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Developing crop varieties that maintain productivity under drought is essential
for future food security. Here, we investigated the potential of time-resolved
high-throughput phenotyping to predict harvest-related traits and identify
drought-stressed plants. Six barley lines (Hordeum vulgare) were grown in a
greenhouse environment with well-watered and drought treatments, and
dynamically phenotyped using RGB, thermal infrared, chlorophyll fluorescence,
and hyperspectral imaging sensors. A temporal phenomic classification model
accurately distinguished between drought-treated and control plants, achieving
high accuracy (classification accuracy >0.97) even when relying solely on
predictors from the early drought response phase. Canopy temperature
depression at the early stage and RGB-derived plant size estimates at the late
stage emerged as key classification features. A temporal phenomic prediction
model of harvest-related traits achieved particularly high mean R? values for total
biomass dry weight (0.97) and total spike weight (0.93), with RGB plant size
estimators emerging as important predictors. Importantly, prediction accuracy
for these traits remained high (R?> > 0.84) even when restricted to early
developmental phase data, including the stem elongation stage. Models
trained on pooled drought and control data outperformed single-treatment
models and maintained high predictive power across treatments. Together,
these findings highlight the value of integrating high-throughput phenotyping
with temporal modeling to enable earlier, more cost-effective selection of
drought-resilient genotypes and demonstrate the broader potential of
phenomics-driven strategies for accelerating crop improvement under stress-
prone environments.
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Introduction

Climate change influences agricultural productivity and
negatively affects crop yield, making the breeding of resilient crop
varieties essential. The development of such stress-resilient varieties
is challenging due to the interaction between genotype and
environment that shapes complex traits, like grain yield. As a
result, enhancing breeding programs for resilient crops requires
accurate yield prediction across diverse environments (Cooper and
Messina, 2023). Developing predictive models that integrate diverse
data sets, e.g., genomics along with spatiotemporal phenomics and
enviromics, can support this goal by enabling more accurate
prediction of crop phenotypes (Xu et al., 2022). In addition, the
implementation of advanced breeding techniques demands the
development and deployment of high-throughput phenotyping
(HTP) platforms in breeding programs. The resulting data along
with the computational and machine learning approaches can
improve future yield performance and help in developing resilient
crop varieties that can withstand a variety of stresses, typical of field
conditions (Varshney et al., 2021).

HTP is one of the techniques that has transformed and
accelerated plant breeding by enabling large-scale, rapid screening
of different phenotypic traits of interest, including automated data
acquisition and trait analysis (Song et al., 2021; Yang et al,, 2020).
The use of multi-imaging sensors is essential for the non-invasive
and precise assessment of plant growth dynamics as well as
physiological responses. This approach provides a comprehensive
view of plant development, enabling the monitoring and assessment
of plant performance and stress responses (Cai et al., 2020; Humplik
et al., 2015). Many studies have investigated the effect of abiotic
stress, including drought, aiming at identifying the key phenotypic
traits and physiological mechanisms that enhance stress tolerance
(Al-Tamimi et al., 2022; Chen et al., 2014; Findurova et al., 2023).
However, the complex nature of genotype-by-environment
interactions remains a major challenge and demands further
investigation. Moreover, a better understanding of drought
adaptation requires recognizing that the impact of stress on
physiological traits linked to grain yield can vary depending on
stress intensity, genotype susceptibility, and developmental stage
(Khadka et al., 2020). Along these lines, advances in high-
throughput and precision phenotyping techniques have
contributed to improving the strategies for mitigating the adverse
effects of drought stress on plants and enhancing their resilience
and productivity (Farooq et al., 2024).

One of the main challenges in harnessing the potential of high-
throughput data lies in the management and analysis to identify
traits of interest and reveal plant responses to stress (Langstroff
et al,, 2022; Leonelli et al,, 2017). Data generated at multiple spatial
and temporal scales requires robust analytical pipelines capable of
handling such complex phenotypic datasets (Tardieu et al., 2017).
Moreover, in phenotyping studies focusing on stress response
across developmental stages, models are often modified to capture
the dynamic changes of plant response to stress over time (Li et al.,
2020). Recent pioneering advances have facilitated the prediction of
the dynamics of multiple traits given genetic markers alone (Hobby
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et al., 2025). Thus, while the development of analytical pipelines
that explicitly capture the temporal dynamics of stress response in
plants is highly demanded, our study advances the state of the art by
integrating HTP with temporal modeling of harvest-related traits to
enable predictions across developmental stages.

Machine learning techniques play a transformative role in
phenotypic data analysis by linking large, complex datasets to
traits of interest (Singh et al, 2016). Combining image-based
phenotyping with machine learning approaches has enabled the
extraction of new insights from curated, annotated, high-
dimensional data sets across various crops and stress conditions
(Singh et al., 2021). Machine learning encompasses a range of
techniques, including feature extraction, pattern recognition,
classification, and prediction. Some of these approaches facilitate
the analysis of complex phenotypic data sets by considering
multiple traits simultaneously, accounting for trait integration
(Mbebi et al., 2025). As such, applying machine learning to
phenomic data provides a powerful framework for uncovering
patterns and extracting biologically meaningful insights (Gill
et al, 2022). In this study, we focus on two widely used
approaches: Random Forests, applied for both classification and
regression, and least absolute shrinkage and selection operator
(LASSO) regression, which provides a linear, regularized
framework well suited to high-dimensional predictor sets.

Using the HTP platform equipped with multiple imaging
sensors, we aimed to develop an advanced data analysis pipeline
and apply it to perform a phenotypic data analysis of different
barley (Hordeum vulgare) lines exposed to drought stress. We
focused on barley as it is a model cereal crop (FAO, 2023;
Newton et al,, 2011), and we aimed to investigate the impact of
drought as a predominant stress in future climate scenarios (IPCC,
2021). This was achieved by (i) using a classification model to
identify distinct traits that differentiate drought-stressed from well-
watered plants and (ii) using regression models to accurately predict
harvest-related traits. The applied modeling approach enabled
pinpointing the most predictive traits at specific time points.
Moreover, early detection of such traits can support breeders in
selecting stress-tolerant genotypes more efficiently, potentially
accelerating the development of resilient crop varieties and
improving resource use in breeding programs.

Materials and methods
Plant material and growth conditions

Six genetically homogenous barley lines were selected in this
study, including one elite cultivar line (Barke) (L1) and five lines
originating from the CMPP (Cytonuclear MultiParent Population)
(L2-L5) and HEB-25 (Halle exotic barley) (L6) populations
(HUbner et al., 2009) (Supplementary Table S1).

After seeds were stratified at 4 °C in darkness, seedlings were
transferred to light in the walk-in chamber (FytoScope FS-WI,
Photon Systems Instruments (PSI), Drasov, Czech Republic) and
were grown under a short-day regime, until the emergence of the
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fifth leaf. One seedling was transplanted per 3-L pot filled with 1,850
g of Klasmann Substrate-2:sand (3:1). Plants were transferred to the
greenhouse under a long day regime (16-h photoperiod), 22 + 3
(mean + standard deviation)/17 + 2 °C for day/night temperature,
and 51 + 8/62 + 4% for day/night relative humidity.

Phenotyping protocol

The experiment was conducted in a greenhouse that is
connected to the PlantScreen'" Modular phenotyping platform
(PSI, Czech Republic), where pots were placed on transportation
disks carried from the growth area toward the multi-imaging and
irrigation units. Plant performance, including morphological and
physiological responses, was assessed throughout the whole life
cycle with an overall duration of plant cultivation of 97 days after
transfer to light (DAT) and kept until reaching the full maturation
stage (126 DAT). Over the course of 10 weeks, the daily
phenotyping protocol was conducted to extract morpho-
physiological and spectral-related traits in plants cultivated in
semi-controlled greenhouse conditions under two watering
regimes, control and progressive drought stress regime. Pots were
weighed and watered daily by maintaining pots at target soil relative
water content (SRWC) levels based on pot weight. Drought-stressed
plants were maintained at 25% SRWC until the flowering stage, and
then watering was further reduced to 20% SRWC (Supplementary
Figure S1). We used nine biological replicates per treatment for
most of the lines, and 20 replicates per treatment for the HEB line
and elite line (Barke), which served as the reference line. The
reduced watering regime was induced at the tillering stage (24
DAT) and remained reduced for the stressed group for the whole
cultivation period. On a daily basis, plants were randomized in the
cultivation greenhouse to avoid positional effects, environmental
conditions were recorded with minute resolution, and daily
watering and weighing of the plants were performed. Plants were
phenotyped daily up to the maturity stage using multi-imaging
sensors of the PlantScreen'" Modular phenotyping platform (PSI,
Czech Republic), including RGB, thermal infrared (IR), chlorophyll
fluorescence, and hyperspectral imaging, as described in
Abdelhakim et al. (2024). Referring to chlorophyll fluorescence
imaging, different measuring protocols were selected for capturing
more insights into the photosynthetic performance, including a
morning protocol and two different evening protocols
(Supplementary Figure S1). During the day (light-adapted state),
measuring protocols were optimized to measure the quantum yield
of PSIT (QY_Lss) under two light steady-state (Lss) intensities,
including high light (HL, Lss1 at 1,200 pmol-m > s™") and low light
(LL, Lss2 at 130 umol-m™2 s™"). To estimate the plasticity index of
QY under different light intensities, the ratio between QY_Lss
measured under low (Lss2) to high (Lssl) light was calculated.
Moreover, measurement on dark-adapted plants was conducted to
assess the photosynthesis induction and relaxation kinetics during
the night period at two different-light-intensity protocols, i.e., high
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light (HL) at 1,200 pmol-mfzsf1 and conditional light (CL) at 360

257! (Figure 1). At the end of the maturation stage, the

pumol-m™
total biomass of the plants was manually harvested, including
analysis of the total tiller number, spike number, and other spike-

related traits (Supplementary Table S2).

Data processing pipeline

The gathered dataset consists of dynamic phenotypical data
from 70 time points captured for the six barley lines that were
grown under two conditions, including 9-20 replicates per
treatment per line. Overall, 145 image-based and post-harvest
traits were extracted (Supplementary Table S2) and subjected to
further data analysis. Of these, 52 traits from chlorophyll
fluorescence and thermal IR imaging were excluded from
downstream analysis, as they represented raw measurements used
solely in the calculation of more biologically meaningful derived
indices. The full data analysis pipeline was conducted using R studio
(version 4.3.2).

Due to differing assumptions about input data across methods,
preprocessing followed multiple branching paths. For analyses that
separated drought and control treatments (harvest prediction per
treatment), data were partitioned before outlier detection and
transformation. In contrast, pooled-treatment analyses (i.e.,
variance decomposition, treatment classification, pooled-
treatment harvest prediction) preserved treatment-induced
variance by avoiding such partitioning. For temporal traits, each
measurement time point was treated as a separate data group.

To maximize sample size and model robustness for the
genotype-agnostic methods, including temporal phenomic
classification (TPC) and prediction (TPP), three additional
genotypic lines (L7-L9) were used in part of the analysis pipeline
with the six genetically homogeneous lines (L1-L6) (Supplementary
Table S1). However, as a result of heterogeneity, those three lines
were excluded from analyses that assumed genetic homogeneity
(i.e., clustering of samples, drought tolerance ranking, and trait
variance decomposition).

Handling of missing values

Data preprocessing began with the imputation of 10 missing
values across 267 plant samples in harvest traits, which were later
used as response traits in TPP. Missing values were found in spike
weight (nine samples) and total biomass dry weight (one sample).
These were evenly distributed among samples, except for one
sample (L8_D_15, Drought) with missing values in two traits.
Missing values were imputed using MissForest imputation
(Stekhoven and Bithlmann, 2011), implemented using the R
package missForest (version 1.4), leveraging the remaining
harvest traits. The out-of-bag (OOB) error for these imputations
is provided in Supplementary Table S3.
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A. Experimental design

* 6 Barley lines

¢ 2 Treatments:
» Control
»Drought stress

NS

B. Phenotyping protocol per week
*3x 'FC, IR, RGB1, RGB2

® 2x 2FC

¢ 1x 3FC, HS

e Daily weighing & watering

C. Image segmentation

Using Plant data analyzer software
*mask application

*subtraction of background
*pixel-by-pixel integration

D. Trait extraction

*From tillering to maturity stage
*Data set of 145 traits
*Across 70-time points A\

E. Data analysis
Machine learning approach

F * Tolerance ranking
s |« Treatment prediction
* Harvest trait prediction

FIGURE 1

Overview of the experimental design and measurements performed. (A) Summary of the experimental design, including six barley lines. Two different
water regime treatments were applied, control and drought stress at 60% and 25%-20% soil relative water content, respectively. Phenotyping was
conducted from the tillering stage to the maturity stage, followed by final harvest. (B) Automated image-based phenotyping using the PlantScreen™
Modular phenotyping platform at PSI Research Center, where plants are moved from the greenhouse growing area toward imaging units. The
phenotyping protocol was conducted daily with different protocols. In chlorophyll fluorescence imaging using FluorCam (FC), *FC morning
measurement, 2FC night measurement, and *FC chlorophyll content were conducted, as well as thermal infrared imaging (IR), RGB including two
angles from the RGB1 side view and one angle RGB2 top view, and hyperspectral imaging (HS) including SWIR and VNIR imaging. (C) Automated
image segmentation process. (D) Extracting traits, including measured and calculated parameters, among the developmental stages. (E) Data analysis
using a machine learning approach to assess tolerance of plants under drought stress, discriminating between the two water regimes and finding the
most predictive traits of the final yield.
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Outlier handling

Outliers were identified as data points exceeding three times the
interquartile range (IQR) of a given data group. These values were
removed and re-imputed using missing forest imputation. The
OOB errors for these imputations were reported (Supplementary
Table S4). At this stage, the processed data were exported for
variance decomposition.

Data transformation

A Shapiro-Wilk test for normality was applied to every data
group, and p-values were corrected using the Bonferroni method.
Those groups whose distribution was deemed non-normal had a
Box-Cox transformation and were tested for normality again. Cases
of non-normality before and after correction were reported
(Supplementary Table S5). Following Box-Cox transformation of
some groups, a Z-score transformation was applied to all groups. At
this point, the transformed data were used for treatment
classification and harvest trait prediction.

Week-wise aggregation of predictors

The same preprocessing steps used with the non-aggregated
data set were also employed with the aggregated data set, including
group-wise Random Forest imputation using missForest, outlier
detection based on the IQR with a threshold of 3, re-imputation of
extreme values after their removal, and transformation of non-
normal trait distributions using Box-Cox followed by z-score
normalization. Branching preprocessing paths were also applied,
where treatment-specific analyses were conducted on partitioned
data, while pooled-treatment analyses preserved treatment-induced
variance by processing all samples jointly. A key difference lies in
the temporal structuring of the data, whereas the original pipeline
treated each measurement daily time point (DAT) as a separate data
group; this pipeline uses weekly phases (WP) for grouping and
aggregation. This approach reduces temporal noise while
maintaining biological resolution, particularly relevant for trait
dynamics across stress and recovery phases. The mapping
between the DAT and the corresponding WP was defined in
Supplementary Table S6. For each numeric variable, the average
(mean), minimum, and maximum values were calculated. To
reduce redundancy, if all three values were identical within a
group, indicating no variation, the minimum and maximum
columns were removed, leaving only the average as the
sole predictor.

Clustering of samples
All temporal traits from weekly aggregated data were combined,

and principal component analysis (PCA) was performed using two
R packages, prcomp and PCAtools, with scaled and centered data to
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explore the underlying structure. Unsupervised clustering using k-
means was then applied to the scaled trait data. Trait means were
computed for each genotype-treatment combination and scaled.
The optimal number of clusters was determined using the silhouette
method with the R package factoextra (fviz_nbclust function).
Clustering results were visualized using the fviz_cluster function
and projected onto PCA space. Clusters were annotated by
genotype and treatment, with PCA coordinates overlaid with
confidence hulls to enhance interpretability.

Drought tolerance ranking of lines

The barley lines were ranked based on the magnitude of
drought-induced effects on phenotypic traits. A permutational
multivariate analysis of variance (PERMANOVA) with 3,000
permutations was applied separately to temporal and harvest
traits, comparing drought-treated and control plants within each
genotype (Anderson, 2017). This analysis was conducted using the
R package vegan (version 2.6-8). Generalized eta squared (*) was
used to quantify the treatment effect size, providing a measure of
how strongly drought influenced each genotype’s temporal or
harvest traits.

Temporal phenomic classification of
treatment

Random Forest (RF) binary classification of plant treatment was
performed using temporal traits as predictors. Models were trained
using the R packages caret (version 6.0-94) and randomForest
(version 4.7-1.1). Each trait at each time point was used as an
independent predictor. Models were trained using a threefold five-
repeat cross validation (CV) scheme. In each repeat, data points
were split randomly into three folds. For each split, two folds were
used for training the model, and the last was reserved for testing.
This was repeated three times, leaving each fold out for testing once.

To optimize model performance, the number of predictors
randomly selected at each decision tree split was treated as a
tunable parameter. A range of candidate values was systematically
evaluated, and model performance was assessed across the 15
different test sets (three folds x five repeats) to ensure robustness.
The final selection was based on the average performance across all
repetitions, with the best-performing setting chosen to balance
accuracy and model complexity.

Temporal phenomic classification (TPC) of treatment was
conducted using temporal traits from all time points (Npredictors =
850) and using predictors from each separate week of the
experiment (53 < Npredictors < 92, depending on the week). Model
accuracies were reported as classification accuracy (i.e., the
proportion of correctly classified samples out of the total number
of samples tested) and compared using one-way ANOVA and a
pairwise t-test with Holm’s method for p-value correction.

To assess the variable importance of predictors, a permutation-
based approach was used. For each tree in the forest, the
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classification accuracy was first recorded using the out-of-bag
(OOB) data, which consists of observations left out during
bootstrap sampling. Then, the values of a given predictor were
randomly permuted in the OOB data, and classification accuracy
was re-evaluated. The drop in accuracy due to this permutation,
relative to the original OOB accuracy, was computed for each tree.
This accuracy difference was averaged across all trees, normalized
by the standard deviation of the differences, and then scaled so that
the most important variable received an importance score of 100.
To test whether the validation procedure affected the results, we
also performed a leave-one-line-out CV. In this scheme, the models
were trained while leaving out all replicates of one genetic line and
then tested on that unseen line (nine validations). This directly
evaluated model performance on previously unseen genetic lines.

Temporal phenomic prediction of harvest
traits

Temporal phenomic prediction (TPP) of harvest traits was
performed using least absolute shrinkage and selection operator
(LASSO) with R package glmnet (version 4.1-8) and RF with R
package randomForest (version 4.7-1.1) regression models.
Training was done using the R package caret (version 6.0-94).
The internal CV schedule was largely equivalent to the one used in
TPC, except that LASSO models were optimized for the
regularization strength parameter, rather than the number of
variables considered at each split. In addition, the threefold CV
procedure was repeated 15 times instead of 5 (3 folds x 15 repeats =
45 validations). The increased number of repeats was chosen based
on preliminary testing, which showed greater variability in
performance estimates for TPP models compared with TPC. For
parameter optimization, model performance was evaluated using
root mean squared error (RMSE). Finally, after the internal CV
procedure had determined the optimal parameter, a final model was
trained on the full predictor data set.

Separate models were trained to predict each of the 13 harvest
traits using data from the control treatment (npjane = 133), drought
treatment (Nyjanes = 134), or a pooled dataset containing both
treatments (Npjanis = 267). Each temporal trait at each time point
was treated as an independent predictor.

To assess whether the choice of validation strategy influenced
results, TPP was also repeated using a leave-one-line-out CV
scheme described in the TPC section. This procedure directly
evaluated the robustness of harvest trait prediction when applied
to genetic lines not included during training.

Harvest trait prediction models were trained using all traits
measured at all time points (Npredictors = 850) and using only
measurements from the first half of the experiment (nyredictors =
368). Model performance was compared using R values originating
from the repeated internal CV using the final optimal parameter,
with statistical significance assessed using either ANOVA followed
by multiple pairwise t-tests or a Kruskal-Wallis test followed by
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multiple pairwise Wilcoxon rank-sum tests, depending on the
normality of R*> distributions. To correct for multiple testing,
Holm’s method was applied to adjust p-values.

Final models were tested on their training data set as well as the
other data groups after readjusting them to the fitting
z-transformation.

Variance decomposition of traits

Mixed effects linear models were used to model the temporal
and harvest traits. Temporal and harvest traits were modeled
similarly, except that the model used for temporal traits
(Equation 1) included a temporal term, which was not the case
for the harvest trait model (Equation 2). In addition, for harvest
traits, the genetic repeatability (GR) was estimated using the genetic
and residual variance components (Equation 3).

Vi = 1+ B + Oy + L) + Eiie (1)

where

Y temporal trait value
overall mean trait value for all plants
B; random effect of the ith measuring time point
~ N(0,6°P-)
Oy random effect of the treatment within ith time point
- N(O GZﬁfi(k))
€ the random effect of jth genetic line within ith time point
~ N(0,6>*)
g pooled error of the individual at ith time point
- N(0’62€7ijk)

ij:u+8k+gj+8jk (2)

where

Y harvest trait value
overall mean trait value for all plants
O, random effect of the kth treatment
- N(O’GZS_i(k))
Qj the random effect of jth genetic line
- N(O,GZQJ(J—))
gjx pooled error of the individual at ith time point
- N(O,ng_jk)

0o,
GR=—% _ 3)

O,
2 Ejk
oot

where

GR The genetic repeatability of a harvest trait
O'gzzj The genotypic variance

ngk The residual variance

n The number of replications
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FIGURE 2

Treatment separation and ranking of the barley lines according to their susceptibility to drought stress. (A) k-means clustering using a two-
dimensional PCA based on all traits across all time points for the six barley lines. Treatments are represented as control (circle shape) and drought
(triangle shape). (B) Tolerance ranking of genotype to drought stress using PERMANOVA quantifying significance and effect size of treatment on

temporal traits. The asterisks represent a significance level P-value< 0.001.

Results

Genotypic clustering and drought
tolerance ranking of barley lines

To visualize the genotypic and treatment-specific grouping
patterns, k-mean clustering (with k = 2) was applied on PCA-
projected data. The results showed that separation of clusters can be
observed based on PC1 (36.6%) and PC2 (31.3%) (Figure 2A).
Notably, among the genetic lines, L6 (from HEB population)
clustered separately from the other lines, highlighting potential
differences in response to treatment conditions. Moreover, plants
grown under control conditions were separated from drought-
stressed plants, highlighting that treatment effects contribute to
variance in the data.

Tolerance ranking, i.e., quantifying the effect of drought on
temporal or harvest traits, found that drought has a highly
significant effect (p< 0.001) on temporal traits in all lines
(Figure 2B). By effect size, L1 appeared most tolerant in temporal
traits () = 0.228), closely followed by L3 (M?=0.248) and L5 (* =
0.274). The same three lines appeared most tolerant when harvest
traits were analyzed instead of temporal traits (Supplementary
Figure S2), with lines L2, L4, and L6 exhibiting the least amount
of tolerance with respect to both harvest and temporal traits.

Temporal phenomic classification of
treatment

Temporal phenomic classification (TPC) of plant treatment
(drought vs. control) was performed using all temporal predictors
from daily time points across the full duration of the experiment
(non-aggregated predictors) where model mean classification
accuracy was 0.99 (Figure 3A). Using leave-one-line-out
validation instead of the repeated threefold CV resulted in a
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similarly high mean accuracy of 0.983. In another approach,
predictors were aggregated by week using summary statistics
(mean, minimum, and maximum), as described in the methods
section, resulting in a slightly lower but maintained high mean
accuracy of 0.98 compared with daily time points (Figure 3B).
Variable importance analysis revealed that canopy temperature
depression (AT) at the early stage (3 weeks of drought stress),
along with, as expected, RGB-based plant size estimates (area from
the RGB side view and plant volume) at the late stage (longer
duration of drought stress) were the most influential predictors of
treatment classification, regardless of daily or weekly aggregated
data (Figure 3).

In addition, TPC using daily (non-aggregated) predictors was
also performed by training separate models using only the data
from individual weeks. All week-specific models, except the one
based solely on week 0 (during which the drought treatment was
initiated), achieved high accuracy in distinguishing treatments
(0.973 < mean accuracy < 0.99; Supplementary Figure S3). The
model trained exclusively on week 0 data had lower performance
(mean accuracy = 0.695), likely due to the limited physiological
response at this early stage. Notably, classification models using
only the second and third weeks of measurements (corresponding
to week 1 and 2 after inducing drought stress) relied almost entirely
on AT estimates, along with traits from chlorophyll fluorescence
and visible-near-infrared (VNIR) imaging (Supplementary Figure
§4). This finding underscores the importance of these traits in early
drought stress detection.

By comparing predictors derived from the daily and weekly
aggregated data, we found that both contributed to identifying
critical time points in the stress response, where common traits at
specific time points were identified. Notably, from the chlorophyll
fluorescence (morning protocol), the ratio of quantum yield under
low to high light (FC1 HL LL QY Lss2/Lss1) was selected at day 90
and week 9, reflecting the severe impact of stress responses at the
late stage (Figure 3).
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Variable importance for classification of treatment. The importance of the temporal traits was assessed using a random forest model with a mean
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traits differentiating between treatments. Variable importance was determined using a permutation-based method, where the model's prediction
accuracy was compared before and after shuffling each variable. Higher importance values indicate a greater decrease in accuracy when a variable is
permuted, signifying its stronger contribution to classification performance.

Temporal phenomic prediction of harvest
traits

Temporal phenomic prediction (TPP) was also performed for all
harvest traits using RF regression and LASSO models, with training
data from the control treatment, drought treatment, or the pooled data
set containing both treatments. Among the predicted traits, total
biomass dry weight, spike number, total spike weight, and five spikes
weight were generally the most predictable based on R* values
(Figure 4A). Therefore, our subsequent comparisons of prediction
accuracy focus on these four traits. Among these traits, total biomass
exhibited substantially higher predictability compared with the other
traits. Using leave-one-line-out validation instead of the repeated
threefold CV resulted in similar mean accuracy values (pooled
treatment LASSO results shown in Supplementary Figure S5), but
larger variance, especially in poorly predictable traits. The high variance
can likely be attributed to the smaller number of validation folds, the
reduced sample size within each fold, and genuine differences in how
well models generalize across individual genetic lines.

The relative performance of RF compared with LASSO depended
on the training data set (i.e., control, drought, or the pooled treatment
data) and the response trait, with only minor differences in overall
accuracy between the two models (Supplementary Figure S6). Due to
the small and unsystematic difference in performance between these
model types, the rest of the findings reported will focus on the LASSO
models, as they are facile to interpret without additional feature
importance scoring. The choice of training data set (i.e, drought,
control, or pooled) had a more pronounced effect on model
performance than the choice of modeling approach. Models trained
on the pooled dataset generally performed best, followed by those
trained on drought data (Supplementary Figure S7). There is a slight
overlap between useful predictors in pooled data TPP and TPC of
treatment, suggesting that these models, by implicitly capturing
treatment-related variance, leveraged the drought-induced variability
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in both predictors and response traits to improve robustness (e.g., TPC,
Figure 3A and biomass prediction, Figure 4B). This finding is further
supported by the fact that many harvest traits, especially total biomass,
spike weight, and spike number, showed a large variance contribution
from treatment (Supplementary Figure S8). However, when using the
pooled model to predict harvest traits using only drought or control
data, the performance was marginally affected (Supplementary Table
S7), indicating a reasonable degree of transferability of the model.
LASSO coefficients for pooled and drought treatment biomass
prediction were generally associated with plant size estimates (e.g.,
plant area) derived from RGB imaging at late time points
(Figure 4B). These predictors not only had the largest absolute
coefficient values but also showed high variance contributions
linked to the treatment (Figures 4B, C and Supplementary Figure
S9). Aggregating predictors by week caused a slight drop in model
performance during TPP, but accuracies were still similar to those
found in the original daily data set (Supplementary Figure S10).
To evaluate the feasibility of early prediction of harvest traits and to
identify informative early predictors, models were retrained using only
measurements from the first half of the experiment (early phase
including stem elongation) (Supplementary Figure S11). Compared
with models trained on all time points, R* prediction accuracy was
decreased and had higher variance in all models. However, despite this
reduction in accuracy, predictions remained reasonably effective,
particularly for biomass dry weight (mean R* = 0.924 for pooled-
treatment LASSO model) and total spike weight (mean R* = 0.837 for
pooled-treatment LASSO model) (Supplementary Figure S12). In these
early-timepoint models, pooled-treatment models still resulted in the
highest overall accuracy. RGB plant size estimates were again found to
be important predictors, but their contribution was complemented by
predictors from other sensors. Biomass prediction incorporated
hyperspectral indices (MCARIL, LWVI2, NDVI) (Supplementary
Figure S12A), whereas total spike weight relied more strongly on
photosynthetic efficiency from chlorophyll fluorescence, supplemented
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by plant senescence estimation from RGB color indices at 49 DAT and
AT from thermal IR imaging (Supplementary Figure S12B).

Discussion

This study demonstrates the utility of temporal high-throughput
phenotyping in dissecting drought stress responses and predicting
agronomically relevant traits in different barley lines. By analyzing a
comprehensive set of temporal phenotypic features collected
throughout the growth cycle, we developed models that accurately
classified drought treatments and predicted harvest-related traits such
as biomass dry weight, spike weight, and spike number. Classification
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accuracy was consistently high (mean accuracy >0.97) when using
temporal predictors from any week following drought initiation, with
reduced performance only during the initial week when stress
responses were not yet fully established.

Model accuracy and cross validation

An important outcome of the harvest trait prediction analysis was
the clear superiority of models trained on the pooled dataset. This
increase in accuracy was likely due to structured variability in
temporal and harvest traits introduced by treatment, as can be seen
in the substantial treatment-induced variance in predictors and
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response traits, as well as in the overlap in important predictors from
TPC and pooled treatment TPP. However, the increased sample size
used to train pooled models should also be acknowledged as a
contributing factor. In addition to achieving the highest accuracy
across internal cross-validation folds, pooled treatment models also
performed well when tested separately on drought and control
treatment data (Supplementary Table S7). While this test does not
constitute a true external cross-validation, it provides evidence that
the improved performance of pooled models is not merely driven by
treatment-level separation. The high accuracy observed when
predicting within each treatment group suggests that the models
capture meaningful, continuous variation among individual plants,
rather than just categorical differences between drought and
control conditions.

External validation, in which a model is tested on data entirely
excluded from training, remains the most rigorous method for
identifying overfitting and assessing model generalization. While
external validation was not feasible in this study, model
performance was evaluated using repeated internal cross-
validation, where R? values were computed on data withheld from
training. This approach reduces the risk of overfitting. Apart from
this, other observations are indicative that overfitting was not the
cause for the high observed accuracy.

Most notably, prediction accuracy varied substantially across
response traits despite the use of identical predictor sets. Traits with
limited or indirect association to vegetative growth dynamics, such
as infertile tip length and spikelet density, consistently yielded low
predictive performance (R’< 0.3). If the models were overfitted, one
would expect uniformly high accuracy across traits, regardless of
biological relevance. Instead, this pattern suggests that the high
accuracy observed for traits, such as biomass and spike weight,
likely reflects a reliable predictive signal rather than a model
artefact. A similar argument holds for the treatment classification
task, whereas most weekly models achieved near-perfect accuracy,
classification using only the first week of measurements performed
poorly. This was biologically expected, as the drought treatment had
only just started during this week (WP 0) and had not yet induced
measurable phenotypic changes. The presence of both high- and
low-performing models, in line with biological expectations,
provides indirect evidence that overfitting is not the primary
driver of the observed model performance.

Moreover, both regression methods using LASSO and Random
Forest have inherent mechanisms for mitigating overfitting. LASSO
applies L; regularization, which penalizes model complexity by
shrinking coefficients and effectively selecting a subset of
informative features (Ying, 2019). Random Forests, through
ensemble learning and the use of out-of-bag error estimation,
reduce the risk of overfitting by averaging across multiple
decorrelated decision trees (Ghojogh and Crowley, 2023).
Nonetheless, while these approaches help control overfitting, a
more reliable way to assess generalizability is through external
cross-validation using independent data not seen during model
training or optimization (Ghojogh and Crowley, 2023). Due to the
limited sample size and experimental design, such validation was
not feasible in this study, but should be prioritized in future work.
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Integrative insights into model interpretability,
classification, and prediction

Variable importance was assessed using model coefficients in
LASSO and a permutation-based approach in Random Forests. These
measures provide insight into predictive relevance, but reflect
conditional importance, which may fail to identify all relevant
predictors when multicollinearity is present, as only one among a set
of correlated variables may be selected or appear important (Gromping,
2009). This is likely the reason for the slight inconsistencies observed in
variable importance rankings between models using daily (non-
aggregated) and weekly (aggregated) predictors.

Temporal phenomic classification of treatment

For treatment classification, canopy temperature depression (AT)
at early time points and RGB plant size estimates at late time points
emerged as important predictors (Figure 3). Notably, treatment could
be classified very accurately early in the experiment mainly by relying
on AT measurements, highlighting the importance of this trait for
early drought detection. Plant canopy temperature has an impact on
plant growth by non-linearly regulating photosynthesis, respiration,
and transpiration rates. By increasing water deficit, the efficiency of
cooling the leaf surface through transpiration diminishes, leading to an
increase in leaf temperature (Biju et al.,, 2018; Way and Yamori, 2014).
Therefore, changes in canopy temperature provide a valuable proxy of
stomatal regulation and an indicator of different stress responses (Wen
et al., 2023). Stomatal closure serves as an initial response to drought
stress to prevent excessive water loss, leading to alterations in
physiological response and metabolic pathways (Farooq et al., 2024).
In our study, drought-stressed plants showed higher AT due to
increased canopy temperature. However, as drought duration
increases over time, AT became a less significant classifier of
treatment, likely due to physiological adaptations such as stomatal
acclimation, osmotic regulation, and changes in transpiration
dynamics, which can moderate canopy temperature despite
continued water limitation (Lawson and Blatt, 2014). In addition,
plants progressively reduce their biomass due to water limitations
(Pham et al, 2019). This structural change, including leaf area
reduction, alters canopy-atmosphere interactions and subsequently
affects canopy temperature regulation (Vico et al., 2023).

Temporal phenomic prediction of harvest traits
For the prediction of harvest traits, RGB-based plant size
estimates from late time points emerged as dominant predictors,
particularly in models for biomass (Figure 4). This is likely due to
the strong biological alignment between total biomass and plant
size, as both reflect cumulative vegetative growth. This aligns with
previous studies showing the reduction of biomass accumulation
under drought stress (Cai et al., 2020; Neumann et al, 2015).
Moreover, the high correlation between the biomass and yield,
where biomass reduction ultimately affects yield-related traits, as a
result of low assimilates for grain production, reflects a source-to-
sink limitation (Findurova et al., 2023; Rosati and Benincasa, 2023).
When prediction models for biomass and total spike weight were
trained using only pooled-treatment predictors from the first half of
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the experiment, RGB plant size traits remained influential, but they
were complemented by features derived from all of the other
sensors. Despite a significant reduction in predictive accuracy
compared with models trained on the full dataset, these early-
timepoint models still achieved strong performance, with mean R*
values of 0.92 for biomass and 0.84 for spike weight, respectively
(Supplementary Figures S11, S12). The relatively high accuracy of
these early TPP models is particularly promising in a breeding
context, as it demonstrates that complex cumulative traits can be
reliably predicted well before they are phenotypically expressed.
Harnessing this predictive capacity would allow breeders to select
plants early in the breeding pipeline, significantly reducing cost.

While RGB showed importance and strong associations with
harvest-related traits, integrating multiple sensors enriches the
predictive power of the models and strengthens the biological
interpretability. Previous studies highlighted the importance of
multiple imaging sensors besides RGB for deeper insights into the
mechanisms of stress resilience (Shi et al., 2025; Zhang et al., 2024).
Notably, the fraction of open Photosystem II (PSII) centers at light
steady state (qL_Lss) showed importance in LASSO coefficient
when prediction models were trained on pooled and drought data
during the early drought stage (stem elongation stage) (Figure 4,
Supplementary Figure S9). The variation in the opening of the PSIT
centers is probably reflecting alterations in photosynthetic efficiency
and electron transport pathways, which shows major mitigation
mechanisms to alleviate the negative effects of moderate drought
stress (Qiao et al., 2024; Shin et al., 2021). By increasing the stress
intensity and duration, the quantum yield of PSII (QY Lss2/Lss1)
was observed at the late stage as an important predictor, indicating
impairment of PSII function, where plants were unable to efficiently
transfer energy from high to low light (Zhou et al,, 2019).

Implications for breeding and timely selection

One of the primary applications of TPP is enabling the early
selection of plants in breeding. In this study, it was demonstrated that
this task is feasible with high accuracy for a variety of traits. Even
predictors from the early phase of the phenotyping period (including
the stem elongation stage) in the models achieved high accuracy for
traits such as total biomass and total spike weight, potentially allowing
selection after only a few weeks of vegetative growth. Notably, we
observed that complementary traits showed importance from the
hyperspectral data contributing strongly to early-stage predictions,
emphasizing the importance of hyperspectral imaging. Similarly,
recent work has shown the importance of hyperspectral reflectance
for predicting a wide range of physiological traits, applying advanced
machine learning approaches, including different prediction scenarios
(Xu et al,, 2025). However, it should also be noted that models trained
on predictors from the full phenotyping period remain valuable to
breeders, as phenotyping concluded 31 days before harvest.
Nevertheless, daily phenotyping and harvesting are both costly and
time-consuming processes, which could be partially avoided by
implementing early phenotyping to identify tolerant plants prior to
the later stages of evaluation (Adak et al,, 2023).

An increase in prediction accuracy was observed when data from
both drought and control treatments were combined in the training
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set. This illustrates a key advantage of phenomic prediction over
genomic prediction. While genomic prediction captures only the
static genetic contribution to trait variation, phenomic prediction
leverages genetic, environmental, and genotype-by-environment
interaction effects, as phenotypic traits, both predictors and
responses, reflect the integrated output of all these factors (Adak
et al., 2023). Variance decomposition of both predictor and harvest
traits in this study further illustrates that trait variation arises from a
combination of genetic background, environmental conditions, and
temporal dynamics. In contrast, genomic prediction models are
inherently limited to the genetic component of variance and cannot
account for time-dependent or environmentally induced effects. The
inclusion of a temporal dimension in phenomic prediction further
enhanced model performance by capturing dynamic shifts in
environmental conditions and their interactions with genotype over
time. This ability to model temporal trajectories of plant development
and stress response adds substantial predictive power and
highlights the unique potential of time-resolved phenomic data in
breeding applications.

The implications for breeding are complicated by the fact that
this experiment was performed under greenhouse conditions. While
field trials are essential for capturing the full environmental variance
affecting crop performance, phenotyping data from controlled
environments remain highly valuable. They enable preliminary
screening, identification of heritable differences between genotypes,
and the generation of high-quality training data for predictive crop
modeling and genetic analyses (Debbagh et al., 2025; Rahaman et al,,
2015; Rayaprolu et al,, 2025). Controlled-environment studies also
allow detailed investigation of stress responses and developmental
dynamics, as well as the measurement of key traits that are difficult to
capture reliably in the field due to environmental heterogeneity and
technical constraints (Langstroff et al., 2022). Importantly, recent
work has shown that controlled platforms are not isolated from real-
world relevance; they can simulate weather conditions and produce
growth dynamics comparable with those observed in the field
(Heuermann et al.,, 2023). Thus, controlled environments provide a
powerful complement to field phenotyping for trait dissection,
breeding, and modeling under current and future climate scenarios.

Future perspectives

Viewed in a breeding context, while this study focused on yield-
related traits such as total spike weight, spike number, and biomass
provide meaningful proxies, they do not fully capture grain
production in the field. Future work could incorporate direct grain
yield measurements, which are typically the primary selection targets
in breeding programs and ensure greater relevance. Nevertheless, the
study offers valuable insights into the predictive capacity of temporal
phenomic data, and demonstrates how yield-associated traits can be
modeled early in the growth period. The approaches presented here
are readily transferable to datasets including grain yield, and thus
remain relevant for informing breeding strategies.

The present study selected a relatively low number of genotypes
examined (six genetically homogeneous lines and three genetically
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heterogeneous ones) to demonstrate methodological feasibility as
expanding genetic diversity was not the scope of the study, besides
the limited capacity of the phenotyping platform in screening the
lines. This restricted diversity likely reduces the generalizability of
the models and does not fully reflect the genetic variation
encountered in breeding programs. Scaling up to a broader and
more diverse genetic panel would increase the robustness of
predictions and better mimic the setting of applied breeding.

As previously discussed, models were evaluated using a repeated
threefold internal cross-validation procedure, which provides the most
reliable estimate of predictive performance, given the available sample
size. However, implementing external cross-validation for performance
assessment in temporal phenomic prediction in future studies would
offer a more robust measure of model generalizability and could be
used to assess performance across different environmental conditions.
Cross-environment validation has previously been applied in TPP
studies to demonstrate its advantage over genomic prediction, which
often does not transfer to new environments without a significant
decrease in accuracy (Adak et al, 2023; Jarquin et al, 2021).
Incorporating genomic prediction alongside the phenomic methods
used in this study would also enable a direct comparison of their
relative predictive power. However, this strategy would require a
substantial increase in the phenotyped population and application of
recently developed data integrative approaches (Hobby et al., 2025).

For TPC and TPP, prediction accuracy in the field would likely be
reduced due to environmental variability, which introduces additional
noise affecting both predictor and response traits. The key challenge in
field studies is the technical difficulty of collecting the same high-
frequency, multi-sensor trait data as in the greenhouse. Nevertheless,
our results demonstrate that both TPC and TPP can be successfully
applied under controlled conditions, providing a proof of concept. The
next step is to expand these approaches and test this pipeline in field
experiments, which would capture more realistic environmental
variability and allow the inclusion of more genotypes and larger
sample sizes. This would enable more rigorous validation schemes,
such as external cross-validation. With larger genotype panels,
prediction could also be framed at the genotype level, more closely
reflecting how predictions are applied in breeding programs.
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SUPPLEMENTARY FIGURE 1

Overview of the experimental timeline and phenotyping protocol. Phenotyping
was conducted from the tillering stage to the maturity stage, followed by final
harvest for harvest-related traits assessment. The drought stress was induced at
the tillering stage, where the pot weight was maintained at 25% soil relative water
content (SRWC), and during the flowering stage, the intensity of drought stress
increased at 20% SRWC. The phenotyping protocol was conducted daily with
different protocols using the PlantScreen™ Modular phenotyping platform at PSI
Research Center. In chlorophyll fluorescence imaging using FluorCam (FC), 'FC
morning measurement for the quantum yield of PSIl (QY_Lss), 2FC night
measurement using conditional and high light levels, *FC morning
measurement for chlorophyll content were conducted, thermal infra-red
imaging (IR), RGB including two angles from RGBL1 side view and one angle
RGB2 top view, and hyperspectral imaging (HS) including SWIR and VNIR imaging.
And daily weighing and watering (WW) to maintain the target weight.

SUPPLEMENTARY FIGURE 2

Ranking the lines according to their susceptibility to drought stress on harvest
traits. PERMANOVA was used to quantify the significance and effect size of
the treatment on harvest traits. The asterisks represent significance level P-
value< 0.001 for *** and 0.01 for **.

SUPPLEMENTARY FIGURE 3

Temporal phenomic classification (TPC) of treatment (drought/control) using
predictors subset by week. TPC was performed using random forest models.
Predictors from each week were used separately along with a model trained
on the full data set (all weeks).

SUPPLEMENTARY FIGURE 4

Variable importance of temporal phenomic classification (TPC) of treatment
using predictors from two weeks. (A) Traits from week 1 and (B) week 2 after
inducing drought stress. TPC was performed using random forest models.

SUPPLEMENTARY FIGURE 5

Boxplots showing the accuracy (determined by R?) among all the harvested
traits using the LASSO model trained using leave-one-line-out validation
instead of the repeated 3-fold CV (9 validations instead of 45).

SUPPLEMENTARY FIGURE 6

Comparison between the accuracy of models. Boxplots showing the
accuracy (determined by R?) among selected harvested traits using LASSO
and Random Forest models trained on a pooled non-aggregated dataset. The
significance level was determined as *** for P< 0.001, **** for P< 0.0001 and
ns for non-significant differences between the models.

SUPPLEMENTARY FIGURE 7

Comparison between the different treatments using the LASSO model.
Boxplots showing the accuracy (determined by R?) among selected
harvested traits using the LASSO model trained on a non-aggregated
dataset. The significance level was determined as **** for P< 0.0001 and ns
for non-significant differences between the models.

SUPPLEMENTARY FIGURE 8
Partitioning of variances and repeatability of the harvest-related traits.
Repeatability on the secondary y-axis is represented as error bars.

SUPPLEMENTARY FIGURE 9

Harvest trait prediction models on drought non-aggregated dataset. (A)
Boxplots showing the accuracy (determined by R?) among all the harvested
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traits using the LASSO model trained on drought non-aggregated dataset. (B)
LASSO coefficients on the total biomass dry weight where coefficients with
absolute values below 0.005 are not plotted. (C) Partitioning of variances of
the temporal traits selected from LASSO model.

SUPPLEMENTARY FIGURE 10

Harvest-traits prediction models on an aggregated dataset. (A) Boxplots
showing the accuracy (determined by R?) among all the harvested traits
using the LASSO model trained on pooled aggregated dataset. (B) LASSO
coefficient on the total biomass dry weight. (C) Partitioning of variances of the
temporal traits selected from LASSO model.

SUPPLEMENTARY FIGURE 11

Comparison between the different early and all time points using the LASSO
model. Boxplots showing the accuracy (determined by R?) among selected
harvested traits using the LASSO model trained on pooled non-aggregated
dataset. Early time points were selected until 51 days after transplant (DAT).
The significance level was determined as **** for P< 0.0001 and ns for non-
significant differences between the models.

SUPPLEMENTARY FIGURE 12

LASSO coefficients of early time point TPP models for harvest traits. (A)
Biomass dry weight and (B) total spike weight were selected. Only
coefficients with absolute values above 0.015 are plotted.

SUPPLEMENTARY TABLE 1
Genetic background of the plant material for the selected lines.

SUPPLEMENTARY TABLE 2
List of temporal traits description from multiple imaging sensors and harvest-
related traits.

SUPPLEMENTARY TABLE 3

Out of bag (OOB) error of imputed missing values in harvest traits. In all
samples, missing values were only in the total spike weight trait, except in L8,
where total biomass was also missing. OOB error is calculated as normalized
root mean square error (NRMSE) based on predictions for observed values
that were left out of the training bootstrap samples (i.e., out-of-bag) when
fitting the random forest.

SUPPLEMENTARY TABLE 4

Outlier rate and re-imputation out of bag (OOB) error for each sensor type,
including different protocols as described in Figure 1. Outliers were detected
for each trait among all replicates within a genetic line within a treatment.

SUPPLEMENTARY TABLE 5

Rates of non-normality (NN) for each sensor type, including different
protocols as described in Figure 1. Non-normality was tested for each trait
within each data group, either separated by treatment or pooled across
treatments. Groups identified as non-normal were corrected using a Box—
Cox transformation, and NN rates were recalculated post-correction.

SUPPLEMENTARY TABLE 6

Mapping between the daily time point counting from days after transfer of
seedlings to light (DAT) for the non-aggregated dataset and the corresponding
weekly phases (WP) for the aggregated dataset. The developmental stage was
marked when most of the replicates among all the genetic lines reached a
certain stage. Early stage refers to the vegetative and early reproductive phases,
during which plants were exposed to 3 weeks of drought stress. Late stage
refers to the late reproductive phase, when the flag leaf was fully expanded, and
plants were exposed to a longer duration of drought stress.

SUPPLEMENTARY TABLE 7

Performance of final LASSO models trained on the full predictor set using the
optimal parameter (A). Accuracies much higher than those found in the
internal CV procedure during training suggest overfitting. “Training Group”
refers to the data group used to train the model, whereas the R? values show
the accuracy when the model is applied to the data group in question.
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