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In the Asian tropics, maize is predominantly grown as a rainfed crop during the
summer-rainy season, which often suffers significant yield losses due to the
erratic distribution pattern of monsoon rain that causes intermittent dry spells
and/or excessive moisture within the season. The climate-induced abiotic
stresses, particularly drought and waterlogging, pose significant threats to
rainfed maize cultivation in the Asian tropics, where erratic patterns of
monsoon rain and associated high genotype-by-environment interaction (GEI)
effects undermine yield stability. To address these challenges, this study
evaluated 61 advanced-stage maize hybrids developed under the Asia
Waterlogging and Drought Tolerant (AWDT) product profile, designed to
deliver hybrids with stable grain yields under variable moisture regimes without
yield penalties under optimal conditions. Multi-environment trials (METs) were
conducted across 19 locations in South and Southeast Asia (India, Bangladesh,
Vietnam, and Thailand) under four moisture regimes: optimal, rainfed/random
stress, reproductive-stage drought, and vegetative-stage waterlogging. A
stratified ranking approach was employed to identify superior hybrids that
matched or exceeded commercial checks under optimal conditions and
outperformed them under at least one stress environment. Several elite hybrids
demonstrated broad or specific adaptation to targeted stress-prone
environments. These findings underscore the importance of targeted breeding
and MET-based selection strategies in developing high-performing stress-
resilient maize cultivars for climate-vulnerable agroecologies, with implications
for food security, farmer livelihoods, and sustainable cropping systems in the face
of escalating climate variability.
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1 Introduction

Climate change projections indicate an increased frequency of
drought years, combined with heat stress and/or erratic/uneven
rainfall distribution, which is likely to constrain rainfed maize
production in the region severely (Tesfaye et al., 2017; Tiwari and
Yadav, 2019; Singh et al., 2022). In the lowland tropics of South and
Southeast Asia, the maize area expanded to over 22 million hectares
(FAOSTAT, 2023). Still, yields remain below the global average,
mainly because it is primarily grown as a rainfed crop, which is
prone to vagaries of monsoon rains. Climate projections indicate
that 20-30% of maize-growing areas in the Asian tropics are likely to
experience recurrent droughts and excessive moisture, resulting in
yield losses of up to 25-40% depending on stress timing and severity
(Zaidi et al., 2020; Huang et al., 2022). Climate model projections
further indicate that, if current varieties remain in use, rainfed
maize yields may decline by 3.3-6.4% by 2030 and 5.2-12.2% by
2050, while irrigated yields may decline by 3-8% by 2030 and 5-
14% by 2050 (Tesfaye et al., 2017). Significant fluctuations in year-
to-year and site-to-site stress profiles (Zaidi et al., 2020) are
amplifying genotype-by-environment interaction (GEI) effects
and threatening the sustainability of global food systems. Among
others, drought and excessive soil moisture/waterlogging stress
represent a significant challenge to maize production in lowland
tropics, including South and Southeast Asia (Cairns and Prasanna,
2018; Zaidi et al., 2023). Escalating climate variability, compounded
by intensifying abiotic stresses, is particularly problematic for Asian
tropics due to their high population density, poverty, and limited
adaptive capacity (Aryal et al., 2020; Mbah et al.,, 2022; Zaidi et al.,
2023). The climate-induced abiotic stresses further undermine
genotype stability and reduce the efficiency of breeding programs
that rely on consistent phenotypic selection across environments
(Ceccarelli, 2015). Therefore, breeding for abiotic stress resilience in
field crops is no longer a niche endeavor but a priority for food and
nutritional security, which not only can help in yield stability but
also improves system resilience, farmer income, and dietary
outcomes (Prasanna et al., 2021). Stress-resilient crop varieties
offer a vital option for risk mitigation and livelihood sustainability
for millions of smallholder farmers living in marginal, stress-prone
ecologies (Thomas et al., 2019; Dar et al., 2021).

In Asian tropics, maize is grown mainly as a rainfed crop,
rendering it vulnerable to the erratic nature of monsoon rains and
the associated abiotic and biotic constraints (Zaidi et al., 2020;
Prasanna et al, 2021). The irregular distribution of monsoon
rainfall contributes to the occurrence of untimely showers (Mori
et al., 2021), which often result in intermittent prolonged dry spells
(drought) and excessive soil moisture at different stages of crop
growth during the growing season. These factors contribute to the
relatively subdued productivity of maize in many parts of the Asian
tropics. Additionally, maize, being a non-wetland tropical crop,
shows high vulnerability to waterlogging throughout the crop cycle,
particularly before tassel emergence (Zaidi et al., 2004, and Kuang
etal, 2012). Identification of high-performing stable maize varieties
that can withstand variable weather conditions within the cropping
season or have specific adaptations for a particular target
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population of environments (TPEs) requires a deliberate and
strategic breeding and selection approach. To accomplish this,
multi-environment trials (METs) are pivotal for evaluating
genotypes across diverse test environments, including well-
managed environments, random stress, and managed stress
conditions, thereby identifying hybrids that are vulnerable to
different types of stress under TPEs without yield drag under
optimal conditions. The approach is a must for assessing GEI,
genotypic adaptability and stability, predicting breeding values, and
identifying superior genotypes with broad adaptation or suitable for
specific TPE (Pour-Aboughadareh et al., 2022; Xu et al., 2022).
Traditional stability parameters often undermine the complexity of
GEI patterns and crossover interactions critical for stress-specific
adaptation. In contrast, models like AMMI, GGE, and especially site
regression (SREG) decompose the genotype main effect plus GEI
into principal components, effectively distinguishing broadly
adapted genotypes from those with specific adaptation (Yan and
Kang, 2003; Crossa et al,, 2017). By capturing both magnitude and
direction of the genotypic responses, SREG facilitates precise
selection across stressed and optimal environments and identifies
high-performing locations with strong discriminatory power,
enhancing selection efficiency and reliability. In this study, we
evaluated a set of elite maize hybrids derived from the Asia
waterlogging and drought-tolerant (AWDT) product profile. The
breeding pipeline for this profile is designed with a renewed
approach based on a different paradigm that focuses on
developing maize hybrids with highly stable yields, rather than
just high-yielding hybrids. The product profile aims to deliver the
next generation of hybrids that achieve reasonable grain yields
under adverse conditions without significantly compromising
potential yields under optimal growing conditions.

2 Materials and methods
2.1 Test hybrids and testing environments

A set of 61 advanced-stage maize hybrids, along with two
internal and two commercial check hybrids (Supplementary
Table 1), were evaluated across multiple 19 locations in South
and Southeast Asia, including India, Bangladesh, Vietnam, and
Thailand (Figure 1). The internal checks represent CIMMYT
genetics with combined drought and excessive moisture tolerance,
which have been officially released and commercialized by partners
in South Asia. The two commercial checks (names are intentionally
not disclosed) were popular hybrids released and commercialized
by multinational seed companies for cultivation during the summer
rainy season in the respective TPEs. The candidate hybrids were
Stage-3 hybrids from the Asia Waterlogging and Drought Tolerant
(AWDT) product pipeline. These hybrids were advanced through
stage-gate selection under optimal conditions and managed
drought and waterlogging stresses. The test hybrids were
developed under one of the CIMMYT’s maize program product
profiles, namely Asia Waterlogging and Drought Tolerant (AWDT)
maize, designed for the rainfed climate-vulnerable agroecologies
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FIGURE 1

Locations of various phenotyping sites across different agroecologies in the Asian tropics. GPS coordinates of the trial locations: 1= Ludhiana
(Lat-30.90,Long-75.80); 2=Chittaurgarh (Lat-24.88,Long-74.62); 3=Godhra (Lat-22.77,Long-73.61); 4=Aurangabad (Lat-19.76,Long-75.28);
5=Ranibennur (Lat-14.61,Long-75.63); 6=Bengaluru (Lat-12.97, Long-77.59); 7=Attur (Lat-13.10,Long-77.85); 8=Daulatabad (Lat-17.71,Long-78.20);
9=Yadaram (Lat-17.66,Long-78.57); 10=Shamirpet (Lat-17.58,Long-78.57); 11=Hyderabad (Lat-17.51,Long-78.27); 12=Bhubaneswar (Lat-20.26,
Long-85.81); 13=Varanasi (Lat-25.26, Long-82.99); 14=Begusarai (Lat-25.41,Long-86.12); 15=Kushtia (Lat-23.89,Long-89.10); 16=Bittipara (Lat-23.79,
Long-89.11); 17=Nhatrang (Lat-12.23,Long-109.19); 18=Ninh Thuan (Lat-11.67,Long-108.86); 19=Tak Fa (Lat-15.10,Long-100.38).

with medium (800—1200 mm) but erratic rainfall distribution. This
target population of environment (TPE) accounts for
approximately 38% of the total maize area in the region. Further
details of the AWDT product profile are described elsewhere
(Prasanna et al, 2022). In brief, the breeding pipeline for this
product profile was designed using a selected set of eight lines with
good combining ability for drought and/or waterlogging tolerance
and resistance to the common foliar diseases prevalent in the TPEs
(Turcicum leaf blight and Polysora rust).

2.2 Trial management

The trials were constituted following an ALPHA-lattice design
with two replications (Vivek et al., 2007) and planted at a spacing of
75 cm between the rows and 20 cm within rows. The trials were
subjected to four different types of moisture regimes, including 1)
Optimal conditions; 2) Rainfed/random stress, 3) Reproductive
stage drought stress; and 4) Vegetative waterlogging stress. The
optimal management trials were conducted at six sites: Bengaluru
and Begusarai in India, Kushtia and Bittipara in Bangladesh, and
one site each in Thailand (Tak Fa) and Vietnam (Ninh Thuan). All
the trials were conducted during the summer-rainy (monsoon)
season, except in Bangladesh, where the evaluations were done
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during the pre-monsoon season (February to May). All
recommended agronomic and cultural practices were followed,
including need-based supplemental irrigations in case of dry
spells during the season to avoid any moisture stress. Rainfed
trials were also conducted during the rainy season at four
locations (Ludhiana, Chittaurgarh, Shamirpet, and Attur) under
completely rainfed conditions, without any supplemental irrigation,
except one irrigation immediately after planting to ensure proper
seed germination and seedling establishment. Site-specific crop
management practices were followed, depending on rainfall and
field moisture conditions. The trials were intentionally exposed to
random moisture stresses due to the erratic pattern of monsoon
rains, a common phenomenon in the Asian tropics.

Managed drought stress trials were planted during the rain-free
dry season (post-rainy season) at carefully selected phenotyping
sites (Hyderabad and Godhra in India, and Nhatrang in Vietnam)
where the winter season temperatures are generally favorable for
optimal crop growth and development. Drought stress was imposed
at the reproductive stage following the standardized phenotyping
protocol for field drought trials (Zaman-Allah et al., 2016; Zaidi,
2019). The trials were managed with the recommended irrigation
schedule until approximately two weeks before flowering. Once the
accumulated growing degree days (XGDD) reached 550 OC, the last
irrigation was applied using a high-riser sprinkler irrigation system
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to ensure uniform moisture across the field. The GDD was
calculated using the formula below:

T, Ti
Growing degree days (GDD) = >'( w) ~ Thase

where, Tpax = maximum temperature, Tp;, = minimum
temperature, and T, = base temperature (10 °C).

The progress of drought stress development in the field was
monitored using soil moisture profile probes placed in each of the
experimental blocks across the field. Once the moisture at 40-60 cm of
soil depth approached the permanent wilting point (PWP), stress was
terminated by resuming irrigation. Thereafter, the required moisture
level was maintained in the field to facilitate kernel development and
seed setting. Waterlogging trials were conducted during the rainy
season at carefully selected four precision phenotyping sites in India
- Hyderabad, Begusarai, Varanasi, and Bhubaneswar, where zero-level
field plots were explicitly designed for managed waterlogging stress
experiments, equipped with good irrigation and drainage systems.
Waterlogging stress was applied by flooding the field at the knee-
high stage (Vs-V¢ growth stage), with a water depth of 10 + 0.5cm
maintained continuously for seven days. Water supply was monitored
to ensure that it exceeded the water loss due to infiltration and
evaporation. After completion of the stress treatment, the field was
drained out, and subsequent moisture level was managed in the field as
per the recommendations for maize crops (Zaidi et al., 2016).

Despite well-planned trials under different management
conditions, some deviations occurred in managed stress and
rainfed trials. For instance, the stress level was relatively moderate
in managed drought trials at Nhatrang and Godhra sites due to
unexpected rainfall during the trial period (Figure 2). Suboptimal
stress management also occurred in the waterlogging trials at the
Hyderabad and Varanasi sites due to unforeseen subsoil drainage
issues. Similarly, the rainfed trials at Shamirpet, Attur, and
Ludhiana sites in India received well-distributed rains during the
season, with no exposure to random moisture stress, like
intermittent drought or excessive moisture. Based on review of
the location-wise weather data, the heritability and location mean
for grain yield, data from seven locations (Aurangabad, Ninh
Thuan, Bittipara, Ranibennur, Daulatabad, Yadaram, and
Bhubaneswar) were excluded from the final analysis. The
remaining 14 locations were broadly categorized into three types
of environments: optimal conditions, moderate stress, and

severe stress.

2.3 Data collection and analysis

At harvest, cob fresh weight data from each plot were recorded
and grain yield (t ha™") was estimated at 12.5% moisture using the
following formula (ASTM, 2001):

Cob weight (kg/plot) x 10 x ( 100 —MC) x SH

Grain Yield (t ha™) =
rain Yield (t ha™) (100 — 12.5) x Plot area (m?)

where MC = moisture content at harvest, SH = shelling
percentage (standard 80%),
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The single-site trial dataset was analyzed using the residual
maximum likelihood (REML) approach (Smyth and Verbyla, 1996),
treating replications and entries as random effects. Single location
repeatability of the trials was computed using the genotypic
variance estimates (02g) and single location residual (c2g) as
follows:

o’ = 6’g/[c*g + o’¢]

Trials with good repeatability (w2> 0.50) were considered in the
across-location analysis and variance components estimated within
each year using the following model:

Vijkm = U+ & + € + geyj + 1ic(e)) + by[reli; + i

where u denotes the overall mean; g; the genetic effect of
genotype i; ¢; the effect of location j; ge;; the interaction between
genotype i and location j; rx(e;) the effect of the replication k nested
in the location j; bjfreJkj the incomplete block I nested in the
replication k and location j; and &g,,the residual effect of the plot
m nested in block [, replication k, and location j. In the combined
analysis for each environmental group, all factors were treated as
random effects.

The heritability (H) for grain yield for each environmental
group was determined as follows:

H = O'Zg/[O'Zg + (O'de/e) + (028/61’)]

where e denotes the number of locations and r the number of
replicates, 6°¢ is the genotypic variance, o°ge is the variance due to
genotype x environment, and o€ is the residual variance. Residuals
from REML and ANOVA were checked for normality and equal
variance, and PCA assumptions were verified to ensure reliable
analysis of genotype performance.

Performance of the selected best-performing hybrids under
each of the three distinct growing conditions— severe stress
(managed drought or waterlogging stress), moderate stress
(rainfed and few managed drought or waterlogging stresses with
low stress intensity) and optimal environments was compared to
the mean of the commercial checks using the Welch-t test for
unequal sample size and unequal variances (McGee, 2025). This
analysis was conducted to evaluate genotype x environment
interaction (GEI) effects, including both crossover and/or non-
crossover GElIs.

The software GEA-R was used to estimate the associated linear
regression genotypic stability (Tai, 1971) and to assess the
performance stability of genotypes across diverse environments
(Angela et al., 2016). Site regression analysis was conducted using
GGE model (Genotype Main Effect plus Genotype Environment
Interaction), which evaluates the contribution of genotypes (G) and
Genotype x Environment interaction (GEI) across diverse
environments (Crossa and Cornelius, 1997), The model used for
the analysis is as follows:

N
Yij= U+e + 3, 1T ¥in0n + &

where, Yj; is the yield of the i-th genotype (i=1,.I) in the j-th

environment (j=1,.,]); i is the grand mean; ej are the environmental
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FIGURE 2

The prevailing weather conditions, including maximum and minimum temperatures and rainfall, at different locations during experiments.

deviations from the grand mean; 7, is the eigenvalue of the PC
analysis axis n; %, and &, are the genotype and environment
principal components scores for axis n; N is the number of
principal components retained in the model, and g; is the
error term.

The best performing hybrids across diverse stressed and
unstressed environments were selected based on their performance
compared to mean of the best commercial check hybrids, ie. a
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selected hybrid performed - a) at least at par under optimal
conditions, and b) at par moderate stress or significantly better
under severe stress environments (drought or waterlogging stress).
Given the high GEI effects and significant variation in mean yield of
the trials across different locations, a stratified ranking approach
(Kang, 1988) was employed to identify high-yielding stress-resilient
hybrids that performed well under optimal conditions, and in at least
one stressed environment. The data were organized in a tabular
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Under optimal conditions, the genetic variation was significant
but relatively smaller (p<0.01 or 0.05), as all the test entries were
advanced-stage hybrids already selected based on good
performance during previous stage of testing in stage-gate
advancement process. These findings support earlier reports that
the heritability of grain yield under optimal conditions is relatively
high, while it is usually low under stress (Banziger et al., 2000; Araus
et al,, 2018). Heritability values indicated moderate to high genetic
control across environments, with Kus-OP showing the highest
heritability (H = 0.95), suggesting strong potential for selection.
High genotype variance at the managed drought stress site
(Godhra), with lowest residual variance in the same environment,
further confirmed the reliability of the site in identifying stress-
resilient hybrids. These findings emphasize the importance of MET,
especially in managed stress environments, to identify high-yielding
maize hybrids with consistent performance. The data also
highlights environments with high discriminatory power and
genetic variability, which are critical for breeding programs
focused on high yield and resilience (Elakhdar et al., 2025).

3.2 Variance components across diverse
environments

The analysis of variance (ANOVA), presented in Table 2
revealed the relative contributions of environmental (ENV),
genotypic (GEN), and genotype-by-environment (GENxENV)
interaction effects to the total variation in yield under optimal
conditions, moderate stress, and severe stress conditions.
Environmental factors explained a substantial proportion of the
total variation, particularly under optimal conditions (64.89%),
indicating that the testing locations were quite different from each
other. The EVN still played a significant role under moderate and
severe stress as well, highlighting local conditions strongly influence
on the performance of genotypes. However, relatively lower
environmental impact under stress conditions might be related to
the similar level stress adverse effects imposed in the stress trials
across locations, whether managed or naturally occurring stress
under rainfed conditions (Bhadmus et al., 2021). Genotypic
variance significantly contributed to yield variation across all
environments, with the highest impact observed under severe
stress, followed by optimal and moderate stress conditions. These
results suggest that genetic variation among hybrids were more
pronounced under stress, offering better scope for selection and
breeding for stress resilience (Noor et al., 2019; Mohanapriya et al.,
2023; Marid and Argaw, 2023). A significant genetic variability for
grain yield across diverse environments is critical (Yue et al., 2022;
Swarup et al., 2021), as it enables the identification of hybrids with
either broad or specific adaptability (Derera et al., 2008).

While understanding the individual contribution of genotype
and environment in the performance of genotype is important, the
role of GEI effects is even more critical, as it can eventually
determine the final performance of a genotype within specific
environments (specific adaptation) or across multiple
environments (broad adaptation). In this study, the estimates of
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GEI variance were significantly higher than genotypic or
environment variance. The GEI effects accounted for the residual
variation across all environmental regimes (Table 2), emphasizing
the dependence of genotype performance on environmental
variability. This highlights the dominant role of GEI in METs and
its importance in identifying adaptable genotypes (Olivoto et al.,
2019; Yue et al,, 2022; Argaw et al., 2025). Our results showed that
60-70% of the total yield variation across diverse environments was
explained by the combined effects of environment and GEI
variance. This indicates that hybrid performance varied
considerably across environments, reinforcing the importance for
high genetic diversity in the selection of superior hybrids (Oliveira
et al., 2014; Singamsetti et al., 2023).

Site regression (SREG) analysis showed that the first principal
component axis (PC1), which captures the main effect of genotype
and its interaction with the environment, explained a large
proportion of variation in grain yield under severe stress,
followed by moderate stress and optimal conditions. The second
principal component (PC2) showed a similar pattern, accounting
for 100% of the GGE sum of squares under severe stress, 74.22%
under moderate stress and 66.21% under optimal conditions.
Interestingly, the variation caused by the environment x genotype
(ENV x GEN) interaction was even greater than what was explained
by PC1 and PC2. Both PC1 and PC2 had highly significant mean
square (P<0.001), indicating that they are reliable indicators for the
genotype expression across different environments. These results
support earlier studies, which suggested that grain yields vary
depending on their environmental conditions (Peiffer et al., 2014;
Shrestha et al., 2021).

The complex interplay between genetic traits and environmental
factors resulted in GEI effects and variability in phenotypic expression.
This is reflected in the inconsistent performance and/or rankings of
genotypes under different environments, making it challenging to
select best performing hybrids across multiple target environments
(Vinayan et al., 2020; Cooper and Messina, 2023). Overall, the results
suggest that a few components can effectively capture genotype
performance patterns, especially under stress, thus can facilitate
genotype classification and selection (Crossa, 1990). Additionally,
the residual variance was lowest under severe stress, indicating that
the statistical model used in our study was accurate and reliable for
managed stress environments.

3.3 Biplot insights into environment-
specific genotype adaptation

A standard GGE biplot, based on the site regression (SREG)
model, was developed to assess the performance of test hybrids
across stressed and unstressed environments. The first two principal
components (PC1 and PC2) were obtained by singular-value
decomposition of the environment-centered data (Figure 3). The
two-dimensional graphical display enables for a visual
interpretation of both genotype effects and GEI (Yan and Kang,
2003; Crossa et al.,, 2017). In environments with severe stress, the
biplot clearly shows segregation among location and genotypes,
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FIGURE 3

SREG bi-plots depicting the testing environments and performance of genotypes in different environments: (A) severe stress, (B) moderate stress,
and (C) optimal environment. Beg-WL, Begusarai (waterlogging); Nht-DT, Nhatrang (drought); Hyd-DT, Hyderabad (drought); God-DT, Godhra
(drought); Hyd-WL, Hyderabad (waterlogging); Var-WL, Varanasi (waterlogging); Lud-RF, Ludhiana (rainfed); Chi-RF, Chittaurgarh (rainfed); Sha-RF,
Shamirpet (rainfed); Att-RF, Attur (rainfed); TaF-OP, Tak Fa (optimal); Kus-OP, Kushtia (optimal); Ben-OP, Bengaluru (optimal).

indicating strong differential responses under stress-prone
conditions (Figure 3A). Notably, the two locations, one with
managed drought and the other with managed waterlogging
stress, showed no correlation, indicating a strong crossover
interaction. The high proportion of variation explained by PCl
suggests that the primary source of GEI was consistent across these
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stress-prone environments. Genotypes were widely dispersed on the
biplot, which further confirms strong differential responses to the
two abiotic stresses. In such environments, traits such as drought
and/or waterlogging tolerance become crucial, and genotypes with
specific adaptation to these stresses performed better, leading to
crossover effects. The SREG model effectively captures these
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complex interactions, helping breeders identify genotypes that are
well-suited to specific stress conditions (Yan and Kang, 2003).

Under moderate stress, the distribution of genotypes indicates
an intermediate level of stability and performance, with some
genotypes showing specific adaptation (Figure 3B). The relatively
lower variance explained by the first two factors suggests a more
complex GEI likely influenced by intermediate stress levels or
inconsistent management practices. Genotypes show moderate
dispersion that reflects partial stability alongside specific
adaptation. Environmental clustering is less pronounced,
implying moderate correlations among locations. Notably, Hyd-
WL and Var-WL sites exhibited a strong positive correlation. This
suggests that these two locations share a similar stress profile (i.e.,
moderate waterlogging stress), and therefore a minimum possibility
of crossover GEI effects. Such environments often represent
transitional zones, where genotypes must balance stress tolerance
with yield potential, therefore, breeding strategies should focus on
general adaptability while maintaining resilience to occasional stress
events (Crossa et al., 2017).

In an optimal environment, the clustering of genotypes and
environments indicates consistent performance and minimum
crossover interactions (Figure 3C). Genotypes and environments
were more closely grouped, indicating high stability and low
crossover interaction. Few genotypes consistently outperformed
others in those favorable environments, making them strong
candidates for targeting such favorable mega-environments. In
both moderate stress and optimal environmental conditions, the
test locations were grouped into two distinct clusters. The locations
such as Kus-OP, Att-OP, and Ben-OP under optimal conditions
and Chi-RF under moderate stress had longer vector in the biplot,
suggesting that they were specifically useful for identifying
genotypes with broad adaptability. These highly discriminating
locations help breeders to select promising hybrids that perform
well across TPEs (Patne et al.,, 2025). Under severe stress, the two
principal components (PC1 and PC2) together explained 100% of
the total variability in the hybrids, showing that the SREG model
was highly effective in capturing how genetics and environment
affect yield. Similarly, under moderate stress, the model explained
74.22% of the variation, and under optimal conditions, it
explained 66.22%.

The study found that severe stress environments with low-
yielding conditions were most effective in distinguishing genotypic
responses to stress, followed by moderate stress and then optimal
conditions. In these harsh environments, the genetic potential of
genotypes is explicitly expressed in terms of their ability to adapt to
adverse environments (Malenica et al., 2021, and Saad-Allah et al,,
2022). Previous research has also shown that other environmental
factors, beyond the main stress being studied, can also significantly
affect the performance of entries (Romay et al, 2010). Often,
breeding designs overlook these factors when evaluating entries
and selecting test locations. Therefore, it is crucial to evaluate test
genotypes in environments that truly represent the challenges of
TPEs to ensure selection of suitable genotypes with high and
consistent performance. By removing less informative locations in
MLTs and focusing on the most representative ones, it is possible to
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pinpoint the most suitable hybrids while saving resources and
improving genetic gains (Singamsetti et al., 2021, Singamsetti
et al., 2022; Patne et al., 2025).

3.4 Selection of high-performing hybrids
for diverse TPEs

Selections of maize hybrids based MLTs conducted under well-
managed, on-station conditions can work well for favorable
environments. However, this approach may fall short in climate-
vulnerable regions with variable weather patterns, such as areas
prone to intermittent drought and/or excessive moisture stress
(Castleberry et al., 1984; Martinez-Barajas et al., 1992). Given the
weather variability within and across seasons/years in the tropics,
high yielding cultivars must have a high stability across a wide range
of environmental conditions (Makumbi et al., 2015; Mebratu et al.,
2019; Zaidi et al., 2020). In our study, we selected top-performing
hybrids for diverse environmental conditions by comparing their
average grain yield across locations within each type of
environment compared with the average yield of the best
commercial check hybrid.

The results showed significant variation in hybrid performance
across environments, highlighting the importance of specific
adaptation. Among the 28 selected hybrids, only one hybrid
(ZH161063) was able to perform well across the diverse types of
stresses as well as optimal conditions (Figure 4). We also identified
several hybrids with targeted stress tolerance, including 10 hybrids
tolerant to waterlogging and rainfed/random stress, 7 hybrids
tolerant to drought and rainfed/random stress, and two hybrids
tolerant to both drought and waterlogging stress. These hybrids
combined high yield potential with resilience, making them strong
candidates for deployment in diverse agroecologies. Earlier studies
by Zaidi et al. (2008), Zaidi et al. (2010) demonstrated the
relationship between drought and excess moisture tolerance and
proposed the selection criteria with desirable traits for combined
stress tolerance. Additionally, two hybrids were tolerant to only one
type of stress, ie., either drought or waterlogging stress. These
findings align with a recent multi-country study by Tarekegne et al.
(2024), which reported annual grain yield gains of 118 kg ha™ under
optimal conditions and 61 kg ha™ under random stress,
demonstrating that simultaneous improvement under both
conditions is achievable.

The superior performance of the top hybrids under drought
stress can be attributed to a combination of physiological and
biochemical traits. These include better water-use efficiency and
deeper, more robust root systems that enhance drought resilience
(Zaidi et al., 2003; Cairns et al., 2013; Zaidi et al., 2022). Under
waterlogged conditions, the development of adventitious roots,
formation of aerenchyma (air spaces in roots), and efficient
anaerobic metabolism help the plant survive in low-oxygen
environments. Additionally, the ability to maintain
photosynthesis during short-term stress supports overall plant
health and yield (Zaidi et al., 2007; Arora et al,, 2017; Liang et al.,
2020). These traits collectively enhance oxygen transport and root
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FIGURE 4
Heat map depicting the relative performance of selected best hybrids across different environments compared to the mean of the best commercial
checks. The yield values in bold and shaded fonts indicate significantly better performance, and those in regular font performed at par with the best
commercial check.

survival, thereby contributing to improved tolerance against
waterlogging stress. Our study demonstrated the value of testing
hybrids across wide range of environments to identify promising
hybrids with either broad or specific adaptations. The observed
GEIs are consistent with the recent studies that emphasize the role
of physiological traits and genomic selection in enhancing maize
performance under abiotic stress (Amadu et al., 2025).

The strong performance of certain hybrids in stress-prone
environments indicates that a targeted product pipeline approach
(such as AWDT in CIMMYT) for climate-vulnerable agroecologies
has successfully introduced adaptive traits. Our findings are
consistent with recent progress in tropical maize breeding, where
multi-trait genomic prediction models are used to improve yield,
drought tolerance, and disease resistance simultaneously (Prasanna
et al,, 2021). Including local checks hybrids in the trials provides a
benchmark, and the consistent outperformance by elite hybrids
validates the genetic gains achieved through AWDT breeding
pipeline of CIMMYT’s Asia maize program (Prasanna et al,
2022). Recent research emphasizes the importance of trait
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plasticity, a ability of genotype in response to environmental
changes, as a key strategy for maintaining consistent performance
across diverse conditions. Chapman et al. (2021) argued that
selecting for plasticity, rather than fixed tolerance traits, can
improve both yield stability and adaptability across stress and
non-stress environments. Together, these studies (Banziger et al.,
2006; Zaidi et al., 2020; Singamsetti et al.,, 2021; Prasanna et al.,
2022) challenge the long-held belief that breeding for stress
resilience inevitably results in a yield penalty under optimal
conditions. Instead, they show that resilience and high
productivity can be achieved simultaneously.

4 Conclusion

The study revealed significant genetic variability among test
hybrids developed through the AWDT product pipeline, suggesting
strong potential for selecting high-performing stress-resilient
hybrids. The GEI effects accounted for 60-70% of yield variation,
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highlighting the strong influence of environmental conditions in
hybrid performance. Site regression (SREG) analysis demonstrated
that severe stress environments offered the greatest ability to
distinguish among genotypes, making them ideal for identifying
superior stress-tolerant hybrids. In contrast, under moderate stress
and optimal conditions, genotypes exhibited greater stability.
Additionally, the test locations are grouped into distinct clusters,
helping identify environments best suited for genotype evaluation.

Several hybrids met CIMMYT’s criteria, designed for smallholder
farmers in stress-prone agroecologies of South and Southeast Asia.
These hybrids consistently outperformed the standard check hybrids,
demonstrating strong potential for future commercialization. The
selected high-yielding, stress-resilient hybrids are being advanced
through the stage-gate advancement process for large-scale on-farm
testing across stress-prone, rainfed agroecologies in the tropical
regions of Asia. Our findings highlight the importance of using
strategic, targeted product pipeline-based breeding approach, such
as AWDT profile,—in breeding programs aiming at rainfed climate
vulnerable region in Asian lowland tropics. Across location testing in
high-discriminating environments can enhance cost-efficiency and
ensure selection of maize hybrids that sustain high yields under both
stressed and favorable conditions. This approach supports climate-
adaptive agriculture for marginal, stress-prone ecologies in lowland
tropical regions. The results advocate for a shift in breeding strategy:
moving from a focus solely on maximizing yield under favorable
conditions to also minimizing risk under stress, while maintaining
acceptable yield levels. This paradigm enhances the resilience,
productivity, and sustainability of maize-based farming systems in
vulnerable tropical agroecologies.
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