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Grading grapevine downy mildew severity is essential for the precise application

of pesticides. Since typical symptoms appear on the abaxial (underside) surface of

grape leaves, and lesion area proportion determines severity, it is necessary to

analyze lesion characteristics and develop adaxial-to-abaxial lesion inversion

methods to build lightweight yet accurate grading models. This study proposes a

comprehensive disease grading framework for grape downy mildew. First, a

convolutional neural network (CNN)-based classification model is developed

with specialized modules and coordinate attention to enhance feature extraction

and semantic richness for improved lesion identification. Second, a novel K-

Means++-CNN-Vote Consolidation lesion extraction method is introduced. In

this framework, K-Means++ segments leaf sub-images, CNNs classify lesion

types, and a voting mechanism consolidates results—addressing challenges

posed by irregular lesion shapes and blurred boundaries. Finally, an abaxial

lesion inversion framework is established by constructing a morphological

feature mapping between the adaxial and abaxial surfaces, utilizing mapping

functions and lesion generation techniques to infer the abaxial lesion distribution

from the adaxial images. Experimental results showed disease grading accuracies

of 82.16% (combined adaxial and abaxial), 79.74% (adaxial only), and 84.59%

(abaxial only), with a model size of 5.08 MB. Lesion segmentation accuracies

reached 89.29% (adaxial and abaxial), 76.92% (adaxial), and 64.47% (abaxial), while

the adaxial-to-abaxial lesion inversion achieved an 80% similarity. This study

provides methodological support for the online grading of grapevine downy

mildew and offers a scientific basis for precise disease control.
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1 Introduction

Grapes, known for their sweet-sour taste and rich nutritional

content, are among the most widely consumed fruits globally (Tian

et al., 2018; Liu et al., 2020). They represent a globally significant

economic fruit crop, and the quality of grapes and their related

processed products is vital to the stability of the agricultural

economic chain (Sagar et al., 2025). Grapevines are frequently

affected by diseases during growth, among which grape downy

mildew—an airborne oomycete disease—poses a severe threat to

leaf photosynthetic efficiency and fruit development (Ting et al.,

2025; Wu et al., 2025). Infected fruits exhibit a deteriorated

appearance and flavor, and fail to meet the standards for fresh

consumption or winemaking. Grapevine downy mildew is highly

epidemic, and once it erupts, it becomes difficult to control. Surveys

indicate that outbreaks can reduce annual grape yields by 11.8%–

25.9%, making them a critical biotic stress factor that limits grape

quality improvement and economic development (Wang and Li,

2024). The epidemic period of grapevine downy mildew is closely

linked to climatic conditions. In North China, symptoms typically

emerge sporadically in July, presenting as irregular pale-yellow

water-soaked spots on the adaxial leaf surface, with sparse,

characteristic white downy mildew layers on the corresponding

abaxial areas. The lesion edges on both sides are generally indistinct

(Wang et al., 2022a). As autumn rains increase, the disease enters an

explosive phase in August. Adaxial lesions rapidly enlarge, turning

yellow-brown to dark brown, while abaxial mildew layers become

dense and thick, transitioning from white to gray with a “white,

frost-like” appearance, yet still retaining blurred edges (Liu et al.,

2022). By September, late-stage symptoms manifest as irregular

desiccation cracks and perforations due to tissue necrosis on the

adaxial surface, whereas abaxial surfaces show sparse grey mildew

spots that significantly reduce photosynthesis (Yu et al., 2024). The

current integrated management of grapevine downy mildew relies

primarily on chemical control (Wang et al., 2022). However,

extensive chemical spraying methods result in excessive pesticide

residue and environmental pollution, highlighting the need for

severity grading to enable differentiated precision control.

In recent years, vision-based methods for detecting grape leaf

diseases have been extensively studied, gradually replacing manual

identification of downy mildew. Traditional machine vision

techniques primarily rely on image preprocessing and machine

learning methods, such as support vector machines, random forest

(RF), and K-means clustering algorithms, for automated

classification. For example, Li et al. (2011) selected 30 diseased

leaves with clean surfaces, applied the K-Means clustering algorithm

to segment leaf and lesion areas, accurately calculated the lesion-to-

leaf area ratio using pixel statistics, and assigned severity grades

based on classification standards, achieving an accuracy of 93.33%.

These methods are based on manually defined rules, require smaller

sample sizes, lower annotation demands, and offer interpretability.

They are suitable for environments with uniform lighting and simple

backgrounds. However, they depend heavily on manual feature

extraction, requiring domain expertise to define relevant

characteristics and understand specific research objectives (Kumar
Frontiers in Plant Science 02
and Sachar, 2023). Moreover, their effectiveness deteriorates

significantly when the detection environment changes (Xu et al.,

2025). Deep learning approaches, which leverage end-to-end feature

learning, have become a research hotspot. These approaches employ

numerous advanced models (He et al., 2016; Joseph et al., 2016;

Sandler et al., 2018; Ma et al., 2018; Tan and Le, 2021) and are

remarkably accurate in disease prediction. These network

architectures are capable of recognizing intricate patterns and

characteristics within datasets, thereby significantly improving

prediction accuracy (Zhang et al., 2024). For instance, He et al.

(2022) proposed an improved ResNet50 grading network that

classified grapevine downy mildew into four stages—healthy, pre-

infection, mid-infection, and late infection—with an accuracy of

99.92%. Although this method utilizes a single convolutional neural

network (CNN) to determine infection stages, its large parameter

size limits deployment on edge devices. It does not align with

national severity grading standards. Zohaib et al. (2025) employed

an improved You Only Look Once version 7 algorithm to

distinguish between unhealthy leaves, healthy leaves, and grape

cluster bags, achieving an accuracy of 73.7%. Yang and Qiu

(2024). proposed the YOLOv8s-grape model, which integrates

multiple enhancements to achieve efficient, high-precision grape

detection with improved mAP and reduced computational costs. Fu

et al. (2024) proposed the MHDI-DETR model, a lightweight RT-

DETR-based architecture achieving high accuracy in grape leaf

disease detection with significantly reduced computational

complexity. While this object detection approach locates lesions

and detects disease presence, it requires manual lesion annotation in

advance and does not assess severity levels according to national

standards. These studies indicate that current vision-based methods

for grapevine downy mildew detection rely on manual feature

engineering in traditional approaches for simple scenarios,

whereas deep learning CNN-based classification and object

detection methods achieve high accuracy but lack fine-grained

severity grading. Therefore, there is a pressing need for a

lightweight and precise model capable of grading adaxial/abaxial

lesion severity to achieve accurate disease classification and enable

precision pesticide application.

The domestic standard for pesticide application against

grapevine downy mildew follows China’s Guidelines for Field

Efficacy Trials of Pesticides, Part 122: Fungicides against

Grapevine Downy Mildew (Standard No.: GB/T 17980.122-2004),

which classifies disease severity based on leaf lesion coverage and

provides corresponding spray protocols. Lesion segmentation is a

critical step for accurately implementing this standard. Only

through accurate segmentation can detailed parameters, such as

lesion size, shape, and distribution characteristics, be obtained,

offering robust support for scientific grading and control

strategies. Current segmentation methods can be categorized into

two main types: machine-learning-based and deep learning-based

approaches (Ji and Wu, 2022). For instance, Li et al. (2022) utilized

the K-Means clustering algorithm to segment grape leaves into

subregions and trained a random forest classifier with minimal

dataset labeling, achieving a segmentation accuracy of 63.32%. This

strategy prevents complex, time-consuming manual annotation, but
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suffers from limited precision. Conversely, Zhang et al. (2025)

proposed the ABLSS model, which integrates deep and broad

learning to achieve high-accuracy, efficient grape leaf disease

identification with improved recognition speed and segmentation

performance. Wu (2024) adopted a two-step segmentation strategy

using U-Net networks to separately segment leaves and lesions,

achieving a disease classification accuracy of 93.3%. Unlike Wu

(2023), Xue (2023) designed the IN-UNet network for the complete

semantic segmentation of grape leaves and lesions, achieving a

pixel-wise segmentation accuracy of 84.79% and enabling grading

that aligns with national standards. Although deep learning

methods yield higher accuracy and broader applicability, they

often require labor-intensive expert annotations. For lesions with

blurred boundaries or dense clustering, manual labeling becomes

particularly challenging (Li et al., 2022). Tardif et al. (2023) reported

that accurately delineating diseased boundaries in grapevine images

can require up to 20 min per annotation, and Ahmad et al. (2023)

emphasized that precise symptom shape labeling in segmentation

tasks constitutes significant labor. To address this, we propose a k-

Means++ + CNN + visual classification (K-CNN-VC) lesion

segmentation method based on our grading network model,

which generates grapevine downy mildew lesion labels using only

simple classification annotations, thereby bypassing the challenges

associated with complex, time-consuming, and ambiguous labeling

of difficult samples.

The characteristic symptoms of grapevine downy mildew

manifest predominantly on the abaxial leaf surface, and disease

severity grading typically relies on the proportion of the abaxial

lesion area. However, under natural conditions, grape leaves

predominantly exhibit an adaxial-facing orientation. Manual

detection requires leaf flipping, which entails high labor intensity

and subjectivity (Hernández et al., 2024). Similarly, images captured

by inspection-spraying robots primarily feature adaxial surfaces,

leading to detection inaccuracies. Consequently, spraying decisions

derived from such data may result in dosage deviations, increasing

the risk of fungicide resistance and potential environmental

contamination due to over-application (Jin et al., 2022).

Therefore, developing adaxial-to-abaxial lesion inversion methods

is crucial. Zhang et al. (2019) acquired both adaxial and abaxial

images of wheat ears, processed them through grayscale conversion

and binarization, calculated the lesion-to-ear area ratio, and graded

the severity of Fusarium head blight based on national standards.

Although this method integrates adaxial-abaxial disease

information, it does not separately compare severity levels against

national criteria. Yang (2020) utilized ResNet50 to identify pear leaf

diseases (brown spots, black spots, and rust) on adaxial and abaxial

surfaces, achieving recognition accuracies of 96.67% and 96.19%,

respectively. Wayama et al. (2024) collected adaxial/abaxial images

of diseased leaves from tomatoes, strawberries, cucumbers, and

eggplants, employing EfficientNet for classification. The model

achieved 95.2% accuracy in consistent environments but only

36.5% in varying environments. This study addressed cross-

environment generalizability but ignored adaxial-abaxial

symptom differences . These approaches overlook the

symptomatic distinctions and correlations between the adaxial
Frontiers in Plant Science 03
and abaxial surfaces, limiting their research scope and

applicability. Therefore, it is essential to investigate whether

adaxial and abaxial lesion severity align quantitatively, analyze

correlations when inconsistencies exist, and leverage these

relationships to infer abaxial lesions from adaxial images, thereby

obtaining accurate disease severity grades and achieving adaxial-to-

abaxial lesion inversion.

Although progress has been made in grading the severity of

grape downy mildew, current research primarily focuses on disease

type identification or lesion morphology extraction and description,

with limited attention given to fine-grained severity grading.

Significant challenges remain, including the fine-grained

recognition of disease severity levels via CNN methods,

annotation difficulties with lesions that have blurred boundaries

in deep learning, a quantitative comparative analysis of adaxial and

abaxial lesions, and the inversion of abaxial lesions from adaxial

grapevine downy mildew images. The specific objectives of this

study are as follows:
1. To construct a lightweight and precise adaxial/abaxial

lesion grading network for grapevine downy mildew by

designing a cross-receptive-field fusion module that

integrates regular convolution and depthwise separable

convolution to enhance semantic richness, while

incorporating a coordinate attention (CA) mechanism to

strengthen the feature extraction capabilities for adaxial/

abaxial lesions.

2. To propose the K-CNN-VC lesion segmentation method

for precise quantitative analysis of lesion areas. This

method segments leaf sub-images via K-Means++,

classifies them using the grading network, and

consolidates them through voting, thereby addressing the

time-consuming and imprecise manual annotation of

complex lesions.

3. To conduct a quantitative comparative analysis of adaxial

and abaxial lesions in grapevine downy mildew to establish

morphological mapping relationships between the

two surfaces.

4. To develop a vision perception-based theory for adaxial-

abaxial lesion inversion, achieving end-to-end mapping

from adaxia l les ion features to abaxia l les ion

morphologies by constructing a morphological mapping

model, thereby providing a novel scientific basis for

precision spraying.
2 Materials

2.1 Data acquisition

To investigate lesion characteristics and develop grading

methods for grape downy mildew, we collected RGB images of

detached grape leaves infected with the disease. Early-stage disease

images were collected at the Xiaotangshan National Precision
frontiersin.org
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Agriculture Research Demonstration Base in Beijing, and late-stage

images were collected at the Chateau Bolongbao Winery in

Fangshan, Beijing. The image-acquisition system consisted of an

MV-SUA505GM camera equipped with an MS3M008 lens at a

working distance of 50 cm. The resulting dataset comprised downy

mildew leaf images from five grape varieties: Wild Grape, Kyoho,

White Grape, Ningxia Wild Grape, and Cabernet Sauvignon. A

total of 674 RGB images were collected, including 430 early-stage

and 244 late-stage images. Each image had an original resolution of

2592 × 2048 pixels. Figure 1 shows an overview of the image

acquisition system.
2.2 Data processing and augmentation

The original images were initially center-cropped to a resolution of

1024 × 1024 pixels and subsequently downsampled to 512 × 512 pixels.

To address the challenges posed by an insufficient number of grapevine

downy mildew leaf samples and imbalanced distribution of severity

levels, we applied data augmentation techniques (González et al., 2025)

to enhance model generalization and reduce overfitting during

training. Using geometric transformations such as rotation and

flipping, we expanded the dataset to a total of 5,392 images, forming

the Grape DownyMildew Image Dataset (GDCData). This dataset was

divided into training, validation, and test sets in a 7:2:1 ratio. Table 1

shows the representative augmentation results, where z0 denotes

adaxial healthy leaves, z1–z7 represents adaxial lesion severity grades,

f0 indicates abaxial healthy leaves, and f1–f7 signifies abaxial lesion

severity grades.
3 Methods

3.1 Classification method

To balance classification accuracy and computational efficiency,

we designed a custom lightweight grading model, GDCNet, as

detailed in Table 2, for grapevine downy mildew severity
Frontiers in Plant Science 04
classification. This network architecture primarily consists of two

components: cross-receptive field fusion (CRFF) and attention

modules. Downsampling operations employ 3 × 3 convolution

kernels with a stride of two. The CRFF module integrates

depthwise separable convolution and pointwise convolution,

enabling shortcut connections that allow the network to deepen

effectively while preserving and enhancing discriminative lesion

features. The attention module implements parallel attention

mechanisms, including CA, to focus on spatially local features

relevant to grape leaf lesions. During training and interference,

input images were resized to 512 × 512. At the end of the output, an

adaptive average pooling layer consolidated feature maps to 1 × 1 ×

C dimensions. Finally, a two-layer fully connected classifier with a

softmax activation function was used to categorize severity levels

based on learned features.

3.1.1 Skip-connected depthwise coordinate
attention model

Figure 2A shows that the SCDCA Model comprises a series of

stacked modules. The processing pipeline involves three main

components executed in sequence: a separable convolution (SC)

module (Figure 2B), followed by a depth-wise convolution with

depth-wise coordinate attention (DWCA) module (Figure 2C), and

a final SC Model. A skip connection is established by directly

connecting the input of the first SC module to the output of the final

SC module. This architectural design integrates modular processing

with skip connections, effectively leveraging complementary

advantages to enhance the capacity of the model for learning and

processing complex features.

The SC Model begins by applying a 1 × 1 two-dimensional

convolution to the input feature map. The resulting feature map is

then split into two parallel processing paths: one path bypasses

further processing directly, and the other path is processed through

a 3 × 3 depthwise separable convolution, as described by Tang et al.

(2020). These outputs from both paths are concatenated to form the

final output of the SCmodule. This dual-path architecture facilitates

multiscale feature extraction and fusion, thereby enhancing the

ability of the network to represent and differentiate fine-grained

lesion features.

The DWCA module initiates feature extraction using a k × k

depth-wise separable convolution with a stride of s. The resulting

features are passed through a CA mechanism, which captures inter-

channel relationships while embedding spatial directional

information. This enables the model to focus on key lesion

regions, enhancing the sensitivity and accuracy of spatial

feature extraction.

3.1.2 Coordinate attention
Coordinate Attention is an efficient attention mechanism

proposed by Hou et al. (2021) that enhances feature

representation by embedding spatial information into channel

attention. Unlike traditional channel attention, which ignores

positional context, Coordinate Attention divides two-dimensional

global pooling into dual one-dimensional feature encodings along

the horizontal and vertical axes, thus preserving precise spatial
FIGURE 1

Image acquisition system.
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location cues. A detailed analysis, including relevant formulas, is

presented below.

3.1.2.1 Coordinate information embedding

Given an input feature map X ∈ RH�W�C , the attention

mechanism computes two direction-specific aggregated descriptors:

Horizontal Pooling: For channel c and height h, the average

across the width is calculated as:

zh(c, h) =
1
W o

W

w=1
X(c, h,w)

Output:

zh ∈ RC�H

Vertical Pooling: For channel c and width w, the average across

the height is computed as:

zw(c,w) =
1
H o

H

h=1

X(c, h,w)

Output:

zh ∈ RC�w
3.1.2.2 CA generation

The pooled features are concatenated and transformed to

generate attention weights:
Frontiers in Plant Science 05
Concatenation and Compression: Concatenate zh and zw along

the spatial dimension to form z ∈ RC�(H+W). Apply a 1×1

convolution for dimensionality reduction, followed by activation:

f = d (Conv1x1(z)),  f ∈ RC=r�(H+W)

where r denotes the reduction ratio and d represents the

ReLU function.

Splitting and Reconstruction: Split f into fh ∈ RC=r�H and fw ∈
RC=r�W , then restore the channel dimension via 1 × 1 convolutions:

gh = Conv1x1(fh), gw = Conv1x1(fw)

Attention Weights Generation: The output tensors (gh and gw)  

are passed through sigmoid activation:

ah = s(gh) ∈ RC�H , aw = s(gw) ∈ RC�W
3.1.2.3 Applying attention weights

The attention weights are broadcast tomatch the dimensions of the

input feature map and applied through element-wise multiplication:

Y(c, h,w) = X(c, h,w) · ah(c, h) · aw(c,w)

Broadcast the attention weight ah to dimensions RC�H�1 and aw
to RC�1�W . Then, compute their element-wise product to derive the

combined weight RC�H�W .

By decomposing the spatial dimensions, this method preserves

precise, coordinate-aware features while significantly enhancing the
FIGURE 2

SCDCA module structure diagram. (A) shows the SCDCA Model; (B) shows the SC Model; (C) shows the DWCA Model.
TABLE 1 Sample distribution of the GDCData dataset for grape downy mildew.

Level Z0 Z1 Z3 Z5 Z7 F0 F1 F3 F5 F7 Total

Expand before 40 94 126 50 27 40 96 122 53 26 674

Expanded 320 752 1008 400 216 320 768 976 424 208 5392
fro
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FIGURE 3

K-CNN-VC segmentation flowchart.
FIGURE 4

Flowchart of the inversion method. Based on the established mappings, the abaxial lesion shapes were generated using morphological operations. If
both the perimeter and area of the abaxial lesion exceeded the adaxial lesion, a dilation operation was performed on the adaxial contour. If both
were smaller, an erosion operation was applied, ultimately generating an abaxial lesion image. This regression-guided morphological generation
algorithm enables biologically consistent modeling of lesion propagation patterns from adaxial to abaxial leaf surfaces.
Frontiers in Plant Science frontiersin.org06
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localization capability of the model for critical regions. The use of

one-dimensional convolutions minimizes computational load,

making the mechanism highly suitable for lightweight

network designs.
3.2 K-CNN-VC segmentation method

Owing to the morphological complexity of grapevine downy

mildew symptoms, manual pixel-level annotation is both labor-

intensive and resource-demanding, making direct label-based

training infeasible. Traditional image processing or unsupervised

learning methods require manual identification of extractable

features across massive datasets to design segmentation rules.

Furthermore, variations in leaf brightness, uneven illumination,

and divergent lesion characteristics across severity levels render

manual feature extraction extremely challenging. To overcome

these challenges, we propose a hybrid lesion segmentation

method that combines K-means++ clustering with CNN-based
Frontiers in Plant Science 07
classification (K-CNN-VC method), enabling efficient and

automated lesion area identification with minimal supervision.

Unsupervised learning first decomposes images into sub-regions

with homogenous color features, while supervised training classifies

these sub-regions. Issues such as potential misclassifications are

corrected using voting consolidation. Finally, sub-regions are

recombined to identify lesions and leaf areas. This approach

indirectly applies supervised learning to automated lesion feature

extraction, as illustrated in Figure 3.

The K-Means++ algorithm segments leaf images into multiple

sub-regions. These sub-regions are then classified using a CNN.

They are recombined to identify lesion areas and leaf regions. The

grape downy mildew lesion extraction process comprises three

stages: leaf image decomposition, recognition of the decomposed

image, and image recombination.
3.3 Inversion model

To simulate the progression and visibility of grape downy

mildew lesions from the adaxial to the abaxial leaf surface, we

propose an adaxial-to-abaxial lesion inversion method, as

illustrated in Figure 4. The K-CNN-VC segmentation method

decomposes input images into five distinct classes: background,

adaxial leaf, abaxial leaf, adaxial lesions, and abaxial lesions.

Through empirical observation, adaxial lesions were categorized

into three morphological types: dot-shaped, patch-shaped, and

large-scale. For each segmented section, we extracted leaf and

lesion contours from the segmented results. Then, the contour

perimeter and enclosed area of the lesions were calculated. Using

the perimeter-area pairs, threshold-based classification was applied

to map adaxial lesions to the corresponding abaxial lesion types. We

established lesion-type-specific regression curves relating adaxial/

abaxial areas, as well as contour perimeters versus enclosed areas.

Finally, based on the established mappings, abaxial lesion

morphologies were generated using morphological operations.
3.4 Experimental equipment and
performance indicators

The experiments were conducted on a workstation configured

as follows: Intel® Core™ i9-12900K CPU@3.70 GHz, 32GB RAM,

NVIDIA GeForce RTX 4070Ti Super 16GB GPU, and 64-bit

Windows OS. The models were built using PyTorch 2.0.1 (a

deep-learning framework). After extensive tuning, the final

training hyperparameters were set as follows: Optimizer:

Adam.Learning rate: Cosine decay with initial_lr = 1e-4 and

min_lr = 1e-7. Momentum: 0.9. Weight decay: 1e-2. Batch size: 8.

Epochs: 100. Drop path rate: 0.1 (to prevent overfitting). The grape

downy mildew dataset was partitioned into training, validation, and

test sets in a 7:2:1 ratio.

The evaluation metrics for the grading tasks include accuracy

(Acc), mean precision (mP), mean recall (mR), parameter count,
TABLE 2 GDCNet network structure table.

Input Operator
Exp
size

Output CA Stride

5122×3 SCDCA, 3×3 32 32 0 1

5122×32 SCDCA, 3×3 64 32 0 2

2562×32 SCDCA, 3×3 64 32 0 1

2562×32 SCDCA, 3×3 64 32 1 1

2562×32 SCDCA, 5×5 128 64 0 2

1282×64 SCDCA, 5×5 128 64 0 1

1282×64 SCDCA, 5×5 128 64 1 1

1282×64 SCDCA, 3×3 256 128 0 2

642×128 SCDCA, 3×3 256 128 1 1

642×128 SCDCA, 3×3 256 128 0 1

642×128 SCDCA, 3×3 256 128 1 1

642×128 SCDCA, 3×3 256 128 0 1

642×128 SCDCA, 3×3 256 128 1 1

642×128 SCDCA, 3×3 256 128 0 1

642×128 SCDCA, 3×3 256 128 1 1

642×128 SCDCA, 5×5 512 256 0 2

322×256 SCDCA, 5×5 512 256 0 1

322×256 SCDCA, 5×5 512 256 1 1

322×256 AdaptiveAvgPool – 256 – –

12×256 Linear – 1280 – –

12×1280 Hardswish – 1280 – –

12×1280 Dropout 0.2 – 1024 – –

12×1024 Linear – num_classes – –
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inference speed (FPS) (Zhang and Mu, 2024) and confusion matrix.

Additionally, the total number of parameters and floating-point

operations was used to measure the model size and computational

complexity (Wang et al., 2023; Tan et al., 2025). Acc, mP, and mR

were calculated as follows:

Acc =
TP + TN

TP + TN + FN + FP

mP =
1
k

TP
TP + FP

mR =
1
k

TP
TP + FN
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4 Results

4.1 Hierarchical model validation

To evaluate the effectiveness of our GDCNet grading model, we

conducted a comparative analysis involving twelve vision models on

tasks involving the detection of adaxial/abaxial leaf health states (z0/

f0), classification of multiple disease severity levels, and overall model

performance (Acc, mP, mR, giga floating point operations (GFLOPS),

parameter scale P/M, and inference speed). The results are presented

in Tables 3, 4 and Figure 5. Based on category-specific accuracy,

ResNet50, RepVGG, and VGG16 achieved 100% precision in

detecting adaxial healthy leaves. Additionally, ResNet50, RepVGG,
TABLE 3 Classification accuracy of twelve models on lesion grades.

Model Z0/% Z1/% Z3/% Z5/% Z7/% F0/% F1/% F3/% F5/% F7/%

ConvNeXt_T 76.19 80.49 60.61 40.68 84.00 93.33 81.48 70.13 75.00 96.00

EfficientNetv2_S 85.71 73.21 83.93 48.21 62.50 98.21 94.67 96.43 35.71 85.71

MobileNetV2 97.96 81.36 63.86 52.94 84.21 96.55 100 70.00 77.14 85.71

MobileNetV3_S 88.71 85.11 63.10 62.50 82.05 98.25 100 70.00 77.78 80.00

MobileViT 98.00 81.36 66.67 56.86 79.17 98.25 100 78.69 66.67 80.00

RepVgg 97.96 85.00 66.67 60.78 80.85 100 96.43 69.62 75.76 85.71

ResNet50 100 74.24 66.18 61.82 86.36 100 100 65.12 77.78 92.31

ShuffleNetV2 88.89 73.21 65.33 56.00 78.86 100 91.80 74.67 73.33 81.36

Swin_Transformer 75.00 80.00 70.00 76.09 90.00 100 72.73 69.14 82.22 100

VGG16 84.21 81.40 66.67 56.14 79.49 100 100 64.37 77.78 85.71

Xception 75.93 72.31 58.33 5714 87.50 100 98.04 60.22 0 82.09

GDCNet 100 86.79 67.47 64.44 80.00 98.25 92.73 72.22 78.38 81.36
fro
TABLE 4 Performance comparison of twelve models.

Model Acc/% Mp/% Mr/% GFLOPS/G P/m Speed/ms

ConvNeXt_T 74.82 75.79 74.82 46.528 27.806 0.93

EfficientNetV2_S 76.43 76.85 76.43 30.243 20.190 1.28

MobileNetV2 79.64 80.97 79.64 3.409 2.237 0.46

MobileNetV3_S 79.46 80.75 79.46 0.630 1.528 0.40

MobileViT 80.36 80.57 80.36 3.005 0.954 0.52

RepVgg 80.18 80.88 80.18 15.981 9.109 0.74

ResNet50 80.54 82.38 80.54 43.172 23.529 0.93

ShuffleNetV2 78.04 78.02 78.04 0.455 0.352 0.38

Swin_Transformer 79.46 81.52 79.46 8.742 27.504 1.28

VGG16 77.68 79.58 77.68 160.596 134.302 5.99

Xception 75.00 69.15 75.00 48.490 8.454 0.52

GDCNet 81.43 82.16 81.43 2.441 1.245 0.56
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ShuffleNetV2, and others also achieved perfect classification,

indicating a strong discriminative capability for disease-free samples.

Conversely, Xception performed poorly on high-severity grades (such

as z3 and f5), with complete failure in f5. This reflects that its feature

extraction mechanism is inadequate for complex disease

morphologies. The specialized model GDCNet achieved exceptional
Frontiers in Plant Science 09
performance in z0 and z1 categories (early-stage adaxial lesions),

surpassing most general models in fine-grained early disease

classification. This indicates that its optimized design effectively

enhances fine-grained classification for early-stage disease features.

Lightweight models, such as MobileNetV3_S and MobileViT,

achieved 100% accuracy in F1, revealing sensitivity to superficial
FIGURE 5

Twelve types of network classification confusion matrices. (a) displays the classification confusion matrix of the ConvNeXt network; (b) displays the
classification confusion matrix of the EfficientNetV2 network; (c) displays the classification confusion matrix of the MobileNetV2 network; (d) displays
the classification confusion matrix of the MobileNetV3 network; (e) displays the classification confusion matrix of the MobileViT network; (f) displays
the classification confusion matrix of the RepVgg network; (g) displays the classification confusion matrix of the ResNet50 network; (h) displays the
classification confusion matrix of the ShuffleNetV2 network; (i) displays the classification confusion matrix of the Swin Transformer network;
(j) displays the classification confusion matrix of the VGG16 network; (k) displays the classification confusion matrix of the Xception network;
(l) displays the classification confusion matrix of the GDCNet network.
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features of low-grade infections. Conversely, Swin_Transformer and

GDCNet performed relatively better in severe disease grades.

For the overall metrics, GDCNet ranked first with 81.43% Acc,

82.16% mP, and 81.43% mR. Its computational cost and parameter

scale were significantly lower than those of heavyweight models,

such as ResNet50 and VGG16, whereas its inference speed was

comparable to that of MobileNetV3_S, demonstrating a balanced

optimization of accuracy and efficiency. Among the lightweight

models, ShuffleNetV2 achieved an accuracy of 78.04% with minimal

GFLOPS and parameters, making it suitable for ultra-lightweight

deployment. MobileViT enhances feature representation while

retaining speed advantages through a hybrid vision transformer

architecture, validating the effectiveness of cross-modal fusion.

Traditional convolutional models, such as VGG16, excel in f0/f1

categories, but suffer from low practicality due to high

computational overhead (5.99 ms inference latency).

Collectively, GDCNet exhibited optimal comprehensive

performance in multigrade grape downy mildew detection via

customized feature learning and a lightweight design. Among the

general models, ResNet50 showed robustness for healthy samples and

partial disease grades, fitting scenarios with relaxed computational

constraints. Conversely, MobileNetV3_S and ShuffleNetV2 offer

advantages in speed and low-grade disease detection, but require

improvement in feature abstraction for advanced infections. The

inefficiency of Xception requires structural adaptations for multiscale,

heterogeneous features of grape leaf diseases. In contrast, the accuracy

bottleneck in high-severity categories (for example, z5) across models

highlights future research priorities: which is to enhance complex
Frontiers in Plant Science 10
lesion representation through attention mechanisms or cross-layer

feature fusion techniques.
4.2 Results and Analysis of K-CNN-VC
Segmentation Method

To construct a robust segmentation dataset for grape downy

mildew, we employed the proposed K-CNN-VC segmentation

method on a total of 6,740 leaf images. The pipeline applied K-

means++ clustering to decompose each image into sub-regions

based on consistent color features, constructing the GDSData

segmentation dataset. Table 5 details the categorization results.

The training, validation, and test sets were distributed in a 7:2:1

ratio, where 0 denotes background, 1 denotes adaxial leaf surface, 2

denotes abaxial leaf surface, 3 denotes adaxial lesions, 4 denotes

abaxial lesions, 5 denotes adaxial veins, 6 denotes abaxial veins, 7

denotes lesions and veins, and 8 denotes leaves and lesions.

To evaluate the subgraph recognition capability of the proposed

model on grape downy mildew lesions, we conducted a comparative

analysis of twelve vision models across nine semantic categories

using standard metrics: Acc, mP, and mR. The detailed results are

shown in Tables 6 and Figure 6, 7. The K-CNN-VC segmentation

outcomes are shown in Figure 8. Figure 6 presents a radar chart

conducting a multidimensional comparative analysis of 12 deep

learning models across three core performance metrics: accuracy,

mean precision, and mean recall. The results demonstrate that

GDCNet achieves the highest performance in terms of accuracy,
TABLE 5 Sample distribution of the GDSData partitioned dataset.

Category 0 1 2 3 4 5 6 7 8 Total

Quantity 1740 1786 1643 587 520 94 91 194 85 6740
TABLE 6 Comparison of recognition accuracy for twelve Types of model subgraphs.

Model 0/% 1/% 2/% 3/% 4/% 5/% 6/% 7/% 8/%

ConvNeXt_T 95.65 82.22 65.55 73.08 61.29 91.67 63.6 50.00 0

EfficientNetv2_S 98.09 82.89 86.78 92.52 70.07 84.21 53.85 57.14 0

MobileNetV2 95.99 78.47 93.77 86.61 82.24 80.95 50.00 61.90 50.00

MobileNetV3_S 95.50 93.62 84.64 83.46 67.18 88.89 41.38 50.00 0

MobileViT 98.49 83.16 91.03 90.24 55.84 77.78 69.23 72.73 0

RepVgg 98.99 77.61 88.15 78.18 7000 93.33 60.00 66.67 100

ResNet50 98.49 88.10 87.42 78.57 60.49 73.68 60.00 66.67 100

ShuffleNetV2 98.49 89.63 79.66 88.57 60.00 73.68 58.82 87.50 0

Swin_Transformer 97.51 59.65 90.68 58.82 48.08 86.67 54.55 10.53 0

VGG16 98.99 88.10 85.21 75.00 71.88 86.67 60.00 75.00 85.71

Xception 88.00 89.56 88.89 76.27 69.44 0 0 0 0

GDCNet 95.65 90.96 89.31 76.92 64.47 93.33 73.33 87.50 50.00
fr
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while also maintaining competitively high levels in both mean

precision and mean recall, exhibiting a marked overall

performance advantage. The remaining models display distinct

distribution characteristics across these three metrics, visually

reflecting their performance disparities and specific strengths or

weaknesses in the target task.

Among all models, MobileViT demonstrated superior

performance in identifying abaxial leaf surfaces, adaxial lesions,

and lesions with veins. This effectiveness can be attributed to its

hybrid architecture, which combines the global modeling of Vision

Transformers with the spatial local feature extraction of convoluted

networks. This likely captures cross-regional dependencies in leaf

textures and lesion morphologies. VGG16, a deep convolutional

architecture, exhibited high accuracy for background adaxial leaf

surfaces, and leaves with lesion categories, but underperformed in

categories involving abaxial lesions and veins, highlighting its

limitations in capturing fine-grained, low-contrast structures on

the leaf underside. Similarly, Swin_Transformer struggled with

lesions and veins, potentially due to its local window-based

attention strategy, which led to contextual fragmentation in

overlapping semantic regions.

GDCNet consistently ranked among the top performers,

achieving 87.57% accuracy and 80.17% mP, while maintaining a

balanced performance across both structural (for example, adaxial/

abaxial veins) and composite categories (such as lesions with veins),

indicating enhanced sensitivity to disease-specific traits. RepVgg

and ResNet50 demonstrated strong performance in terms of mean

recall and precision, benefiting from residual connections and

reparameterization that enhance feature robustness in complex

backgrounds. Xception achieved zero accuracy in vein-related

categories, indicating that its depthwise separable convolution

structure is unable to integrate fine-grained multimodal cues.

Model-task compatibility significantly affects detection

performance. For example, MobileNetV2 performed well in

simpler categories (such as abaxial leaf surfaces and adaxial

l e s ions ) v ia depthwis e separab le convo lu t ions , bu t

underperformed in composite categories (such as lesions with

veins). ConvNeXt_T, while effective in recognizing adaxial veins,
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revealed semantic discrimination weaknesses in more nuanced or

overlapping lesion types. These findings underscore that model-task

compatibility has a significant influence on segmentation success.

GDCNet, RepVgg, and VGG16 emerge as strong candidates for

practical deployment in grape downy mildew detection, while

transformer-based models require further adaptation to handle

multiscale, overlapping semantic features.
4.3 Inversion results and analysis

4.3.1 Lesion classification and feature thresholds
Contour Separation: Edge detection was applied to segmented

adaxial leaf and lesion images to extract leaf and lesion edge

contours. The following parameters were calculated.

Contour Perimeter (P): Computed using OpenCV ’s

arcLength function.

Enc lo s ed Area (A) : Computed us ing OpenCV ’ s

contourArea function.

Based on characteristics of the three lesion types:
1. Dot-shaped lesions: Dense and minute; characterized by

small perimeters and areas.

2. Patch-shaped lesions: Larger perimeters and areas.

3. Large-scale lesions: Variable perimeter and area (typically

high values).
Parameter thresholds were set as shown in Table 7.

The classification results, based on the thresholds defined in

Table 7, are presented in Figure 9. In Figure 9, green indicates

typical dense and minute dot-shaped lesions, red denotes typical

patch-shaped lesions, and blue denotes typical large-scale lesions.
4.3.2 Adaxial–Abaxial lesion morphology
mapping

To simulate abaxial lesion morphology from adaxial lesion

characteristics, we developed regression-based mapping models

for contour perimeter and area across three lesion types, as

shown in Figures 10 and 11. In the early epidemic stage, dot-

shaped lesions exhibited a linear correlation between the adaxial

and abaxial areas (R2 = 0.8155), indicating negligible diffusion

effects across the surfaces. Patch-shaped lesions show perimeter

mapping with a fitness of R2 = 0.6343, following Y = 0.7592X +

91.8496. This reflects moderate regularity in edge expansion on the

abaxial surface. Large-scale lesions exhibited poor model fit (R2<

0.5), primarily due to humidity-induced irregular diffusion in the

abaxial microenvironment.

In the late epidemic stage, dot-shaped lesions exhibited a highly

linear correlation between adaxial and abaxial areas (R2 = 0.9789),

confirming minimal cross-surface diffusion. Patch-shaped lesions

display area mapping (R2 = 0.7249, Y = 0.8888X + 24.1868). These

values represent measurable expansion patterns on the abaxial

surface. Large-scale lesions continued to exhibit low model fit (R2<

0.2), attributable to humidity-driven irregular spreading patterns.
FIGURE 6

Radar chart of Acc, mP, and mR for twelve network segmentation
models.
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4.3.3 Front lesion inversion, back lesion results
Following the establishment of morphological mapping models, the

inversion algorithm was implemented by applying dilation or erosion
Frontiers in Plant Science 12
operations to adaxial lesion contours to generate abaxial lesion

morphologies based on the perimeter and area correspondence rules

derived from late-stage infection data. Figure 12 shows that the average
FIGURE 7

Twelve types of network segmentation confusion matrices. (a) illustrates the segmentation confusion matrix of the ConvNeXt network; (b) illustrates
the segmentation confusion matrix of the EfficientNetV2 network; (c) illustrates the segmentation confusion matrix of the MobileNetV2 network; (d)
illustrates the segmentation confusion matrix of the MobileNetV3 network; (e) illustrates the segmentation confusion matrix of the MobileViT
network; (f) illustrates the segmentation confusion matrix of the RepVgg network; (g) illustrates the segmentation confusion matrix of the ResNet50
network; (h) illustrates the segmentation confusion matrix of the ShuffleNetV2 network; (i) illustrates the segmentation confusion matrix of the Swin
Transformer network; (j) illustrates the segmentation confusion matrix of the VGG16 network; (k) illustrates the segmentation confusion matrix of
the Xception network; (l) illustrates the segmentation confusion matrix of the GDCNet network.
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similarity between the inverted and actual abaxial lesions reached 80%,

with an inversion accuracy exceeding 90% for dot-shaped and patch-

shaped lesions.
Frontiers in Plant Science 13
5 Discussion

This study introduces a novel framework for grading the

severity of grape downy mildew and performing adaxial-to-

abaxial lesion inversion. For grading tasks, the GDCNet model

achieved a lightweight and high-precision balance through the

synergistic design of a cross-receptive-field fusion module

(SCDCA) and a CA mechanism (CA). With a model size of 5.08

MB, GDCNet achieved a fine-grained classification accuracy of

82.16%. Conversely, the improved ResNet50 model achieved

99.92% accuracy for four broad infection stages (health/pre/mid/
FIGURE 8

K-CNN-VC segmentation result diagram.
TABLE 7 Thresholds for lesion perimeter and area classification.

Type of lesion
Perimeter
threshold/P

Area
threshold/A

Dot-shaped lesion P<100 A<100

Patch-shaped lesion 100<=P<400 100<=A<2000

Large-scale lesion P>=400 A>=200
FIGURE 9

Images of three types of lesions.
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late-infection classification). Our model maintained fine-grained

grading capability while reducing computational complexity by 2.44

GFLOPs and boosting inference speed to 0.56 ms/frame. This

model is better suited for edge-computing deployment in field

conditions, addressing Kumar et al.’s challenge of balancing

feature representation and efficiency in lightweight models

(Kumar and Sachar, 2023).

Regarding lesion segmentation, the proposed K-CNN-VC

approach addresses the challenge of accurately annotating lesions

with blurred boundaries, a limitation identified by Tardif et al. (2023).

By integrating unsupervised clustering and supervised classification

cascading, the method attains 89.29% segmentation accuracy,

outperforming Li et al (2022) traditional ML method (which has

63.32% fine-grained accuracy), while avoiding the annotation burden

typically associated with pixel-wise supervised models such as U-Net

(Xue, 2023) These findings support the argument of Ahmad et al.

(2023) that automating lesion extraction while minimizing manual

effort is essential for smart agriculture applications.

This study also pioneers a morphology inversion mechanism

from abaxial leaf images, marking a first in plant disease modeling

literature. This approach reflects the biological propagation

behavior of downy mildew. The pathogens primarily invade
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through stomata, propagate intercellularly within host tissues, and

form lesions after a latent period (Zhang et al., 2020). Differential

necrosis arises from variations in cellular ultrastructure and

antioxidant enzyme activity. Based on infection patterns and

lesion morphologies, we categorized the lesions into three types:

dot-, patch-, and large-scale. A high inversion similarity (>90%) was

observed for dot-shaped lesions, confirming uniform early

infection, whereas the perimeter mapping function for patch-

shaped lesions revealed medium-scale expansion patterns.

Notably, poor fitting (R²< 0.5) for large-scale lesions was

attributed to irregular diffusion influenced by humidity and

microenvironmental variability, consistent with findings by Liu

(2024) and Hernández et al. (2024) regarding necrotic patterns

linked to cuticle thickness and stomatal density.

Despite promising results, the study has three key limitations:
1. The dataset includes only five North China varieties and

lacks samples from peak mid-epidemic periods (August

outbreak), which may limit the generalizability of

the model.

2. The inversion model does not incorporate physiological

parameters such as cuticle thickness and stomatal density,
FIGURE 10

Functional relationship diagram of the front and back sides of three early-stage lesion types. (a) depicts the adaxial/abaxial surface area ratio of
punctate lesion; (b) depicts the adaxial/abaxial surface area ratio of massive lesion; (c) depicts the adaxial/abaxial surface area ratio of extensive
lesion; (d) depicts the adaxial/abaxial surface perimeter ratio of punctate lesion; (e) depicts the adaxial/abaxial surface perimeter ratio of massive
lesion; (f) depicts the adaxial/abaxial surface perimeter ratio of extensive lesion.
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FIGURE 11

Functional relationship diagram of three types of lesions. (a) depicts the adaxial/abaxial surface area ratio of punctate lesion; (b) depicts the adaxial/
abaxial surface area ratio of massive lesion; (c) depicts the adaxial/abaxial surface area ratio of extensive lesion; (d) depicts the adaxial/abaxial surface
perimeter ratio of punctate lesion; (e) depicts the adaxial/abaxial surface perimeter ratio of massive lesion; (f) depicts the adaxial/abaxial surface
perimeter ratio of extensive lesion.
FIGURE 12

Inversion lesion result diagram.
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Fron
constraining interpretabi l i ty for large-scale or

atypical lesions.

3. The presence of natural lighting variations in field

conditions may reduce segmentation robustness.

Compared with existing approaches, such as feature-

fusion-based methods (Zhang et al., 2019; Wang et al.,

2023) and hybrid networks like the DualSeg network, our

inversion method demonstrates robust efficacy under

controlled conditions, yet its adaptability to complex

backgrounds necessitates rigorous validation.

4. The abaxial lesion inversion model is primarily based on

morphological feature mapping and does not consider

physiological parameters such as cuticle thickness and

stomatal density, which may limit its interpretability

under complex or abnormal lesion conditions.
Future research should expand varietal data for cross-cultivar

validation, develop dynamic pathological diffusion models to

represent mid-epidemic lesion evolution, and further optimize the

inversion framework by incorporating physiological descriptors,

and future studies incorporate plant pathological knowledge and

physiological indicators to enhance the biological plausibility of the

model. Additionally, it should explore Neural Architecture Search

and pruning for edge device deployment.

Such improvements will support the precision spraying

paradigm aligned with China’s Grape Downy Mildew Control

Standard (GB/T17980.122-2004), facilitating large-scale

implementation in smart vineyard management.
6 Conclusion

This study presents a comprehensive framework for grape

downy mildew severity grading and abaxial lesion inversion,

integrating innovations in fine-grained classification, unsupervised

lesion segmentation, and morphology-based inversion.

Experimental results validated the effectiveness of the framework:

The GDCNet grading model, equipped with CA, achieved an

accuracy of 82.16% while maintaining high inference efficiency.

The K-CNN-VC segmentation method, which combines hybrid

clustering and deep learning, effectively addressed annotation

ambiguity for complex lesions, achieving an accuracy of 89.29%.

The morphology-based inversion model exhibited a similarity of

over 80% for dot- and patch-shaped types, supporting the accurate

estimation of disease severity from partial visual data. By achieving

end-to-end lesion inversion from adaxial to abaxial leaf surfaces,

this work lays the groundwork for automated assessment of disease

progression and precision disease control. The results showed a

grading accuracy of 82.29%, segmentation accuracy of 89.29%, and

over 80% similarity for typical lesion types, offering key technical

support for precision spraying decisions and differentiated control

of grape downy mildew. Future directions should include

expanding the dataset scope, enhancing biological realism in

inversion, and enabling on-device deployment to support next-

generation smart agricultural disease detection systems.
tiers in Plant Science 16
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

BL: Conceptualization, Formal analysis, Validation, Writing –

original draft. CL: Formal analysis, Investigation, Supervision,

Validation, Writing – review & editing. JH: Methodology, Writing –

review & editing. JS: Funding acquisition, Investigation, Software,

Writing – original draft. HL: Data curation, Software, Writing –

original draft. HY: Data curation, Visualization, Writing – original

draft. CZ: Funding acquisition, Methodology, Project administration,

Resources, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. The funding of this paper

came from the Youth Science Foundation Project of the National

Natural Science Foundation of China (32401682); the Outstanding

Scientist Program of Beijing Academy of Agriculture and Forestry

Sciences (jkzx202212).
Conflict of interest

Author JS was employed by the company Beijing PAIDE

Science and Technology Development Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1688315
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1688315
References
Ahmad, A., Saraswat, D., and El Gamal, A. (2023). A survey on using deep
learning techniques for plant disease diagnosis and recommendations for the
development of appropriate tools. Smart Agric. Technol. 3, 100083. doi: 10.1016/
j.atech.2022.100083

Fu, Z. L., Yin, L. F., Cui., C., and Wang., Y. (2024). A lightweight MHDI-DETR
model for detecting grape leaf diseases. Front. Plant Sci. 15. doi: 10.3389/
fpls.2024.1499911
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