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Vegetation dynamics and its
driving force in the Qinghai
Lake Basin, China
Jiesheng Sun1, Yuanyuan Ding1*, Yong Wang2 and Chongyi E3

1School of Geographical Sciences, Nanjing University of Information Science and Technology,
Nanjing, Jiangsu, China, 2School of Ecology and Applied Meteorology, Nanjing University of
Information Science and Technology, Nanjing, Jiangsu, China, 3Key Laboratory of Tibetan Plateau
Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal
University, Xining, Qinghai, China
Qinghai Lake Basin is the largest endorheic basin in the northeastern part of the

Qinghai-Tibet Plateau (QTP). The vegetation dynamics are subject to dual

pressures from climate change and human activities. Previous studies have

neglected the interactions among driving factors, as well as the impact of

climate factors on vegetation under the regulatory role of topographic

elements. The present study utilises MODIS-EVI data from 2001 to 2022 to

estimate Fractional Vegetation cover (FVC) and to reveal the spatiotemporal

dynamics of vegetation cover through trend analysis and other methods.

Furthermore, it elucidates the effect of topographical factors on vegetation

distribution. Finally, geographic detectors and the partial least squares

structural equation model (PLS-SEM) were employed to quantify the impact

intensity of driving factors (including climate, human activities, topography, and

soil) and analyze their interactive effects and influence pathways on vegetation

cover. The results suggested that (1) FVC in the Qinghai Lake Basin increased

significantly (1.38×10-³/a); notably, low-grade FVC areas exhibiting high volatility.

(2) The terrain effect displays clear differentiation characteristics. FVC peaks in the

elevation range of 3500–3800 m, FVC dispersion increased with slope, and

semishady/shady slopes dominated FVC distribution. The vegetation

improvement type is concentrated on low-elevation, flat slopes and shady

slopes, whereas the vegetation degradation type is distributed on middle- and

low-elevation slopes and semipositive slopes. (3) Climatic factors primarily exert

a direct positive influence on FVC. As far as climate factors are concerned, the

effects of temperature and precipitation on FVC do not act independently, but

act together through synergistic effects, with temperature showing a more

significant driving effect. Topography primarily affects FVC indirectly by

regulating water and heat conditions (temperature and precipitation). Each

factor possesses an optimal range (elevation: 3400–4100 m, precipitation:

325–550 mm, temperature: −6 to 0°C). When changes in these driving factors

exceed the optimal range, FVC is suppressed. On a temporal scale, climate

change and human activities are the dominant factors influencing the FVC in the

Qinghai Lake Basin. The positive effects of human factors on FVC

have strengthened.
KEYWORDS

Qinghai Lake Basin, vegetation cover dynamics, spatiotemporal variation
characteristics, driving factors, partial least squares structural equation model
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1 Introduction

The Qinghai-Tibet Plateau, among the region’s most sensitive

to global climate change (Liu et al., 2009; Meng et al., 2023),

possesses an extremely fragile ecosystem and functions as a

crucial ecological barrier and the “Asian water tower” (Immerzeel

et al., 2020; Yao et al., 2022). Vegetation serves as the pivotal

medium sustaining the hydrological cycle and regulating water

resources (Immerzeel et al., 2010). On the one hand, alpine

meadows and grasslands anchor soil through their root systems,

thereby slowing surface runoff velocity and prolonging precipitation

infiltration duration. This facilitates the replenishment of

underground aquifers by glacial meltwater and rainfall (Xiao

et al., 2024). On the other hand, vegetative transpiration creates a

“biological pump”, modulating regional precipitation through land-

atmosphere feedback mechanisms (Yan et al., 2025). Vegetation, a

key indicator of ecosystem health (Shen et al., 2022), is essential for

maintaining carbon-oxygen balance, regulating climate, driving

hydrological cycles, and protecting biodiversity (Gerten et al.,

2004; Rice et al., 2004; Klynge et al., 2020). Changes in vegetation

dynamics indicate the ecosystem’s response to various drivers

(LaPaix et al., 2009). Fractional vegetation cover (FVC) is a

widely used metric for monitoring vegetation dynamics (Carlson

and Ripley, 1997; Li et al., 2024; Liu et al., 2024). Unlike vegetation

indices (VI) such as NDVI and EVI, which evaluate vegetation

health through greenness, FVC offers a more precise representation

of vegetation distribution and coverage (Anees et al., 2024). EVI

overcomes the saturation issue of NDVI in high FVC areas through

comprehensive atmospheric and soil background correction (Liu

and Huete, 1995; Gao, 1996). Therefore, estimating FVC using EVI

data better reflects changes in vegetation cover.

The Qinghai-Tibet Plateau, as a alpine mountain region, has

complex terrain conditions that regulate the spatial distribution of

solar radiation and precipitation, thereby significantly influencing

hydrothermal conditions (Li et al., 2021; Xian et al., 2024). As

elevation increases, the vertical zonation of vegetation becomes

increasingly pronounced, with topographic factors driving the

formation of vegetation cover spatial distribution patterns

through direct and indirect effects (Fan and Bai, 2021; Pu et al.,

2025). Previous studies have investigated the influence of terrain on

vegetation cover by analysing the distribution characteristics and

trends of the NDVI under different topographic conditions, along

with the corresponding area proportions (Wang et al., 2022b;

Huang et al., 2023). However, Zou et al. (2025) explored the

global alpine zone and found that with increasing elevation, the

positive trend magnitude of vegetation greenness decreases, while

that of vegetated areal fraction increases in most regions (85.49%).

Furthermore, Slope aspect impacts alpine vegetation changes

globally, with distinct differences in vegetation greenness and

vegetated areal fraction trends across aspects (Wang et al., 2022d;

Huang et al., 2023). Therefore, relying solely on a single vegetation

index is insufficient to comprehensively reveal the comprehensive

effects of topography on vegetation cover. For example, although

the actual area of vegetation change under certain terrain conditions

may be small, its proportion of the total area of vegetation change
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under all terrain conditions may be high, which can lead to

uncertainty in the assessment of the impact of terrain factors on

vegetation change. By introducing a terrain distribution index

(Wang et al., 2023b), the influence of differences in the absolute

areas of different terrain factors can be eliminated, revealing the

impact of specific terrain factors on vegetation cover change and

clarifying the influence of different terrain conditions on the

d i s t r i bu t i on o f vege t a t i on change type s and the i r

evolutionary trends.

The Qinghai Lake Basin, the largest endorheic basin in the

northeastern Qinghai-Tibet Plateau, is an alpine semi-arid

mountainous region that is highly sensitive to global climate

change (Aldwaik and Pontius, 2012; Cao et al., 2025). In recent

decades, the basin’s ecosystem has faced dual pressures from

climate warming and intensified human activities (Qin and

Huang, 1998; Dong et al., 2018; Zhang et al., 2025). Since the

1950s, the region has experienced grassland degradation and

aridification, with the vegetation growth environment continuing

to deteriorate (Shang and Long, 2007; Li et al., 2013; Wang et al.,

2022c). However, since 2005, the implementation of ecological

restoration projects has led to significant improvements in

grassland vegetation conditions, undergoing a complex process of

degradation and recovery (Dong et al., 2020). In previous studies,

Guo et al. (2014) analysed vegetation cover changes in the Qinghai

Lake basin from 2001 to 2012 using MODIS-EVI data, finding that

77.90% of the area showed an upward trend in EVI. The areas with

significant improvements were primarily concentrated along the

southern shore of Qinghai Lake and in the central part of the basin,

while areas of vegetation degradation were concentrated in the

eastern part of the basin; Xuelu et al. (2016) used average NDVI

during the growing season to analyse vegetation cover changes from

2001 to 2010, finding that areas with improved vegetation were

mainly concentrated in the Buha River basin and the central region

north of Qinghai Lake, while localized vegetation degradation was

observed along the shores of Qinghai Lake. Both studies confirm the

overall trend of vegetation improvement in the Qinghai Lake basin,

though differences in the areas showing improvement or

degradation may arise due to variations in remote sensing data

and the temporal scale of the studies. Vegetation dynamics result

from the interplay of natural factors and human activities (Liu et al.,

2019b; Gu et al., 2022), including climate change, topography, soil,

and human activities (such as grazing and land-use changes)

(Berdugo et al., 2022; Gao et al., 2022; Kolluru et al., 2022; Liu

et al., 2023). While climate factors are widely recognized as primary

drivers (Liu et al., 2021a; Xu et al., 2024), the exact contributions of

other influences remain unquantified. These drivers do not act

independently on vegetation; their interaction mechanisms and the

pathways through which they influence vegetation dynamics

remain unclear. In addition, traditional residual statistics methods

lack real data verification to distinguish between the effects of

climate change and human activities on vegetation dynamics

(Zhang and Ye, 2021).

Current research on vegetation dynamics in the Qinghai Lake

basin lacks long-term remote sensing data monitoring, and the

contributions of natural factors (such as climate change,
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https://doi.org/10.3389/fpls.2025.1691672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2025.1691672
topography, and soil) and human influences on FVC remain

underexplored. The study aims to strengthen understanding of

vegetation dynamics and driving mechanisms in the Qinghai Lake

basin through three objectives: (1) Employing the Sen slope

estimator and coefficient of variation to characterize the

spatiotemporal patterns and stability of FVC, and using a

transition matrix to capture spatiotemporal changes in FVC

across different grades; (2) Utilizing a terrain distribution index to

examine spatial patterns of FVC changes under varying terrain

conditions and to assess FVC distribution characteristics; (3)

Quantifying the impact of human activities on vegetation via land

use and resolution grazing intensity data, and integrating the

geographic detector model with the Partial least squares structural

equation modeling (PLS-SEM) to analyze the contributions of

various driving factors to FVC distribution and their mechanisms

on FVC’s spatiotemporal changes. The findings offer valuable

insights for ecological conservation in high-elevation semi-

arid ecosystems.
2 Materials and methods

2.1 Study area

The Qinghai Lake Basin, the largest endorheic basin in the

northeastern Tibetan Plateau (36°15’N-38°20’N, 97°50’E-101°20’E),

spans elevations from 3,173 to 5,279 m. Its topography is

characterized by high terrain in the northwest, lower areas in the

southeast, and a central lowland, forming a closed plateau basin

surrounded by mountains (Figure 1). Covering 29,661 km² (Wang

et al., 2025), this basin lies at the intersection of China’s eastern

monsoon, southwestern alpine, and northwestern arid zones,
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featuring a semiarid alpine climate with an average temperature

of 0.7 °C and annual precipitation of 404.1 mm (Zhang et al., 2024).

Qinghai Lake, China’s largest inland saltwater lake (Ma et al.,

2024b), is situated in the basin’s southeast and is fed by about 50

rivers. The Qinghai Lake Basin comprises eight subbasins, with the

Buha River Basin being the largest, covering roughly 50% of the

total basin area (Zhang et al., 2014).
2.2 Data sources

In this study, we utilized MODIS data (MOD13Q1), specifically

the 16-day synthetic EVI index with a 250 m spatial resolution,

enhancing sensitivity in high-biomass regions. This data, acquired

from NASA, was preprocessed using ENVI software through

splicing, projection, and format conversion. The maximum value

composite (MVC) method was employed to mitigate the effects of

clouds, atmospheric conditions, and solar elevation, producing

monthly EVI data. These monthly figures were then averaged to

derive annual EVI data.

Vegetation growth is shaped by natural and anthropogenic

factors (Wang et al., 2023a; Zhao et al., 2024). This study

considered climatic variables (temperature and precipitation),

topographic features (elevation, slope, and aspect), soil properties

(soil type and organic carbon content), and anthropogenic factors

(land use, population density, and high-resolution grazing

intensity). To maintain consistency in spatial analysis and PLS-

SEM model construction, temperature, precipitation and grazing

intensity data were processed using inverse distance weighting

(IDW) (Lu and Wong, 2008). Digital Elevation Model (DEM)

data underwent bilinear interpolation (Xu et al., 2016), while land

use data employed nearest neighbour interpolation to preserve land
FIGURE 1

The geographic situation of the Qinghai Lake Basin.
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attribute characteristics. Data sources are detailed in Table 1. All

data were resampled in ArcGIS to a spatial resolution of 250 m

(Guo et al., 2024).
2.3 Study framework

The present study was divided into four stages (Figure 2). FVC

was estimated to use the MVC and the Dimidiate Pixel Model based

on MODIS-EVI, in addition we calculated the average of the

individual driver variables. Subsequently, the Theil-Sen median

trend analysis and Mann-Kendall Test were employed to calculate

the trend of FVC from 2001 to 2022, and Coefficient of variation

(CV) was calculated to assess the volatility of FVC changes. Finally,

we analyzed FVC distribution characteristics under varying

conditions, employing terrain distribution index for topographic

areas to assess the dominant distribution of FVC changes. The

Geographic Detector quantified each driver’s impact on FVC’s

spatial distribution, and PLS-SEM model was used to examine

FVC’s driving mechanisms across temporal and spatial scales.

When conducting drive analysis using geographic detectors,

spatial discretization of continuous variable data is required. Based

on previous research, natural breakpoint methods are employed to

discretize data such as temperature, precipitation, and elevation

(Wang et al., 2023d; Yu et al., 2025). When constructing the PLS-

SEM model, all raw data undergoes standardized processing to

eliminate units of measurement, facilitating comparisons between

variables (Shi et al., 2024). Furthermore, based on the results from

the geodetector analysis, certain factors were excluded from the
Frontiers in Plant Science 04
PLS-SEM model construction due to their insufficient spatial

explanatory power (MA et al., 2024a).
2.4 Dimidiate pixel model

The dimidiate pixel model is a widely used approach for

estimating FVC (Leprieur et al., 1994). It is based on the premise

that the spectral data in a pixel is divided into two components: soil

and vegetation. Thus, EVI is derived from the two components of

soil and vegetation, and its calculation formula can be expressed as

Equation 1:

EVI = EVIsoil + EVIveg (1)

where EVIsoil represents the pixel value of pure soil and EVIveg
represents the pixel value of pure vegetation. The binary pixel

model is not restricted by geographical conditions, is easy to

promote and use, and can reduce the influence of atmospheric

and soil backgrounds to a certain extent. The annual average EVI is

calculated via pixel-by-pixel calculations (Equation 2):

EVI = on
i=1

EVI

n
(2)

where n is the year number and EVI is the average value.

The EVI is used to calculate the FVC as follows (Equation 3):

FVC = EVI−EVIsoil
EVIveg−EVIsoil (3)

In theory, EVIsoil should be approximately zero in most cases.

However, due to differences in surface environmental conditions
TABLE 1 Sources of data.

Data type Factors Abridge Resolution Source Time periods

Topography Slope Slp 90m – –

Topography Slope direction Asp 90m – –

Topography Elevation Ele 90m
Geospatial data cloud (http://www.gscloud.cn/); National
Tibetan Plateau Science Data Center (https://npdc.ac.cn/)

2000

Climate Temperature Tmp 1 km
National Tibetan Plateau Science Data Center (https://
data.tpdc.ac.cn/)

2001 - 2022

Climate Precipitation Pre 1 km
National Tibetan Plateau Science Data Center (https://
data.tpdc.ac.cn/)

2001 - 2022

Human Activity

Land cover LUCC 30m
National Cryosphere Desert Data Center(https://
data.tpdc.ac.cn/)

2001 - 2022

long - term High -
resolution Grazing

Intensity
LHGI 250m

National Ecosystem Science Data Center(http://
nesdc.org.cn)

2001 - 2022

Human Activity Population density Popd 1 km
Land Scan Global Population Data(https://
landscan.ornl.gov) and International Soil Reference and
Information Centre (https://data.isric.org)

2001 - 2022

Soil Soil type Soilt –
Harmonized World Soil Database (HWSD) (https://
data.tpdc.ac.cn/)

2000

Soil Soil organic carbon SOC 250m
Harmonized World Soil Database (HWSD) (https://
data.tpdc.ac.cn/)

2000
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across regions, it varies over time and space, with a typical range of

-0.1 to 0.2. Similarly, it also changes with variations in vegetation

type and season. Therefore, a EVIsoil and EVIveg values are clearly

inaccurate. Thus, a 0.5% confidence level is selected, meaning that

pixels with a cumulative percentage of 0.5% are pure soil pixels, and

those with 99.5% are pure vegetation pixels. The corresponding EVI

values for these EVIsoil and EVIveg , respectively.
Frontiers in Plant Science 05
2.5 Maximum value composite
The maximum value composite (MVC) method is the most

prevalent international approach for maximizing composites. It

effectively reduces partial interferences from clouds, atmospheric

conditions, and solar elevation angles in monthly EVI data (Li et al.,
FIGURE 2

Research process.
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2019). Utilizing the MVC method, the annual maximum EVI value

is determined, enabling a more accurate reflection of surface

vegetation cover (Equation 4).

MEVIij = MAX(EVIij) (4)

where i is the year number, j is the month number, and EVIij is

the maximum EVI value for the month of the year.
2.6 Trend analysis

The Theil–Sen median trend analysis (Sen, 1968; Theil, 1992) is

a nonparametric statistical method for assessing interannual

changes in vegetation cover (Zuo et al., 2022). This method is

highly efficient and resistant to interference, and it can be expressed

as Equation 5.

r = median  
xj−xi
j−i   1 < i < j < n (5)

where n is the number of years studied, xi and xj are time series

data, and is the trend degree. When r< 0, the time series shows a

downward trend, and when r > 0, the time series shows an

upward trend.

The Mann-Kendall Test, a nonparametric method introduced

by Mann and Kendall, evaluates time series trends (Equationd 6).

Uninfluenced by sample values or distribution types, it effectively

analyzes overall data trends and is extensively applied in trend

analysis of non-normally distributed data (Fensholt et al., 2009).

S =o
n

i=2
o
i−1

j=1
sign(xi − xj) (6)

where x is the time series data, n is the number of data samples,

xi and xj are the data values corresponding to years i and j,

respectively, where i< j, and the sign is the sign function, with the

following rules (Equation 7):

sign(xi − xj) =

1         xi − xj > 0

0         xi − xj = 0

−1       xi − xj < 0

8>><
>>:

(7)

When n >0, the standard normal distribution statistic Z is

calculated as follows (Equation 8):

Z =

S−1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p         S > 0

      0               S = 0

S+1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p         S < 0

8>>><
>>>:

(8)

The variance formula is as follows (Equation 9):

Var(S) = n(n−1)(2n+5)
18 (9)

where n is the number of sample data items.

Based on r and Z in trend analysis, we categorize spatial

variations in FVC into five types: significant improvement (r
≥0.0005, Zj j ≥1.96), insignificant improvement (r≥0.0005, Zj j
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<1.96), stabilization ( rj j<0.0005, Zj j <1.96), insignificant

degradation (r ≤-0.0005, Zj j <1.96), and significant degradation

(r ≤-0.0005, Zj j ≥1.96).
2.7 Coefficient of variation

The coefficient of variation is used to indicate the degree of

fluctuation in geographic data (Equation 10) and can be used to a

certain extent to reflect grassland growth conditions (Tucker et al.,

1991; Mao et al., 2022):

CVFVC = 1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(n−1)on
i−1(Xi − �X)2

q
(10)

where CVFVC is the coefficient of variation of the FVC; i is the

time series; Xi is the FVC in year i; and �X is the average FVC from

2001 to 2022.
2.8 Transition matrix

The FVC transition matrix effectively tracks the dynamics of

mutual conversions among various vegetation cover types within

the study area (Aldwaik and Pontius, 2012). It reveals the transition

direction for each vegetation cover type and specifies the conversion

area for each type (Equation 11).

sij =

s11 ⋯ s1n

⋮ ⋱ ⋮

sn1 ⋯ snn

2
664

3
775   (11)

where i and j are the FVC grades studied throughout the study

period; n is the total number of FVC grades; and sij is the total area

converted from grade i to grade j during the study period.
2.9 Terrain distribution index

To assess the influence of terrain on vegetation cover changes,

localized changes in specific terrains can appear disproportionately

large relative to their overall presence in the study area, potentially

skewing evaluations. To accurately determine the impact of terrain

factors on vegetation distribution changes, terrain area difference

correction is required (Wang et al., 2023b). The terrain area

correction coefficient is calculated using the following formula

(Equation 12):

k = Sie
Se
= Si

S (12)

where Sie is the area of type i changes in terrain Se; Si refers to

the total area of type i changes; Se is the total area of terrain Se; S is

the total area of the study area; Sie/Se is the ratio of the area of type i

changes in terrain e; and Si is the ratio of the area of type i changes

in the study area. If k >1, it indicates that type i changes are

dominantly distributed in terrain e; if k=1, it indicates that type i
frontiersin.org
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changes are evenly distributed in terrain e; if k<1, it indicates that

type i changes are not dominantly distributed in terrain e.
2.10 Geographic detector

Utilizing geodetector to identify spatial variations in the FVC and

uncover the drivers of its spatial distribution hinges on the premise

that a significant influence of an independent variable on a dependent

variable (Wang et al., 2025) implies similar spatial distributions for

both. This method involves analyzing variance within and between

layers, calculating the single-factor q value, and the q value after

superimposing multiple factors (Equation 13), to assess interactions

and relationships between factors (Tao et al., 2022; Zuo et al., 2022).

Factor detection assesses the influence of driving factors on

FVC, with larger values indicating stronger spatial explanatory

power. Interaction detection evaluates the impact of interactions

between two driving factors on FVC, determining whether the effect

is enhanced, weakened, or independent (Li et al., 2022; Lou et al.,

2023; Zhao et al., 2024). First, calculate the q-values for the two

individual factors Xn and Xm, as well as the q-value for the two-

factor interaction. By comparing q(Xn), q(Xm), and q(Xn⋂Xm),

determine the type of interaction between the two driving factors on

FVC (Table 2). This study implements the Geodetector method

using the GD package in R.

q = 1 − 1
Ns 2 o

L

n=1
Nhs

2
h (13)

Where q is the spatial heterogeneity of a certain indicator, N is

the total number of samples in the study area, s 2 is the variance

of the indicator, h is the number of partitions, and L is the number

of partitions of variables or independent variables. The value

of q reflects the degree of spatial differentiation, with a range of

[0, 1]. The larger the q value is, stronger the spatial heterogeneity.

When q = 0, it indicates that is no spatial heterogeneity.
2.11 Partial least squares structural
equation model

A structural equation model was developed to examine the

influence of both natural variables (climate, topography, and soil)
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and human-induced factors on FVC changes. Partial least squares

structural equation modeling (PLS-SEM) was employed to analyze

these systemic relationships (Pearl, 2012; Sarstedt et al., 2022). This

approach involves measurement and structural equations.

Measurement equations describe the links between indicators and

latent variables, while structural equations define the interactions

among latent variables. The measurement equations are formulated

as follows (Equation 14):

X = Lxx + d

Y = LYh + e
(14)

where X and Y are vectors of exogenous and endogenous

indices, respectively, and vectors of exogenous and endogenous

latent variables. The corresponding parameter requires estimation,

and the disturbance term is included. The structural equation is

(Equation 15):

h = Bh + Gx + z (15)

B represents the relationship between endogenous latent

variables, G denotes the influence of exogenous latent variables

on endogenous latent variables, and z is the error term.

This study employed the “plspm” package in R software to

construct the model, the performance of which was assessed

through the coefficient of determination (R2), R2 > 0.67 indicates

that the observed variables possess strong explanatory power for the

latent variables (Sarstedt et al., 2022) and goodness-of-fit (GOF)

metrics, GOF > 0.36 indicates a strong degree of model fit (Wetzels

and Odekerken, 2009; Krämer and Sugiyama, 2011; Henseler and

Sarstedt, 2013) (Table 3).
3 Results and analysis

3.1 Characteristics of the spatial and
temporal variations of FVC

3.1.1 Temporal changes in the FVC
The FVC in the Qinghai Lake Basin fluctuated between 0.50 and

0.57 from 2001 to 2022 (Figure 3), with a multiyear FVCmean value

of 0.53, in which the maximum value of the FVC appeared in 2018,

the minimum value of the FVC appeared in 2001, and the basin’s

annual average FVC generally showed a fluctuating and increasing

trend. (Slope = 1.38 × 10−3/a, p<0.005).

TABLE 2 Types of interaction.

Interaction relationship
Interaction
types

q(Xn⋂Xm)< Min(q(Xm), q(Xn)) Nonlinear-weaken

Min(q(Xn), q(Xm))< q(Xn⋂Xm)< Max(q(Xn), q
(Xm))

Uni-variable weaken

q(Xn⋂Xm) > Max(q(Xn), q(Xm)) Bivariable enhanced

q(Xn⋂Xm) = q(Xn) + q(Xm) Independent

q(Xn⋂Xm) > q(Xn) + q(Xm) Nonlinear enhanced
‘⋂’ denotes the interaction between factors Xn and Xm.
TABLE 3 PLS-SEM model evaluation criteria.

Criteria Value Description

R2 > 0.67 Substantial explanatory power

R2 > 0.33 Moderate explanatory power

R2 > 0.19 Weak explanatory power

GOF > 0.1 weak model fitting

GOF > 0.25 medium model fitting

GOF > 0.36 strong model fitting
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3.1.2 Spatial variation in the FVC
The study categorizes FVC into five grades: low coverage (0.00-

0.20), medium-low coverage (0.20-0.40), medium coverage (0.40-

0.60), medium-high coverage (0.60-0.80), and high coverage (0.80-

1.00). The spatial distribution of FVC in the Qinghai Lake Basin

from 2001 to 2022 (Figure 4A) reveals temporal changes in the

multi-year average FVC. Low and medium-low grade FVC areas,

covering 30.83% of the region, are mainly found in the basin’s

western part and along Qinghai Lake’s eastern shore. In

comparison, medium-high and high-grade FVC areas accounted

for 46.15% of the total area (Table 4). Larger units were

predominantly found in the central region of the basin, whereas

smaller units were distributed in a narrow, elongated, band-like

formation extending north-west from the south-western shore of

Qinghai Lake. Figure 4B depicts the FVC trend in the Qinghai Lake
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Basin during this period. Significant changes affect 23.4% of the

basin, with 18.02% primarily occurring in the basin’s northwest and

the Buha River’s middle and lower reaches.

Significantly degraded areas account for 5.40% of the total area,

primarily concentrated in the central region basin north of Qinghai

Lake, while scattered occurrences are observed along the eastern

shore of Qinghai Lake, south of the lake, and in the southeastern

part of the basin. Area statistics for the five FVC types vary across

different FVC levels (Table 5). The data reveals that areas with

notable improvement in low and medium-low FVC constitute the

largest shares (23.49% and 24.12%, respectively). Conversely, high-

grade FVC areas are mostly stable (32.77%), indicating that

significant improvements are mainly in low and medium-low

FVC regions. Notably, areas with significant degradation are

predominantly those with medium to high FVC levels, with high-

grade FVC areas comprising 66.62% of total significant degradation.

This suggests that despite overall watershed improvement,

degradation persists in high-grade FVC regions.

The coefficient of variation (CV) for interannual FVC changes

ranged from 0.01 to 2.34, with an average of 0.16, demonstrating

significant spatial variability (Figure 4C). The study categorises the

degree of fluctuation in FVC changes into five classes: Stabilisation

(CV<0.07), Slight Fluctuation (CV:0.07-0.17) Moderate Fluctuation

(CV:0.17-0.30), High Fluctuation (CV:0.30-0.50) and Wild

Fluctuation (CV>0.50). In the central basin and the regions south

and east of Qinghai Lake, FVC fluctuations diminished, indicating

enhanced stability. In contrast, the northwestern basin and the

riparian areas of the Habu River basin exhibited heightened FVC

variability and reduced stability. Analysis of FVC stability types and

their proportions (Table 6) indicated that stable and high-volatile

types coexisted in low-grade FVC areas, with the stable type

comprising 51.73% and the high and sharp volatility types

together makvolatile 83%. This suggests a significant presence of

the stable type in low-grade FVC regions. Notably, regions with

high CV values overlapped considerably with low-grade FVC areas,

indicating that while vegetation in these areas improved, it became

less stable and more fragile compared to other regions.
FIGURE 3

Temporal trends in the FVC from 2001 to 2022. (The green dots
represent the mean FVC for each year; the black line denotes the
interannual variation in FVC; and the blue dashed line indicates the
linear trend of this variation).
FIGURE 4

Spatial variation in the FVC from 2001 to 2022. (A) average FVC, (B) the trend types of the FVC, (C) the coefficient of variation (CV) of FVC.
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3.1.3 Changes in the FVC of different classes
To quantitatively assess changes in FVC patterns, FVC class maps

from different periods were superimposed to derive the FVC transfer

matrix over time. Between 2001 and 2022, 11,130.56 km2 of various

FVC grades experienced changes, excluding intra-grade transformations

(Table 7). From 2001 to 2012 (Table 8), areas of medium and medium-

high FVC increased, whereas low, medium-low, and high-grade FVC

areas decreased. The low-grade FVC saw the largest decline, shrinking

by 1,526.13 km2, primarily transitioning to medium-low (66.14%) and

medium-grade FVC (26.94%). Medium-grade FVC exhibited the most

significant area increase, totaling 1102.69 km2.

The expansion was primarily due to medium-low and medium-

high FVC, comprising 40.26% and 31.16%, respectively. Between

2012 and 2022 (Table 9), FVC grade distribution shifted

significantly. Medium-low and high-grade FVC areas increased,

while low, medium, and medium-high FVC areas decreased. The

largest area, 2599.38 km2, transferred to medium-high FVC, was

predominantly medium and high FVC (44.02% and 48.63%,

respectively). The high-grade FVC area grew mainly from

medium and high-grade FVC, while medium and low-grade FVC

areas increased primarily from medium and low-grade FVC

(Figure 5). This suggests area conversion mainly occurs between

adjacent FVC classes, with vegetation improvement shifting to

higher FVC classes and degradation to lower ones. From 2001 to

2022, there was overall improvement and localized degradation,

with vegetation improvement mainly in low to medium-grade FVC

areas and degradation in medium to high-grade FVC areas.
3.2 Topographic effects of the FVC

Topography is a crucial nonzonal factor influencing vegetation

growth by altering the spatial distribution through its impact on air
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temperature, precipitation, and soil characteristics. This study

examines how elevation, slope, and slope orientation affect

changes in the FVC. FVC is categorized into three types:

degraded, stabilized, and improved. Elevation is divided into four

classes using the natural breakpoint method (Coulson, 1987): low-

elevation (<3500m), middle-low elevation (3500–3800m), middle-

elevation (3800–4200m), and high-elevation (>4200m). Slope

direction is classified into five categories (Han et al., 2023): flat

(-1°), shaded (0-67.5°, 337-360°), semishaded (67.5-112.5°, 292.5-

337.5°), semipositive (112.5-157.5°, 247.5-292.5°), and sunny

(157.5-247.5°). Slopes are also categorized into five classes

according to the natural breakpoint method (Coulson, 1987): flat

(0-3°), gently sloping (3-7°), sloping (7-12°), steeply sloping (12-

18°), and sharply sloping (>18°).

3.2.1 Distributional characteristics of FVC change
types at different elevations

The changes in the FVC at different elevations (Figure 6A) were

concentrated between 0.40-0.50 at low elevations, between 0.6 and

0.8 at middle-low and middle elevations, and an important

concentration of FVC between 0.00 and 0.20 at high elevation.

From the viewpoint of vegetation change type, the change in FVC at

different elevations in the Qinghai Lake Basin varied significantly,

and in general, the K values of the vegetation stabilization and

vegetation stabilization types at different elevations clearly tended to

decrease first and then increase, and the K values of the vegetation

degradation types tended to increase first and then decrease

(Figure 6B). Specifically, the vegetation degradation type is

distributed mainly at middle-low and middle elevations. The

vegetation stabilization type is distributed mainly in low-, middle-

low- and high-elevation areas, and the K value in high-elevation

areas is the highest, at 1.51. The vegetation improvement type is

distributed mainly in low-elevation areas, and the vegetation

stabilization type is distributed mainly in high-elevation areas.
3.2.2 Distributional characteristics of FVC change
types at different slopes

The distribution of the FVC became increasingly discrete with

increasing slope, concentrating between 0.40 and 0.60 within a slope

of 0-3°, which is mainly concentrated between 0.60 and 0.80 within

the interval of 3°-20°and is mainly concentrated between 0.00 and

0.10 within the interval of greater than 20° (Figure 7A). The

vegetation-improving type was dominant mainly on flat slopes;

the vegetation-degrading type was dominant mainly on gently
TABLE 5 Areas of different types of changes in the FVC and their shares.

Slope Z Change type Area/km2 Percentage/%

≥0.0005 ≤-1.96 Significant degradation 1369.94 5.40

≥0.0005 -1.96-1.96 Insignificant degradation 5573.06 21.98

-0.0005-0.0005 -1.96-1.96 stabilization 4640.31 18.30

≤-0.0005 -1.96-1.96 Insignificant improvement 9197.62 36.28

≤-0.0005 ≥1.96 Significant improvement 4569.31 18.02
TABLE 4 Areas of different FVC grades and their percentages.

Grading
standard

Vegetation
classification

Area/
km2

Percentage/
%

0.00-0.20 Low coverage 3938.13 15.53

0.20-0.40 Medium-low coverage 3876.75 15.29

0.40-0.60 Medium coverage 5836.00 23.02

0.60-0.80 Medium-high coverage 6685.63 26.37

0.80-1.00 High coverage 5013.88 19.78
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sloping, sloping and steep slopes; and the vegetation-stabilizing type

was dominant mainly on sharply sloping land (Figure 7B),

indicating that vegetation growth was unfavorable with increasing

slope gradient.

3.2.3 Distributional characteristics of FVC change
types with different slope directions

The distribution of the FVC became increasingly discrete with

increasing slope, concentrating between 0.40 and 0.60 within a slope

of 0-3°, which is mainly concentrated between 0.60 and 0.80 within

the interval of 3°-20°and is mainly concentrated between 0.00 and

0.10 within the interval of greater than 20° (Figure 8A). The

vegetation-improving type was dominant mainly on flat slopes;

the vegetation-degrading type was dominant mainly on gently

sloping, sloping and steep slopes; and the vegetation-stabilizing
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type was dominant mainly on sharply sloping land (Figure 8B),

indicating that vegetation growth was unfavorable with increasing

slope gradient.
3.3 Analysis of drivers of FVC

3.3.1 Influence of driving factors on the spatial
distribution patterns of the FVC

The spatial distribution pattern of the Fractional Vegetation

Cover (FVC) was investigated by examining the influence of various

environmental and anthropogenic factors. The average FVC from

2001 to 2022 was used as the dependent variable, while surface

factors (elevation, slope, aspect, soil type, and soil organic carbon

content), climatic factors (air temperature and precipitation), and

human activity factors (land use, population density, and grazing

intensity) were considered as potential driving forces. The 22-year

average values of each factor were calculated and analyzed using a

geodetector approach. The results showed that the P-values for all

individual drivers and their interactions were less than 0.05,

indicating that the spatial distribution pattern of the FVC can be

comprehensively explained by the combined effects of these factors.

The relative importance of the drivers in explaining the

observed changes in fractional vegetation cover (FVC) was

assessed through a hierarchical analysis. The drivers were ranked

in descending order of explanatory power as follows: elevation >
TABLE 7 Statistical data on the areas of different FVC grades from 2001 to 2022.

Year Grade

2022

Total
Low coverage

Medium-low
coverage

Medium
coverage

Medium-high
coverage

High coverage

2001

Low coverage 5257.19 1661.19 490.63 77.06 25.81 7511.88

Medium-low coverage 412.69 1431.44 1360.63 427.13 90.69 3722.56

Medium coverage 103.44 495.00 1416.75 1164.56 390.25 3570.00

Medium-high coverage 37.94 130.19 940.31 1744.06 1368.63 4221.13

High coverage 26.94 57.88 337.13 1252.81 4650.06 6324.81

Total 5838.19 3775.69 4545.44 4665.63 6525.44 25350.38
fron
TABLE 8 Statistical data on the areas of different FVC grades from 2001 to 2012.

Year Grade

2012

Total
Low coverage

Medium-low
coverage

Medium
coverage

Medium-high
coverage

High coverage

2001

Low coverage 5424.69 1380.38 562.25 122.94 21.63 7511.88

Medium-low coverage 458.38 1307.31 1345.88 510.94 100.06 3722.56

Medium coverage 81.13 552.50 1329.88 1165.50 441.00 3570.00

Medium-high coverage 15.94 175.00 1041.56 1699.00 1289.63 4221.13

High coverage 5.63 56.88 393.13 1410.25 4458.94 6324.81

Total 5985.75 3472.06 4672.69 4908.63 6311.25 25350.38
TABLE 6 Areas of the FVC stability type and its percentage.

CV Volatility level Area (%)

<0.07 Stabilization 17.09

0.07-0.17 Slight Fluctuation 47.37

0.17-0.30 Moderate Fluctuation 27.09

0.30-0.50 High Fluctuation 6.68

0.50-2.34 Wild Fluctuation 1.76
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temperature > land use > grasslands grazing intensity > soil organic

carbon content > soil type > precipitation > slope > population

density > slope orientation (Figure 9A). Notably, elevation and

temperature had the greatest individual effects, with the other

factors exhibiting smaller, yet significant, interactive influences.

The interaction detection analysis revealed the complex,

nonlinear relationships between the drivers and FVC changes

(Figure 9B). The two-factor interaction effects, as indicated by the

q-values, were generally stronger than the individual driver effects.

This suggests synergistic and amplifying interactions among the

drivers. Particularly strong interactions (q>0.40) were observed

between air temperature and other factors, as well as between

elevation and the remaining drivers. The interaction between

temperature and precipitation was the most pronounced (q=0.59).

Additionally, there were strong interactions (q>0.50) between
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temperature and topography, land use, soil type, and soil organic

carbon content.

Factor detection quantified the explanatory power of different

drivers on the spatial distribution of FVC, the factors ranked from

highest to lowest explanatory power (q-value) were elevation >

temperature > land use > grasslands grazing intensity > soil organic

carbon content > soil type > precipitation > slope > population

density > slope orientation (Figure 9A). The interaction detector

analyzed the complex effects of complex interactions among drivers

on FVC. Results revealed that all interactions exhibited both

bivariate and nonlinear enhancement effects. Particularly strong

interactions (q>0.40) were observed between air temperature and

other factors, as well as between elevation and the remaining

drivers. The interaction between air temperature and

precipitation was the strongest (q=0.59), indicating an enhancing
TABLE 9 Statistical data on the areas of different FVC grades from 2012 to 2022.

Year Grade

2022

Total
Low coverage

Medium-low
coverage

Medium
coverage

Medium-high
coverage

High coverage

2012

Low coverage 4989.00 823.19 144.50 23.44 5.63 5985.75

Medium-low coverage 652.81 1711.44 902.75 167.56 37.50 3472.06

Medium coverage 139.75 991.88 2075.94 1144.25 320.88 4672.69

Medium-high coverage 43.25 212.94 1121.31 2066.25 1464.88 4908.63

High coverage 13.38 36.25 300.94 1264.13 4696.56 6311.25

Total 5838.19 3775.69 4545.44 4665.63 6525.44 25350.38
fron
FIGURE 5

Sankey diagram of FVC transfer at each grade from 2001 to 2012 to 2022. (The width of the color band represents the proportion of different grades
of FVC).
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effect of their interaction on FVC. Additionally, the interactions

between air temperature and soil type, as well as between air

temperature and soil organic carbon content, were also

prominent, suggesting synergistic effects between air temperature

and soil factors that jointly influence vegetation cover.

3.3.2 Exploration of the driving mechanism via
the PLS–SEM

To examine the direct and indirect influences of various drivers

on FVC, the cumulative impact of these drivers on FVC is the

combined sum of their direct and indirect effects. Through the

utilization of Partial Least Squares Structural Equation Modeling

(PLS-SEM), a more comprehensive elucidation of the potential

influences and interrelations among the drivers can be achieved by
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incorporating latent variables. Owing to their low q values in the

geodetector analysis of the drivers’ impacts on the spatial

distribution of FVC, slope orientation and population density

were excluded from the model (MA et al., 2024a). Four sets of

latent variables were established: climatic factors (temperature and

precipitation), topographical factors (elevation and slope), soil

characteristics (soil type and organic carbon content), and

human-related factors (grazing intensity and land use). Prior to

constructing the PLS-SEM model, the variance inflation factor

(VIF) was employed to assess multicollinearity among the

explanatory variables, evaluating the degree of collinearity

between them. The results indicated that all VIF values were

below 5 (Table 10), suggesting no significant covariance existed

between the variables (Thompson et al., 2017; Wang et al., 2022a).
FIGURE 6

The topographic effects of FVC at different elevation gradients. (A) Distribution of FVC under different altitude intervals. (B) Distribution dominance of
FVC change types at different altitude gradients, K-values is the Terrain distribution index, If k>1, it indicates that type i changes are dominantly
distributed in terrain e; if k=1, it indicates that type i changes are evenly distributed in terrain e; if k<1, it indicates that type i changes are not
dominantly distributed in terrain e.
FIGURE 7

The topographic effects of FVC at different slopes. (A) Distribution of FVC under different slopes. (B) Distribution dominance of FVC change types at
different slopes, K-values is the Terrain distribution index, If k>1, it indicates that type i changes are dominantly distributed in terrain e; if k=1, it
indicates that type i changes are evenly distributed in terrain e; if k<1, it indicates that type i changes are not dominantly distributed in terrain e.
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Convergent validity was verified using average variance extracted

(AVE), with all latent variables exhibiting AVE values exceeding 5

(Nasution et al., 2020). This confirms that all factor loadings meet

the requirements for structural validity (Table 11). The model

performance metrics are detailed in Table 10. The R² value

indicates the model’s strong explanatory power, reflecting its

effectiveness in predicting endogenous latent variables. The

Goodness-of-Fit (GOF) value demonstrates the model’s robust fit.

Furthermore, all p-values are below 0.05, indicating that the path
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coefficients are statistically significant. These results underscore the

robust explanatory capacity of PLS-SEM in delineating causal

pathways (Table 3).

The total effect values of latent variables on FVC were ranked as

follows (Table 12): climatic variables (0.46) > topographic variables

(-0.46) > soil variables (0.35) > anthropogenic variables (0.26).

Among the direct effects on FVC (Figure 10), climatic (0.44) and

soil variables (0.35) were predominant. Conversely, the primary effect

was the inhibitory influence of topography on FVC, which negatively
FIGURE 8

The topographic effects of FVC at different slope directions. (A) Distribution of FVC under different slope directions. (B) Distribution dominance of
FVC change types at different slope directions, K-values is the Terrain distribution index, if k>1, it indicates that type changes are dominantly
distributed in terrain; if k=1, it indicates that type changes are evenly distributed in terrain; if k<1, it indicates that type changes are not dominantly
distributed in terrain.
FIGURE 9

Factor detection and interaction detection results of the drivers of the FVC. (A) Driver factors and their q values. (B) Driver interactions and their q
values. (Asp-Slope direction, Slp-Slope, Ele-Elevation, Tmp-Temperature, Pre-Precipitation, LUCC-Land cover, LHGI-long-term High resolution
Grazing Intensity, Popd-Population density, Soilt-Soil type, SOC-Soil organic carbon). The ‘*’ symbol denotes nonlinear enhanced type, with all
others being bivariable enhanced.
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moderated the climatic variable (-0.42), while the climatic variable

also contributed to FVC by affecting the soil factor (0.07).

To assess the drivers influencing FVC dynamics, models for

2001, 2012, and 2022 were developed to quantify each driver’s direct

and indirect effects on FVC changes (Figure 11). Climate variables

exerted the greatest overall influence on FVC, though their direct

impact diminished over time (0.60, 0.47, 0.35). The direct negative

effects of anthropogenic factors initially increased but subsequently

decreased (-0.06, -0.19, -0.13). Topographic factors shifted from a

facilitating role in 2001 to an inhibitory one in 2012 and 2022 (0.12,

-0.02, -0.07), with their overall effect remaining negative (-0.36,

-0.43, -0.36). Soil factors consistently contributed to a stable positive

effect on FVC (0.31, 0.33, 0.32).

4 Discussion

4.1 Main mechanisms affecting the spatial
distribution of the FVC in the Qinghai Lake
Basin

Geodetector results indicate that both temperature and

elevation exert greater spatial explanatory power over FVC than
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other factors, whether acting as single drivers or through dual

interactions. Among these, the interaction between temperature

and precipitation exerts the most significant influence on FVC. This

demonstrates that climatic elements do not operate in isolation but

rather affect FVC through synergistic interactions. Furthermore,

PLS-SEM model results quantitatively rank the importance of each

driving factor (climatic variables > topographic variables > soil

variables > anthropogenic variables). Among climatic variables, the

loading of temperature (0.97) substantially exceeded that of

precipitation (0.30); among topographic variables, the loading of

elevation (0.97) surpassed that of slope (0.72). This confirms the

positive effect of climate warming on vegetation in mid-to-high and

high-altitude regions of northern latitudes (Wei et al., 2023), where

climatic conditions dominate and constrain the formation of

vegetation cover spatial patterns at the macro level (Woodward

and McKee, 1991).

Path analysis indicates that, on the one hand, climatic variables

exert a direct promoting effect on FVC (Figure 10). Figure 12

depicts how the correlation between temperature and precipitation

varies with annual lags of 0, 1, and 2 years, highlighting the

dependence of their association on temporal delays. and FVC.

Spatially, precipitation exhibits no significant lagged effect on
TABLE 10 Variance inflation factor (VIF) for each observed variable in the PLS-SEM model.

Latent variables Observed variables
VIF

2001-2022 2001 2012 2022

Climate
Temperature (Tmp) 3.54 3.58 3.43 3.70

Precipitation (Pre) 1.36 1.38 1.35 1.47

Top
Elevation (Ele) 3.80 3.85 3.67 3.89

Slope (Slp) 1.43 1.42 1.42 1.42

SOC
Soil type (Soilt) 1.34 1.34 1.34 1.34

Soil organic carbon (SOC) 1.31 1.32 1.31 1.30

Human
land-use change (LUCC) 1.44 1.02 1.01 1.02

Grazing intensity (LHGI) 1.40 1.31 1.38 1.43
TABLE 11 Model performance of the PLS-SEM.

Model performance
indicator

Types
Values

2001-2022 2001 2012 2022

R2

Climate 0.77 0.52 0.50 0.50

Top 0.65 0.61 0.51 0.60

Human 0.72 0.71 0.81 0.75

Soil 0.23 0.21 0.21 0.21

AVE

Climate 0.52 0.62 0.51 0.62

Top 0.73 0.72 0.73 0.72

Human 0.45 0.51 0.48 0.50

Soil 0.69 0.70 0.68 0.69

GOF / 0.47 0.42 0.42 0.43
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FVC, whereas temperature shows locally significant correlations

with FVC only at lag 1. During the same period, regions exhibiting a

positive response of FVC to temperature were primarily distributed

in the northeastern area of Qinghai Lake and the high-altitude

regions in the central and northwestern parts of the basin. The

extensive distribution of alpine steppe grasses, such as Stipa

purpurea, Kobresia pygmaea, and Sibbaldia tetrandra, whose

photosynthetic enzyme activity is more sensitive to temperature,

contributes to this pattern (Xiang et al., 2021).

Moderate warming enhances the activity of photosynthetic

enzymes in vegetation (Moore et al. , 2021), improves

photosynthetic efficiency, and promotes plant growth and

development. Furthermore, temperature increases mitigate low-

temperature stress in high-altitude regions to some extent,

thereby facilitating vegetation improvement (Wang et al., 2023c).

The regions exhibiting a positive response of FVC to precipitation

are primarily distributed in the middle reaches of the watershed and

the northwestern area of Qinghai Lake, with partial coverage in the

upper reaches of the Buha River (Figure 12A). In low-to-medium

elevation zones, suitable precipitation conditions foster abundant

soil moisture, thereby supporting vegetation growth (Dai

et al., 2022).

On the other hand, within the process whereby topographical

factors indirectly influence FVC, elevation exerts a crucial

regulatory effect on both air temperature and precipitation.
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Figure 13 illustrates the relationship between temperature,

precipitation, and FVC at different elevations, revealing that

vegetation exhibits a non-linear response to both temperature and

precipitation (Knapp et al., 2017). Determine the optimal range

based on the distribution of high-grade and medium-to-high-grade

FVC. Specifically, when precipitation falls below 325 mm, arid

conditions constrain the water supply required for vegetation

growth, inhibiting photosynthesis and leading to reduced

vegetation cover (Tezara et al., 1999). Conversely, when

precipitation exceeds 550 mm, excessive rainfall impairs soil

aeration, causing root hypoxia that suppresses plant respiration

and growth (Ben-Noah and Friedman, 2018).

Temperature and elevation exhibit a stronger linear dependency

(Piao et al., 2011; Tao et al., 2014, 2015). When temperatures fall

below -6°C, the extreme cold conditions at high elevation impair

vegetation’s water uptake efficiency, inhibiting growth (Zhai et al.,

2024). Conversely, temperatures above 0°C induce heat stress that

accelerates soil nutrient leaching, leading to a sharp decline in

vegetation organic matter (Fissore et al., 2008). Furthermore, it is

noteworthy that within the 3400–4100 m elevation range, FVC

exhibits heightened sensitivity to temperature fluctuations. Even

within the optimal temperature range, FVC struggles to attain high

values at greater elevations. Moreover, when temperatures deviate

from the optimal range, the decline in FVC becomes markedly more

pronounced. This evidence further demonstrates how elevation

modulates temperature ’s influence on FVC by altering

hydrothermal conditions (Guo et al., 2023).

Vegetation cover in the Qinghai Lake basin is primarily driven

by a synergistic mechanism of “climate dominance, topography

regulation”. Regarding climatic factors, temperature and

precipitation do not exert isolated effects on FVC but influence it

through synergistic interactions, with temperature demonstrating a

more pronounced driving role. Elevation, as the core topographic
TABLE 12 Direct, indirect and total impact of latent variables on FVC.

Relationship Direct Indirect Total

Top→ FVC -0.02 -0.44 -0.46

Climate → FVC 0.44 0.07 0.50

Human → FVC 0.26 0.00 0.26
FIGURE 10

The PLS-SEM model results illustrate the pathways and degrees of influence exerted by climatic factors (temperature(Tmp) and precipitation(Pre)),
topographical factors (elevation(Ele) and slope(Slp)), soil factors (soil type(Solit) and soil organic carbon(SOC)), and anthropogenic factors (land-use
change(LUCC) and grazing intensity(LHGI)) on FVC. Ellipses denote latent variables, while rectangles represent observed variables. Arrows indicate
associations between them. Red signifies negative correlations; black denotes positive correlations.
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factor, indirectly regulates the influence of climatic factors on FVC

by altering the spatial distribution of water and heat resources.

Concurrently, elevation and hydrotemperate conditions exhibit

threshold effects: within the mid-to-low elevation range of 3400–

4100 m, FVC responds more sensitively to hydrotemperate
Frontiers in Plant Science 16
conditions. Conversely, in high-elevation areas constrained by

extreme environments, FVC is generally lower. Precipitation

(325–550 mm) and air temperature (-6-0°C) exhibit optimal

ranges for vegetation growth; exceeding these thresholds

inhibits FVC.
FIGURE 11

Impact of each latent variable on the FVC by PLS-SEM (2001, 2012 and 2022). (a) Direct impact (B) Indirect impact (C) Total impact.
FIGURE 12

Correlations between precipitation at different lag periods and temperature and FVC. (A–C) represent the correlation between precipitation and FVC
at lags of 0-year, 1-year, and 2-year respectively; (D–F) represent the correlation between temperature and FVC at lags of 0-year, 1-year, and 2-year
respectively.
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4.2 The main factors influencing the
change in the FVC in the Qinghai Lake
Basin at the time scale

Figure 11 indicates that climatic variables primarily drive

temporal variations in forest cover within the Qinghai Lake

watershed. From 2001 to 2022, the direct positive influence of

climatic variables on forest cover diminished, while the positive

impact of human activities intensified. Spatio-temporal analysis of

FVC indicates that vegetation degradation is concentrated in the

central basin and northwestern Qinghai Lake regions. The trend

towards climate warming and moistening has intensified

evapotranspiration (Cui et al., 2019; Liu et al., 2021c), thereby

reducing regional water replenishment from precipitation (Liu

et al., 2021b; Zhou and Yu, 2025). As previously noted, when

climatic conditions exceed the upper limit for vegetation growth,

they conversely constrain vegetation improvement.Given the

heightened sensitivity of vegetation in low-medium elevation

regions, areas experiencing vegetation degradation within the

middle reaches of the watershed may be planted with shrubs

possessing strong soil-stabilising capabilities to prevent soil

erosion (Yu et al., 2022). For the northwestern region of Qinghai

Lake, measures may include applying organic fertilisers prior to the

vegetation regrowth season to enhance soil fertility, alongside

implementing seasonal grazing practices to prevent damage to

vegetation recovery on steep slopes (Wang et al., 2020).

The intensified direct promotion of human activities on FVC

suggests that recent efforts, such as the creation of ecological

protection zones and policies to revert grazing land to grassland

(Shao et al., 2017; Yan et al., 2022), have facilitated grassland

vegetation restoration. Owing to the intensification of overgrazing

in the late 1990s, which peaked in 2000 (Wu et al., 2021), the

ecological environment in the northwestern part of the Tibetan

Plateau was severely damaged, inhibiting vegetation growth in the

ecologically fragile Qinghai Lake Basin. However, existing research

has demonstrated that the policies and measures implemented after

2000, such as grazing bans (Yao et al., 2018) and the establishment
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of nature reserves (Shao et al., 2017; Liu et al., 2019a), contributed to

vegetation recovery.
5 Conclusion

This study analyzed the spatiotemporal evolution

characteristics of the FVC and its topographical effects in the

largest internal drainage basin (Qinghai Lake Basin) of the

Qinghai–Tibet Plateau from 2001 to 2022. The authors also used

geodetectors and PLS-SEMs to investigate the effects of different

driving factors on the FVC distribution and discussed the driving

mechanisms of spatiotemporal changes in the FVC. The

conclusions of the study are as follows:

(1) From 2001–2022, the FVC in the Qinghai Lake Basin

showed a significant fluctuating growth trend. Spatially, the FVC

in the Qinghai Lake Basin exhibited a pattern of overall

improvement and localized degradation. Areas of significant

improvement were primarily concentrated in the northwestern

region of the basin and the Habu River Basin, where FVC levels

primarily transitioned from low-grade FVC and medium-low FVC

to medium FVC and medium-high FVC. Areas of significant

degradation were primarily concentrated in the northern and

central regions of the basin, where FVC levels primarily

transitioned from high FVC and medium-high FVC to medium-

grade FVC. The basin’s FVC exhibits low spatial variability overall,

and areas with low-grade FVC and high variability highly overlap.

(2) Under different terrain conditions, the FVC in the Qinghai

Lake Basin first increases but then decreases with increasing

elevation, with the average FVC being highest at lower elevations.

The distribution of the FVC values becomes increasingly dispersed

as the slope steepness increases. The FVC values of the semishaded

slopes of the Qinghai Lake Basin are the most concentrated,

followed by those of the shaded slopes, semisunny slopes, and

sunny slopes. Additionally, the distribution of vegetation change

types varies significantly under different terrain conditions:

vegetation improvement types are primarily distributed at low
FIGURE 13

Relationship between FVC and climatic factors (temperature and precipitation) at different elevations. (A) Annual mean total precipitation and FVC.
(B) Annual mean air temperature and FVC.
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elevations, flat slopes, and shaded and semishaded slopes;

vegetation degradation types are primarily distributed at mid-

elevations, gentle to steep slopes, and sunny slopes; and

vegetation stability types are primarily distributed at high-

elevations, steep slopes, and semisunny slopes.

(3) In the single-factor analysis, the driving factors were ranked by

explanatory power as follows: elevation>temperature>land use>soil

organic carbon content>soil type>precipitation>slope>population

density>slope aspect. From the interaction analysis, the interactions

between temperature and all other factors, as well as the interactions

between elevation and all other factors, are all above 0. 40. The total

effect values of the latent variables on the FVC, ranked from highest to

lowest, are as follows: climate variables>topographic>variables>soil

variables>human-induced variables. Climate factors exert a direct

positive effect on FVC. Temperature and precipitation jointly

influence FVC through synergistic effects, with temperature playing

a more significant driving role. Topography primarily influences FVC

indirectly by regulating hydrological and thermal conditions

(temperature and precipitation). Each factor exhibits an optimal

range (elevation: 3400–4100 m, precipitation: 325–550 mm,

temperature: −6 to 0°C). When driving factors exceed these optimal

ranges, FVC is suppressed. Climate and human factors are the main

contributors to the temporal changes in the FVC in the Qinghai Lake

Basin. Under the influence of policies such as the establishment of

nature reserves and grazing bans, the positive role of human factors in

the temporal changes in the FVC is increasing, indicating that

reasonable human activities and appropriate management measures

can contribute to the recovery and protection of regional ecosystems.
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