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Problem: Garlic is a common ingredient that not only enhances the flavor of
dishes but also has various beneficial effects and functions for humans. However,
its leaf diseases and pests have a serious impact on the growth and yield.
Traditional plant leaf disease detection methods have shortcomings, such as
high time consumption and low recognition accuracy.

Methodology: As a result, we present a deep learning approach based on an
upgraded ResNetl8, triplet, convolutional block (RTCB) attention mechanism for
recognizing garlic leaf diseases. First, we replace the convolutional layers in the
residual block with partial convolutions based on the classic ResNetl8
architecture to improve computational efficiency. Then, we introduce triplet
attention after the first convolutional layer to enhance the model’s ability to focus
on key features. Finally, we add a convolutional block attention mechanism after
each residual layer to improve the model's feature perception.

Results: The experimental results demonstrate that the proposed model
achieves a classification accuracy of 98.90%, which is superior to outstanding
deep learning models such as Efficient-v2-B0O, MobileOne-S0O, OverLoCK-S,
EfficientFormer, and MobileMamba. The proposed RTCB has a faster
computation speed, higher recognition precision, and stronger
generalization ability.

Contribution: The proposed approach provides a scalable technical reference
for the engineering application of automatic disease monitoring and control in
intelligent agriculture. The current strategy is conducive to the deployment of
edge computing equipment and has extensive significance and application
potential in plant leaf disease detection.
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agricultural production, plant leaf disease detection, deep learning, improved ResNet18,
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1 Introduction

Crop diseases and pests are one of the main factors affecting
plant growth and production. Crop diseases and pests can be
detected and identified in time, and their management and
control can be carried out effectively, reducing production losses
and improving crop yield and quality. Leaves are an important basis
for judging the degree of plant disease. Since most farmers do not
have professional plant protection knowledge, it is difficult to
implement the control plan (George et al., 2025). Machine vision
technology, on the other hand, may detect leaf disease spots, assist
in estimating disease severity, and advise farmers on how to take
effective actions to maximize economic benefits.

Before the advent of the support vector machine (SVM) for
feature vector classification, the primary method for extracting
agricultural disease and pest features was manual. It also requires
more data to generate feature vectors (Kalaiarasi et al., 2025).
Feature extraction and classification techniques typically require
segmenting the sick areas or leaves, even though they can have a
higher recognition impact. It creates distinct feature extraction
techniques for each condition, making it harder to differentiate
identical diseases and increasing early-stage workload (Cai and He,
2021). Traditional machine learning-based disease detection
methods must create distinct recognition models in addition to
relying significantly on feature extraction.

Recently, deep learning technologies have advanced rapidly (Xu
et al., 2021a), prompting attempts to apply machine vision to crop
disease and insect pest recognition. For traditional machine vision
algorithms (Cai et al., 2020), appropriate features must be selected
in line with the target and prior knowledge (Goyal et al., 2025).
These features usually include color, shape, and texture. The feature
extractors are mainly manual designs. They are inconvenient and
incapable of generalization. However, deep learning (Xu et al,
2021b) methods can adjust the weight parameters and build a
suitable feature extractor. The process is relatively efficient and
convenient. The feature extractors also have better generalization
abilities, which can effectively overcome the shortcomings of
traditional machine vision methods.

Although deep learning techniques have made significant
progress in identifying plant leaf diseases, precise recognition of
garlic leaf diseases still faces challenges in balancing model
performance and efficiency. Although conventional deep learning
models like the EfficientNet series have good recognition accuracy,
their vast number of parameters and computational complexity
limit their use in practical agricultural applications. Although
lighter models such as ResNetl8 have higher computational
efficiency, they have shortcomings in feature extraction ability
and key information perception. It leads to limited accuracy in
identifying garlic leaf diseases in complex backgrounds. In addition,
most current research is based on publicly available datasets with
simple backgrounds and limited disease categories. The robust
identification of garlic leaf diseases in complex backgrounds in
real agricultural environments has not yet formed a good solution.

Based on the above challenges, we propose a lightweight model
based on improved ResNet18. First, we utilized the triplet attention
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module to enhance the perception ability of key disease features.
Second, we designed a CBAM to enhance feature expression ability.
Finally, we used the PConv to reduce computational complexity.
Our model achieves high recognition accuracy while keeping the
parameter count low. It effectively solves the problem of balancing
accuracy and efficiency in the recognition of garlic leaf diseases
using lightweight models. The main contributions of this article are
as follows:

1. A triplet attention mechanism is introduced to refine
perceived information while preserving contextual
information, effectively capturing key features in the data.

2. A CBAM dual attention mechanism is incorporated to
enhance the model’s ability to express features and improve
the network’s feature extraction.

3. A novel partial convolution network is designed to reduce
parameter computation and improve model performance.

The remaining paper of this article is organized as follows:
Section 2 analyzes the literature review of garlic leaf disease
recognition technology. Section 3 mainly introduces the proposed
method. Section 4 reports the experimental results and analyses.
Finally, Section 5 presents the conclusion and future
research directions.

2 Literature review

Machine learning techniques primarily use particular illness
spot region segmentation to process the color, shape, and texture
elements of the disease image (Shen et al., 2022). They are classified
using a SVM classifier (Wang et al., 2022) and a normalized
exponential function. For instance, Bala and Bansal (2024a)
designed a model based on k-nearest neighbor (KNN), SVM,
random forest, and Naive Bayes for pepper, potato, and tomato
leaf disease classification and obtained an overall accuracy rate of
86.83%. Malik et al. (2024) designed a model based on CNN and
SVM for corn leaf disease diagnosis and realized a classification
accuracy of 99.8%. Li and Liao (2025) proposed a novel approach
called support vector machines, graph cuts, and adversarial network
for tea disease identification and reached an accuracy of 97.66%.
Khan et al. (2024) provided a new method and compared random
forest, XGBoost, GaussianNB, support vector machines,
multinomial logistic regression, and KNN to classify tomato
leaves and obtained an average precision of 98.527%. Kaur et al.
(2024) reported a hybrid deep learning model based on a support
vector machine, convolutional neural network, and convolutional
block attention module for the early recognition and sorting of
plant leaf diseases and reached an accuracy of about 98.72%. For
traditional machine learning techniques, classification accuracy
relies largely on human design. However, in certain complicated
contexts with high noise levels, the picture recognition effect
is subpar.

As artificial intelligence continues to develop, technologies for
crop disease and pest identification have advanced in tandem. Crop
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pest and disease detection uses deep learning (Girmaw and
Muluneh, 2024), transfer learning (Han and Guo, 2024), and
reinforcement learning (Chelloug et al., 2023). Particularly, data-
driven reasoning-based deep learning algorithms (Bala and Bansal,
2024b) enable rapid feature extraction from data, helping computer
vision achieve higher accuracy and efficiency (Umar et al., 2024).
For instance, Sharma et al. (2025) described a method for tomato
leaf diseases based on the ResNet50, MobileNetV2, global average
pooling2D, Batch Normalization, Dropout, and Dense layers that
produced a precision of 99.92%. Goyal et al. (2024) developed a
specific method for plant leaf disease identification, which relies on
an optimized evolutionary gravitational neocognitron neural
network. It achieved 99.92% and 99.98% accuracy when tested on
two datasets. Ali et al. (2024) designed a lightweight deep learning
model for apple leaf disease identification, achieving an accuracy of
98.6% and a classification rate of 98.25%. Mazumder et al. (2024)
introduced a new architecture named DenseNet201Plus for banana
and black gram leaf disease. This architecture includes
preprocessing techniques, an attention-based transition
mechanism, multiple attention modules, and dense blocks and
achieved 90.12% accuracy on the banana leaf disease dataset and
99.50% on the black gram leaf disease dataset. Aldakheel et al.
(2024) proposed an improved YOLOv4 model for automatic
determination of plant leaf disease and used the Plant Village
Dataset, which yielded an accuracy rate of 99.99%. Sahu et al.
(2025) developed a hybrid model for multi-plant leaf disease
classification. This model is based on a convolutional neural
network deep learning architecture, and it showed an average
accuracy rate of 97.36%. For the identification of various plant
leaf diseases, Pan et al. (2024) proposed a convolutional neural
network based on memristors. On two datasets—Plant Village and
rice leaf disease—it produced identification accuracies of 99.03%
and 99.16%, respectively. Xu et al. (2025) described an improved
SPDNet and GrNet model for crop disease identification. It showed
an overall classification accuracy rate of 98.96%. The majority of the
test samples above are straightforward and have a single
background, despite the fact that deep learning techniques have
been used for crop picture detection. A lot of samples must be used
to train the feature extraction capability.

3 Proposed methods
3.1 Triplet attention module

Based on the characteristics of garlic leaf disease data and
considering the shortcomings of hardware and system
performance, this paper initially chose ResNetl8 for garlic leaf
disease identification but found that the recognition effect was not
ideal. Therefore, in order to improve the recognition accuracy of the
model and more effectively capture key features in garlic leaf
number data, we optimised the classic ResNet18 by introducing a
triplet attention module after the first convolutional layer to
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enhance the network’s initial attention to features, preserve
information context while refining perceived information, and
improve the performance of classification tasks.

The triplet attention adopts a three-branch structure to capture
cross-dimensional data features and interactively calculates
attention weights on channels based on these features. The
calculation processl.can be expressed as follows Equation 1.

Z = pool(M) = [MaxPooly;(M) © AvgPooly;(M)] (1)

where MaxPool is the maximum pooling operation, AvgPool
represents the average pooling operation, O is splicing operations,
and 0d means the 0-th dimension for performing maximum
pooling and average pooling operations.

For the input feature map X &€ RW*HxC

, pass it to the three
branches of the triplet attention module. In the first branch, capture
the cross-channel interaction features between spatial dimension H
and channel dimension C. First, rotate X anticlockwise by 90° along
the H axis to obtain Xy~ & RY*H*C, Then, X;- performs a Z-pool
operation on the W dimension, performs a convolution operation,
generates attention weights through the sigmoid activation
function, dot multiplies the obtained attention weights Xp-, and
rotates them clockwise by 90° along the H axis to obtain X*H,
maintaining the original input state of X. The calculation process of
the first branch is as follows Equation 2.

X1 = (Xy- 6@ +(Z — pool(Xpy-))) s+ )

where H™ is counterclockwise rotation of 90° along the H axis,
H" represents clockwise rotation of 90° along the H axis, ®; denotes
convolution kernel, * is convolution operation, and G represents
activation function.

Similarly, in the second branch, the interaction between channel
dimension C and spatial dimension W is captured. First, rotate X
anticlockwise by 90° along the W axis to obtain Xy, .€R™*<",
Then, Xy, performs the Z-pool operation on the H dimension,
followed by the convolution operation. The attention weights are
generated through the Sigmoid activation function, and the
obtained attention weights are dot-multiplied with Xy,. Finally,
Xy is obtained by rotating clockwise 90° along the W axis while
maintaining the original input state of X. The calculation can be
expressed as follows Equation 3.

Xy = (Xy-0(@,4(Z — pool(Xyy-)))))w- 3)

where W is counterclockwise rotation of 90° along the W axis,
and W represents clockwise rotation of 90° along the W axis.

For the third branch, the input feature X is reduced to 2
channels through the Z-pool operation and then convolved. The
attention weight is generated through the sigmoid activation
function, and the attention weight is dot multiplied with X to
obtain the final feature result Equation 4.

X* = Xo(w3+(Z - pool(X))) (4)

We will average the three components, and its mathematical

expression is as follows Equation 5.
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X =§(XH+XW+X*) (5)
We input X into a recurrent convolutional neural network.

After convolution, we obtain a feature map as presented in the

following equation Equation 6.

V=0X ‘o) (6)

The structure of the proposed recurrent convolutional neural
network based on the triplet attention is provided in Figure 1.

The proposed triplet attention module captures cross-
dimensional channel and spatial interaction information in a
lightweight and efficient manner. It can enhance the model’s
ability to focus on key features. The shallow features of the
network usually contain rich detailed information (e.g., edges and
textures), but not all details are equally important in garlic leaf
disease recognition tasks. After the initial convolution, we
immediately introduce the triplet attention module. It can screen
and enhance the low-level features extracted initially, making the
network more focused on potential areas related to diseases from
the initial stage. It can provide higher-quality feature input for deep
networks. Therefore, the proposed triplet attention module helps
the model suppress background interference in the early stages and
highlight key disease area features.

3.2 Convolutional block attention module

Although the proposed triplet attention module enhances the
shallow network’s ability to extract detailed features, as the network
structure deepens, the model still struggles to fully capture higher-
order semantic features. In order to enhance the representation
capability of deep networks, we embedded CBAM modules after the

10.3389/fpls.2025.1687300

standard convolution operation of each residual block. The reason
why we chose this position is that the features output by
convolution need to be calibrated through the synergy of channel
and spatial attention first. It can enhance discriminative features
and suppress noise. It is then fused with the original input features
through residual connections. This design method not only
maintains the identity mapping property of ResNet to prevent
gradient vanishing but also introduces an attention mechanism. It
can optimize feature expression and maintain sensitivity to key
features while deepening the network. The proposed CBAM
structure is presented in Figure 2.

The proposed CBAM mainly consists of channel attention and
spatial attention, which assign weights to each channel. It is usually
operated using global average pooling (GAP) and global maximum
pooling (GMP).

Assuming the input feature map F is HxWxC, the operational
expressions of the CBAM for GMP and GAP can be defined as
follows Equations 7, 8.

1
Feap(c) = m ZE}LF(LL ) (7)

Feopp(c) = mifo(i, 56 (8)

Subsequently, the fully connected layer is used to learn the
relationships between channels and obtain the corresponding
weights. The goal of spatial attention is to assign a weight to each
position in the feature map using a small convolutional kernel
Equation 9.

EM = 6(Wi+(Fgap + Fomp)) )

where * is the convolution operation, w; means a convolution
kernel, and © is the Sigmoid activation function. Finally, we used
these weights to update the original feature map.

H H Y
W W 3
¢ ’——'| Pool —{ Conv |—+ C B —
>(+) >
1 [Sigmotd | # g
W A -
c |——'| Pool I—'[ Conv h ¢ &
y (= > )
nd H :
w w L ° | £
¢ l—-»[m’—mﬁ\ c < ‘
|
FIGURE 1

Proposed triplet attention structure.
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} Join
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} Avg Avg
I Pooling Pooling
l
Input X
FIGURE 2

Proposed CBAM network architecture.

3.3 Partial convolution

Although we added the triplet attention module and
Convolutional block attention module to the optimized ResNet18
to improve the classification and recognition performance of garlic
leaf diseases, it also increased additional computational overhead.
In order to further construct an efficient and lightweight
classification and recognition model, we designed a partial
convolution (PConv) to reduce computational costs. PConv
compresses the computational complexity and parameter count of
the model by reducing redundant calculations. It only performs
regular convolution operations on a portion of the input feature
channels while keeping the remaining channels unchanged. We will
replace the most computationally expensive 3x3 convolutional layer
in the traditional ResNet18 residual block with a PConv layer. It can
reduce the floating point operations (FLOPs) and parameter count
(Params) of the model and significantly improve inference speed.
This design approach makes the model more suitable for
deployment on edge devices with limited computing resources

while enhancing the representation capability of the original
model. The proposed PConv convolutional architecture is
presented in Figure 3.

For spatial feature extraction, the PConv only has to perform
normal convolution on a subset of the input and output channels.
The size of the remaining channels remains unaltered. The first or
last continuous channel is regarded as the representative of the
complete feature map for computation purposes when it comes to
continuous or regular memory access. The number of channels in
the input and output feature maps is equal without sacrificing
generality. Compared to traditional convolution, PConv has a
computational complexity that is only 1/16 of the former. The
computational complexity S of PConv can be calculated as follows
Equation 10.

S=h-w-k-c (10)

where h is the height of the channel, w is the width of the
channel, ¢, is the number of consecutive network channels, and k is
the size of the filter.

P
{ Input A
|
| /// y
I y A
I y
: // 4
P p

| D ’}:// 5 £ j
: /’/ // :

y
W *x 9

FIGURE 3
Proposed PConv convolutional architecture.
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Based on the above analysis, to visually demonstrate the overall
recognition framework of the proposed garlic leaf diseases, we
manifest it in Figure 4. First, we embed the triplet attention
module after the first 7x7 convolutional layer of the traditional
ResNet18. This location is in the shallow layer of the network, and
the feature map contains rich texture, background, and contour
features, but it also has a lot of noise. The triplet attention module
interacts across dimensions. The triplet attention module
simultaneously filters and enhances shallow features in both
channel and spatial dimensions. It enables the model to focus on
disease-related areas from the early stages of training, effectively
suppressing background interference. It can provide more
discriminative low-level feature representations for deep
networks. Then, we add the CBAM module after the 3x3
convolution within each residual block of the traditional
ResNet18. The CBAM module retains the identity mapping
property of ResNet while achieving adaptive refinement of feature
maps. It can effectively alleviate the problem of feature degradation
in deep networks and enhance the model’s ability to extract high-
order semantic features. Finally, we replace the standard 3x3
convolution in all residual blocks with the PConv. The PConv
only performs convolution operations on some input channels,
significantly reducing the number of parameters (Params) and
FLOPs and greatly improving inference speed. This replacement
significantly improves computational efficiency while maintaining
the model’s representational ability. PConv can make the model
more suitable for deployment on edge devices with limited
computing resources. Through the above three designs, we have
constructed a garlic leaf disease classification and recognition model
that has both high recognition accuracy and high computational

10.3389/fpls.2025.1687300

efficiency. Our proposed model not only enhances the ability to
select and represent discriminative features but also achieves
effective optimization of computational costs.

4 Experimental results and analysis
4.1 Experimental setup

The suggested network model is written in PyCharm 2024.2.3
with Python 3.9 and uses the deep learning framework PyTorch
2.3.1 along with the deep learning acceleration modules CUDA 11
and cuDNN 8.9 to speed up training. A 14-core Intel Ultra 5
processor with an NVIDIA GeForce RTX 4060 for acceleration
makes up the hardware platform utilized for deep networks.

4.2 Data description

We obtained the data from the garlic planting bases in Henan
Province, China. We used the mobile phone camera (Vivo S16e,
China) to take the garlic leaves in a laboratory environment. The
samples are shown in Figure 5.

There were 9076 samples in total, including healthy leaves and
four types of diseases: rust, blight, purple, and botrytis. According to
the division principle of most deep learning models, the 9076
samples were randomly divided into the training, validation, and
testing sets with a ratio of 3:1:1. Table 1 lists the detailed quantities
of the samples.

|

""""""" Aoy ol 3X3 Conv,256
2XHXW| HXCXW] WX HXC | | 3X3 P ‘
| 7x7conv | | | zPool | | ZzPool |
v L XHXW| 2XCXW | 2X HXC
| Batch Norm | | 7X7 Conv I I 7X7 Conv |
v IXCXW 1X HXC ¢
I Sigmoid | | Batch Norm I | Batch Norm | -
ésigmoid CBAM.256
v
Purple | Permute | I Permute |
S

’Conv, 128

CBAM.128

Spatial
Attention
Module

CBAM,128

FIGURE 4
Proposed overall garlic leaf disease recognition framework.
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FIGURE 5

Experimental samples. (a) Botrytis, (b) Rust, (c) Blight, (d) Purple, (e) Healthy.

i
(a) Botrytis (b) Rust (c) Blight (d) Purple (e) Healthy

4.3 Train and test results

We used random search approaches to identify optimal training
parameters for the proposed model, such as the activation function,
learning rate, and network layers. We used learning rates of 0.001
and 0.02, along with a cosine annealing technique, to dynamically
change the learning rate and assess the performance of the basic
model. Figure 6 presents three variations of training accuracy.

As can be seen in Figure 6, when the learning rate is 0.02, the
model’s training accuracy rapidly increases to a higher level within
1~30 epochs, but there is a noticeable oscillation during the training
process, which gradually stabilizes after 60 epochs. When the
learning rate is 0.001, the model converges slowly, and the
improvement in training accuracy is relatively small. In contrast,
the cosine annealing strategy combines the advantages of both.
After 30 epochs, the training accuracy of the cosine annealing
strategy gradually stabilized, maintaining above 0.98, and there was
no significant oscillation throughout the entire process. Therefore,
we adopt a cosine annealing strategy to improve the training
efficiency of the proposed model.

Based on the selection principle of the above parameters, we
trained the proposed model on the training set and validation set.
The accuracy and loss value variation curves are manifested
in Figure 7.

Detailed information has been acquired in Figure 7. Between 0
and 40 epochs, the training accuracy increased from 0.75% to
98.89%. The training loss decreased from 0.2 to nearly 0. The

TABLE 1 The specific distribution number of each type of data.

accuracy of verification is also improving, and the verification loss is
also decreasing. Between 40 and 60 epochs, the training accuracy
gradually stabilizes at around 98% with minimal fluctuations. The
validation accuracy continues to approach the training accuracy.
The verification loss has slight fluctuations but overall maintains a
good level. It indicates that the proposed model fits well with the
data. Between 60 and 100 epochs, all four curves tend to stabilize. It
indicates that the proposed model has fully converged and achieved
high and stable performance on both the training and
validation sets.

To further validate the inference speed, robustness, and
feasibility of edge deployment of the proposed model, we tested
the parameters (Params), floating point operations (FLOPs), and
running speed of five models in an environment with 32 g of
memory and an Intel Core i5-13500H graphics card. The specific
results are depicted in Figure 8.

Some important observations can be made from the content of
Figure 8. In our own garlic dataset, adding the triplet attention
module and CBAM module separately only slightly increased
FLOPs and Params. When PConv is added separately, FLOPs and
Params are reduced by 61.7% and 62.5%, compared to traditional
ResNet18. In terms of inference speed, the ResNetl8 with the
CBAM added separately focuses on key features through an
attention mechanism, which is 27% faster than traditional
ResNet18. The memory usage slightly increases with the increase
of modules, but the model incorporating PConv still has higher
parameters and computational efficiency. On the open-source

Categories Training set Validation set Testing set Total number
Botrytis 1177 392 392 1961
Rust 1124 374 375 1873
Blight 975 325 325 1625
Purple 1055 358 358 1771
Healthy 1108 369 369 1846
Total number 5439 1818 1819 9076
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FIGURE 6

Training accuracy curves for different learning rates.

potato dataset, the impact trends of each module are not
significantly different from those on the garlic dataset, indicating
that the proposed model has good cross-dataset generalization
ability. Overall, the model we propose can effectively balance
computational complexity, parameter size, and inference speed. It
has high potential for deploying edge devices in garlic leaf disease
recognition tasks.

A radar chart is an efficient visual aid for demonstrating the
relative benefits and downsides of various models in a variety of leaf
disease classification tasks because it can graphically show several
performance metrics in a single coordinate system. This
visualization technique helps to highlight the model’s potential
weaknesses for specific types of leaf diseases. To systematically
assess the changes in diagnostic capacity of various models, we used
radar plots to compare classification performance in Figure 9.

Figure 9 illustrates that the proposed model outperforms the
other five models in all five performance indicators. When the
triplet attention is added, the model performs best on blind. When

1.0 1
0.8 1
Train Accuracy
Train Loss
2 0.6 X
° Validate Accuracy
é —— Validate Loss
< 0.4
0.2
0.0 4 >
T T T T 1
0 20 40 60 80 100
Epoch
FIGURE 7

The accuracy and loss curves on the training and validation datasets.
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the CBAM module is added, the model performs best on the purple
spot. Compared to the traditional ResNetl18, its evaluation metrics
have improved by over 8%. After introducing the PConv module on
the basis of the CBAM, the model significantly reduces
computational complexity while maintaining excellent
classification and recognition performance. After adding the
PConv, the rust disease outperforms the traditional ResNet18.
The proposed ResNet18+CBM+Triplet combination model
outperforms other individual modules in botrytis recognition.
The three added modules do not conflict with each other. Overall,
the proposed model has high classification performance for four
garlic leaf diseases.

The Pearson correlation coefficient heatmap is a matrix
visualization method used to present the degree of linear
correlation between variables in a dataset. The color depth of
each cell in the figure corresponds to the Pearson correlation
coefficient value of a variable pair (i.e., defined as [-1,1]), where
the extreme value (ie., + 1) indicates complete correlation and 0
indicates no linear correlation. To explore the intrinsic connections
between various performance indicators of the model and their
synergy in multidimensional performance, we adopted this analysis
method, and the results are presented in Figure 10.

From Figure 10 we can see that the triplet attention module
increases the correlation coefficient between evaluation indicators
by 0.08 through feature fusion. The CBAM module may experience
a decrease in correlation coefficient to 0.69 due to excessive focus on
local features. After adding the PConv, the sparse computing
mechanism effectively compensates for this deficiency, increasing
the correlation coefficient by more than 0.05. When the CBAM is
combined with Triplet, it exhibits more balanced performance.
When three modules are added simultaneously, it exhibits a
significant synergistic enhancement effect, with correlation
coefficients exceeding 0.99 between most indicators. This
confirms the feasibility of the multi-module deep fusion strategy.

To compare the training accuracy and loss variation of the
proposed model, we selected five common deep learning models,
including Efficient-v2-B0, MobileOne-S0, OverLoCK-S,
EfficientFormer, and MobileMamba, to train and compare with
the proposed model on our dataset, as elucidated in Figure 11.

From Figure 11, it can be seen that the proposed model is
superior to most mainstream lightweight models currently
available. During the training process, the loss value of the
proposed model gradually stabilizes. Although the model
introduces attention mechanisms to increase complexity, PConv
effectively compensates for computational overhead and maintains
excellent performance while controlling parameters and
computational complexity. Compared with Efficient-v2-B0 and
MobileMamba, the proposed model not only has higher accuracy
but also has a more stable training process and faster convergence.
It indicates that the proposed model has more reliable performance
in the task of identifying garlic leaf diseases while verifying the
effectiveness and compatibility of the improved strategy.

We used specificity, precision, sensitivity, 1-score, and accuracy
to evaluate the garlic leaf disease identification performance of
different models, and the results are revealed in Figure 12.
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Ablation experiments of different evaluation indicators. (A) is the performance of our own garlic dataset. (B) is the performance of the open-source

potato dataset.

The results from Figure 12 indicate that the proposed model
outperforms the other five excellent deep learning models in all five
evaluation metrics. In terms of accuracy, the proposed model
improves by 0.0241 compared to the lowest Efficient-v2-BO0.
Compared with the optimal MobileMamba, the proposed model
improves by 0.007. In terms of FI score, the proposed model
improves by 0.0247 and 0.0073 compared to Efficient-v2-B0 and
MobileMamba, respectively. Overall, the proposed model achieves
bidirectional performance of lightweight and high precision in
identifying garlic leaf diseases.

To more accurately present the specific performance of each
model under different disease categories, we also counted the
average accuracy of different models for four types of diseases.
The results are presented in Table 2.

As can be seen in Table 2, the dual attention mechanism’s
synergistic effect with PConv efficiently compensates for the
inadequacies of previous models in feature association mining
and complicated scene adaptation. The CBAM and triplet
modules, whether introduced singly or in combination, can
significantly increase classification performance. The proposed
RTCB model achieves comparable average recognition accuracy
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for four garlic illnesses. It shows that the proposed model has the
highest recognition stability. In summary, the suggested method
employs a multi-module collaborative strategy and achieves
excellent recognition performance. The proposed collaborative
technique increases the accuracy and consistency of garlic leaf
disease identification tasks. It demonstrates the rationale and
practicality of the ablation module combo design.

To present the classification performance of the model for each
category more intuitively, we further organized the total number
(Tot), correct classification number (Cor), and incorrect
classification number (Inc) of the five samples in the test set for
the four models. The specific results are placed in Table 3.

Table 3 reports that the overall classification accuracy of
OverLoCK-S, EfficientFormer, MobileMamba, and the proposed
model are 98.02%, 97.69%, 98.19%, and 98.90%, respectively. The
overall classification performance of the proposed model is superior
to the other three excellent deep learning models. Compared with
the lowest EfficientFormer, the proposed model improves by 1.21%.
The proposed model has the least number of misclassified samples
for Botrytis and Rust. In the blink classification, there are many false
positives of purple spots. This is because Bright and Purple Spot
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The ablation experiments of different indicators. (A) is classical ResNet 18. (B) is the ResNet 18+Trplet. (C) is ResNet 18+CBAM. (D) is ResNet 18
+CBAM+PConv. (E) is the ResNet 18+CBAM+Trplet. (F) is the ResNet 18+CBAM+Triplet+PConv.

have certain similarities in the morphology and color characteristics ~ category in the test set for prediction. The visualization test
of lesions. Overall, the proposed model has higher accuracy and  results are revealed in Figure 13.

stability in the classification of garlic leaf diseases, effectively As shown in Figure 13 that the proposed model can effectively
reducing misjudgments and providing reference for precise  capture the key features of different diseases. Even when facing
identification and prevention of diseases. samples with slight background interference and small lesion areas,

We randomly selected a sample from each class in the test set it still maintains stable recognition ability. This confirms that the
for prediction, and the results are presented in Figure 13. All  proposed model has high reliability in single-sample classification
classifications are correct, and their recognition probability  and can provide effective technical support for precise identification
confidence is above 96%. of individual plant diseases in the field. Therefore, our proposed

To verify the reliability of the model recognition at the model not only helps to achieve automated classification and
individual level, we randomly selected a sample from each  recognition of garlic leaf diseases but also provides a scalable
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+PConv models, respectively.

solution for the development of lightweight intelligent agricultural
systems. It further confirms that our proposed strategy has strong
application potential and promotional value.

4.4 Deployment potential on edge devices

To evaluate the applicability of our proposed model in practical
agricultural environments, we analyzed its deployment potential on
edge devices. We focus on analyzing the lighting changes, complex
field backgrounds, and inference performance of the model in real-
world scenarios with limited resources on smartphones.

In Section 4.3, we introduced PConv to reduce the parameter
count to 4.19M and floating-point computation to 11.19G while
maintaining high accuracy. Compared with the traditional
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ResNet18, this efficiency has been improved by 60%. This
lightweight design significantly reduces the demand for memory
and computing resources, laying a solid foundation for deploying
the model on edge terminals such as smartphones, embedded
devices, or agricultural drones.

The dataset we used was mainly collected in laboratory
environments, but during the training process, we perform
random brightness adjustment, contrast variation, noise injection,
and simulated shadow processing on the data. These data
augmentation methods can enhance the model’s adaptability to
changes in lighting and complex field conditions. During the
training process, the model gradually approached stable
convergence without any significant oscillations. This indicates
that the model has high robustness to changes in the input image.
In addition, the experimental results verified that the proposed
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The training loss curves of the six models.

model maintains high stability in identifying garlic leaf diseases
with high accuracy. The accurate classification with high confidence
further proves that the model can effectively cope with intra-class
differences and has the preliminary stability required for
practical applications.

To verify the actual reasoning ability of the model on the
smartphone end, we converted the trained model into ONNX
format files and integrated them into an Android prototype
application based on PyTorch Mobile. The testing equipment uses
Xiaomi 13 (Snapdragon 8 Gen 2 processor, China). The inference
test for a single image shows that the average inference time of the
model is about 55 ms, and the peak memory occupation is about 50
MB. This test result indicates that the model can achieve image
recognition on mainstream smartphone terminals, meeting the
real-time diagnosis needs in the field. Although there are some
differences between the current testing environment and real field
conditions (e.g., strong lighting, multiple occlusions, and complex
backgrounds), the existing performance has provided a reliable
basis for subsequent field testing and system optimization.

In future research, the application scenarios of our proposed
RTCB model will be further expanded to diverse edge devices.
Considering the limitations of edge computing resources on high-
throughput inference, we plan to optimize image preprocessing and
data transmission protocols for batch images collected during low-
altitude drone flights. We will upload the real-time image data
collected by the drone to the cloud server. We will use the RTCB
model deployed in the cloud to achieve plant leaf disease detection.
At the same time, by combining the drone path planning algorithm
with the real-time feedback mechanism of cloud detection results,
we will dynamically adjust the drone flight trajectory to achieve
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rapid screening of diseases in 10000 acres of garlic fields. We plan to
use knowledge distillation technology for portable detection
terminals used by grassroots agricultural technicians. We use the
proposed RTCB model as a teacher model to train a lightweight
student model. It meets the terminal memory limit while ensuring
low accuracy loss. To support the analysis of regional disease trends,
we will also build a collaborative architecture of the edge cloud. We
use portable terminal edge devices to locally store key diagnostic
results. We upload it to the cloud management platform using the
5G network. This strategy avoids bandwidth consumption caused
by a huge quantity of image transfer, resulting in efficient data
synchronization between edge devices and the cloud.

Although we have made some progress in model lightweighting
and inference efficiency, we still face multiple challenges in the
actual deployment process. Firstly, the currently proposed model is
mainly trained based on images collected in laboratory
environments. The real field environment has extreme lighting
conditions, complex background interference, and multiple
occlusions. These factors may all affect the recognition
performance of the model. Therefore, in the future, we will
systematically collect field disease images covering different
meteorological conditions, crop growth periods, and shooting
angles to construct a more representative and diverse dataset.
Meanwhile, we plan to introduce domain adaptation techniques
to enhance the model’s generalization ability across environmental
scenarios. Secondly, in order to further adapt to low-end devices
with limited computing power, we will use INT8 quantization and
knowledge distillation compression techniques to reduce model size
and improve inference speed. Finally, practical applications require
not only efficient recognition algorithms but also integrated image
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Performance scores of the six models.

preprocessing, result interpretation, user interaction, and data
communication modules. Therefore, we will coordinate and
optimize power consumption, memory management, and
response time at the system level and build an end-to-end
intelligent agricultural diagnostic solution.

TABLE 2 Mean accuracy of different models under different diseases.

Methods Botrytis Rust Blight Purple

ResNet18 09703 | 09841 09705 0.9852
ResNet18+Triplet 09720 | 09857 = 09721 09735
ResNet18+CBAM 09832 | 09864 09738 0.9921
ResNet18+CBAM+PConv 09780 | 0.9864 09754 0.9936
ResNet18+CBAM+Triplet 0.9821 09900 = 0.9755 0.9858

ResNet18+CBAM+Triplet
Peony 09848 | 0.9908  0.9807 0.9887
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5 Discussion

In recent years, deep learning has demonstrated substantial
effectiveness in the classification of plant leaf diseases. Yao et al.
(2024) introduced a leaf disease recognition system with an
integrated enhanced attention module, which achieved a 93.64%
accuracy by autonomously learning and extracting important
information from lesions. Although it enhanced the algorithm’s
overall recognition performance for each leaf disease, the accuracy
was slightly lower than that of better-performing models. Bera et al.
(2024) suggested an attention-based method for plant disease
classification networks. This method achieved 97.74% accuracy on
the PlantPathology dataset. However, it focuses on key regions of
leaves and has certain flaws in global feature collection. Similarly, an
enhanced CNN model was suggested by Li et al. (2024). It can
classify and recognize healthy chili leaf images as well as images of
chili leaves with four different pathologies, and it obtained an
accuracy of 93.5%. Although it improved the model’s ability to
extract basic aspects of chili leaf illnesses, it was unable to acquire
comprehensive information. As a result, the efficacy of
discriminating between the general symptoms of leaf curl illness
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TABLE 3 The correct and incorrect numbers of different models on the test set.

Botrytis Purple spot Healthy
Method
Tot Cor Cor
OverLoCK-S 392 386 6 375 371 4 325 312 13 358 346 12 369 368 1
EfficientFormer 392 384 8 375 369 6 325 311 14 358 345 13 369 368 1
MobileMamba 392 386 6 375 371 4 325 314 11 358 349 9 369 366 3
Proposed 392 390 2 375 373 2 325 318 7 358 350 8 369 368 1

and yellowing disease is slightly reduced. This article differs from  Through ablation tests, we established an important finding.
previous research in that it not only optimizes the structure of =~ When the CBMA and triplet attention modules are combined,
ResNet18 to improve the depth of feature extraction, but it also  they boost identification accuracy far more than a single attention
introduces a CBMA model and a triplet attention model, resulting ~ mechanism does. This shows that their fusion produces a
in comprehensive capture of both local and global features.  synergistic effect.

(a) Test blight sample (b) Test rust sample

(c) Test botrytis sample (d) Test purple spot sample

FIGURE 13
The predicted results. (A) Test blight leaf disease, (B) Test botrytis leaf disease, (C) Test rust leaf disease, (D) Test purple spot leaf disease.
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Nonetheless, there are certain limitations, even if the approach
described in this article has greatly improved recognition accuracy.
First and foremost, it remains to be seen whether the current dataset
can detect a wider range of garlic leaf disorders, given it only
comprises three common disease types. Second, the model’s
comprehensiveness and utility in real-world applications are
limited because it is currently insufficient for measuring illness
severity and progression.

These limitations mainly come from two aspects. First, the
dataset lacks sufficient diversity and complexity. Second, there is
room to improve the model’s understanding of advanced semantic
information—specifically during the processes of feature extraction
and classification decision-making. To solve these problems, future
research has two main directions. One is to expand the dataset so it
covers more types of garlic leaf disease images. The other is to study
multimodal data fusion techniques, such as fusing image, spectral,
and environmental data. Both directions aim to enhance the
accuracy and reliability of disease recognition. Meanwhile, model
performance might be enhanced by refining its structure and
integrating more complex attention processes or advanced
technologies like graph neural networks. These actions enable the
model to better capture the intricate interactions between illness
features, which in turn benefits its performance.

Through this research, we have gained a thorough
understanding of the immense potential of deep learning in
intelligent agricultural management, but we have also identified
the inadequacies of present models in practical applications. As a
result, we suggest a new hypothesis: by including time series data
and growth cycle information, deep learning models may not only
detect the types of garlic leaf illnesses, but also define the period
during which they occur. Based on this premise, we propose that
future study focuses on the dataset’s diversity and complexity. By
collecting image data of garlic leaves at various growth and disease
development stages, a dataset incorporating time series information
can be created, providing a more refined solution for agricultural
disease monitoring. Meanwhile, we will continue to simplify the
model structure, minimize computational complexity, and optimize
it for edge computing devices. Terminal devices such as drones and
portable detectors can be used for integration to develop lightweight
chips that fit garden drones. This integration not only makes the
practical edge application of plant disease and pest identification
systems possible but also provides backing for the long-term
development of garden plant health monitoring systems.

6 Conclusions

In this work, we propose an integrated triplet attention, CBAM
dual attention mechanism, and partially convolutional deep
learning garlic leaf disease classification and recognition model,
and achieve a classification and recognition accuracy of 99.92%
on our test set. This proves that the currently proposed model
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has great potential for development in the field of garlic leaf
disease identification.

The proposed research has yielded significant findings, but it
also has limitations. First, the proposed model was only applicable
to identifying healthy garlic, botrytis, rust, blight, and purple disease
types. Second, it is not suitable for identifying multiple diseases on
one leaf. Third, the number of garlic disease samples we collected is
not enough, and the types of garlic leaf diseases are not
comprehensive. Last, the identification accuracy is not ideal with
different meteorological conditions, shooting angles, and degrees
of damage.

Future work still needs to focus on data augmentation, model
optimization, and real-time performance improvement to address
practical challenges such as extreme weather and garlic leaf disease
occlusion and further promote the development of intelligent
transportation systems. We will conduct research in the
following areas:

Although the proposed system has achieved good results in the
identification of garlic leaf pests and diseases, there are still many
shortcomings that need further research and improvement. The
specific plans are as follows:

1. Diversification of dataset: We will collect and integrate
garlic leaf data from different regions and environments to
build a more comprehensive and diverse database. This will
help improve the generalization ability of the model in
practical applications.

2. Dataset diversification: We will create a large-scale dataset
that combines multimodal data (e.g., Pictures, spectra, and
environmental data), encompassing several garlic
production sites, diverse planting settings, and full
development cycles, as well as disease severity
classification. To eliminate distributional discrepancies,
we will apply data augmentation and domain adaptation
approaches (e.g., DANN). We will evaluate the model in a
variety of illumination, weather, and planting modes. We
will create a dual scenario assessment system from the lab
to the field and ensure practical reliability.

3. Implementing dynamic monitoring and functional
upgrades: To meet actual monitoring needs, we will
upgrade from static image processing to real-time video
stream analysis. The goal is to develop a function that can
continuously monitor bean planting areas, achieve
automatic real-time identification and data storage of
pests and diseases, significantly improve the timeliness,
practicality, and response speed of the system, and
provide strong support for timely prevention and control.

. Real-time performance optimization: In response to the
real-time requirements in practical applications, we will
optimize the model structure and algorithms, improve data
processing efficiency, reduce parameter calculation
complexity, and adapt to more real-time field scenarios.
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