataset. (B) LASSO coefficient on the total
biomass dry weight. Coefficients with absolute values below 0.005 are not plotted. (C) Partitioning of variances of the temporal traits selected from
the LASSO model.
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response traits, as well as in the overlap in important predictors from

TPC and pooled treatment TPP. However, the increased sample size

used to train pooled models should also be acknowledged as a

contributing factor. In addition to achieving the highest accuracy

across internal cross-validation folds, pooled treatment models also

performed well when tested separately on drought and control

treatment data (Supplementary Table S7). While this test does not

constitute a true external cross-validation, it provides evidence that

the improved performance of pooled models is not merely driven by

treatment-level separation. The high accuracy observed when

predicting within each treatment group suggests that the models

capture meaningful, continuous variation among individual plants,

rather than just categorical differences between drought and

control conditions.

External validation, in which a model is tested on data entirely

excluded from training, remains the most rigorous method for

identifying overfitting and assessing model generalization. While

external validation was not feasible in this study, model

performance was evaluated using repeated internal cross-

validation, where R² values were computed on data withheld from

training. This approach reduces the risk of overfitting. Apart from

this, other observations are indicative that overfitting was not the

cause for the high observed accuracy.

Most notably, prediction accuracy varied substantially across

response traits despite the use of identical predictor sets. Traits with

limited or indirect association to vegetative growth dynamics, such

as infertile tip length and spikelet density, consistently yielded low

predictive performance (R²< 0.3). If the models were overfitted, one

would expect uniformly high accuracy across traits, regardless of

biological relevance. Instead, this pattern suggests that the high

accuracy observed for traits, such as biomass and spike weight,

likely reflects a reliable predictive signal rather than a model

artefact. A similar argument holds for the treatment classification

task, whereas most weekly models achieved near-perfect accuracy,

classification using only the first week of measurements performed

poorly. This was biologically expected, as the drought treatment had

only just started during this week (WP 0) and had not yet induced

measurable phenotypic changes. The presence of both high- and

low-performing models, in line with biological expectations,

provides indirect evidence that overfitting is not the primary

driver of the observed model performance.

Moreover, both regression methods using LASSO and Random

Forest have inherent mechanisms for mitigating overfitting. LASSO

applies L1 regularization, which penalizes model complexity by

shrinking coefficients and effectively selecting a subset of

informative features (Ying, 2019). Random Forests, through

ensemble learning and the use of out-of-bag error estimation,

reduce the risk of overfitting by averaging across multiple

decorrelated decision trees (Ghojogh and Crowley, 2023).

Nonetheless, while these approaches help control overfitting, a

more reliable way to assess generalizability is through external

cross-validation using independent data not seen during model

training or optimization (Ghojogh and Crowley, 2023). Due to the

limited sample size and experimental design, such validation was

not feasible in this study, but should be prioritized in future work.
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Integrative insights into model interpretability,
classification, and prediction

Variable importance was assessed using model coefficients in

LASSO and a permutation-based approach in Random Forests. These

measures provide insight into predictive relevance, but reflect

conditional importance, which may fail to identify all relevant

predictors when multicollinearity is present, as only one among a set

of correlated variables may be selected or appear important (Grömping,

2009). This is likely the reason for the slight inconsistencies observed in

variable importance rankings between models using daily (non-

aggregated) and weekly (aggregated) predictors.

Temporal phenomic classification of treatment
For treatment classification, canopy temperature depression (DT)

at early time points and RGB plant size estimates at late time points

emerged as important predictors (Figure 3). Notably, treatment could

be classified very accurately early in the experiment mainly by relying

on DT measurements, highlighting the importance of this trait for

early drought detection. Plant canopy temperature has an impact on

plant growth by non-linearly regulating photosynthesis, respiration,

and transpiration rates. By increasing water deficit, the efficiency of

cooling the leaf surface through transpiration diminishes, leading to an

increase in leaf temperature (Biju et al., 2018; Way and Yamori, 2014).

Therefore, changes in canopy temperature provide a valuable proxy of

stomatal regulation and an indicator of different stress responses (Wen

et al., 2023). Stomatal closure serves as an initial response to drought

stress to prevent excessive water loss, leading to alterations in

physiological response and metabolic pathways (Farooq et al., 2024).

In our study, drought-stressed plants showed higher DT due to

increased canopy temperature. However, as drought duration

increases over time, DT became a less significant classifier of

treatment, likely due to physiological adaptations such as stomatal

acclimation, osmotic regulation, and changes in transpiration

dynamics, which can moderate canopy temperature despite

continued water limitation (Lawson and Blatt, 2014). In addition,

plants progressively reduce their biomass due to water limitations

(Pham et al., 2019). This structural change, including leaf area

reduction, alters canopy-atmosphere interactions and subsequently

affects canopy temperature regulation (Vico et al., 2023).

Temporal phenomic prediction of harvest traits
For the prediction of harvest traits, RGB-based plant size

estimates from late time points emerged as dominant predictors,

particularly in models for biomass (Figure 4). This is likely due to

the strong biological alignment between total biomass and plant

size, as both reflect cumulative vegetative growth. This aligns with

previous studies showing the reduction of biomass accumulation

under drought stress (Cai et al., 2020; Neumann et al., 2015).

Moreover, the high correlation between the biomass and yield,

where biomass reduction ultimately affects yield-related traits, as a

result of low assimilates for grain production, reflects a source-to-

sink limitation (Findurová et al., 2023; Rosati and Benincasa, 2023).

When prediction models for biomass and total spike weight were

trained using only pooled-treatment predictors from the first half of
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the experiment, RGB plant size traits remained influential, but they

were complemented by features derived from all of the other

sensors. Despite a significant reduction in predictive accuracy

compared with models trained on the full dataset, these early-

timepoint models still achieved strong performance, with mean R²

values of 0.92 for biomass and 0.84 for spike weight, respectively

(Supplementary Figures S11, S12). The relatively high accuracy of

these early TPP models is particularly promising in a breeding

context, as it demonstrates that complex cumulative traits can be

reliably predicted well before they are phenotypically expressed.

Harnessing this predictive capacity would allow breeders to select

plants early in the breeding pipeline, significantly reducing cost.

While RGB showed importance and strong associations with

harvest-related traits, integrating multiple sensors enriches the

predictive power of the models and strengthens the biological

interpretability. Previous studies highlighted the importance of

multiple imaging sensors besides RGB for deeper insights into the

mechanisms of stress resilience (Shi et al., 2025; Zhang et al., 2024).

Notably, the fraction of open Photosystem II (PSII) centers at light

steady state (qL_Lss) showed importance in LASSO coefficient

when prediction models were trained on pooled and drought data

during the early drought stage (stem elongation stage) (Figure 4,

Supplementary Figure S9). The variation in the opening of the PSII

centers is probably reflecting alterations in photosynthetic efficiency

and electron transport pathways, which shows major mitigation

mechanisms to alleviate the negative effects of moderate drought

stress (Qiao et al., 2024; Shin et al., 2021). By increasing the stress

intensity and duration, the quantum yield of PSII (QY Lss2/Lss1)

was observed at the late stage as an important predictor, indicating

impairment of PSII function, where plants were unable to efficiently

transfer energy from high to low light (Zhou et al., 2019).

Implications for breeding and timely selection
One of the primary applications of TPP is enabling the early

selection of plants in breeding. In this study, it was demonstrated that

this task is feasible with high accuracy for a variety of traits. Even

predictors from the early phase of the phenotyping period (including

the stem elongation stage) in the models achieved high accuracy for

traits such as total biomass and total spike weight, potentially allowing

selection after only a few weeks of vegetative growth. Notably, we

observed that complementary traits showed importance from the

hyperspectral data contributing strongly to early-stage predictions,

emphasizing the importance of hyperspectral imaging. Similarly,

recent work has shown the importance of hyperspectral reflectance

for predicting a wide range of physiological traits, applying advanced

machine learning approaches, including different prediction scenarios

(Xu et al., 2025). However, it should also be noted that models trained

on predictors from the full phenotyping period remain valuable to

breeders, as phenotyping concluded 31 days before harvest.

Nevertheless, daily phenotyping and harvesting are both costly and

time-consuming processes, which could be partially avoided by

implementing early phenotyping to identify tolerant plants prior to

the later stages of evaluation (Adak et al., 2023).

An increase in prediction accuracy was observed when data from

both drought and control treatments were combined in the training
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set. This illustrates a key advantage of phenomic prediction over

genomic prediction. While genomic prediction captures only the

static genetic contribution to trait variation, phenomic prediction

leverages genetic, environmental, and genotype-by-environment

interaction effects, as phenotypic traits, both predictors and

responses, reflect the integrated output of all these factors (Adak

et al., 2023). Variance decomposition of both predictor and harvest

traits in this study further illustrates that trait variation arises from a

combination of genetic background, environmental conditions, and

temporal dynamics. In contrast, genomic prediction models are

inherently limited to the genetic component of variance and cannot

account for time-dependent or environmentally induced effects. The

inclusion of a temporal dimension in phenomic prediction further

enhanced model performance by capturing dynamic shifts in

environmental conditions and their interactions with genotype over

time. This ability to model temporal trajectories of plant development

and stress response adds substantial predictive power and

highlights the unique potential of time-resolved phenomic data in

breeding applications.

The implications for breeding are complicated by the fact that

this experiment was performed under greenhouse conditions. While

field trials are essential for capturing the full environmental variance

affecting crop performance, phenotyping data from controlled

environments remain highly valuable. They enable preliminary

screening, identification of heritable differences between genotypes,

and the generation of high-quality training data for predictive crop

modeling and genetic analyses (Debbagh et al., 2025; Rahaman et al.,

2015; Rayaprolu et al., 2025). Controlled-environment studies also

allow detailed investigation of stress responses and developmental

dynamics, as well as the measurement of key traits that are difficult to

capture reliably in the field due to environmental heterogeneity and

technical constraints (Langstroff et al., 2022). Importantly, recent

work has shown that controlled platforms are not isolated from real-

world relevance; they can simulate weather conditions and produce

growth dynamics comparable with those observed in the field

(Heuermann et al., 2023). Thus, controlled environments provide a

powerful complement to field phenotyping for trait dissection,

breeding, and modeling under current and future climate scenarios.
Future perspectives

Viewed in a breeding context, while this study focused on yield-

related traits such as total spike weight, spike number, and biomass

provide meaningful proxies, they do not fully capture grain

production in the field. Future work could incorporate direct grain

yield measurements, which are typically the primary selection targets

in breeding programs and ensure greater relevance. Nevertheless, the

study offers valuable insights into the predictive capacity of temporal

phenomic data, and demonstrates how yield-associated traits can be

modeled early in the growth period. The approaches presented here

are readily transferable to datasets including grain yield, and thus

remain relevant for informing breeding strategies.

The present study selected a relatively low number of genotypes

examined (six genetically homogeneous lines and three genetically
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heterogeneous ones) to demonstrate methodological feasibility as

expanding genetic diversity was not the scope of the study, besides

the limited capacity of the phenotyping platform in screening the

lines. This restricted diversity likely reduces the generalizability of

the models and does not fully reflect the genetic variation

encountered in breeding programs. Scaling up to a broader and

more diverse genetic panel would increase the robustness of

predictions and better mimic the setting of applied breeding.

As previously discussed, models were evaluated using a repeated

threefold internal cross-validation procedure, which provides the most

reliable estimate of predictive performance, given the available sample

size. However, implementing external cross-validation for performance

assessment in temporal phenomic prediction in future studies would

offer a more robust measure of model generalizability and could be

used to assess performance across different environmental conditions.

Cross-environment validation has previously been applied in TPP

studies to demonstrate its advantage over genomic prediction, which

often does not transfer to new environments without a significant

decrease in accuracy (Adak et al., 2023; Jarquin et al., 2021).

Incorporating genomic prediction alongside the phenomic methods

used in this study would also enable a direct comparison of their

relative predictive power. However, this strategy would require a

substantial increase in the phenotyped population and application of

recently developed data integrative approaches (Hobby et al., 2025).

For TPC and TPP, prediction accuracy in the field would likely be

reduced due to environmental variability, which introduces additional

noise affecting both predictor and response traits. The key challenge in

field studies is the technical difficulty of collecting the same high-

frequency, multi-sensor trait data as in the greenhouse. Nevertheless,

our results demonstrate that both TPC and TPP can be successfully

applied under controlled conditions, providing a proof of concept. The

next step is to expand these approaches and test this pipeline in field

experiments, which would capture more realistic environmental

variability and allow the inclusion of more genotypes and larger

sample sizes. This would enable more rigorous validation schemes,

such as external cross-validation. With larger genotype panels,

prediction could also be framed at the genotype level, more closely

reflecting how predictions are applied in breeding programs.
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SUPPLEMENTARY FIGURE 1

Overview of the experimental timeline and phenotyping protocol. Phenotyping

was conducted from the tillering stage to the maturity stage, followed by final
harvest for harvest-related traits assessment. The drought stress was induced at

the tillering stage, where the pot weight was maintained at 25% soil relative water
content (SRWC), and during the flowering stage, the intensity of drought stress

increased at 20% SRWC. The phenotyping protocol was conducted daily with

different protocols using the PlantScreen™ Modular phenotyping platform at PSI
Research Center. In chlorophyll fluorescence imaging using FluorCam (FC), 1FC

morning measurement for the quantum yield of PSII (QY_Lss), 2FC night
measurement using conditional and high light levels, 3FC morning

measurement for chlorophyll content were conducted, thermal infra-red
imaging (IR), RGB including two angles from RGB1 side view and one angle

RGB2 top view, and hyperspectral imaging (HS) including SWIR and VNIR imaging.

And daily weighing and watering (WW) to maintain the target weight.

SUPPLEMENTARY FIGURE 2

Ranking the lines according to their susceptibility to drought stress on harvest

traits. PERMANOVA was used to quantify the significance and effect size of
the treatment on harvest traits. The asterisks represent significance level P-

value< 0.001 for *** and 0.01 for **.

SUPPLEMENTARY FIGURE 3

Temporal phenomic classification (TPC) of treatment (drought/control) using
predictors subset by week. TPC was performed using random forest models.

Predictors from each week were used separately along with a model trained
on the full data set (all weeks).

SUPPLEMENTARY FIGURE 4

Variable importance of temporal phenomic classification (TPC) of treatment

using predictors from two weeks. (A) Traits from week 1 and (B) week 2 after
inducing drought stress. TPC was performed using random forest models.

SUPPLEMENTARY FIGURE 5

Boxplots showing the accuracy (determined by R2) among all the harvested

traits using the LASSO model trained using leave-one-line-out validation
instead of the repeated 3-fold CV (9 validations instead of 45).

SUPPLEMENTARY FIGURE 6

Comparison between the accuracy of models. Boxplots showing the
accuracy (determined by R2) among selected harvested traits using LASSO

and Random Forest models trained on a pooled non-aggregated dataset. The

significance level was determined as *** for P< 0.001, **** for P< 0.0001 and
ns for non-significant differences between the models.

SUPPLEMENTARY FIGURE 7

Comparison between the different treatments using the LASSO model.
Boxplots showing the accuracy (determined by R2) among selected

harvested traits using the LASSO model trained on a non-aggregated

dataset. The significance level was determined as **** for P< 0.0001 and ns
for non-significant differences between the models.

SUPPLEMENTARY FIGURE 8

Partitioning of variances and repeatability of the harvest-related traits.
Repeatability on the secondary y-axis is represented as error bars.

SUPPLEMENTARY FIGURE 9

Harvest trait prediction models on drought non-aggregated dataset. (A)
Boxplots showing the accuracy (determined by R2) among all the harvested
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traits using the LASSO model trained on drought non-aggregated dataset. (B)
LASSO coefficients on the total biomass dry weight where coefficients with

absolute values below 0.005 are not plotted. (C) Partitioning of variances of
the temporal traits selected from LASSO model.

SUPPLEMENTARY FIGURE 10

Harvest-traits prediction models on an aggregated dataset. (A) Boxplots

showing the accuracy (determined by R2) among all the harvested traits
using the LASSO model trained on pooled aggregated dataset. (B) LASSO
coefficient on the total biomass dry weight. (C) Partitioning of variances of the
temporal traits selected from LASSO model.

SUPPLEMENTARY FIGURE 11

Comparison between the different early and all time points using the LASSO

model. Boxplots showing the accuracy (determined by R2) among selected
harvested traits using the LASSO model trained on pooled non-aggregated

dataset. Early time points were selected until 51 days after transplant (DAT).
The significance level was determined as **** for P< 0.0001 and ns for non-

significant differences between the models.

SUPPLEMENTARY FIGURE 12

LASSO coefficients of early time point TPP models for harvest traits. (A)
Biomass dry weight and (B) total spike weight were selected. Only

coefficients with absolute values above 0.015 are plotted.

SUPPLEMENTARY TABLE 1

Genetic background of the plant material for the selected lines.

SUPPLEMENTARY TABLE 2

List of temporal traits description frommultiple imaging sensors and harvest-

related traits.

SUPPLEMENTARY TABLE 3

Out of bag (OOB) error of imputed missing values in harvest traits. In all

samples, missing values were only in the total spike weight trait, except in L8,
where total biomass was also missing. OOB error is calculated as normalized

root mean square error (NRMSE) based on predictions for observed values

that were left out of the training bootstrap samples (i.e., out-of-bag) when
fitting the random forest.

SUPPLEMENTARY TABLE 4

Outlier rate and re-imputation out of bag (OOB) error for each sensor type,
including different protocols as described in Figure 1. Outliers were detected

for each trait among all replicates within a genetic line within a treatment.

SUPPLEMENTARY TABLE 5

Rates of non-normality (NN) for each sensor type, including different

protocols as described in Figure 1. Non-normality was tested for each trait
within each data group, either separated by treatment or pooled across

treatments. Groups identified as non-normal were corrected using a Box–
Cox transformation, and NN rates were recalculated post-correction.

SUPPLEMENTARY TABLE 6

Mapping between the daily time point counting from days after transfer of

seedlings to light (DAT) for the non-aggregated dataset and the corresponding

weekly phases (WP) for the aggregated dataset. The developmental stage was
marked when most of the replicates among all the genetic lines reached a

certain stage. Early stage refers to the vegetative and early reproductive phases,
during which plants were exposed to 3 weeks of drought stress. Late stage

refers to the late reproductive phase, when the flag leaf was fully expanded, and
plants were exposed to a longer duration of drought stress.

SUPPLEMENTARY TABLE 7

Performance of final LASSO models trained on the full predictor set using the
optimal parameter (l). Accuracies much higher than those found in the

internal CV procedure during training suggest overfitting. “Training Group”

refers to the data group used to train the model, whereas the R2 values show
the accuracy when the model is applied to the data group in question.
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