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Grading grapevine downy mildew severity is essential for the precise application
of pesticides. Since typical symptoms appear on the abaxial (underside) surface of
grape leaves, and lesion area proportion determines severity, it is necessary to
analyze lesion characteristics and develop adaxial-to-abaxial lesion inversion
methods to build lightweight yet accurate grading models. This study proposes a
comprehensive disease grading framework for grape downy mildew. First, a
convolutional neural network (CNN)-based classification model is developed
with specialized modules and coordinate attention to enhance feature extraction
and semantic richness for improved lesion identification. Second, a novel K-
Means++-CNN-Vote Consolidation lesion extraction method is introduced. In
this framework, K-Means++ segments leaf sub-images, CNNs classify lesion
types, and a voting mechanism consolidates results—addressing challenges
posed by irregular lesion shapes and blurred boundaries. Finally, an abaxial
lesion inversion framework is established by constructing a morphological
feature mapping between the adaxial and abaxial surfaces, utilizing mapping
functions and lesion generation techniques to infer the abaxial lesion distribution
from the adaxial images. Experimental results showed disease grading accuracies
of 82.16% (combined adaxial and abaxial), 79.74% (adaxial only), and 84.59%
(abaxial only), with a model size of 5.08 MB. Lesion segmentation accuracies
reached 89.29% (adaxial and abaxial), 76.92% (adaxial), and 64.47% (abaxial), while
the adaxial-to-abaxial lesion inversion achieved an 80% similarity. This study
provides methodological support for the online grading of grapevine downy
mildew and offers a scientific basis for precise disease control.
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1 Introduction

Grapes, known for their sweet-sour taste and rich nutritional
content, are among the most widely consumed fruits globally (Tian
et al, 2018; Liu et al,, 2020). They represent a globally significant
economic fruit crop, and the quality of grapes and their related
processed products is vital to the stability of the agricultural
economic chain (Sagar et al, 2025). Grapevines are frequently
affected by diseases during growth, among which grape downy
mildew—an airborne oomycete disease—poses a severe threat to
leaf photosynthetic efficiency and fruit development (Ting et al,
2025; Wu et al, 2025). Infected fruits exhibit a deteriorated
appearance and flavor, and fail to meet the standards for fresh
consumption or winemaking. Grapevine downy mildew is highly
epidemic, and once it erupts, it becomes difficult to control. Surveys
indicate that outbreaks can reduce annual grape yields by 11.8%-
25.9%, making them a critical biotic stress factor that limits grape
quality improvement and economic development (Wang and Li,
2024). The epidemic period of grapevine downy mildew is closely
linked to climatic conditions. In North China, symptoms typically
emerge sporadically in July, presenting as irregular pale-yellow
water-soaked spots on the adaxial leaf surface, with sparse,
characteristic white downy mildew layers on the corresponding
abaxial areas. The lesion edges on both sides are generally indistinct
(Wang et al,, 2022a). As autumn rains increase, the disease enters an
explosive phase in August. Adaxial lesions rapidly enlarge, turning
yellow-brown to dark brown, while abaxial mildew layers become
dense and thick, transitioning from white to gray with a “white,
frost-like” appearance, yet still retaining blurred edges (Liu et al,
2022). By September, late-stage symptoms manifest as irregular
desiccation cracks and perforations due to tissue necrosis on the
adaxial surface, whereas abaxial surfaces show sparse grey mildew
spots that significantly reduce photosynthesis (Yu et al., 2024). The
current integrated management of grapevine downy mildew relies
primarily on chemical control (Wang et al., 2022). However,
extensive chemical spraying methods result in excessive pesticide
residue and environmental pollution, highlighting the need for
severity grading to enable differentiated precision control.

In recent years, vision-based methods for detecting grape leaf
diseases have been extensively studied, gradually replacing manual
identification of downy mildew. Traditional machine vision
techniques primarily rely on image preprocessing and machine
learning methods, such as support vector machines, random forest
(RF), and K-means clustering algorithms, for automated
classification. For example, Li et al. (2011) selected 30 diseased
leaves with clean surfaces, applied the K-Means clustering algorithm
to segment leaf and lesion areas, accurately calculated the lesion-to-
leaf area ratio using pixel statistics, and assigned severity grades
based on classification standards, achieving an accuracy of 93.33%.
These methods are based on manually defined rules, require smaller
sample sizes, lower annotation demands, and offer interpretability.
They are suitable for environments with uniform lighting and simple
backgrounds. However, they depend heavily on manual feature
extraction, requiring domain expertise to define relevant
characteristics and understand specific research objectives (Kumar

Frontiers in Plant Science

10.3389/fpls.2025.1688315

and Sachar, 2023). Moreover, their effectiveness deteriorates
significantly when the detection environment changes (Xu et al,
2025). Deep learning approaches, which leverage end-to-end feature
learning, have become a research hotspot. These approaches employ
numerous advanced models (He et al, 2016; Joseph et al., 2016;
Sandler et al., 2018; Ma et al., 2018; Tan and Le, 2021) and are
remarkably accurate in disease prediction. These network
architectures are capable of recognizing intricate patterns and
characteristics within datasets, thereby significantly improving
prediction accuracy (Zhang et al., 2024). For instance, He et al.
(2022) proposed an improved ResNet50 grading network that
classified grapevine downy mildew into four stages—healthy, pre-
infection, mid-infection, and late infection—with an accuracy of
99.92%. Although this method utilizes a single convolutional neural
network (CNN) to determine infection stages, its large parameter
size limits deployment on edge devices. It does not align with
national severity grading standards. Zohaib et al. (2025) employed
an improved You Only Look Once version 7 algorithm to
distinguish between unhealthy leaves, healthy leaves, and grape
cluster bags, achieving an accuracy of 73.7%. Yang and Qiu
(2024). proposed the YOLOv8s-grape model, which integrates
multiple enhancements to achieve efficient, high-precision grape
detection with improved mAP and reduced computational costs. Fu
et al. (2024) proposed the MHDI-DETR model, a lightweight RT-
DETR-based architecture achieving high accuracy in grape leaf
disease detection with significantly reduced computational
complexity. While this object detection approach locates lesions
and detects disease presence, it requires manual lesion annotation in
advance and does not assess severity levels according to national
standards. These studies indicate that current vision-based methods
for grapevine downy mildew detection rely on manual feature
engineering in traditional approaches for simple scenarios,
whereas deep learning CNN-based classification and object
detection methods achieve high accuracy but lack fine-grained
severity grading. Therefore, there is a pressing need for a
lightweight and precise model capable of grading adaxial/abaxial
lesion severity to achieve accurate disease classification and enable
precision pesticide application.

The domestic standard for pesticide application against
grapevine downy mildew follows China’s Guidelines for Field
Efficacy Trials of Pesticides, Part 122: Fungicides against
Grapevine Downy Mildew (Standard No.: GB/T 17980.122-2004),
which classifies disease severity based on leaf lesion coverage and
provides corresponding spray protocols. Lesion segmentation is a
critical step for accurately implementing this standard. Only
through accurate segmentation can detailed parameters, such as
lesion size, shape, and distribution characteristics, be obtained,
offering robust support for scientific grading and control
strategies. Current segmentation methods can be categorized into
two main types: machine-learning-based and deep learning-based
approaches (Ji and Wu, 2022). For instance, Li et al. (2022) utilized
the K-Means clustering algorithm to segment grape leaves into
subregions and trained a random forest classifier with minimal
dataset labeling, achieving a segmentation accuracy of 63.32%. This
strategy prevents complex, time-consuming manual annotation, but
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suffers from limited precision. Conversely, Zhang et al. (2025)
proposed the ABLSS model, which integrates deep and broad
learning to achieve high-accuracy, efficient grape leaf disease
identification with improved recognition speed and segmentation
performance. Wu (2024) adopted a two-step segmentation strategy
using U-Net networks to separately segment leaves and lesions,
achieving a disease classification accuracy of 93.3%. Unlike Wu
(2023), Xue (2023) designed the IN-UNet network for the complete
semantic segmentation of grape leaves and lesions, achieving a
pixel-wise segmentation accuracy of 84.79% and enabling grading
that aligns with national standards. Although deep learning
methods yield higher accuracy and broader applicability, they
often require labor-intensive expert annotations. For lesions with
blurred boundaries or dense clustering, manual labeling becomes
particularly challenging (Li et al., 2022). Tardif et al. (2023) reported
that accurately delineating diseased boundaries in grapevine images
can require up to 20 min per annotation, and Ahmad et al. (2023)
emphasized that precise symptom shape labeling in segmentation
tasks constitutes significant labor. To address this, we propose a k-
Means++ + CNN + visual classification (K-CNN-VC) lesion
segmentation method based on our grading network model,
which generates grapevine downy mildew lesion labels using only
simple classification annotations, thereby bypassing the challenges
associated with complex, time-consuming, and ambiguous labeling
of difficult samples.

The characteristic symptoms of grapevine downy mildew
manifest predominantly on the abaxial leaf surface, and disease
severity grading typically relies on the proportion of the abaxial
lesion area. However, under natural conditions, grape leaves
predominantly exhibit an adaxial-facing orientation. Manual
detection requires leaf flipping, which entails high labor intensity
and subjectivity (Hernandez et al., 2024). Similarly, images captured
by inspection-spraying robots primarily feature adaxial surfaces,
leading to detection inaccuracies. Consequently, spraying decisions
derived from such data may result in dosage deviations, increasing
the risk of fungicide resistance and potential environmental
contamination due to over-application (Jin et al., 2022).
Therefore, developing adaxial-to-abaxial lesion inversion methods
is crucial. Zhang et al. (2019) acquired both adaxial and abaxial
images of wheat ears, processed them through grayscale conversion
and binarization, calculated the lesion-to-ear area ratio, and graded
the severity of Fusarium head blight based on national standards.
Although this method integrates adaxial-abaxial disease
information, it does not separately compare severity levels against
national criteria. Yang (2020) utilized ResNet50 to identify pear leaf
diseases (brown spots, black spots, and rust) on adaxial and abaxial
surfaces, achieving recognition accuracies of 96.67% and 96.19%,
respectively. Wayama et al. (2024) collected adaxial/abaxial images
of diseased leaves from tomatoes, strawberries, cucumbers, and
eggplants, employing EfficientNet for classification. The model
achieved 95.2% accuracy in consistent environments but only
36.5% in varying environments. This study addressed cross-
environment generalizability but ignored adaxial-abaxial
symptom differences. These approaches overlook the
symptomatic distinctions and correlations between the adaxial
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and abaxial surfaces, limiting their research scope and
applicability. Therefore, it is essential to investigate whether
adaxial and abaxial lesion severity align quantitatively, analyze
correlations when inconsistencies exist, and leverage these
relationships to infer abaxial lesions from adaxial images, thereby
obtaining accurate disease severity grades and achieving adaxial-to-
abaxial lesion inversion.

Although progress has been made in grading the severity of
grape downy mildew, current research primarily focuses on disease
type identification or lesion morphology extraction and description,
with limited attention given to fine-grained severity grading.
Significant challenges remain, including the fine-grained
recognition of disease severity levels via CNN methods,
annotation difficulties with lesions that have blurred boundaries
in deep learning, a quantitative comparative analysis of adaxial and
abaxial lesions, and the inversion of abaxial lesions from adaxial
grapevine downy mildew images. The specific objectives of this
study are as follows:

1. To construct a lightweight and precise adaxial/abaxial
lesion grading network for grapevine downy mildew by
designing a cross-receptive-field fusion module that
integrates regular convolution and depthwise separable
convolution to enhance semantic richness, while
incorporating a coordinate attention (CA) mechanism to
strengthen the feature extraction capabilities for adaxial/
abaxial lesions.

2. To propose the K-CNN-VC lesion segmentation method
for precise quantitative analysis of lesion areas. This
method segments leaf sub-images via K-Means++,
classifies them using the grading network, and
consolidates them through voting, thereby addressing the
time-consuming and imprecise manual annotation of
complex lesions.

3. To conduct a quantitative comparative analysis of adaxial
and abaxial lesions in grapevine downy mildew to establish
morphological mapping relationships between the
two surfaces.

4. To develop a vision perception-based theory for adaxial-
abaxial lesion inversion, achieving end-to-end mapping
from adaxial lesion features to abaxial lesion
morphologies by constructing a morphological mapping
model, thereby providing a novel scientific basis for
precision spraying.

2 Materials
2.1 Data acquisition

To investigate lesion characteristics and develop grading
methods for grape downy mildew, we collected RGB images of

detached grape leaves infected with the disease. Early-stage disease
images were collected at the Xiaotangshan National Precision
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Agriculture Research Demonstration Base in Beijing, and late-stage
images were collected at the Chateau Bolongbao Winery in
Fangshan, Beijing. The image-acquisition system consisted of an
MV-SUA505GM camera equipped with an MS3M008 lens at a
working distance of 50 cm. The resulting dataset comprised downy
mildew leaf images from five grape varieties: Wild Grape, Kyoho,
White Grape, Ningxia Wild Grape, and Cabernet Sauvignon. A
total of 674 RGB images were collected, including 430 early-stage
and 244 late-stage images. Each image had an original resolution of
2592 x 2048 pixels. Figure 1 shows an overview of the image
acquisition system.

2.2 Data processing and augmentation

The original images were initially center-cropped to a resolution of
1024 x 1024 pixels and subsequently downsampled to 512 x 512 pixels.
To address the challenges posed by an insufficient number of grapevine
downy mildew leaf samples and imbalanced distribution of severity
levels, we applied data augmentation techniques (Gonzalez et al., 2025)
to enhance model generalization and reduce overfitting during
training. Using geometric transformations such as rotation and
flipping, we expanded the dataset to a total of 5,392 images, forming
the Grape Downy Mildew Image Dataset (GDCData). This dataset was
divided into training, validation, and test sets in a 7:2:1 ratio. Table 1
shows the representative augmentation results, where z0 denotes
adaxial healthy leaves, z1-z7 represents adaxial lesion severity grades,
f0 indicates abaxial healthy leaves, and f1-f7 signifies abaxial lesion
severity grades.

5 Methods
3.1 Classification method
To balance classification accuracy and computational efficiency,

we designed a custom lightweight grading model, GDCNet, as
detailed in Table 2, for grapevine downy mildew severity

Height
gauge
Camera
Light | Light
source source
Leaf Loading
platform
Computer
FIGURE 1

Image acquisition system.
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classification. This network architecture primarily consists of two
components: cross-receptive field fusion (CRFF) and attention
modules. Downsampling operations employ 3 x 3 convolution
kernels with a stride of two. The CRFF module integrates
depthwise separable convolution and pointwise convolution,
enabling shortcut connections that allow the network to deepen
effectively while preserving and enhancing discriminative lesion
features. The attention module implements parallel attention
mechanisms, including CA, to focus on spatially local features
relevant to grape leaf lesions. During training and interference,
input images were resized to 512 x 512. At the end of the output, an
adaptive average pooling layer consolidated feature mapsto 1 x 1 x
C dimensions. Finally, a two-layer fully connected classifier with a
softmax activation function was used to categorize severity levels
based on learned features.

3.1.1 Skip-connected depthwise coordinate
attention model

Figure 2A shows that the SCDCA Model comprises a series of
stacked modules. The processing pipeline involves three main
components executed in sequence: a separable convolution (SC)
module (Figure 2B), followed by a depth-wise convolution with
depth-wise coordinate attention (DWCA) module (Figure 2C), and
a final SC Model. A skip connection is established by directly
connecting the input of the first SC module to the output of the final
SC module. This architectural design integrates modular processing
with skip connections, effectively leveraging complementary
advantages to enhance the capacity of the model for learning and
processing complex features.

The SC Model begins by applying a 1 x 1 two-dimensional
convolution to the input feature map. The resulting feature map is
then split into two parallel processing paths: one path bypasses
further processing directly, and the other path is processed through
a 3 x 3 depthwise separable convolution, as described by Tang et al.
(2020). These outputs from both paths are concatenated to form the
final output of the SC module. This dual-path architecture facilitates
multiscale feature extraction and fusion, thereby enhancing the
ability of the network to represent and differentiate fine-grained
lesion features.

The DWCA module initiates feature extraction using a k x k
depth-wise separable convolution with a stride of s. The resulting
features are passed through a CA mechanism, which captures inter-
channel relationships while embedding spatial directional
information. This enables the model to focus on key lesion
regions, enhancing the sensitivity and accuracy of spatial
feature extraction.

3.1.2 Coordinate attention

Coordinate Attention is an efficient attention mechanism
proposed by Hou et al. (2021) that enhances feature
representation by embedding spatial information into channel
attention. Unlike traditional channel attention, which ignores
positional context, Coordinate Attention divides two-dimensional
global pooling into dual one-dimensional feature encodings along
the horizontal and vertical axes, thus preserving precise spatial
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TABLE 1 Sample distribution of the GDCData dataset for grape downy mildew.

Level Z0 Z1 Z3 Z5 z7
Expand before ‘ 40 94 126 50 27
Expanded ‘ 320 752 1008 400 216

location cues. A detailed analysis, including relevant formulas, is
presented below.

3.1.2.1 Coordinate information embedding
Given an input feature map X &€ RE*W*C| the attention
mechanism computes two direction-specific aggregated descriptors:
Horizontal Pooling: For channel ¢ and height h, the average
across the width is calculated as:

1

W X(c, h,w)

M=

zy(c, h) =
1

N
I

Output:
2, c RC><H

Vertical Pooling: For channel ¢ and width w, the average across
the height is computed as:

1 H
z,(c,w) = T > X(c, h,w)
h=1

Output:

z, = RCXW

3.1.2.2 CA generation
The pooled features are concatenated and transformed to
generate attention weights:

FO F1 F3 F5 F7 Total
40 96 122 53 ‘ 26 674
320 768 976 424 ‘ 208 5392

Concatenation and Compression: Concatenate z;, and z,, along
the spatial dimension to form z & R&*H*W) Apply a 1x1
convolution for dimensionality reduction, followed by activation:

f=06(Convixl(2)), f € RC/rx(H+W)

where r denotes the reduction ratio and & represents the
ReLU function.
Splitting and Reconstruction: Split f into fi, € R*/™H and f,, €

RE/™W then restore the channel dimension via 1 x 1 convolutions:

g = Convlxl(fy,), g, = Convlx1(f,)

Attention Weights Generation: The output tensors (g, and g,)
are passed through sigmoid activation:

ap = O-(gh) € RCXHsaw = G(gw) < RCXW

3.1.2.3 Applying attention weights
The attention weights are broadcast to match the dimensions of the
input feature map and applied through element-wise multiplication:

Y(c,h,w) = X(c, h,w) - ay(c, h) - a,,(c,w)

Broadcast the attention weight a;, to dimensions R°***! and a,,
to R“V*W_Then, compute their element-wise product to derive the
combined weight ROV,

By decomposing the spatial dimensions, this method preserves

precise, coordinate-aware features while significantly enhancing the

[ !
[ SC Model j
1X1 Conv2d
kXk, s
DWConv2d y
CoordAttention
[ SC Model J
Concat l
Y
9 v
\ 4

FIGURE 2

SCDCA module structure diagram. (A) shows the SCDCA Model; (B) shows the SC Model; (C) shows the DWCA Model.
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FIGURE 3
K-CNN-VC segmentation flowchart

\

K-CNN-VC

Segmentation method

blocky lesions
Large area of
lesions

——— -
v v

Visualization of disease spots on .
[ the front and back of leaves J [ Feature Analysis ]

Perimeter, Area
Threshold Setting

\ 4
. Lesion morphology Positive lesion Obtain the functional curve
Evaluation . L .
formation Binarization for each type of lesion
FIGURE 4

Flowchart of the inversion method. Based on the established mappings, the abaxial lesion shapes were generated using morphological operations. If
both the perimeter and area of the abaxial lesion exceeded the adaxial lesion, a dilation operation was performed on the adaxial contour. If both
were smaller, an erosion operation was applied, ultimately generating an abaxial lesion image. This regression-guided morphological generation
algorithm enables biologically consistent modeling of lesion propagation patterns from adaxial to abaxial leaf surfaces
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TABLE 2 GDCNet network structure table.

Operator Output CA Stride
512%x3 SCDCA, 3x3 32 32 0 1
5127x32 SCDCA, 3x3 64 32 0 2
256°x32 SCDCA, 3x3 64 32 0 1
256°x32 SCDCA, 3x3 64 32 1 1
256°%32 SCDCA, 5x5 128 64 0 2
128%x64 SCDCA, 5x5 128 64 0 1
128%x64 SCDCA, 5x5 128 64 1 1
128°x64 SCDCA, 3x3 256 128 0 2
64°x128 SCDCA, 3x3 256 128 1 1
64°x128 SCDCA, 3x3 256 128 0 1
64°x128 SCDCA, 3x3 256 128 1 1
64°x128 SCDCA, 3x3 256 128 0 1
64°x128 SCDCA, 3x3 256 128 1 1
64°x128 SCDCA, 3x3 256 128 0 1
64x128 SCDCA, 3x3 256 128 1 1
64°x128 SCDCA, 5x5 512 256 0 2
322x256 SCDCA, 5x5 512 256 0 1
32%%256 SCDCA, 5x5 512 256 1 1
322x256 = AdaptiveAvgPool - 256 - -
1°x256 Linear - 1280 - -
1°x1280 Hardswish - 1280 - -
12x1280 Dropout 0.2 - 1024 - -
12x1024 Linear - num_classes - -

localization capability of the model for critical regions. The use of
one-dimensional convolutions minimizes computational load,
making the mechanism highly suitable for lightweight
network designs.

3.2 K-CNN-VC segmentation method

Owing to the morphological complexity of grapevine downy
mildew symptoms, manual pixel-level annotation is both labor-
intensive and resource-demanding, making direct label-based
training infeasible. Traditional image processing or unsupervised
learning methods require manual identification of extractable
features across massive datasets to design segmentation rules.
Furthermore, variations in leaf brightness, uneven illumination,
and divergent lesion characteristics across severity levels render
manual feature extraction extremely challenging. To overcome
these challenges, we propose a hybrid lesion segmentation
method that combines K-means++ clustering with CNN-based

Frontiers in Plant Science

10.3389/fpls.2025.1688315

classification (K-CNN-VC method), enabling efficient and
automated lesion area identification with minimal supervision.
Unsupervised learning first decomposes images into sub-regions
with homogenous color features, while supervised training classifies
these sub-regions. Issues such as potential misclassifications are
corrected using voting consolidation. Finally, sub-regions are
recombined to identify lesions and leaf areas. This approach
indirectly applies supervised learning to automated lesion feature
extraction, as illustrated in Figure 3.

The K-Means++ algorithm segments leaf images into multiple
sub-regions. These sub-regions are then classified using a CNN.
They are recombined to identify lesion areas and leaf regions. The
grape downy mildew lesion extraction process comprises three
stages: leaf image decomposition, recognition of the decomposed
image, and image recombination.

3.3 Inversion model

To simulate the progression and visibility of grape downy
mildew lesions from the adaxial to the abaxial leaf surface, we
propose an adaxial-to-abaxial lesion inversion method, as
illustrated in Figure 4. The K-CNN-VC segmentation method
decomposes input images into five distinct classes: background,
adaxial leaf, abaxial leaf, adaxial lesions, and abaxial lesions.
Through empirical observation, adaxial lesions were categorized
into three morphological types: dot-shaped, patch-shaped, and
large-scale. For each segmented section, we extracted leaf and
lesion contours from the segmented results. Then, the contour
perimeter and enclosed area of the lesions were calculated. Using
the perimeter-area pairs, threshold-based classification was applied
to map adaxial lesions to the corresponding abaxial lesion types. We
established lesion-type-specific regression curves relating adaxial/
abaxial areas, as well as contour perimeters versus enclosed areas.
Finally, based on the established mappings, abaxial lesion
morphologies were generated using morphological operations.

3.4 Experimental equipment and
performance indicators

The experiments were conducted on a workstation configured
as follows: Intel® Core™™ i9-12000K CPU@3.70 GHz, 32GB RAM,
NVIDIA GeForce RTX 4070Ti Super 16GB GPU, and 64-bit
Windows OS. The models were built using PyTorch 2.0.1 (a
deep-learning framework). After extensive tuning, the final
training hyperparameters were set as follows: Optimizer:
Adam.Learning rate: Cosine decay with initial Ir = le-4 and
min_Ir = le-7. Momentum: 0.9. Weight decay: le-2. Batch size: 8.
Epochs: 100. Drop path rate: 0.1 (to prevent overfitting). The grape
downy mildew dataset was partitioned into training, validation, and
test sets in a 7:2:1 ratio.

The evaluation metrics for the grading tasks include accuracy
(Acc), mean precision (mP), mean recall (mR), parameter count,
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inference speed (FPS) (Zhang and Mu, 2024) and confusion matrix. 4 Resylts

Additionally, the total number of parameters and floating-point

operations was used to measure the model size and computational 4 1 Hijerarchical model validation
complexity (Wang et al., 2023; Tan et al., 2025). Acc, mP, and mR

were calculated as follows: To evaluate the effectiveness of our GDCNet grading model, we

TP + TN conducted a comparative analysis involving twelve vision models on

Acc = TP+ TN + FN + EP tasks involving the detection of adaxial/abaxial leaf health states (z0/
10), classification of multiple disease severity levels, and overall model

1 TP performance (Acc, mP, mR, giga floating point operations (GFLOPS),

me = TP+ EP parameter scale P/M, and inference speed). The results are presented

in Tables 3, 4 and Figure 5. Based on category-specific accuracy,

1 TP ResNet50, RepVGG, and VGG16 achieved 100% precision in

mR = k TP +FN detecting adaxial healthy leaves. Additionally, ResNet50, RepVGG,

TABLE 3 Classification accuracy of twelve models on lesion grades.

Z0/% Z1/% Z3/% Z5/% FO/% F1/% F5/% F7/%
ConvNeXt_T 76.19 80.49 60.61 40.68 84.00 93.33 81.48 70.13 75.00 96.00
EfficientNetv2_S 85.71 73.21 83.93 48.21 62.50 98.21 94.67 96.43 35.71 85.71
MobileNetV2 97.96 81.36 63.86 52.94 84.21 96.55 100 70.00 77.14 85.71
MobileNetV3_S 88.71 85.11 63.10 62.50 82.05 98.25 100 70.00 77.78 80.00
MobileViT 98.00 81.36 66.67 56.86 79.17 98.25 100 78.69 66.67 80.00
RepVgg 97.96 85.00 66.67 60.78 80.85 100 96.43 69.62 75.76 85.71
ResNet50 100 74.24 66.18 61.82 86.36 100 100 65.12 77.78 92.31
ShuffleNetV2 88.89 73.21 65.33 56.00 78.86 100 91.80 74.67 73.33 81.36
Swin_Transformer 75.00 80.00 70.00 76.09 90.00 100 72.73 69.14 82.22 100
VGG16 84.21 81.40 66.67 56.14 79.49 100 100 64.37 77.78 85.71
Xception 75.93 7231 58.33 5714 87.50 100 98.04 60.22 0 82.09
GDCNet 100 86.79 67.47 64.44 80.00 98.25 92.73 72.22 78.38 81.36

TABLE 4 Performance comparison of twelve models.

Model Acc/% Mp/% Mr/% GFLOPS/G P/m Speed/ms
ConvNeXt_T 74.82 75.79 74.82 46528 27.806 0.93
EfficientNetV2_S 76.43 76.85 76.43 30.243 20.190 1.28
MobileNetv2 79.64 80.97 79.64 3.409 2.237 0.46
MobileNetV3_S 79.46 80.75 79.46 0.630 1.528 0.40
MobileViT 80.36 80.57 8036 3.005 0.954 0.52
RepVgg 80.18 80.88 80.18 15.981 9.109 0.74
ResNet50 80.54 82.38 80.54 43.172 23529 0.93
ShuffleNetV2 78.04 78.02 78.04 0.455 0352 038
Swin_Transformer 79.46 81.52 79.46 8.742 27.504 1.28
VGG16 77.68 79.58 77.68 160.596 134.302 5.99
Xception 75.00 69.15 75.00 48.490 8.454 0.52
GDCNet 81.43 82.16 81.43 2.441 1.245 0.56

Frontiers in Plant Science 08 frontiersin.org


https://doi.org/10.3389/fpls.2025.1688315
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al. 10.3389/fpls.2025.1688315
s s
48 b 48
40 o 40
2 32 2 - 2 32
E 3 H
3 E By
= L24 u = =
o o 0
s s s
" “ o e -
40 40 ° ! 40
o e
L 2, 2 . 2
E Ed
H H [
Lo u 2
o e
" " . "
s R . .
P 0 e o 0 o o o o 8 -
(d) MobileNetV3 (e) MobileViT () RepVegg
o 0 0 o o o o “ 0. 8 o o 0 0 o o o o *
I T S S S Y s oale s 0 0 0 0 0 0 o s
I T T S S Y a0 e P R S S
W e e 0 e 50 0w s 0 0 0 0 o
2 o o o o o 5 %177 o 32
o e o o P .,
o o 2w s B s
I A . 550 0 oA B g ® 5 é! ° o A B ) 650 °
kded Ve P Ve Pdced Ve
(g) ResNetS0 (h) ShuffleNetV2 (i) Swin Transformer
s
o o 0 2 3 75 77 o B 5 ” 0
Pdiced Ve
() VGG16 (k) Xception (1) GDCNet
FIGURE 5
Twelve types of network classification confusion matrices. (a) displays the classification confusion matrix of the ConvNeXt network; (b) displays the
classification confusion matrix of the EfficientNetV2 network; (c) displays the classification confusion matrix of the MobileNetV2 network; (d) displays
the classification confusion matrix of the MobileNetV3 network; (e) displays the classification confusion matrix of the MobileViT network; (f) displays
the classification confusion matrix of the RepVgg network; (g) displays the classification confusion matrix of the ResNet50 network; (h) displays the
classification confusion matrix of the ShuffleNetV2 network; (i) displays the classification confusion matrix of the Swin Transformer network;
(j) displays the classification confusion matrix of the VGG16 network; (k) displays the classification confusion matrix of the Xception network;
(1) displays the classification confusion matrix of the GDCNet network.

ShuffleNetV2, and others also achieved perfect classification,
indicating a strong discriminative capability for disease-free samples.
Conversely, Xception performed poorly on high-severity grades (such
as z3 and f5), with complete failure in f5. This reflects that its feature
extraction mechanism is inadequate for complex disease
morphologies. The specialized model GDCNet achieved exceptional

Frontiers in Plant Science 09

performance in z0 and zl categories (early-stage adaxial lesions),
surpassing most general models in fine-grained early disease
classification. This indicates that its optimized design effectively
enhances fine-grained classification for early-stage disease features.
Lightweight models, such as MobileNetV3_S and MobileViT,
achieved 100% accuracy in F1, revealing sensitivity to superficial
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features of low-grade infections. Conversely, Swin_Transformer and  lesion representation through attention mechanisms or cross-layer
GDCNet performed relatively better in severe disease grades. feature fusion techniques.
For the overall metrics, GDCNet ranked first with 81.43% Acc,
82.16% mP, and 81.43% mR. Its computational cost and parameter
scale were significantly lower than those of heavyweight models, 4.2 Results and Analysis of K-CNN-VC
such as ResNet50 and VGG16, whereas its inference speed was Segmentation Method
comparable to that of MobileNetV3_S, demonstrating a balanced
optimization of accuracy and efficiency. Among the lightweight To construct a robust segmentation dataset for grape downy
models, ShuffleNetV2 achieved an accuracy of 78.04% with minimal ~ mildew, we employed the proposed K-CNN-VC segmentation
GFLOPS and parameters, making it suitable for ultra-lightweight  method on a total of 6,740 leaf images. The pipeline applied K-
deployment. MobileViT enhances feature representation while  means++ clustering to decompose each image into sub-regions
retaining speed advantages through a hybrid vision transformer  based on consistent color features, constructing the GDSData
architecture, validating the effectiveness of cross-modal fusion.  segmentation dataset. Table 5 details the categorization results.
Traditional convolutional models, such as VGG16, excel in f0/f1 The training, validation, and test sets were distributed in a 7:2:1
categories, but suffer from low practicality due to high  ratio, where 0 denotes background, 1 denotes adaxial leaf surface, 2
computational overhead (5.99 ms inference latency). denotes abaxial leaf surface, 3 denotes adaxial lesions, 4 denotes
Collectively, GDCNet exhibited optimal comprehensive  abaxial lesions, 5 denotes adaxial veins, 6 denotes abaxial veins, 7
performance in multigrade grape downy mildew detection via  denotes lesions and veins, and 8 denotes leaves and lesions.
customized feature learning and a lightweight design. Among the To evaluate the subgraph recognition capability of the proposed
general models, ResNet50 showed robustness for healthy samplesand ~ model on grape downy mildew lesions, we conducted a comparative
partial disease grades, fitting scenarios with relaxed computational  analysis of twelve vision models across nine semantic categories
constraints. Conversely, MobileNetV3_S and ShuffleNetV2 offer  using standard metrics: Acc, mP, and mR. The detailed results are
advantages in speed and low-grade disease detection, but require ~ shown in Tables 6 and Figure 6, 7. The K-CNN-VC segmentation
improvement in feature abstraction for advanced infections. The  outcomes are shown in Figure 8. Figure 6 presents a radar chart
inefficiency of Xception requires structural adaptations for multiscale, ~ conducting a multidimensional comparative analysis of 12 deep
heterogeneous features of grape leaf diseases. In contrast, the accuracy ~ learning models across three core performance metrics: accuracy,
bottleneck in high-severity categories (for example, z5) across models ~ mean precision, and mean recall. The results demonstrate that
highlights future research priorities: which is to enhance complex =~ GDCNet achieves the highest performance in terms of accuracy,

TABLE 5 Sample distribution of the GDSData partitioned dataset.

Category

Quantity 1740 1786 1643 587 520 94 91 194 85 6740

TABLE 6 Comparison of recognition accuracy for twelve Types of model subgraphs.

ConvNeXt_T 95.65 8222 65.55 73.08 61.29 91.67 63.6 50.00 0
EfficientNetv2_S 98.09 82.89 86.78 92.52 70.07 84.21 53.85 57.14 0
MobileNetV2 95.99 78.47 93.77 86.61 82.24 80.95 50.00 61.90 50.00
MobileNetV3_S 95.50 93.62 84.64 83.46 67.18 88.89 41.38 50.00 0
MobileViT 98.49 83.16 91.03 90.24 55.84 77.78 69.23 72.73 0
RepVgg 98.99 77.61 88.15 78.18 7000 93.33 60.00 66.67 100
ResNet50 98.49 88.10 87.42 78.57 60.49 73.68 60.00 66.67 100
ShuffleNetV2 98.49 89.63 79.66 88.57 60.00 73.68 58.82 87.50 0
Swin_Transformer 97.51 59.65 90.68 58.82 48.08 86.67 54.55 10.53 0
VGG16 98.99 88.10 85.21 75.00 71.88 86.67 60.00 75.00 85.71
Xception 88.00 89.56 88.89 76.27 69.44 0 0 0 0
GDCNet 95.65 90.96 89.31 76.92 64.47 93.33 73.33 87.50 50.00
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FIGURE 6
Radar chart of Acc, mP, and mR for twelve network segmentation
models

while also maintaining competitively high levels in both mean
precision and mean recall, exhibiting a marked overall
performance advantage. The remaining models display distinct
distribution characteristics across these three metrics, visually
reflecting their performance disparities and specific strengths or
weaknesses in the target task.

Among all models, MobileViT demonstrated superior
performance in identifying abaxial leaf surfaces, adaxial lesions,
and lesions with veins. This effectiveness can be attributed to its
hybrid architecture, which combines the global modeling of Vision
Transformers with the spatial local feature extraction of convoluted
networks. This likely captures cross-regional dependencies in leaf
textures and lesion morphologies. VGG16, a deep convolutional
architecture, exhibited high accuracy for background adaxial leaf
surfaces, and leaves with lesion categories, but underperformed in
categories involving abaxial lesions and veins, highlighting its
limitations in capturing fine-grained, low-contrast structures on
the leaf underside. Similarly, Swin_Transformer struggled with
lesions and veins, potentially due to its local window-based
attention strategy, which led to contextual fragmentation in
overlapping semantic regions.

GDCNet consistently ranked among the top performers,
achieving 87.57% accuracy and 80.17% mP, while maintaining a
balanced performance across both structural (for example, adaxial/
abaxial veins) and composite categories (such as lesions with veins),
indicating enhanced sensitivity to disease-specific traits. RepVgg
and ResNet50 demonstrated strong performance in terms of mean
recall and precision, benefiting from residual connections and
reparameterization that enhance feature robustness in complex
backgrounds. Xception achieved zero accuracy in vein-related
categories, indicating that its depthwise separable convolution
structure is unable to integrate fine-grained multimodal cues.

Model-task compatibility significantly affects detection
performance. For example, MobileNetV2 performed well in
simpler categories (such as abaxial leaf surfaces and adaxial
lesions) via depthwise separable convolutions, but
underperformed in composite categories (such as lesions with
veins). ConvNeXt_T, while effective in recognizing adaxial veins,
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revealed semantic discrimination weaknesses in more nuanced or
overlapping lesion types. These findings underscore that model-task
compatibility has a significant influence on segmentation success.
GDCNet, RepVgg, and VGG16 emerge as strong candidates for
practical deployment in grape downy mildew detection, while
transformer-based models require further adaptation to handle
multiscale, overlapping semantic features.

4.3 Inversion results and analysis

4.3.1 Lesion classification and feature thresholds
Contour Separation: Edge detection was applied to segmented
adaxial leaf and lesion images to extract leaf and lesion edge
contours. The following parameters were calculated.
Contour Perimeter (P): Computed using OpenCV’s
arcLength function.
Enclosed Area (A):

contourArea function.

Computed using OpenCV’s
Based on characteristics of the three lesion types:

1. Dot-shaped lesions: Dense and minute; characterized by
small perimeters and areas.
2. Patch-shaped lesions: Larger perimeters and areas.
. Large-scale lesions: Variable perimeter and area (typically
high values).

Parameter thresholds were set as shown in Table 7.

The classification results, based on the thresholds defined in
Table 7, are presented in Figure 9. In Figure 9, green indicates
typical dense and minute dot-shaped lesions, red denotes typical
patch-shaped lesions, and blue denotes typical large-scale lesions.

4.3.2 Adaxial—Abaxial lesion morphology
mapping

To simulate abaxial lesion morphology from adaxial lesion
characteristics, we developed regression-based mapping models
for contour perimeter and area across three lesion types, as
shown in Figures 10 and 11. In the early epidemic stage, dot-
shaped lesions exhibited a linear correlation between the adaxial
and abaxial areas (R*> = 0.8155), indicating negligible diffusion
effects across the surfaces. Patch-shaped lesions show perimeter
0.6343, following Y = 0.7592X +
91.8496. This reflects moderate regularity in edge expansion on the

mapping with a fitness of R
abaxial surface. Large-scale lesions exhibited poor model fit (R*<
0.5), primarily due to humidity-induced irregular diffusion in the
abaxial microenvironment.

In the late epidemic stage, dot-shaped lesions exhibited a highly
linear correlation between adaxial and abaxial areas (R* = 0.9789),
confirming minimal cross-surface diffusion. Patch-shaped lesions
display area mapping (R* = 0.7249, Y = 0.8888X + 24.1868). These
values represent measurable expansion patterns on the abaxial
surface. Large-scale lesions continued to exhibit low model fit (R*<
0.2), attributable to humidity-driven irregular spreading patterns.
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FIGURE 7
Twelve types of network segmentation confusion matrices. (a) illustrates the segmentation confusion matrix of the ConvNeXt network; (b) illustrates
the segmentation confusion matrix of the EfficientNetV2 network; (c) illustrates the segmentation confusion matrix of the MobileNetV2 network; (d)
illustrates the segmentation confusion matrix of the MobileNetV3 network; (e) illustrates the segmentation confusion matrix of the MobileViT
network; (f) illustrates the segmentation confusion matrix of the RepVgg network; (g) illustrates the segmentation confusion matrix of the ResNet50
network; (h) illustrates the segmentation confusion matrix of the ShuffleNetV2 network; (i) illustrates the segmentation confusion matrix of the Swin
Transformer network; (j) illustrates the segmentation confusion matrix of the VGG16 network; (k) illustrates the segmentation confusion matrix of
the Xception network; (1) illustrates the segmentation confusion matrix of the GDCNet network.

4.3.3 Front lesion inversion, back lesion results operations to adaxial lesion contours to generate abaxial lesion
Following the establishment of morphological mapping models, the

inversion algorithm was implemented by applying dilation or erosion

morphologies based on the perimeter and area correspondence rules
derived from late-stage infection data. Figure 12 shows that the average
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FIGURE 8
K-CNN-VC segmentation result diagram.

TABLE 7 Thresholds for lesion perimeter and area classification.

Perimeter Area

Type of lesion threshold/P threshold/A This study introduces a novel framework for grading the

severity of grape downy mildew and performing adaxial-to-

Dot-shaped lesion P<100 A<100 . . . . )

P abaxial lesion inversion. For grading tasks, the GDCNet model
Patch-shaped lesion 100<=P<400 100<=A<2000 achieved a lightweight and high-precision balance through the
Large-scale lesion P>=400 AS=200 synergistic design of a cross-receptive-field fusion module

(SCDCA) and a CA mechanism (CA). With a model size of 5.08

similarity between the inverted and actual abaxial lesions reached 80%, MB, GDCNet achieved a fine-grained classification accuracy of

o . .
with an inversion accuracy exceeding 90% for dot-shaped and patch- 82.16%. Conversely, the improved ResNet50 model achieved

shaped lesions. 99.92% accuracy for four broad infection stages (health/pre/mid/

FIGURE 9
Images of three types of lesions
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FIGURE 10

Functional relationship diagram of the front and back sides of three early-stage lesion types. (a) depicts the adaxial/abaxial surface area ratio of
punctate lesion; (b) depicts the adaxial/abaxial surface area ratio of massive lesion; (c) depicts the adaxial/abaxial surface area ratio of extensive
lesion; (d) depicts the adaxial/abaxial surface perimeter ratio of punctate lesion; (e) depicts the adaxial/abaxial surface perimeter ratio of massive
lesion; (f) depicts the adaxial/abaxial surface perimeter ratio of extensive lesion.

late-infection classification). Our model maintained fine-grained
grading capability while reducing computational complexity by 2.44
GFLOPs and boosting inference speed to 0.56 ms/frame. This
model is better suited for edge-computing deployment in field
conditions, addressing Kumar et al’s challenge of balancing
feature representation and efficiency in lightweight models
(Kumar and Sachar, 2023).

Regarding lesion segmentation, the proposed K-CNN-VC
approach addresses the challenge of accurately annotating lesions
with blurred boundaries, a limitation identified by Tardif et al. (2023).
By integrating unsupervised clustering and supervised classification
cascading, the method attains 89.29% segmentation accuracy,
outperforming Li et al (2022) traditional ML method (which has
63.32% fine-grained accuracy), while avoiding the annotation burden
typically associated with pixel-wise supervised models such as U-Net
(Xue, 2023) These findings support the argument of Ahmad et al.
(2023) that automating lesion extraction while minimizing manual
effort is essential for smart agriculture applications.

This study also pioneers a morphology inversion mechanism
from abaxial leaf images, marking a first in plant disease modeling
literature. This approach reflects the biological propagation
behavior of downy mildew. The pathogens primarily invade
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through stomata, propagate intercellularly within host tissues, and
form lesions after a latent period (Zhang et al., 2020). Differential
necrosis arises from variations in cellular ultrastructure and
antioxidant enzyme activity. Based on infection patterns and
lesion morphologies, we categorized the lesions into three types:
dot-, patch-, and large-scale. A high inversion similarity (>90%) was
observed for dot-shaped lesions, confirming uniform early
infection, whereas the perimeter mapping function for patch-
shaped lesions revealed medium-scale expansion patterns.
Notably, poor fitting (R*< 0.5) for large-scale lesions was
attributed to irregular diffusion influenced by humidity and
microenvironmental variability, consistent with findings by Liu
(2024) and Hernandez et al. (2024) regarding necrotic patterns
linked to cuticle thickness and stomatal density.

Despite promising results, the study has three key limitations:

1. The dataset includes only five North China varieties and
lacks samples from peak mid-epidemic periods (August
outbreak), which may limit the generalizability of
the model.

2. The inversion model does not incorporate physiological
parameters such as cuticle thickness and stomatal density,
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constraining interpretability for large-scale or
atypical lesions.

. The presence of natural lighting variations in field
conditions may reduce segmentation robustness.
Compared with existing approaches, such as feature-
fusion-based methods (Zhang et al., 2019; Wang et al.,
2023) and hybrid networks like the DualSeg network, our
inversion method demonstrates robust efficacy under
controlled conditions, yet its adaptability to complex
backgrounds necessitates rigorous validation.

. The abaxial lesion inversion model is primarily based on
morphological feature mapping and does not consider
physiological parameters such as cuticle thickness and
stomatal density, which may limit its interpretability
under complex or abnormal lesion conditions.

Future research should expand varietal data for cross-cultivar
validation, develop dynamic pathological diffusion models to
represent mid-epidemic lesion evolution, and further optimize the
inversion framework by incorporating physiological descriptors,
and future studies incorporate plant pathological knowledge and
physiological indicators to enhance the biological plausibility of the
model. Additionally, it should explore Neural Architecture Search
and pruning for edge device deployment.

Such improvements will support the precision spraying
paradigm aligned with China’s Grape Downy Mildew Control
Standard (GB/T17980.122-2004), facilitating large-scale
implementation in smart vineyard management.

6 Conclusion

This study presents a comprehensive framework for grape
downy mildew severity grading and abaxial lesion inversion,
integrating innovations in fine-grained classification, unsupervised
lesion segmentation, and morphology-based inversion.
Experimental results validated the effectiveness of the framework:

The GDCNet grading model, equipped with CA, achieved an
accuracy of 82.16% while maintaining high inference efficiency.

The K-CNN-VC segmentation method, which combines hybrid
clustering and deep learning, effectively addressed annotation
ambiguity for complex lesions, achieving an accuracy of 89.29%.
The morphology-based inversion model exhibited a similarity of
over 80% for dot- and patch-shaped types, supporting the accurate
estimation of disease severity from partial visual data. By achieving
end-to-end lesion inversion from adaxial to abaxial leaf surfaces,
this work lays the groundwork for automated assessment of disease
progression and precision disease control. The results showed a
grading accuracy of 82.29%, segmentation accuracy of 89.29%, and
over 80% similarity for typical lesion types, offering key technical
support for precision spraying decisions and differentiated control
of grape downy mildew. Future directions should include
expanding the dataset scope, enhancing biological realism in
inversion, and enabling on-device deployment to support next-
generation smart agricultural disease detection systems.
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