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Problem: Garlic is a common ingredient that not only enhances the flavor of

dishes but also has various beneficial effects and functions for humans. However,

its leaf diseases and pests have a serious impact on the growth and yield.

Traditional plant leaf disease detection methods have shortcomings, such as

high time consumption and low recognition accuracy.

Methodology: As a result, we present a deep learning approach based on an

upgraded ResNet18, triplet, convolutional block (RTCB) attention mechanism for

recognizing garlic leaf diseases. First, we replace the convolutional layers in the

residual block with partial convolutions based on the classic ResNet18

architecture to improve computational efficiency. Then, we introduce triplet

attention after the first convolutional layer to enhance themodel’s ability to focus

on key features. Finally, we add a convolutional block attention mechanism after

each residual layer to improve the model’s feature perception.

Results: The experimental results demonstrate that the proposed model

achieves a classification accuracy of 98.90%, which is superior to outstanding

deep learning models such as Efficient-v2-B0, MobileOne-S0, OverLoCK-S,

EfficientFormer, and MobileMamba. The proposed RTCB has a faster

computat ion speed, higher recognit ion precis ion, and stronger

generalization ability.

Contribution: The proposed approach provides a scalable technical reference

for the engineering application of automatic disease monitoring and control in

intelligent agriculture. The current strategy is conducive to the deployment of

edge computing equipment and has extensive significance and application

potential in plant leaf disease detection.
KEYWORDS

agricultural production, plant leaf disease detection, deep learning, improved ResNet18,
attention mechanism
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1 Introduction

Crop diseases and pests are one of the main factors affecting

plant growth and production. Crop diseases and pests can be

detected and identified in time, and their management and

control can be carried out effectively, reducing production losses

and improving crop yield and quality. Leaves are an important basis

for judging the degree of plant disease. Since most farmers do not

have professional plant protection knowledge, it is difficult to

implement the control plan (George et al., 2025). Machine vision

technology, on the other hand, may detect leaf disease spots, assist

in estimating disease severity, and advise farmers on how to take

effective actions to maximize economic benefits.

Before the advent of the support vector machine (SVM) for

feature vector classification, the primary method for extracting

agricultural disease and pest features was manual. It also requires

more data to generate feature vectors (Kalaiarasi et al., 2025).

Feature extraction and classification techniques typically require

segmenting the sick areas or leaves, even though they can have a

higher recognition impact. It creates distinct feature extraction

techniques for each condition, making it harder to differentiate

identical diseases and increasing early-stage workload (Cai and He,

2021). Traditional machine learning-based disease detection

methods must create distinct recognition models in addition to

relying significantly on feature extraction.

Recently, deep learning technologies have advanced rapidly (Xu

et al., 2021a), prompting attempts to apply machine vision to crop

disease and insect pest recognition. For traditional machine vision

algorithms (Cai et al., 2020), appropriate features must be selected

in line with the target and prior knowledge (Goyal et al., 2025).

These features usually include color, shape, and texture. The feature

extractors are mainly manual designs. They are inconvenient and

incapable of generalization. However, deep learning (Xu et al.,

2021b) methods can adjust the weight parameters and build a

suitable feature extractor. The process is relatively efficient and

convenient. The feature extractors also have better generalization

abilities, which can effectively overcome the shortcomings of

traditional machine vision methods.

Although deep learning techniques have made significant

progress in identifying plant leaf diseases, precise recognition of

garlic leaf diseases still faces challenges in balancing model

performance and efficiency. Although conventional deep learning

models like the EfficientNet series have good recognition accuracy,

their vast number of parameters and computational complexity

limit their use in practical agricultural applications. Although

lighter models such as ResNet18 have higher computational

efficiency, they have shortcomings in feature extraction ability

and key information perception. It leads to limited accuracy in

identifying garlic leaf diseases in complex backgrounds. In addition,

most current research is based on publicly available datasets with

simple backgrounds and limited disease categories. The robust

identification of garlic leaf diseases in complex backgrounds in

real agricultural environments has not yet formed a good solution.

Based on the above challenges, we propose a lightweight model

based on improved ResNet18. First, we utilized the triplet attention
Frontiers in Plant Science 02
module to enhance the perception ability of key disease features.

Second, we designed a CBAM to enhance feature expression ability.

Finally, we used the PConv to reduce computational complexity.

Our model achieves high recognition accuracy while keeping the

parameter count low. It effectively solves the problem of balancing

accuracy and efficiency in the recognition of garlic leaf diseases

using lightweight models. The main contributions of this article are

as follows:
1. A triplet attention mechanism is introduced to refine

perceived information while preserving contextual

information, effectively capturing key features in the data.

2. A CBAM dual attention mechanism is incorporated to

enhance the model’s ability to express features and improve

the network’s feature extraction.

3. A novel partial convolution network is designed to reduce

parameter computation and improve model performance.
The remaining paper of this article is organized as follows:

Section 2 analyzes the literature review of garlic leaf disease

recognition technology. Section 3 mainly introduces the proposed

method. Section 4 reports the experimental results and analyses.

Finally, Section 5 presents the conclusion and future

research directions.
2 Literature review

Machine learning techniques primarily use particular illness

spot region segmentation to process the color, shape, and texture

elements of the disease image (Shen et al., 2022). They are classified

using a SVM classifier (Wang et al., 2022) and a normalized

exponential function. For instance, Bala and Bansal (2024a)

designed a model based on k-nearest neighbor (KNN), SVM,

random forest, and Naive Bayes for pepper, potato, and tomato

leaf disease classification and obtained an overall accuracy rate of

86.83%. Malik et al. (2024) designed a model based on CNN and

SVM for corn leaf disease diagnosis and realized a classification

accuracy of 99.8%. Li and Liao (2025) proposed a novel approach

called support vector machines, graph cuts, and adversarial network

for tea disease identification and reached an accuracy of 97.66%.

Khan et al. (2024) provided a new method and compared random

forest, XGBoost, GaussianNB, support vector machines,

multinomial logistic regression, and KNN to classify tomato

leaves and obtained an average precision of 98.527%. Kaur et al.

(2024) reported a hybrid deep learning model based on a support

vector machine, convolutional neural network, and convolutional

block attention module for the early recognition and sorting of

plant leaf diseases and reached an accuracy of about 98.72%. For

traditional machine learning techniques, classification accuracy

relies largely on human design. However, in certain complicated

contexts with high noise levels, the picture recognition effect

is subpar.

As artificial intelligence continues to develop, technologies for

crop disease and pest identification have advanced in tandem. Crop
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pest and disease detection uses deep learning (Girmaw and

Muluneh, 2024), transfer learning (Han and Guo, 2024), and

reinforcement learning (Chelloug et al., 2023). Particularly, data-

driven reasoning-based deep learning algorithms (Bala and Bansal,

2024b) enable rapid feature extraction from data, helping computer

vision achieve higher accuracy and efficiency (Umar et al., 2024).

For instance, Sharma et al. (2025) described a method for tomato

leaf diseases based on the ResNet50, MobileNetV2, global average

pooling2D, Batch Normalization, Dropout, and Dense layers that

produced a precision of 99.92%. Goyal et al. (2024) developed a

specific method for plant leaf disease identification, which relies on

an optimized evolutionary gravitational neocognitron neural

network. It achieved 99.92% and 99.98% accuracy when tested on

two datasets. Ali et al. (2024) designed a lightweight deep learning

model for apple leaf disease identification, achieving an accuracy of

98.6% and a classification rate of 98.25%. Mazumder et al. (2024)

introduced a new architecture named DenseNet201Plus for banana

and black gram leaf disease. This architecture includes

preprocessing techniques, an attention-based transition

mechanism, multiple attention modules, and dense blocks and

achieved 90.12% accuracy on the banana leaf disease dataset and

99.50% on the black gram leaf disease dataset. Aldakheel et al.

(2024) proposed an improved YOLOv4 model for automatic

determination of plant leaf disease and used the Plant Village

Dataset, which yielded an accuracy rate of 99.99%. Sahu et al.

(2025) developed a hybrid model for multi-plant leaf disease

classification. This model is based on a convolutional neural

network deep learning architecture, and it showed an average

accuracy rate of 97.36%. For the identification of various plant

leaf diseases, Pan et al. (2024) proposed a convolutional neural

network based on memristors. On two datasets—Plant Village and

rice leaf disease—it produced identification accuracies of 99.03%

and 99.16%, respectively. Xu et al. (2025) described an improved

SPDNet and GrNet model for crop disease identification. It showed

an overall classification accuracy rate of 98.96%. The majority of the

test samples above are straightforward and have a single

background, despite the fact that deep learning techniques have

been used for crop picture detection. A lot of samples must be used

to train the feature extraction capability.
3 Proposed methods

3.1 Triplet attention module

Based on the characteristics of garlic leaf disease data and

considering the shortcomings of hardware and system

performance, this paper initially chose ResNet18 for garlic leaf

disease identification but found that the recognition effect was not

ideal. Therefore, in order to improve the recognition accuracy of the

model and more effectively capture key features in garlic leaf

number data, we optimised the classic ResNet18 by introducing a

triplet attention module after the first convolutional layer to
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enhance the network’s initial attention to features, preserve

information context while refining perceived information, and

improve the performance of classification tasks.

The triplet attention adopts a three-branch structure to capture

cross-dimensional data features and interactively calculates

attention weights on channels based on these features. The

calculation process1.can be expressed as follows Equation 1.

Z − pool(M) = ½MaxPool0d(M)ʘAvgPool0d(M)� (1)

where MaxPool is the maximum pooling operation, AvgPool

represents the average pooling operation, ʘ is splicing operations,

and 0d means the 0-th dimension for performing maximum

pooling and average pooling operations.

For the input feature map X ∈ RW�H�C , pass it to the three

branches of the triplet attention module. In the first branch, capture

the cross-channel interaction features between spatial dimension H

and channel dimension C. First, rotate X anticlockwise by 90° along

the H axis to obtain XH− ∈ RW�H�C . Then, XH− performs a Z-pool

operation on the W dimension, performs a convolution operation,

generates attention weights through the sigmoid activation

function, dot multiplies the obtained attention weights XH− , and

rotates them clockwise by 90° along the H axis to obtain X∗H,

maintaining the original input state of X. The calculation process of

the first branch is as follows Equation 2.

X*H = (XH−s (w1*(Z − pool(XH− )))H+ (2)

where H- is counterclockwise rotation of 90° along the H axis,

H+ represents clockwise rotation of 90° along the H axis, w1 denotes

convolution kernel, * is convolution operation, and s represents

activation function.

Similarly, in the second branch, the interaction between channel

dimension C and spatial dimension W is captured. First, rotate X

anticlockwise by 90° along the W axis to obtain XW -∈RH×C×W.

Then, XW performs the Z-pool operation on the H dimension,

followed by the convolution operation. The attention weights are

generated through the Sigmoid activation function, and the

obtained attention weights are dot-multiplied with XW. Finally,

XW is obtained by rotating clockwise 90° along the W axis while

maintaining the original input state of X. The calculation can be

expressed as follows Equation 3.

X*W− = (XW−s(w2*(Z − pool(XW− )))))W+ (3)

where W- is counterclockwise rotation of 90° along the W axis,

and W+ represents clockwise rotation of 90° along the W axis.

For the third branch, the input feature X is reduced to 2

channels through the Z-pool operation and then convolved. The

attention weight is generated through the sigmoid activation

function, and the attention weight is dot multiplied with X to

obtain the final feature result Equation 4.

X* = Xs (w3*(Z − pool(X)) ) (4)

We will average the three components, and its mathematical

expression is as follows Equation 5.
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X 0 =
1

3
(X*H + X*W + X*) (5)

We input X’ into a recurrent convolutional neural network.

After convolution, we obtain a feature map as presented in the

following equation Equation 6.

V = s (X0   *̂w) (6)

The structure of the proposed recurrent convolutional neural

network based on the triplet attention is provided in Figure 1.

The proposed triplet attention module captures cross-

dimensional channel and spatial interaction information in a

lightweight and efficient manner. It can enhance the model’s

ability to focus on key features. The shallow features of the

network usually contain rich detailed information (e.g., edges and

textures), but not all details are equally important in garlic leaf

disease recognition tasks. After the initial convolution, we

immediately introduce the triplet attention module. It can screen

and enhance the low-level features extracted initially, making the

network more focused on potential areas related to diseases from

the initial stage. It can provide higher-quality feature input for deep

networks. Therefore, the proposed triplet attention module helps

the model suppress background interference in the early stages and

highlight key disease area features.
3.2 Convolutional block attention module

Although the proposed triplet attention module enhances the

shallow network’s ability to extract detailed features, as the network

structure deepens, the model still struggles to fully capture higher-

order semantic features. In order to enhance the representation

capability of deep networks, we embedded CBAMmodules after the
Frontiers in Plant Science 04
standard convolution operation of each residual block. The reason

why we chose this position is that the features output by

convolution need to be calibrated through the synergy of channel

and spatial attention first. It can enhance discriminative features

and suppress noise. It is then fused with the original input features

through residual connections. This design method not only

maintains the identity mapping property of ResNet to prevent

gradient vanishing but also introduces an attention mechanism. It

can optimize feature expression and maintain sensitivity to key

features while deepening the network. The proposed CBAM

structure is presented in Figure 2.

The proposed CBAM mainly consists of channel attention and

spatial attention, which assign weights to each channel. It is usually

operated using global average pooling (GAP) and global maximum

pooling (GMP).

Assuming the input feature map F is H×W×C, the operational

expressions of the CBAM for GMP and GAP can be defined as

follows Equations 7, 8.

FGAP(c) =
1

H �WoH
i=1oW

j=1F(i, j, c) (7)

FGMP(c) = max
i,j

F(i, j, c) (8)

Subsequently, the fully connected layer is used to learn the

relationships between channels and obtain the corresponding

weights. The goal of spatial attention is to assign a weight to each

position in the feature map using a small convolutional kernel

Equation 9.

EM = s (Wk*(FGAP + FGMP)) (9)

where * is the convolution operation, wk means a convolution

kernel, and s is the Sigmoid activation function. Finally, we used

these weights to update the original feature map.
FIGURE 1

Proposed triplet attention structure.
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https://doi.org/10.3389/fpls.2025.1687300
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1687300
3.3 Partial convolution

Although we added the triplet attention module and

Convolutional block attention module to the optimized ResNet18

to improve the classification and recognition performance of garlic

leaf diseases, it also increased additional computational overhead.

In order to further construct an efficient and lightweight

classification and recognition model, we designed a partial

convolution (PConv) to reduce computational costs. PConv

compresses the computational complexity and parameter count of

the model by reducing redundant calculations. It only performs

regular convolution operations on a portion of the input feature

channels while keeping the remaining channels unchanged. We will

replace the most computationally expensive 3×3 convolutional layer

in the traditional ResNet18 residual block with a PConv layer. It can

reduce the floating point operations (FLOPs) and parameter count

(Params) of the model and significantly improve inference speed.

This design approach makes the model more suitable for

deployment on edge devices with limited computing resources
Frontiers in Plant Science 05
while enhancing the representation capability of the original

model. The proposed PConv convolutional architecture is

presented in Figure 3.

For spatial feature extraction, the PConv only has to perform

normal convolution on a subset of the input and output channels.

The size of the remaining channels remains unaltered. The first or

last continuous channel is regarded as the representative of the

complete feature map for computation purposes when it comes to

continuous or regular memory access. The number of channels in

the input and output feature maps is equal without sacrificing

generality. Compared to traditional convolution, PConv has a

computational complexity that is only 1/16 of the former. The

computational complexity S of PConv can be calculated as follows

Equation 10.

S = h · w · k2 · c2p (10)

where h is the height of the channel, w is the width of the

channel, cp is the number of consecutive network channels, and k is

the size of the filter.
FIGURE 3

Proposed PConv convolutional architecture.
FIGURE 2

Proposed CBAM network architecture.
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Based on the above analysis, to visually demonstrate the overall

recognition framework of the proposed garlic leaf diseases, we

manifest it in Figure 4. First, we embed the triplet attention

module after the first 7×7 convolutional layer of the traditional

ResNet18. This location is in the shallow layer of the network, and

the feature map contains rich texture, background, and contour

features, but it also has a lot of noise. The triplet attention module

interacts across dimensions. The triplet attention module

simultaneously filters and enhances shallow features in both

channel and spatial dimensions. It enables the model to focus on

disease-related areas from the early stages of training, effectively

suppressing background interference. It can provide more

discriminative low-level feature representations for deep

networks. Then, we add the CBAM module after the 3×3

convolution within each residual block of the traditional

ResNet18. The CBAM module retains the identity mapping

property of ResNet while achieving adaptive refinement of feature

maps. It can effectively alleviate the problem of feature degradation

in deep networks and enhance the model’s ability to extract high-

order semantic features. Finally, we replace the standard 3×3

convolution in all residual blocks with the PConv. The PConv

only performs convolution operations on some input channels,

significantly reducing the number of parameters (Params) and

FLOPs and greatly improving inference speed. This replacement

significantly improves computational efficiency while maintaining

the model’s representational ability. PConv can make the model

more suitable for deployment on edge devices with limited

computing resources. Through the above three designs, we have

constructed a garlic leaf disease classification and recognition model

that has both high recognition accuracy and high computational
Frontiers in Plant Science 06
efficiency. Our proposed model not only enhances the ability to

select and represent discriminative features but also achieves

effective optimization of computational costs.
4 Experimental results and analysis

4.1 Experimental setup

The suggested network model is written in PyCharm 2024.2.3

with Python 3.9 and uses the deep learning framework PyTorch

2.3.1 along with the deep learning acceleration modules CUDA 11

and cuDNN 8.9 to speed up training. A 14-core Intel Ultra 5

processor with an NVIDIA GeForce RTX 4060 for acceleration

makes up the hardware platform utilized for deep networks.
4.2 Data description

We obtained the data from the garlic planting bases in Henan

Province, China. We used the mobile phone camera (Vivo S16e,

China) to take the garlic leaves in a laboratory environment. The

samples are shown in Figure 5.

There were 9076 samples in total, including healthy leaves and

four types of diseases: rust, blight, purple, and botrytis. According to

the division principle of most deep learning models, the 9076

samples were randomly divided into the training, validation, and

testing sets with a ratio of 3:1:1. Table 1 lists the detailed quantities

of the samples.
FIGURE 4

Proposed overall garlic leaf disease recognition framework.
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4.3 Train and test results

We used random search approaches to identify optimal training

parameters for the proposed model, such as the activation function,

learning rate, and network layers. We used learning rates of 0.001

and 0.02, along with a cosine annealing technique, to dynamically

change the learning rate and assess the performance of the basic

model. Figure 6 presents three variations of training accuracy.

As can be seen in Figure 6, when the learning rate is 0.02, the

model’s training accuracy rapidly increases to a higher level within

1~30 epochs, but there is a noticeable oscillation during the training

process, which gradually stabilizes after 60 epochs. When the

learning rate is 0.001, the model converges slowly, and the

improvement in training accuracy is relatively small. In contrast,

the cosine annealing strategy combines the advantages of both.

After 30 epochs, the training accuracy of the cosine annealing

strategy gradually stabilized, maintaining above 0.98, and there was

no significant oscillation throughout the entire process. Therefore,

we adopt a cosine annealing strategy to improve the training

efficiency of the proposed model.

Based on the selection principle of the above parameters, we

trained the proposed model on the training set and validation set.

The accuracy and loss value variation curves are manifested

in Figure 7.

Detailed information has been acquired in Figure 7. Between 0

and 40 epochs, the training accuracy increased from 0.75% to

98.89%. The training loss decreased from 0.2 to nearly 0. The
Frontiers in Plant Science 07
accuracy of verification is also improving, and the verification loss is

also decreasing. Between 40 and 60 epochs, the training accuracy

gradually stabilizes at around 98% with minimal fluctuations. The

validation accuracy continues to approach the training accuracy.

The verification loss has slight fluctuations but overall maintains a

good level. It indicates that the proposed model fits well with the

data. Between 60 and 100 epochs, all four curves tend to stabilize. It

indicates that the proposed model has fully converged and achieved

high and stable performance on both the training and

validation sets.

To further validate the inference speed, robustness, and

feasibility of edge deployment of the proposed model, we tested

the parameters (Params), floating point operations (FLOPs), and

running speed of five models in an environment with 32 g of

memory and an Intel Core i5-13500H graphics card. The specific

results are depicted in Figure 8.

Some important observations can be made from the content of

Figure 8. In our own garlic dataset, adding the triplet attention

module and CBAM module separately only slightly increased

FLOPs and Params. When PConv is added separately, FLOPs and

Params are reduced by 61.7% and 62.5%, compared to traditional

ResNet18. In terms of inference speed, the ResNet18 with the

CBAM added separately focuses on key features through an

attention mechanism, which is 27% faster than traditional

ResNet18. The memory usage slightly increases with the increase

of modules, but the model incorporating PConv still has higher

parameters and computational efficiency. On the open-source
TABLE 1 The specific distribution number of each type of data.

Categories Training set Validation set Testing set Total number

Botrytis 1177 392 392 1961

Rust 1124 374 375 1873

Blight 975 325 325 1625

Purple 1055 358 358 1771

Healthy 1108 369 369 1846

Total number 5439 1818 1819 9076
FIGURE 5

Experimental samples. (a) Botrytis, (b) Rust, (c) Blight, (d) Purple, (e) Healthy.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1687300
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1687300
potato dataset, the impact trends of each module are not

significantly different from those on the garlic dataset, indicating

that the proposed model has good cross-dataset generalization

ability. Overall, the model we propose can effectively balance

computational complexity, parameter size, and inference speed. It

has high potential for deploying edge devices in garlic leaf disease

recognition tasks.

A radar chart is an efficient visual aid for demonstrating the

relative benefits and downsides of various models in a variety of leaf

disease classification tasks because it can graphically show several

performance metrics in a single coordinate system. This

visualization technique helps to highlight the model’s potential

weaknesses for specific types of leaf diseases. To systematically

assess the changes in diagnostic capacity of various models, we used

radar plots to compare classification performance in Figure 9.

Figure 9 illustrates that the proposed model outperforms the

other five models in all five performance indicators. When the

triplet attention is added, the model performs best on blind. When
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the CBAM module is added, the model performs best on the purple

spot. Compared to the traditional ResNet18, its evaluation metrics

have improved by over 8%. After introducing the PConv module on

the basis of the CBAM, the model significantly reduces

computational complexity while maintaining excellent

classification and recognition performance. After adding the

PConv, the rust disease outperforms the traditional ResNet18.

The proposed ResNet18+CBM+Triplet combination model

outperforms other individual modules in botrytis recognition.

The three added modules do not conflict with each other. Overall,

the proposed model has high classification performance for four

garlic leaf diseases.

The Pearson correlation coefficient heatmap is a matrix

visualization method used to present the degree of linear

correlation between variables in a dataset. The color depth of

each cell in the figure corresponds to the Pearson correlation

coefficient value of a variable pair (i.e., defined as [-1,1]), where

the extreme value (i.e., ± 1) indicates complete correlation and 0

indicates no linear correlation. To explore the intrinsic connections

between various performance indicators of the model and their

synergy in multidimensional performance, we adopted this analysis

method, and the results are presented in Figure 10.

From Figure 10 we can see that the triplet attention module

increases the correlation coefficient between evaluation indicators

by 0.08 through feature fusion. The CBAM module may experience

a decrease in correlation coefficient to 0.69 due to excessive focus on

local features. After adding the PConv, the sparse computing

mechanism effectively compensates for this deficiency, increasing

the correlation coefficient by more than 0.05. When the CBAM is

combined with Triplet, it exhibits more balanced performance.

When three modules are added simultaneously, it exhibits a

significant synergistic enhancement effect, with correlation

coefficients exceeding 0.99 between most indicators. This

confirms the feasibility of the multi-module deep fusion strategy.

To compare the training accuracy and loss variation of the

proposed model, we selected five common deep learning models,

including Efficient-v2-B0, MobileOne-S0, OverLoCK-S,

EfficientFormer, and MobileMamba, to train and compare with

the proposed model on our dataset, as elucidated in Figure 11.

From Figure 11, it can be seen that the proposed model is

superior to most mainstream lightweight models currently

available. During the training process, the loss value of the

proposed model gradually stabilizes. Although the model

introduces attention mechanisms to increase complexity, PConv

effectively compensates for computational overhead and maintains

excellent performance while controlling parameters and

computational complexity. Compared with Efficient-v2-B0 and

MobileMamba, the proposed model not only has higher accuracy

but also has a more stable training process and faster convergence.

It indicates that the proposed model has more reliable performance

in the task of identifying garlic leaf diseases while verifying the

effectiveness and compatibility of the improved strategy.

We used specificity, precision, sensitivity, 1-score, and accuracy

to evaluate the garlic leaf disease identification performance of

different models, and the results are revealed in Figure 12.
FIGURE 6

Training accuracy curves for different learning rates.
FIGURE 7

The accuracy and loss curves on the training and validation datasets.
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The results from Figure 12 indicate that the proposed model

outperforms the other five excellent deep learning models in all five

evaluation metrics. In terms of accuracy, the proposed model

improves by 0.0241 compared to the lowest Efficient-v2-B0.

Compared with the optimal MobileMamba, the proposed model

improves by 0.007. In terms of F1 score, the proposed model

improves by 0.0247 and 0.0073 compared to Efficient-v2-B0 and

MobileMamba, respectively. Overall, the proposed model achieves

bidirectional performance of lightweight and high precision in

identifying garlic leaf diseases.

To more accurately present the specific performance of each

model under different disease categories, we also counted the

average accuracy of different models for four types of diseases.

The results are presented in Table 2.

As can be seen in Table 2, the dual attention mechanism’s

synergistic effect with PConv efficiently compensates for the

inadequacies of previous models in feature association mining

and complicated scene adaptation. The CBAM and triplet

modules, whether introduced singly or in combination, can

significantly increase classification performance. The proposed

RTCB model achieves comparable average recognition accuracy
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for four garlic illnesses. It shows that the proposed model has the

highest recognition stability. In summary, the suggested method

employs a multi-module collaborative strategy and achieves

excellent recognition performance. The proposed collaborative

technique increases the accuracy and consistency of garlic leaf

disease identification tasks. It demonstrates the rationale and

practicality of the ablation module combo design.

To present the classification performance of the model for each

category more intuitively, we further organized the total number

(Tot), correct classification number (Cor), and incorrect

classification number (Inc) of the five samples in the test set for

the four models. The specific results are placed in Table 3.

Table 3 reports that the overall classification accuracy of

OverLoCK-S, EfficientFormer, MobileMamba, and the proposed

model are 98.02%, 97.69%, 98.19%, and 98.90%, respectively. The

overall classification performance of the proposed model is superior

to the other three excellent deep learning models. Compared with

the lowest EfficientFormer, the proposed model improves by 1.21%.

The proposed model has the least number of misclassified samples

for Botrytis and Rust. In the blink classification, there are many false

positives of purple spots. This is because Bright and Purple Spot
FIGURE 8

Ablation experiments of different evaluation indicators. (A) is the performance of our own garlic dataset. (B) is the performance of the open-source
potato dataset.
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have certain similarities in the morphology and color characteristics

of lesions. Overall, the proposed model has higher accuracy and

stability in the classification of garlic leaf diseases, effectively

reducing misjudgments and providing reference for precise

identification and prevention of diseases.

We randomly selected a sample from each class in the test set

for prediction, and the results are presented in Figure 13. All

classifications are correct, and their recognition probability

confidence is above 96%.

To verify the reliability of the model recognition at the

individual level, we randomly selected a sample from each
Frontiers in Plant Science 10
category in the test set for prediction. The visualization test

results are revealed in Figure 13.

As shown in Figure 13 that the proposed model can effectively

capture the key features of different diseases. Even when facing

samples with slight background interference and small lesion areas,

it still maintains stable recognition ability. This confirms that the

proposed model has high reliability in single-sample classification

and can provide effective technical support for precise identification

of individual plant diseases in the field. Therefore, our proposed

model not only helps to achieve automated classification and

recognition of garlic leaf diseases but also provides a scalable
FIGURE 9

The ablation experiments of different indicators. (A) is classical ResNet 18. (B) is the ResNet 18+Trplet. (C) is ResNet 18+CBAM. (D) is ResNet 18
+CBAM+PConv. (E) is the ResNet 18+CBAM+Trplet. (F) is the ResNet 18+CBAM+Triplet+PConv.
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solution for the development of lightweight intelligent agricultural

systems. It further confirms that our proposed strategy has strong

application potential and promotional value.
4.4 Deployment potential on edge devices

To evaluate the applicability of our proposed model in practical

agricultural environments, we analyzed its deployment potential on

edge devices. We focus on analyzing the lighting changes, complex

field backgrounds, and inference performance of the model in real-

world scenarios with limited resources on smartphones.

In Section 4.3, we introduced PConv to reduce the parameter

count to 4.19M and floating-point computation to 11.19G while

maintaining high accuracy. Compared with the traditional
Frontiers in Plant Science 11
ResNet18, this efficiency has been improved by 60%. This

lightweight design significantly reduces the demand for memory

and computing resources, laying a solid foundation for deploying

the model on edge terminals such as smartphones, embedded

devices, or agricultural drones.

The dataset we used was mainly collected in laboratory

environments, but during the training process, we perform

random brightness adjustment, contrast variation, noise injection,

and simulated shadow processing on the data. These data

augmentation methods can enhance the model’s adaptability to

changes in lighting and complex field conditions. During the

training process, the model gradually approached stable

convergence without any significant oscillations. This indicates

that the model has high robustness to changes in the input image.

In addition, the experimental results verified that the proposed
FIGURE 10

Heat map of the correlation between evaluation indicators of different models. (A-F) are the correlation heatmap analysis results of the classical
ResNet18, classical ResNet18++Trplet, ResNet 18+CBAM, ResNet 18+CBAM+PConv, ResNet 18+CBAM+Trplet, the ResNet 18+CBAM+Triplet
+PConv models, respectively.
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model maintains high stability in identifying garlic leaf diseases

with high accuracy. The accurate classification with high confidence

further proves that the model can effectively cope with intra-class

differences and has the preliminary stability required for

practical applications.

To verify the actual reasoning ability of the model on the

smartphone end, we converted the trained model into ONNX

format files and integrated them into an Android prototype

application based on PyTorch Mobile. The testing equipment uses

Xiaomi 13 (Snapdragon 8 Gen 2 processor, China). The inference

test for a single image shows that the average inference time of the

model is about 55 ms, and the peak memory occupation is about 50

MB. This test result indicates that the model can achieve image

recognition on mainstream smartphone terminals, meeting the

real-time diagnosis needs in the field. Although there are some

differences between the current testing environment and real field

conditions (e.g., strong lighting, multiple occlusions, and complex

backgrounds), the existing performance has provided a reliable

basis for subsequent field testing and system optimization.

In future research, the application scenarios of our proposed

RTCB model will be further expanded to diverse edge devices.

Considering the limitations of edge computing resources on high-

throughput inference, we plan to optimize image preprocessing and

data transmission protocols for batch images collected during low-

altitude drone flights. We will upload the real-time image data

collected by the drone to the cloud server. We will use the RTCB

model deployed in the cloud to achieve plant leaf disease detection.

At the same time, by combining the drone path planning algorithm

with the real-time feedback mechanism of cloud detection results,

we will dynamically adjust the drone flight trajectory to achieve
Frontiers in Plant Science 12
rapid screening of diseases in 10000 acres of garlic fields. We plan to

use knowledge distillation technology for portable detection

terminals used by grassroots agricultural technicians. We use the

proposed RTCB model as a teacher model to train a lightweight

student model. It meets the terminal memory limit while ensuring

low accuracy loss. To support the analysis of regional disease trends,

we will also build a collaborative architecture of the edge cloud. We

use portable terminal edge devices to locally store key diagnostic

results. We upload it to the cloud management platform using the

5G network. This strategy avoids bandwidth consumption caused

by a huge quantity of image transfer, resulting in efficient data

synchronization between edge devices and the cloud.

Although we have made some progress in model lightweighting

and inference efficiency, we still face multiple challenges in the

actual deployment process. Firstly, the currently proposed model is

mainly trained based on images collected in laboratory

environments. The real field environment has extreme lighting

conditions, complex background interference, and multiple

occlusions. These factors may all affect the recognition

performance of the model. Therefore, in the future, we will

systematically collect field disease images covering different

meteorological conditions, crop growth periods, and shooting

angles to construct a more representative and diverse dataset.

Meanwhile, we plan to introduce domain adaptation techniques

to enhance the model’s generalization ability across environmental

scenarios. Secondly, in order to further adapt to low-end devices

with limited computing power, we will use INT8 quantization and

knowledge distillation compression techniques to reduce model size

and improve inference speed. Finally, practical applications require

not only efficient recognition algorithms but also integrated image
FIGURE 11

The training loss curves of the six models.
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preprocessing, result interpretation, user interaction, and data

communication modules. Therefore, we will coordinate and

optimize power consumption, memory management, and

response time at the system level and build an end-to-end

intelligent agricultural diagnostic solution.
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5 Discussion

In recent years, deep learning has demonstrated substantial

effectiveness in the classification of plant leaf diseases. Yao et al.

(2024) introduced a leaf disease recognition system with an

integrated enhanced attention module, which achieved a 93.64%

accuracy by autonomously learning and extracting important

information from lesions. Although it enhanced the algorithm’s

overall recognition performance for each leaf disease, the accuracy

was slightly lower than that of better-performing models. Bera et al.

(2024) suggested an attention-based method for plant disease

classification networks. This method achieved 97.74% accuracy on

the PlantPathology dataset. However, it focuses on key regions of

leaves and has certain flaws in global feature collection. Similarly, an

enhanced CNN model was suggested by Li et al. (2024). It can

classify and recognize healthy chili leaf images as well as images of

chili leaves with four different pathologies, and it obtained an

accuracy of 93.5%. Although it improved the model’s ability to

extract basic aspects of chili leaf illnesses, it was unable to acquire

comprehensive information. As a result, the efficacy of

discriminating between the general symptoms of leaf curl illness
TABLE 2 Mean accuracy of different models under different diseases.

Methods Botrytis Rust Blight Purple

ResNet18 0.9703 0.9841 0.9705 0.9852

ResNet18+Triplet 0.9720 0.9857 0.9721 0.9735

ResNet18+CBAM 0.9832 0.9864 0.9738 0.9921

ResNet18+CBAM+PConv 0.9780 0.9864 0.9754 0.9936

ResNet18+CBAM+Triplet 0.9821 0.9900 0.9755 0.9858

ResNet18+CBAM+Triplet
+Pconv

0.9848 0.9908 0.9807 0.9887
FIGURE 12

Performance scores of the six models.
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and yellowing disease is slightly reduced. This article differs from

previous research in that it not only optimizes the structure of

ResNet18 to improve the depth of feature extraction, but it also

introduces a CBMA model and a triplet attention model, resulting

in comprehensive capture of both local and global features.
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Through ablation tests, we established an important finding.

When the CBMA and triplet attention modules are combined,

they boost identification accuracy far more than a single attention

mechanism does. This shows that their fusion produces a

synergistic effect.
FIGURE 13

The predicted results. (A) Test blight leaf disease, (B) Test botrytis leaf disease, (C) Test rust leaf disease, (D) Test purple spot leaf disease.
TABLE 3 The correct and incorrect numbers of different models on the test set.

Method
Botrytis Rust Blight Purple spot Healthy

Tot Cor Inc Tot Cor Inc Tot Cor Inc Tot Cor Inc Tot Cor Inc

OverLoCK-S 392 386 6 375 371 4 325 312 13 358 346 12 369 368 1

EfficientFormer 392 384 8 375 369 6 325 311 14 358 345 13 369 368 1

MobileMamba 392 386 6 375 371 4 325 314 11 358 349 9 369 366 3

Proposed 392 390 2 375 373 2 325 318 7 358 350 8 369 368 1
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Nonetheless, there are certain limitations, even if the approach

described in this article has greatly improved recognition accuracy.

First and foremost, it remains to be seen whether the current dataset

can detect a wider range of garlic leaf disorders, given it only

comprises three common disease types. Second, the model’s

comprehensiveness and utility in real-world applications are

limited because it is currently insufficient for measuring illness

severity and progression.

These limitations mainly come from two aspects. First, the

dataset lacks sufficient diversity and complexity. Second, there is

room to improve the model’s understanding of advanced semantic

information—specifically during the processes of feature extraction

and classification decision-making. To solve these problems, future

research has two main directions. One is to expand the dataset so it

covers more types of garlic leaf disease images. The other is to study

multimodal data fusion techniques, such as fusing image, spectral,

and environmental data. Both directions aim to enhance the

accuracy and reliability of disease recognition. Meanwhile, model

performance might be enhanced by refining its structure and

integrating more complex attention processes or advanced

technologies like graph neural networks. These actions enable the

model to better capture the intricate interactions between illness

features, which in turn benefits its performance.

Through this research, we have gained a thorough

understanding of the immense potential of deep learning in

intelligent agricultural management, but we have also identified

the inadequacies of present models in practical applications. As a

result, we suggest a new hypothesis: by including time series data

and growth cycle information, deep learning models may not only

detect the types of garlic leaf illnesses, but also define the period

during which they occur. Based on this premise, we propose that

future study focuses on the dataset’s diversity and complexity. By

collecting image data of garlic leaves at various growth and disease

development stages, a dataset incorporating time series information

can be created, providing a more refined solution for agricultural

disease monitoring. Meanwhile, we will continue to simplify the

model structure, minimize computational complexity, and optimize

it for edge computing devices. Terminal devices such as drones and

portable detectors can be used for integration to develop lightweight

chips that fit garden drones. This integration not only makes the

practical edge application of plant disease and pest identification

systems possible but also provides backing for the long-term

development of garden plant health monitoring systems.
6 Conclusions

In this work, we propose an integrated triplet attention, CBAM

dual attention mechanism, and partially convolutional deep

learning garlic leaf disease classification and recognition model,

and achieve a classification and recognition accuracy of 99.92%

on our test set. This proves that the currently proposed model
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has great potential for development in the field of garlic leaf

disease identification.

The proposed research has yielded significant findings, but it

also has limitations. First, the proposed model was only applicable

to identifying healthy garlic, botrytis, rust, blight, and purple disease

types. Second, it is not suitable for identifying multiple diseases on

one leaf. Third, the number of garlic disease samples we collected is

not enough, and the types of garlic leaf diseases are not

comprehensive. Last, the identification accuracy is not ideal with

different meteorological conditions, shooting angles, and degrees

of damage.

Future work still needs to focus on data augmentation, model

optimization, and real-time performance improvement to address

practical challenges such as extreme weather and garlic leaf disease

occlusion and further promote the development of intelligent

transportation systems. We will conduct research in the

following areas:

Although the proposed system has achieved good results in the

identification of garlic leaf pests and diseases, there are still many

shortcomings that need further research and improvement. The

specific plans are as follows:
1. Diversification of dataset: We will collect and integrate

garlic leaf data from different regions and environments to

build a more comprehensive and diverse database. This will

help improve the generalization ability of the model in

practical applications.

2. Dataset diversification: We will create a large-scale dataset

that combines multimodal data (e.g., Pictures, spectra, and

environmental data), encompassing several garlic

production sites, diverse planting settings, and full

development cycles, as well as disease severity

classification. To eliminate distributional discrepancies,

we will apply data augmentation and domain adaptation

approaches (e.g., DANN). We will evaluate the model in a

variety of illumination, weather, and planting modes. We

will create a dual scenario assessment system from the lab

to the field and ensure practical reliability.

3. Implementing dynamic monitoring and functional

upgrades: To meet actual monitoring needs, we will

upgrade from static image processing to real-time video

stream analysis. The goal is to develop a function that can

continuously monitor bean planting areas, achieve

automatic real-time identification and data storage of

pests and diseases, significantly improve the timeliness,

practicality, and response speed of the system, and

provide strong support for timely prevention and control.

4. Real-time performance optimization: In response to the

real-time requirements in practical applications, we will

optimize the model structure and algorithms, improve data

processing efficiency, reduce parameter calculation

complexity, and adapt to more real-time field scenarios.
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