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Qinghai Lake Basin is the largest endorheic basin in the northeastern part of the
Qinghai-Tibet Plateau (QTP). The vegetation dynamics are subject to dual
pressures from climate change and human activities. Previous studies have
neglected the interactions among driving factors, as well as the impact of
climate factors on vegetation under the regulatory role of topographic
elements. The present study utilises MODIS-EVI data from 2001 to 2022 to
estimate Fractional Vegetation cover (FVC) and to reveal the spatiotemporal
dynamics of vegetation cover through trend analysis and other methods.
Furthermore, it elucidates the effect of topographical factors on vegetation
distribution. Finally, geographic detectors and the partial least squares
structural equation model (PLS-SEM) were employed to quantify the impact
intensity of driving factors (including climate, human activities, topography, and
soil) and analyze their interactive effects and influence pathways on vegetation
cover. The results suggested that (1) FVC in the Qinghai Lake Basin increased
significantly (1.38x107*/a); notably, low-grade FVC areas exhibiting high volatility.
(2) The terrain effect displays clear differentiation characteristics. FVC peaks in the
elevation range of 3500-3800 m, FVC dispersion increased with slope, and
semishady/shady slopes dominated FVC distribution. The vegetation
improvement type is concentrated on low-elevation, flat slopes and shady
slopes, whereas the vegetation degradation type is distributed on middle- and
low-elevation slopes and semipositive slopes. (3) Climatic factors primarily exert
a direct positive influence on FVC. As far as climate factors are concerned, the
effects of temperature and precipitation on FVC do not act independently, but
act together through synergistic effects, with temperature showing a more
significant driving effect. Topography primarily affects FVC indirectly by
regulating water and heat conditions (temperature and precipitation). Each
factor possesses an optimal range (elevation: 3400-4100 m, precipitation:
325-550 mm, temperature: =6 to 0°C). When changes in these driving factors
exceed the optimal range, FVC is suppressed. On a temporal scale, climate
change and human activities are the dominant factors influencing the FVC in the
Qinghai Lake Basin. The positive effects of human factors on FVC
have strengthened.

KEYWORDS
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1 Introduction

The Qinghai-Tibet Plateau, among the region’s most sensitive
to global climate change (Liu et al, 2009; Meng et al, 2023),
possesses an extremely fragile ecosystem and functions as a
crucial ecological barrier and the “Asian water tower” (Immerzeel
et al, 2020; Yao et al, 2022). Vegetation serves as the pivotal
medium sustaining the hydrological cycle and regulating water
resources (Immerzeel et al, 2010). On the one hand, alpine
meadows and grasslands anchor soil through their root systems,
thereby slowing surface runoff velocity and prolonging precipitation
infiltration duration. This facilitates the replenishment of
underground aquifers by glacial meltwater and rainfall (Xiao
et al,, 2024). On the other hand, vegetative transpiration creates a
“biological pump”, modulating regional precipitation through land-
atmosphere feedback mechanisms (Yan et al., 2025). Vegetation, a
key indicator of ecosystem health (Shen et al., 2022), is essential for
maintaining carbon-oxygen balance, regulating climate, driving
hydrological cycles, and protecting biodiversity (Gerten et al.,
20045 Rice et al., 2004; Klynge et al., 2020). Changes in vegetation
dynamics indicate the ecosystem’s response to various drivers
(LaPaix et al., 2009). Fractional vegetation cover (FVC) is a
widely used metric for monitoring vegetation dynamics (Carlson
and Ripley, 1997; Li et al., 2024; Liu et al., 2024). Unlike vegetation
indices (VI) such as NDVI and EVI, which evaluate vegetation
health through greenness, FVC offers a more precise representation
of vegetation distribution and coverage (Anees et al.,, 2024). EVI
overcomes the saturation issue of NDVT in high FVC areas through
comprehensive atmospheric and soil background correction (Liu
and Huete, 1995; Gao, 1996). Therefore, estimating FVC using EVI
data better reflects changes in vegetation cover.

The Qinghai-Tibet Plateau, as a alpine mountain region, has
complex terrain conditions that regulate the spatial distribution of
solar radiation and precipitation, thereby significantly influencing
hydrothermal conditions (Li et al., 2021; Xian et al, 2024). As
elevation increases, the vertical zonation of vegetation becomes
increasingly pronounced, with topographic factors driving the
formation of vegetation cover spatial distribution patterns
through direct and indirect effects (Fan and Bai, 2021; Pu et al,
2025). Previous studies have investigated the influence of terrain on
vegetation cover by analysing the distribution characteristics and
trends of the NDVI under different topographic conditions, along
with the corresponding area proportions (Wang et al., 2022b;
Huang et al., 2023). However, Zou et al. (2025) explored the
global alpine zone and found that with increasing elevation, the
positive trend magnitude of vegetation greenness decreases, while
that of vegetated areal fraction increases in most regions (85.49%).
Furthermore, Slope aspect impacts alpine vegetation changes
globally, with distinct differences in vegetation greenness and
vegetated areal fraction trends across aspects (Wang et al., 2022d;
Huang et al., 2023). Therefore, relying solely on a single vegetation
index is insufficient to comprehensively reveal the comprehensive
effects of topography on vegetation cover. For example, although
the actual area of vegetation change under certain terrain conditions
may be small, its proportion of the total area of vegetation change
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under all terrain conditions may be high, which can lead to
uncertainty in the assessment of the impact of terrain factors on
vegetation change. By introducing a terrain distribution index
(Wang et al., 2023b), the influence of differences in the absolute
areas of different terrain factors can be eliminated, revealing the
impact of specific terrain factors on vegetation cover change and
clarifying the influence of different terrain conditions on the
distribution of vegetation change types and their
evolutionary trends.

The Qinghai Lake Basin, the largest endorheic basin in the
northeastern Qinghai-Tibet Plateau, is an alpine semi-arid
mountainous region that is highly sensitive to global climate
change (Aldwaik and Pontius, 2012; Cao et al., 2025). In recent
decades, the basin’s ecosystem has faced dual pressures from
climate warming and intensified human activities (Qin and
Huang, 1998; Dong et al., 2018; Zhang et al.,, 2025). Since the
1950s, the region has experienced grassland degradation and
aridification, with the vegetation growth environment continuing
to deteriorate (Shang and Long, 2007; Li et al., 2013; Wang et al.,
2022c). However, since 2005, the implementation of ecological
restoration projects has led to significant improvements in
grassland vegetation conditions, undergoing a complex process of
degradation and recovery (Dong et al., 2020). In previous studies,
Guo et al. (2014) analysed vegetation cover changes in the Qinghai
Lake basin from 2001 to 2012 using MODIS-EVT data, finding that
77.90% of the area showed an upward trend in EVIL The areas with
significant improvements were primarily concentrated along the
southern shore of Qinghai Lake and in the central part of the basin,
while areas of vegetation degradation were concentrated in the
eastern part of the basin; Xuelu et al. (2016) used average NDVI
during the growing season to analyse vegetation cover changes from
2001 to 2010, finding that areas with improved vegetation were
mainly concentrated in the Buha River basin and the central region
north of Qinghai Lake, while localized vegetation degradation was
observed along the shores of Qinghai Lake. Both studies confirm the
overall trend of vegetation improvement in the Qinghai Lake basin,
though differences in the areas showing improvement or
degradation may arise due to variations in remote sensing data
and the temporal scale of the studies. Vegetation dynamics result
from the interplay of natural factors and human activities (Liu et al.,
2019b; Gu et al., 2022), including climate change, topography, soil,
and human activities (such as grazing and land-use changes)
(Berdugo et al.,, 2022; Gao et al., 2022; Kolluru et al.,, 2022; Liu
etal., 2023). While climate factors are widely recognized as primary
drivers (Liu et al., 2021a; Xu et al., 2024), the exact contributions of
other influences remain unquantified. These drivers do not act
independently on vegetation; their interaction mechanisms and the
pathways through which they influence vegetation dynamics
remain unclear. In addition, traditional residual statistics methods
lack real data verification to distinguish between the effects of
climate change and human activities on vegetation dynamics
(Zhang and Ye, 2021).

Current research on vegetation dynamics in the Qinghai Lake
basin lacks long-term remote sensing data monitoring, and the
contributions of natural factors (such as climate change,
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topography, and soil) and human influences on FVC remain
underexplored. The study aims to strengthen understanding of
vegetation dynamics and driving mechanisms in the Qinghai Lake
basin through three objectives: (1) Employing the Sen slope
estimator and coefficient of variation to characterize the
spatiotemporal patterns and stability of FVC, and using a
transition matrix to capture spatiotemporal changes in FVC
across different grades; (2) Utilizing a terrain distribution index to
examine spatial patterns of FVC changes under varying terrain
conditions and to assess FVC distribution characteristics; (3)
Quantifying the impact of human activities on vegetation via land
use and resolution grazing intensity data, and integrating the
geographic detector model with the Partial least squares structural
equation modeling (PLS-SEM) to analyze the contributions of
various driving factors to FVC distribution and their mechanisms
on FVC’s spatiotemporal changes. The findings offer valuable
insights for ecological conservation in high-elevation semi-
arid ecosystems.

2 Materials and methods
2.1 Study area

The Qinghai Lake Basin, the largest endorheic basin in the
northeastern Tibetan Plateau (36°15’N-38°20’N, 97°50’E-101°20’E),
spans elevations from 3,173 to 5,279 m. Its topography is
characterized by high terrain in the northwest, lower areas in the
southeast, and a central lowland, forming a closed plateau basin
surrounded by mountains (Figure 1). Covering 29,661 km?> (Wang
et al., 2025), this basin lies at the intersection of China’s eastern
monsoon, southwestern alpine, and northwestern arid zones,

10.3389/fpls.2025.1691672

featuring a semiarid alpine climate with an average temperature
of 0.7 °C and annual precipitation of 404.1 mm (Zhang et al., 2024).
Qinghai Lake, China’s largest inland saltwater lake (Ma et al,
2024b), is situated in the basin’s southeast and is fed by about 50
rivers. The Qinghai Lake Basin comprises eight subbasins, with the
Buha River Basin being the largest, covering roughly 50% of the
total basin area (Zhang et al., 2014).

2.2 Data sources

In this study, we utilized MODIS data (MOD13Q1), specifically
the 16-day synthetic EVI index with a 250 m spatial resolution,
enhancing sensitivity in high-biomass regions. This data, acquired
from NASA, was preprocessed using ENVI software through
splicing, projection, and format conversion. The maximum value
composite (MVC) method was employed to mitigate the effects of
clouds, atmospheric conditions, and solar elevation, producing
monthly EVI data. These monthly figures were then averaged to
derive annual EVI data.

Vegetation growth is shaped by natural and anthropogenic
factors (Wang et al., 2023a; Zhao et al., 2024). This study
considered climatic variables (temperature and precipitation),
topographic features (elevation, slope, and aspect), soil properties
(soil type and organic carbon content), and anthropogenic factors
(land use, population density, and high-resolution grazing
intensity). To maintain consistency in spatial analysis and PLS-
SEM model construction, temperature, precipitation and grazing
intensity data were processed using inverse distance weighting
(IDW) (Lu and Wong, 2008). Digital Elevation Model (DEM)
data underwent bilinear interpolation (Xu et al., 2016), while land
use data employed nearest neighbour interpolation to preserve land

38°N

37°N

FIGURE 1
The geographic situation of the Qinghai Lake Basin.
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attribute characteristics. Data sources are detailed in Table 1. All
data were resampled in ArcGIS to a spatial resolution of 250 m
(Guo et al., 2024).

2.3 Study framework

The present study was divided into four stages (Figure 2). FVC
was estimated to use the MVC and the Dimidiate Pixel Model based
on MODIS-EV], in addition we calculated the average of the
individual driver variables. Subsequently, the Theil-Sen median
trend analysis and Mann-Kendall Test were employed to calculate
the trend of FVC from 2001 to 2022, and Coefficient of variation
(CV) was calculated to assess the volatility of FVC changes. Finally,
we analyzed FVC distribution characteristics under varying
conditions, employing terrain distribution index for topographic
areas to assess the dominant distribution of FVC changes. The
Geographic Detector quantified each driver’s impact on FVC’s
spatial distribution, and PLS-SEM model was used to examine
FVC’s driving mechanisms across temporal and spatial scales.

When conducting drive analysis using geographic detectors,
spatial discretization of continuous variable data is required. Based
on previous research, natural breakpoint methods are employed to
discretize data such as temperature, precipitation, and elevation
(Wang et al., 2023d; Yu et al., 2025). When constructing the PLS-
SEM model, all raw data undergoes standardized processing to
eliminate units of measurement, facilitating comparisons between
variables (Shi et al., 2024). Furthermore, based on the results from
the geodetector analysis, certain factors were excluded from the

TABLE 1 Sources of data.

10.3389/fpls.2025.1691672

PLS-SEM model construction due to their insufficient spatial
explanatory power (MA et al., 2024a).

2.4 Dimidiate pixel model

The dimidiate pixel model is a widely used approach for
estimating FVC (Leprieur et al., 1994). It is based on the premise
that the spectral data in a pixel is divided into two components: soil
and vegetation. Thus, EVI is derived from the two components of
soil and vegetation, and its calculation formula can be expressed as
Equation 1:

EVI = EVI,yy + EVl,,, (1)

where EVI,,; represents the pixel value of pure soil and EVI,,
represents the pixel value of pure vegetation. The binary pixel
model is not restricted by geographical conditions, is easy to
promote and use, and can reduce the influence of atmospheric
and soil backgrounds to a certain extent. The annual average EVI is
calculated via pixel-by-pixel calculations (Equation 2):

EVI = 2227 )

where 7 is the year number and EVI is the average value.
The EVI is used to calculate the FVC as follows (Equation 3):

EVI-EVI,y

EVI,i—EVl

FVC = 3)

In theory, EVI,,; should be approximately zero in most cases.
However, due to differences in surface environmental conditions

Data type Factors Abridge Resolution Source Time periods
Topography Slope Slp 90m - -
Topography Slope direction Asp 90m - -

. Geospatial data cloud (http://www.gscloud.cn/); National
T h Elevati El 90 2000
opography evation € m Tibetan Plateau Science Data Center (https://npdc.ac.cn/)
. . . https:
Climate Temperature Trmp 1 km National Tibetan Plateau Science Data Center (https:// 2001 - 2022
data.tpdc.ac.cn/)
ional Ti Pl i D https:
Climate Precipitation Pre 1 km National Tibetan Plateau Science Data Center (https:// 2001 - 2022
data.tpdc.ac.cn/)
National here D D https:
Land cover LUCC 30m ational Cryosphere Desert Data Center(https:// 2001 - 2022
data.tpdc.ac.cn/)
Human Activity 1 .
- term High -
ong 'erm lg, National Ecosystem Science Data Center(http://
resolution Grazing LHGI 250m 2001 - 2022
R nesdc.org.cn)
Intensity
Land Scan Global Population Data(https://
Human Activity Population density Popd 1 km landscan.ornl.gov) and International Soil Reference and 2001 - 2022
Information Centre (https://data.isric.org)
Soil Sol type Solt ~ Harmonized World Soil Database (HWSD) (https:// 2000
data.tpdc.ac.cn/)
H: i 1 il D: HWSD) (https:
Soil Soil organic carbon Ne® 250m armonized World Soil Database (HWSD) (htps:// 2000
data.tpdc.ac.cn/)
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FIGURE 2
Research process.

across regions, it varies over time and space, with a typical range of
-0.1 to 0.2. Similarly, it also changes with variations in vegetation
type and season. Therefore, a EVIy,; and EVI,,,
inaccurate. Thus, a 0.5% confidence level is selected, meaning that

values are clearly

pixels with a cumulative percentage of 0.5% are pure soil pixels, and
those with 99.5% are pure vegetation pixels. The corresponding EVI
values for these EVI,; and EVI,,,, respectively.
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2.5 Maximum value composite

The maximum value composite (MVC) method is the most
prevalent international approach for maximizing composites. It
effectively reduces partial interferences from clouds, atmospheric
conditions, and solar elevation angles in monthly EVI data (Li et al,,
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2019). Utilizing the MVC method, the annual maximum EVT value
is determined, enabling a more accurate reflection of surface
vegetation cover (Equation 4).

MEVI; = MAX(EVI) (4)

where i is the year number, j is the month number, and EVI;; is
the maximum EVI value for the month of the year.

2.6 Trend analysis

The Theil-Sen median trend analysis (Sen, 1968; Theil, 1992) is
a nonparametric statistical method for assessing interannual
changes in vegetation cover (Zuo et al, 2022). This method is
highly efficient and resistant to interference, and it can be expressed

as Equation 5.

p = median =51 1<i<j<n (5)

where n is the number of years studied, x; and x; are time series
data, and is the trend degree. When p< 0, the time series shows a
downward trend, and when p > 0, the time series shows an
upward trend.

The Mann-Kendall Test, a nonparametric method introduced
by Mann and Kendall, evaluates time series trends (Equationd 6).
Uninfluenced by sample values or distribution types, it effectively
analyzes overall data trends and is extensively applied in trend
analysis of non-normally distributed data (Fensholt et al., 2009).

n i-1

S=>>sign(x; - x;) (6)
i=2j=1
where x is the time series data, # is the number of data samples,
x; and x; are the data values corresponding to years i and j,
respectively, where i< j, and the sign is the sign function, with the
following rules (Equation 7):

1 xi—x]‘>0

sign(x; —x;)=¢ 0

; xi—x=0 (7)

-1 xi—Xj<0

When n >0, the standard normal distribution statistic Z is
calculated as follows (Equation 8):

S-1
4/ Var(S) §>0
Z= 0 $=0 (8)
S+1 S<0

\/ Var(S)

The variance formula is as follows (Equation 9):

Var(S) = n(n—ll)gms) (9)

where 7 is the number of sample data items.

Based on p and Z in trend analysis, we categorize spatial
variations in FVC into five types: significant improvement (p
>0.0005, |Z| =1.96), insignificant improvement (p>0.0005, |Z|
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<1.96), stabilization (|p|<0.0005, |Z| <1.96), insignificant
degradation (p <-0.0005, |Z| <1.96), and significant degradation
(p <-0.0005, |Z| >1.96).

2.7 Coefficient of variation

The coefficient of variation is used to indicate the degree of
fluctuation in geographic data (Equation 10) and can be used to a
certain extent to reflect grassland growth conditions (Tucker et al.,
1991; Mao et al., 2022):

CVive = 3 \/ ooy 21 (X - X)? (10)

where CVpy( is the coefficient of variation of the FVC; i is the
time series; X; is the FVC in year i; and X is the average FVC from
2001 to 2022.

2.8 Transition matrix

The FVC transition matrix effectively tracks the dynamics of
mutual conversions among various vegetation cover types within
the study area (Aldwaik and Pontius, 2012). It reveals the transition
direction for each vegetation cover type and specifies the conversion
area for each type (Equation 11).

si= | F o (11)

where i and j are the FVC grades studied throughout the study
period; 7 is the total number of FVC grades; and s;; is the total area
converted from grade i to grade j during the study period.

2.9 Terrain distribution index

To assess the influence of terrain on vegetation cover changes,
localized changes in specific terrains can appear disproportionately
large relative to their overall presence in the study area, potentially
skewing evaluations. To accurately determine the impact of terrain
factors on vegetation distribution changes, terrain area difference
correction is required (Wang et al., 2023b). The terrain area
correction coefficient is calculated using the following formula
(Equation 12):

k=3/% (12)

where §;, is the area of type i changes in terrain S,; S; refers to
the total area of type i changes; S, is the total area of terrain S,; S is
the total area of the study area; S;,/S, is the ratio of the area of type i
changes in terrain e; and §; is the ratio of the area of type i changes
in the study area. If k >1, it indicates that type i changes are
dominantly distributed in terrain e; if k=1, it indicates that type i
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changes are evenly distributed in terrain e; if k<1, it indicates that
type i changes are not dominantly distributed in terrain e.

2.10 Geographic detector

Utilizing geodetector to identify spatial variations in the FVC and
uncover the drivers of its spatial distribution hinges on the premise
that a significant influence of an independent variable on a dependent
variable (Wang et al., 2025) implies similar spatial distributions for
both. This method involves analyzing variance within and between
layers, calculating the single-factor q value, and the q value after
superimposing multiple factors (Equation 13), to assess interactions
and relationships between factors (Tao et al., 2022; Zuo et al,, 2022).

Factor detection assesses the influence of driving factors on
FVC, with larger values indicating stronger spatial explanatory
power. Interaction detection evaluates the impact of interactions
between two driving factors on FVC, determining whether the effect
is enhanced, weakened, or independent (Li et al., 2022; Lou et al,,
2023; Zhao et al., 2024). First, calculate the g-values for the two
individual factors Xn and Xm, as well as the q-value for the two-
factor interaction. By comparing q(Xn), q(Xm), and q(Xn[Xm),
determine the type of interaction between the two driving factors on
FVC (Table 2). This study implements the Geodetector method
using the GD package in R.

L
q=1-53N,0; (13)
n=1

Where g is the spatial heterogeneity of a certain indicator, N is
the total number of samples in the study area, o2 is the variance
of the indicator, A is the number of partitions, and L is the number
of partitions of variables or independent variables. The value
of q reflects the degree of spatial differentiation, with a range of
[0, 1]. The larger the g value is, stronger the spatial heterogeneity.
When g = 0, it indicates that is no spatial heterogeneity.

2.11 Partial least squares structural
equation model

A structural equation model was developed to examine the
influence of both natural variables (climate, topography, and soil)

TABLE 2 Types of interaction.

Interaction relationship lridcieiticn
types
q(Xn[Xm)< Min(q(Xm), q(Xn)) Nonlinear-weaken

Min(q(Xn), q(Xm))< 4(XnfXm)< Max(q(Xn), 4 Uni-variable weaken

(Xm))

q(Xn[Xm) > Max(g(Xn), g(Xm)) Bivariable enhanced
g(XnXm) = g(Xn) + g(Xm) Independent
q(Xn)Xm) > g(Xn) + q(Xm) Nonlinear enhanced

‘(Y denotes the interaction between factors Xn and Xm.
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and human-induced factors on FVC changes. Partial least squares
structural equation modeling (PLS-SEM) was employed to analyze
these systemic relationships (Pearl, 2012; Sarstedt et al., 2022). This
approach involves measurement and structural equations.
Measurement equations describe the links between indicators and
latent variables, while structural equations define the interactions
among latent variables. The measurement equations are formulated
as follows (Equation 14):

X=A,+6
(14)

Y= Ayn + &
where X and Y are vectors of exogenous and endogenous
indices, respectively, and vectors of exogenous and endogenous
latent variables. The corresponding parameter requires estimation,
and the disturbance term is included. The structural equation is

(Equation 15):

nN=Bn+TE+¢ (15)

B represents the relationship between endogenous latent
variables, I" denotes the influence of exogenous latent variables
on endogenous latent variables, and { is the error term.

This study employed the “plspm” package in R software to
construct the model, the performance of which was assessed
through the coefficient of determination (R?), R? > 0.67 indicates
that the observed variables possess strong explanatory power for the
latent variables (Sarstedt et al., 2022) and goodness-of-fit (GOF)
metrics, GOF > 0.36 indicates a strong degree of model fit (Wetzels
and Odekerken, 2009; Krimer and Sugiyama, 2011; Henseler and
Sarstedt, 2013) (Table 3).

3 Results and analysis

3.1 Characteristics of the spatial and
temporal variations of FVC

3.1.1 Temporal changes in the FVC

The FVC in the Qinghai Lake Basin fluctuated between 0.50 and
0.57 from 2001 to 2022 (Figure 3), with a multiyear FVC mean value
of 0.53, in which the maximum value of the FVC appeared in 2018,
the minimum value of the FVC appeared in 2001, and the basin’s
annual average FVC generally showed a fluctuating and increasing
trend. (Slope = 1.38 x 10%/a, p<0.005).

TABLE 3 PLS-SEM model evaluation criteria.

Criteria Value Description
R? > 0.67 Substantial explanatory power
R? >0.33 Moderate explanatory power
R? >0.19 Weak explanatory power
GOF >0.1 weak model fitting
GOF >0.25 medium model fitting
GOF >0.36 strong model fitting
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FIGURE 3

Temporal trends in the FVC from 2001 to 2022. (The green dots
represent the mean FVC for each year; the black line denotes the
interannual variation in FVC; and the blue dashed line indicates the
linear trend of this variation).

3.1.2 Spatial variation in the FVC

The study categorizes FVC into five grades: low coverage (0.00-
0.20), medium-low coverage (0.20-0.40), medium coverage (0.40-
0.60), medium-high coverage (0.60-0.80), and high coverage (0.80-
1.00). The spatial distribution of FVC in the Qinghai Lake Basin
from 2001 to 2022 (Figure 4A) reveals temporal changes in the
multi-year average FVC. Low and medium-low grade FVC areas,
covering 30.83% of the region, are mainly found in the basin’s
western part and along Qinghai Lake’s eastern shore. In
comparison, medium-high and high-grade FVC areas accounted
for 46.15% of the total area (Table 4). Larger units were
predominantly found in the central region of the basin, whereas
smaller units were distributed in a narrow, elongated, band-like
formation extending north-west from the south-western shore of
Qinghai Lake. Figure 4B depicts the FVC trend in the Qinghai Lake

10.3389/fpls.2025.1691672

Basin during this period. Significant changes affect 23.4% of the
basin, with 18.02% primarily occurring in the basin’s northwest and
the Buha River’s middle and lower reaches.

Significantly degraded areas account for 5.40% of the total area,
primarily concentrated in the central region basin north of Qinghai
Lake, while scattered occurrences are observed along the eastern
shore of Qinghai Lake, south of the lake, and in the southeastern
part of the basin. Area statistics for the five FVC types vary across
different FVC levels (Table 5). The data reveals that areas with
notable improvement in low and medium-low FVC constitute the
largest shares (23.49% and 24.12%, respectively). Conversely, high-
grade FVC areas are mostly stable (32.77%), indicating that
significant improvements are mainly in low and medium-low
FVC regions. Notably, areas with significant degradation are
predominantly those with medium to high FVC levels, with high-
grade FVC areas comprising 66.62% of total significant degradation.
This suggests that despite overall watershed improvement,
degradation persists in high-grade FVC regions.

The coefficient of variation (CV) for interannual FVC changes
ranged from 0.01 to 2.34, with an average of 0.16, demonstrating
significant spatial variability (Figure 4C). The study categorises the
degree of fluctuation in FVC changes into five classes: Stabilisation
(CV<0.07), Slight Fluctuation (CV:0.07-0.17) Moderate Fluctuation
(CV:0.17-0.30), High Fluctuation (CV:0.30-0.50) and Wild
Fluctuation (CV>0.50). In the central basin and the regions south
and east of Qinghai Lake, FVC fluctuations diminished, indicating
enhanced stability. In contrast, the northwestern basin and the
riparian areas of the Habu River basin exhibited heightened FVC
variability and reduced stability. Analysis of FVC stability types and
their proportions (Table 6) indicated that stable and high-volatile
types coexisted in low-grade FVC areas, with the stable type
comprising 51.73% and the high and sharp volatility types
together makvolatile 83%. This suggests a significant presence of
the stable type in low-grade FVC regions. Notably, regions with
high CV values overlapped considerably with low-grade FVC areas,
indicating that while vegetation in these areas improved, it became
less stable and more fragile compared to other regions.
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Spatial variation in the FVC from 2001 to 2022. (A) average FVC, (B) the trend types of the FVC, (C) the coefficient of variation (CV) of FVC.
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TABLE 4 Areas of different FVC grades and their percentages.

Grading Vegetation Area/  Percentage/

standard classification km? %
0.00-0.20 Low coverage 3938.13 15.53
0.20-0.40 Medium-low coverage 3876.75 15.29
0.40-0.60 Medium coverage 5836.00 23.02
0.60-0.80 Medium-high coverage 6685.63 26.37
0.80-1.00 High coverage 5013.88 19.78

3.1.3 Changes in the FVC of different classes

To quantitatively assess changes in FVC patterns, FVC class maps
from different periods were superimposed to derive the FVC transfer
matrix over time. Between 2001 and 2022, 11,130.56 km? of various
FVC grades experienced changes, excluding intra-grade transformations
(Table 7). From 2001 to 2012 (Table 8), areas of medium and medium-
high FVC increased, whereas low, medium-low, and high-grade FVC
areas decreased. The low-grade FVC saw the largest decline, shrinking
by 1,526.13 km?, primarily transitioning to medium-low (66.14%) and
medium-grade FVC (26.94%). Medium-grade FVC exhibited the most
significant area increase, totaling 1102.69 km”.

The expansion was primarily due to medium-low and medium-
high FVC, comprising 40.26% and 31.16%, respectively. Between
2012 and 2022 (Table 9), FVC grade distribution shifted
significantly. Medium-low and high-grade FVC areas increased,
while low, medium, and medium-high FVC areas decreased. The
largest area, 2599.38 km?2, transferred to medium-high FVC, was
predominantly medium and high FVC (44.02% and 48.63%,
respectively). The high-grade FVC area grew mainly from
medium and high-grade FVC, while medium and low-grade FVC
areas increased primarily from medium and low-grade FVC
(Figure 5). This suggests area conversion mainly occurs between
adjacent FVC classes, with vegetation improvement shifting to
higher FVC classes and degradation to lower ones. From 2001 to
2022, there was overall improvement and localized degradation,
with vegetation improvement mainly in low to medium-grade FVC
areas and degradation in medium to high-grade FVC areas.

3.2 Topographic effects of the FVC

Topography is a crucial nonzonal factor influencing vegetation
growth by altering the spatial distribution through its impact on air

TABLE 5 Areas of different types of changes in the FVC and their shares.

10.3389/fpls.2025.1691672

temperature, precipitation, and soil characteristics. This study
examines how elevation, slope, and slope orientation affect
changes in the FVC. FVC is categorized into three types:
degraded, stabilized, and improved. Elevation is divided into four
classes using the natural breakpoint method (Coulson, 1987): low-
elevation (<3500m), middle-low elevation (3500-3800m), middle-
elevation (3800-4200m), and high-elevation (>4200m). Slope
direction is classified into five categories (Han et al., 2023): flat
(-1°), shaded (0-67.5°, 337-360°), semishaded (67.5-112.5° 292.5-
337.5°), semipositive (112.5-157.5°, 247.5-292.5°), and sunny
(157.5-247.5°). Slopes are also categorized into five classes
according to the natural breakpoint method (Coulson, 1987): flat
(0-3°), gently sloping (3-7°), sloping (7-12°), steeply sloping (12-
18°), and sharply sloping (>18°).

3.2.1 Distributional characteristics of FVC change
types at different elevations

The changes in the FVC at different elevations (Figure 6A) were
concentrated between 0.40-0.50 at low elevations, between 0.6 and
0.8 at middle-low and middle elevations, and an important
concentration of FVC between 0.00 and 0.20 at high elevation.
From the viewpoint of vegetation change type, the change in FVC at
different elevations in the Qinghai Lake Basin varied significantly,
and in general, the K values of the vegetation stabilization and
vegetation stabilization types at different elevations clearly tended to
decrease first and then increase, and the K values of the vegetation
degradation types tended to increase first and then decrease
(Figure 6B). Specifically, the vegetation degradation type is
distributed mainly at middle-low and middle elevations. The
vegetation stabilization type is distributed mainly in low-, middle-
low- and high-elevation areas, and the K value in high-elevation
areas is the highest, at 1.51. The vegetation improvement type is
distributed mainly in low-elevation areas, and the vegetation
stabilization type is distributed mainly in high-elevation areas.

3.2.2 Distributional characteristics of FVC change
types at different slopes

The distribution of the FVC became increasingly discrete with
increasing slope, concentrating between 0.40 and 0.60 within a slope
of 0-3°, which is mainly concentrated between 0.60 and 0.80 within
the interval of 3°-20°and is mainly concentrated between 0.00 and
0.10 within the interval of greater than 20° (Figure 7A). The
vegetation-improving type was dominant mainly on flat slopes;
the vegetation-degrading type was dominant mainly on gently

Slope z Change type Area/km? Percentage/%
>0.0005 <-1.96 Significant degradation 1369.94 5.40
>0.0005 -1.96-1.96 Insignificant degradation 5573.06 21.98
-0.0005-0.0005 -1.96-1.96 stabilization 4640.31 18.30
<-0.0005 -1.96-1.96 Insignificant improvement 9197.62 36.28
<-0.0005 >1.96 Significant improvement 4569.31 18.02
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TABLE 6 Areas of the FVC stability type and its percentage.

Ccv Volatility level Area (%)

<0.07 Stabilization 17.09
0.07-0.17 Slight Fluctuation 47.37
0.17-0.30 Moderate Fluctuation 27.09
0.30-0.50 High Fluctuation 6.68
0.50-2.34 Wild Fluctuation 1.76

sloping, sloping and steep slopes; and the vegetation-stabilizing type
was dominant mainly on sharply sloping land (Figure 7B),
indicating that vegetation growth was unfavorable with increasing
slope gradient.

3.2.3 Distributional characteristics of FVC change
types with different slope directions

The distribution of the FVC became increasingly discrete with
increasing slope, concentrating between 0.40 and 0.60 within a slope
of 0-3°, which is mainly concentrated between 0.60 and 0.80 within
the interval of 3°-20°and is mainly concentrated between 0.00 and
0.10 within the interval of greater than 20° (Figure 8A). The
vegetation-improving type was dominant mainly on flat slopes;
the vegetation-degrading type was dominant mainly on gently
sloping, sloping and steep slopes; and the vegetation-stabilizing

10.3389/fpls.2025.1691672

type was dominant mainly on sharply sloping land (Figure 8B),
indicating that vegetation growth was unfavorable with increasing
slope gradient.

3.3 Analysis of drivers of FVC

3.3.1 Influence of driving factors on the spatial
distribution patterns of the FVC

The spatial distribution pattern of the Fractional Vegetation
Cover (FVC) was investigated by examining the influence of various
environmental and anthropogenic factors. The average FVC from
2001 to 2022 was used as the dependent variable, while surface
factors (elevation, slope, aspect, soil type, and soil organic carbon
content), climatic factors (air temperature and precipitation), and
human activity factors (land use, population density, and grazing
intensity) were considered as potential driving forces. The 22-year
average values of each factor were calculated and analyzed using a
geodetector approach. The results showed that the P-values for all
individual drivers and their interactions were less than 0.05,
indicating that the spatial distribution pattern of the FVC can be
comprehensively explained by the combined effects of these factors.

The relative importance of the drivers in explaining the
observed changes in fractional vegetation cover (FVC) was
assessed through a hierarchical analysis. The drivers were ranked
in descending order of explanatory power as follows: elevation >

TABLE 7 Statistical data on the areas of different FVC grades from 2001 to 2022.

2022
Low coverage Medium-low Medium Medium-high High coverage
coverage coverage coverage
Low coverage 5257.19 1661.19 490.63 77.06 25.81 7511.88
Medium-low coverage 412.69 1431.44 1360.63 427.13 90.69 3722.56
Medium coverage 103.44 495.00 1416.75 1164.56 390.25 3570.00
0 Medium-high coverage 37.94 130.19 940.31 1744.06 1368.63 4221.13
High coverage 26.94 57.88 337.13 1252.81 4650.06 6324.81
Total 5838.19 3775.69 454544 4665.63 6525.44 25350.38

TABLE 8 Statistical data on the areas of different FVC grades from 2001 to 2012.

2012
Low coverage Medium-low Medium Medium-high High coverage
coverage coverage coverage
Low coverage 5424.69 1380.38 562.25 122.94 21.63 7511.88
Medium-low coverage 458.38 1307.31 1345.88 510.94 100.06 3722.56
Medium coverage 81.13 552.50 1329.88 1165.50 441.00 3570.00
o Medium-high coverage 15.94 175.00 1041.56 1699.00 1289.63 4221.13
High coverage 5.63 56.88 393.13 1410.25 4458.94 6324.81
Total 5985.75 3472.06 4672.69 4908.63 631125 25350.38
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TABLE 9 Statistical data on the areas of different FVC grades from 2012 to 2022.

2022
Low coverage Medium-low Medium Medium-high High coverage
coverage coverage coverage
Low coverage 4989.00 823.19 144.50 23.44 5.63 5985.75
Medium-low coverage 652.81 1711.44 902.75 167.56 37.50 3472.06
Medium coverage 139.75 991.88 2075.94 1144.25 320.88 4672.69
o Medium-high coverage 4325 212.94 1121.31 2066.25 1464.88 4908.63
High coverage 13.38 36.25 300.94 1264.13 4696.56 6311.25
Total 5838.19 3775.69 4545.44 4665.63 6525.44 25350.38

temperature > land use > grasslands grazing intensity > soil organic
carbon content > soil type > precipitation > slope > population
density > slope orientation (Figure 9A). Notably, elevation and
temperature had the greatest individual effects, with the other
factors exhibiting smaller, yet significant, interactive influences.
The interaction detection analysis revealed the complex,
nonlinear relationships between the drivers and FVC changes
(Figure 9B). The two-factor interaction effects, as indicated by the
q-values, were generally stronger than the individual driver effects.
This suggests synergistic and amplifying interactions among the
drivers. Particularly strong interactions (q>0.40) were observed
between air temperature and other factors, as well as between
elevation and the remaining drivers. The interaction between
temperature and precipitation was the most pronounced (q=0.59).
Additionally, there were strong interactions (q>0.50) between

temperature and topography, land use, soil type, and soil organic
carbon content.

Factor detection quantified the explanatory power of different
drivers on the spatial distribution of FVC, the factors ranked from
highest to lowest explanatory power (q-value) were elevation >
temperature > land use > grasslands grazing intensity > soil organic
carbon content > soil type > precipitation > slope > population
density > slope orientation (Figure 9A). The interaction detector
analyzed the complex effects of complex interactions among drivers
on FVC. Results revealed that all interactions exhibited both
bivariate and nonlinear enhancement effects. Particularly strong
interactions (q>0.40) were observed between air temperature and
other factors, as well as between elevation and the remaining
drivers. The interaction between air temperature and
precipitation was the strongest (q=0.59), indicating an enhancing
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dominantly distributed in terrain e.

effect of their interaction on FVC. Additionally, the interactions
between air temperature and soil type, as well as between air
temperature and soil organic carbon content, were also
prominent, suggesting synergistic effects between air temperature
and soil factors that jointly influence vegetation cover.

3.3.2 Exploration of the driving mechanism via
the PLS-SEM

To examine the direct and indirect influences of various drivers
on FVC, the cumulative impact of these drivers on FVC is the
combined sum of their direct and indirect effects. Through the
utilization of Partial Least Squares Structural Equation Modeling
(PLS-SEM), a more comprehensive elucidation of the potential
influences and interrelations among the drivers can be achieved by
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incorporating latent variables. Owing to their low q values in the
geodetector analysis of the drivers’ impacts on the spatial
distribution of FVC, slope orientation and population density
were excluded from the model (MA et al,, 2024a). Four sets of
latent variables were established: climatic factors (temperature and
precipitation), topographical factors (elevation and slope), soil
characteristics (soil type and organic carbon content), and
human-related factors (grazing intensity and land use). Prior to
constructing the PLS-SEM model, the variance inflation factor
(VIF) was employed to assess multicollinearity among the
explanatory variables, evaluating the degree of collinearity
between them. The results indicated that all VIF values were
below 5 (Table 10), suggesting no significant covariance existed
between the variables (Thompson et al., 2017; Wang et al., 2022a).

(b)
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The topographic effects of FVC at different slopes. (A) Distribution of FVC under different slopes. (B) Distribution dominance of FVC change types at

different slopes, K-values is the Terrain distribution index, If k>1, it indicates that type i changes are dominantly distributed in terrain e; if k=1, it
indicates that type i changes are evenly distributed in terrain e; if k<1, it indicates that type i changes are not dominantly distributed in terrain e.
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Convergent validity was verified using average variance extracted
(AVE), with all latent variables exhibiting AVE values exceeding 5
(Nasution et al., 2020). This confirms that all factor loadings meet
the requirements for structural validity (Table 11). The model
performance metrics are detailed in Table 10. The R* value
indicates the model’s strong explanatory power, reflecting its
effectiveness in predicting endogenous latent variables. The
Goodness-of-Fit (GOF) value demonstrates the model’s robust fit.
Furthermore, all p-values are below 0.05, indicating that the path
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FIGURE 9

coefficients are statistically significant. These results underscore the
robust explanatory capacity of PLS-SEM in delineating causal
pathways (Table 3).

The total effect values of latent variables on FVC were ranked as
follows (Table 12): climatic variables (0.46) > topographic variables
(-0.46) > soil variables (0.35) > anthropogenic variables (0.26).
Among the direct effects on FVC (Figure 10), climatic (0.44) and
soil variables (0.35) were predominant. Conversely, the primary effect
was the inhibitory influence of topography on FVC, which negatively

(b)
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Factor detection and interaction detection results of the drivers of the FVC. (A) Driver factors and their g values. (B) Driver interactions and their g
values. (Asp-Slope direction, Slp-Slope, Ele-Elevation, Tmp-Temperature, Pre-Precipitation, LUCC-Land cover, LHGI-long-term High resolution
Grazing Intensity, Popd-Population density, Soilt-Soil type, SOC-Soil organic carbon). The *' symbol denotes nonlinear enhanced type, with all

others being bivariable enhanced.

Frontiers in Plant Science

13 frontiersin.org


https://doi.org/10.3389/fpls.2025.1691672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al. 10.3389/fpls.2025.1691672

TABLE 10 Variance inflation factor (VIF) for each observed variable in the PLS-SEM model.

Observed variables

Latent variables

Temperature (Tmp) 3.54 3.58 343 3.70
Climate
Precipitation (Pre) 1.36 1.38 1.35 1.47
Elevation (Ele) 3.80 3.85 3.67 3.89
Top
Slope (Slp) 143 142 142 142
Soil type (Soilt) 134 1.34 1.34 1.34
SOC
Soil organic carbon (SOC) 1.31 1.32 131 1.30
land-use change (LUCC) 1.44 1.02 1.01 1.02
Human
Grazing intensity (LHGI) 1.40 1.31 1.38 1.43

moderated the climatic variable (-0.42), while the climatic variable
also contributed to FVC by affecting the soil factor (0.07).

To assess the drivers influencing FVC dynamics, models for
2001, 2012, and 2022 were developed to quantify each driver’s direct
and indirect effects on FVC changes (Figure 11). Climate variables
exerted the greatest overall influence on FVC, though their direct
impact diminished over time (0.60, 0.47, 0.35). The direct negative
effects of anthropogenic factors initially increased but subsequently
decreased (-0.06, -0.19, -0.13). Topographic factors shifted from a
facilitating role in 2001 to an inhibitory one in 2012 and 2022 (0.12,
-0.02, -0.07), with their overall effect remaining negative (-0.36,
-0.43, -0.36). Soil factors consistently contributed to a stable positive
effect on FVC (0.31, 0.33, 0.32).

4 Discussion

4.1 Main mechanisms affecting the spatial
distribution of the FVC in the Qinghai Lake
Basin

Geodetector results indicate that both temperature and
elevation exert greater spatial explanatory power over FVC than

TABLE 11 Model performance of the PLS-SEM.

Model performance

other factors, whether acting as single drivers or through dual
interactions. Among these, the interaction between temperature
and precipitation exerts the most significant influence on FVC. This
demonstrates that climatic elements do not operate in isolation but
rather affect FVC through synergistic interactions. Furthermore,
PLS-SEM model results quantitatively rank the importance of each
driving factor (climatic variables > topographic variables > soil
variables > anthropogenic variables). Among climatic variables, the
loading of temperature (0.97) substantially exceeded that of
precipitation (0.30); among topographic variables, the loading of
elevation (0.97) surpassed that of slope (0.72). This confirms the
positive effect of climate warming on vegetation in mid-to-high and
high-altitude regions of northern latitudes (Wei et al., 2023), where
climatic conditions dominate and constrain the formation of
vegetation cover spatial patterns at the macro level (Woodward
and McKee, 1991).

Path analysis indicates that, on the one hand, climatic variables
exert a direct promoting effect on FVC (Figure 10). Figure 12
depicts how the correlation between temperature and precipitation
varies with annual lags of 0, 1, and 2 years, highlighting the
dependence of their association on temporal delays. and FVC.
Spatially, precipitation exhibits no significant lagged effect on

indicator

2001-2022
Climate 0.77 0.52 0.50 0.50
Top 0.65 0.61 0.51 0.60
RZ

Human 0.72 0.71 0.81 0.75
Soil 0.23 0.21 0.21 0.21
Climate 0.52 0.62 0.51 0.62
Top 0.73 0.72 0.73 0.72

AVE
Human 0.45 0.51 0.48 0.50
Soil 0.69 0.70 0.68 0.69
GOF / 0.47 0.42 0.42 0.43
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TABLE 12 Direct, indirect and total impact of latent variables on FVC.

Relationship Direct Indirect Total
Top— FVC -0.02 -0.44 ‘ -0.46

Climate — FVC 0.44 0.07 ‘ 0.50

Human — FVC 0.26 0.00 ‘ 0.26

FVC, whereas temperature shows locally significant correlations
with FVC only at lag 1. During the same period, regions exhibiting a
positive response of FVC to temperature were primarily distributed
in the northeastern area of Qinghai Lake and the high-altitude
regions in the central and northwestern parts of the basin. The
extensive distribution of alpine steppe grasses, such as Stipa
purpurea, Kobresia pygmaea, and Sibbaldia tetrandra, whose
photosynthetic enzyme activity is more sensitive to temperature,
contributes to this pattern (Xiang et al., 2021).

Moderate warming enhances the activity of photosynthetic
enzymes in vegetation (Moore et al, 2021), improves
photosynthetic efficiency, and promotes plant growth and
development. Furthermore, temperature increases mitigate low-
temperature stress in high-altitude regions to some extent,
thereby facilitating vegetation improvement (Wang et al., 2023c).
The regions exhibiting a positive response of FVC to precipitation
are primarily distributed in the middle reaches of the watershed and
the northwestern area of Qinghai Lake, with partial coverage in the
upper reaches of the Buha River (Figure 12A). In low-to-medium
elevation zones, suitable precipitation conditions foster abundant
soil moisture, thereby supporting vegetation growth (Dai
et al., 2022).

On the other hand, within the process whereby topographical
factors indirectly influence FVC, elevation exerts a crucial
regulatory effect on both air temperature and precipitation.

Topography

bt Slope

FIGURE 10

10.3389/fpls.2025.1691672

Figure 13 illustrates the relationship between temperature,
precipitation, and FVC at different elevations, revealing that
vegetation exhibits a non-linear response to both temperature and
precipitation (Knapp et al., 2017). Determine the optimal range
based on the distribution of high-grade and medium-to-high-grade
FVC. Specifically, when precipitation falls below 325 mm, arid
conditions constrain the water supply required for vegetation
growth, inhibiting photosynthesis and leading to reduced
vegetation cover (Tezara et al, 1999). Conversely, when
precipitation exceeds 550 mm, excessive rainfall impairs soil
aeration, causing root hypoxia that suppresses plant respiration
and growth (Ben-Noah and Friedman, 2018).

Temperature and elevation exhibit a stronger linear dependency
(Piao et al, 2011; Tao et al,, 2014, 2015). When temperatures fall
below -6°C, the extreme cold conditions at high elevation impair
vegetation’s water uptake efficiency, inhibiting growth (Zhai et al,
2024). Conversely, temperatures above 0°C induce heat stress that
accelerates soil nutrient leaching, leading to a sharp decline in
vegetation organic matter (Fissore et al., 2008). Furthermore, it is
noteworthy that within the 3400-4100 m elevation range, FVC
exhibits heightened sensitivity to temperature fluctuations. Even
within the optimal temperature range, FVC struggles to attain high
values at greater elevations. Moreover, when temperatures deviate
from the optimal range, the decline in FVC becomes markedly more
pronounced. This evidence further demonstrates how elevation
modulates temperature’s influence on FVC by altering
hydrothermal conditions (Guo et al., 2023).

Vegetation cover in the Qinghai Lake basin is primarily driven
by a synergistic mechanism of “climate dominance, topography
regulation”. Regarding climatic factors, temperature and
precipitation do not exert isolated effects on FVC but influence it
through synergistic interactions, with temperature demonstrating a
more pronounced driving role. Elevation, as the core topographic

§JLHGI

-0.32

The PLS-SEM model results illustrate the pathways and degrees of influence exerted by climatic factors (temperature(Tmp) and precipitation(Pre)),
topographical factors (elevation(Ele) and slope(Slp)), soil factors (soil type(Solit) and soil organic carbon(SOC)), and anthropogenic factors (land-use
change(LUCC) and grazing intensity(LHGI)) on FVC. Ellipses denote latent variables, while rectangles represent observed variables. Arrows indicate
associations between them. Red signifies negative correlations; black denotes positive correlations.
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FIGURE 11

Impact of each latent variable on the FVC by PLS-SEM (2001, 2012 and 2022). (a) Direct impact (B) Indirect impact (C) Total impact.

factor, indirectly regulates the influence of climatic factors on FVC  conditions. Conversely, in high-elevation areas constrained by
by altering the spatial distribution of water and heat resources.  extreme environments, FVC is generally lower. Precipitation
Concurrently, elevation and hydrotemperate conditions exhibit  (325-550 mm) and air temperature (-6-0°C) exhibit optimal
threshold effects: within the mid-to-low elevation range of 3400-  ranges for vegetation growth; exceeding these thresholds
4100 m, FVC responds more sensitively to hydrotemperate  inhibits FVC.
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FIGURE 12

Correlations between precipitation at different lag periods and temperature and FVC. (A—C) represent the correlation between precipitation and FVC
at lags of 0-year, 1-year, and 2-year respectively; (D—F) represent the correlation between temperature and FVC at lags of 0-year, 1-year, and 2-year
respectively.

Frontiers in Plant Science 16 frontiersin.org


https://doi.org/10.3389/fpls.2025.1691672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

10.3389/fpls.2025.1691672

FvC
5500 5 " 5500 oR G & O
(a) 0 Pre=325 mm ; Pre=550 mm (b) Tmp=-6°C : Tmp= 0°C : High
coverage
5000 5000
Medium-high
coverage
4500 ~4500
\E/ Medium
) coverage
= 4100
& 4000f 4080
Medium-low
coverage
3500 3500
400 3400 Low
. . coverage
3000 3000
300 350 400 450 500 550 600 650 -14 -12 -10 -8 -6 -4 -2 0 2
Pre (mm) Tmp (°C)

FIGURE 13

Relationship between FVC and climatic factors (temperature and precipitation) at different elevations. (A) Annual mean total precipitation and FVC.

(B) Annual mean air temperature and FVC.

4.2 The main factors influencing the
change in the FVC in the Qinghai Lake
Basin at the time scale

Figure 11 indicates that climatic variables primarily drive
temporal variations in forest cover within the Qinghai Lake
watershed. From 2001 to 2022, the direct positive influence of
climatic variables on forest cover diminished, while the positive
impact of human activities intensified. Spatio-temporal analysis of
FVC indicates that vegetation degradation is concentrated in the
central basin and northwestern Qinghai Lake regions. The trend
towards climate warming and moistening has intensified
evapotranspiration (Cui et al., 2019; Liu et al, 2021c), thereby
reducing regional water replenishment from precipitation (Liu
et al., 2021b; Zhou and Yu, 2025). As previously noted, when
climatic conditions exceed the upper limit for vegetation growth,
they conversely constrain vegetation improvement.Given the
heightened sensitivity of vegetation in low-medium elevation
regions, areas experiencing vegetation degradation within the
middle reaches of the watershed may be planted with shrubs
possessing strong soil-stabilising capabilities to prevent soil
erosion (Yu et al., 2022). For the northwestern region of Qinghai
Lake, measures may include applying organic fertilisers prior to the
vegetation regrowth season to enhance soil fertility, alongside
implementing seasonal grazing practices to prevent damage to
vegetation recovery on steep slopes (Wang et al., 2020).

The intensified direct promotion of human activities on FVC
suggests that recent efforts, such as the creation of ecological
protection zones and policies to revert grazing land to grassland
(Shao et al, 2017; Yan et al,, 2022), have facilitated grassland
vegetation restoration. Owing to the intensification of overgrazing
in the late 1990s, which peaked in 2000 (Wu et al, 2021), the
ecological environment in the northwestern part of the Tibetan
Plateau was severely damaged, inhibiting vegetation growth in the
ecologically fragile Qinghai Lake Basin. However, existing research
has demonstrated that the policies and measures implemented after
2000, such as grazing bans (Yao et al., 2018) and the establishment
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of nature reserves (Shao et al., 2017; Liu et al., 2019a), contributed to
vegetation recovery.

5 Conclusion

This study analyzed the spatiotemporal evolution
characteristics of the FVC and its topographical effects in the
largest internal drainage basin (Qinghai Lake Basin) of the
Qinghai-Tibet Plateau from 2001 to 2022. The authors also used
geodetectors and PLS-SEMs to investigate the effects of different
driving factors on the FVC distribution and discussed the driving
mechanisms of spatiotemporal changes in the FVC. The
conclusions of the study are as follows:

(1) From 2001-2022, the FVC in the Qinghai Lake Basin
showed a significant fluctuating growth trend. Spatially, the FVC
in the Qinghai Lake Basin exhibited a pattern of overall
improvement and localized degradation. Areas of significant
improvement were primarily concentrated in the northwestern
region of the basin and the Habu River Basin, where FVC levels
primarily transitioned from low-grade FVC and medium-low FVC
to medium FVC and medium-high FVC. Areas of significant
degradation were primarily concentrated in the northern and
central regions of the basin, where FVC levels primarily
transitioned from high FVC and medium-high FVC to medium-
grade FVC. The basin’s FVC exhibits low spatial variability overall,
and areas with low-grade FVC and high variability highly overlap.

(2) Under different terrain conditions, the FVC in the Qinghai
Lake Basin first increases but then decreases with increasing
elevation, with the average FVC being highest at lower elevations.
The distribution of the FVC values becomes increasingly dispersed
as the slope steepness increases. The FVC values of the semishaded
slopes of the Qinghai Lake Basin are the most concentrated,
followed by those of the shaded slopes, semisunny slopes, and
sunny slopes. Additionally, the distribution of vegetation change
types varies significantly under different terrain conditions:
vegetation improvement types are primarily distributed at low
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elevations, flat slopes, and shaded and semishaded slopes;
vegetation degradation types are primarily distributed at mid-
elevations, gentle to steep slopes, and sunny slopes; and
vegetation stability types are primarily distributed at high-
elevations, steep slopes, and semisunny slopes.

(3) In the single-factor analysis, the driving factors were ranked by
explanatory power as follows: elevation>temperature>land use>soil
organic carbon content>soil type>precipitation>slope>population
density>slope aspect. From the interaction analysis, the interactions
between temperature and all other factors, as well as the interactions
between elevation and all other factors, are all above 0. 40. The total
effect values of the latent variables on the FVC, ranked from highest to
lowest, are as follows: climate variables>topographic>variables>soil
variables>human-induced variables. Climate factors exert a direct
positive effect on FVC. Temperature and precipitation jointly
influence FVC through synergistic effects, with temperature playing
a more significant driving role. Topography primarily influences FVC
indirectly by regulating hydrological and thermal conditions
(temperature and precipitation). Each factor exhibits an optimal
range (elevation: 3400-4100 m, precipitation: 325-550 mm,
temperature: —6 to 0°C). When driving factors exceed these optimal
ranges, FVC is suppressed. Climate and human factors are the main
contributors to the temporal changes in the FVC in the Qinghai Lake
Basin. Under the influence of policies such as the establishment of
nature reserves and grazing bans, the positive role of human factors in
the temporal changes in the FVC is increasing, indicating that
reasonable human activities and appropriate management measures
can contribute to the recovery and protection of regional ecosystems.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material. Further inquiries can be
directed to the corresponding author.

Author contributions

JS: Funding acquisition, Writing - original draft, Formal
Analysis, Methodology, Software, Writing - review & editing, Data

References

Aldwaik, S. Z., and Pontius, R. G. (2012). Intensity analysis to unify measurements of
size and stationarity of land changes by interval, category, and transition. Landscape
Urban Plann. 106, 103-114. doi: 10.1016/j.Jandurbplan.2012.02.010

Anees, S. A., Mehmood, K., Rehman, A., Rehman, N. U., Muhammad, S., Shahzad,
F, et al. (2024). Unveiling fractional vegetation cover dynamics: A spatiotemporal
analysis using MODIS NDVI and machine learning. Environ. Sustainability Indic. 24,
100485. doi: 10.1016/j.indic.2024.100485

Ben-Noah, L, and Friedman, S. P. (2018). Review and evaluation of root respiration
and of natural and agricultural processes of soil aeration. Vadose Zone J. 17, 170119.
doi: 10.2136/v2j2017.06.0119

Berdugo, M., Gaitan, J. J., Delgado-Baquerizo, M., Crowther, T. W., and Dakos, V.
(2022). Prevalence and drivers of abrupt vegetation shifts in global drylands. Proc. Natl.
Acad. Sci. 119, €2123393119. doi: 10.1073/pnas.2123393119

Frontiers in Plant Science

18

10.3389/fpls.2025.1691672

curation. YD: Writing — original draft, Supervision, Writing — review
& editing, Conceptualization, Methodology. YW: Writing — review &
editing, Resources, Formal Analysis, Data curation, Methodology,
Conceptualization. CE: Resources, Writing — review & editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This research was funded
by the National Natural Science Foundation of China, grant
no. 42171011.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Cao, W., Wu, Y, Liu, ], Yuan, Y., Zhang, C., Zhao, S., et al. (2025). Seasonal variation
and key factors influencing evapotranspiration partitioning in alpine ecosystems of the
Qinghai Lake Basin. Ecol. Indic. 177, 113774. doi: 10.1016/j.ecolind.2025.113774

Carlson, T. N., and Ripley, D. A. (1997). On the relation between NDVI, fractional
vegetation cover, and leaf area index. Remote Sens. Environ. 62, 241-252. doi: 10.1016/
$0034-4257(97)00104-1

Coulson, M. R. C. (1987). In the matter of class intervals for choropleth maps: with
particular reference to the work of george F jenks. Cartographica 24, 16-39.
doi: 10.3138/U7X0-1836-5715-3546

Cui, M., Wang, J., Wang, S., Yan, H, and Li, Y. (2019). Temporal and spatial
distribution of evapotranspiration and its influencing factors on qinghai-tibet plateau
from 1982 to 2014. J. Resour. Ecol. 10, 213-224. doi: 10.5814/j.issn.1674-
764x.2019.02.012

frontiersin.org


https://doi.org/10.1016/j.landurbplan.2012.02.010
https://doi.org/10.1016/j.indic.2024.100485
https://doi.org/10.2136/vzj2017.06.0119
https://doi.org/10.1073/pnas.2123393119
https://doi.org/10.1016/j.ecolind.2025.113774
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.3138/U7X0-1836-5715-3546
https://doi.org/10.5814/j.issn.1674-764x.2019.02.012
https://doi.org/10.5814/j.issn.1674-764x.2019.02.012
https://doi.org/10.3389/fpls.2025.1691672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

Dai, L, Fu, R,, Guo, X, Du, Y., Zhang, F., and Cao, G. (2022). Soil moisture variations
in response to precipitation across different vegetation types on the northeastern
qinghai-tibet plateau. Front. Plant Sci. 13, 854152. doi: 10.3389/fpls.2022.854152

Dong, S., Shang, Z., Gao, J., and Boone, R. B. (2020). Enhancing sustainability of
grassland ecosystems through ecological restoration and grazing management in an era
of climate change on Qinghai-Tibetan Plateau. Agriculture Ecosyst. Environ. 287,
106684. doi: 10.1016/j.agee.2019.106684

Dong, H., Song, Y., and Zhang, M. (2018). Hydrological trend of Qinghai Lake over
the last 60 years: driven by climate variations or human activities? J. Water Climate
Change 10, 524-534. doi: 10.2166/wcc.2018.033

Fan, Z., and Bai, X. (2021). Scenarios of potential vegetation distribution in the
different gradient zones of Qinghai-Tibet Plateau under future climate change. Sci.
Total Environ. 796, 148918. doi: 10.1016/j.scitotenv.2021.148918

Fensholt, R., Rasmussen, K., Nielsen, T. T., and Mbow, C. (2009). Evaluation of earth
observation based long term vegetation trends — Intercomparing NDVT time series
trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT
VGT data. Remote Sens. Environ. 113, 1886-1898. doi: 10.1016/j.rse.2009.04.004

Fissore, C., Giardina, C. P., Kolka, R. K., Trettin, C. C,, King, G. M., Jurgensen, M. F.,
et al. (2008). Temperature and vegetation effects on soil organic carbon quality along a
forested mean annual temperature gradient in North America. Global Change Biol. 14,
193-205. doi: 10.1111/j.1365-2486.2007.01478 x

Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing
of vegetation liquid water from space. Remote Sens. Environ. 58, 257-266. doi: 10.1016/
$0034-4257(96)00067-3

Gao, W., Zheng, C,, Liu, X,, Lu, Y., Chen, Y., Wei, Y., et al. (2022). NDVI-based
vegetation dynamics and their responses to climate change and human activities from
1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecol. Indic. 137, 108745.
doi: 10.1016/j.ecolind.2022.108745

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S. (2004). Terrestrial
vegetation and water balance—hydrological evaluation of a dynamic global vegetation
model. J. Hydrology 286, 249-270. doi: 10.1016/j.jhydrol.2003.09.029

Gu, Y., Pang, B, Qiao, X,, Xu, D,, Li, W,, Yan, Y., et al. (2022). Vegetation dynamics
in response to climate change and human activities in the Hulun Lake basin from 1981
to 2019. Ecol. Indic. 136, 108700. doi: 10.1016/j.ecolind.2022.108700

Guo, Y., Cheng, L., Ding, A, Yuan, Y., Li, Z,, Hou, Y., et al. (2024). Geodetector
model-based quantitative analysis of vegetation change characteristics and driving
forces: A case study in the Yongding River basin in China. Int. J. Appl. Earth
Observation Geoinformation 132, 104027. doi: 10.1016/j.jag.2024.104027

Guo, W., Ni, X,, Jing, D., and Li, S. (2014). Spatial-temporal patterns of vegetation
dynamics and their relationships to climate variations in Qinghai Lake Basin using
MODIS time-series data. J. Geographical Sci. 24, 1009-1021. doi: 10.1007/s11442-014-
1134-y

Guo, J.,, Zhai, L., Sang, H., Cheng, S., and Li, H. (2023). Effects of hydrothermal
factors and human activities on the vegetation coverage of the Qinghai-Tibet Plateau.
Sci. Rep. 13, 12488. doi: 10.1038/s41598-023-39761-8

Han, J., Yin, H., Xue, J., Zhang, Z., Xing, Z, Wang, S., et al. (2023). Vertical
distribution differences of the understory herbs and their driving factors on shady and
sunny slopes in high altitude mountainous areas. Front. For. Glob. Change. 6, 1138317.
doi: 10.3389/tgc.2023.1138317

Henseler, J., and Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares
path modeling. Comput. Stat 28, 565-580. doi: 10.1007/s00180-012-0317-1

Huang, H,, Xi, G,, Ji, F,, Liu, Y., Wang, H., and Xie, Y. (2023). Spatial and temporal
variation in vegetation cover and its response to topography in the selinco region of the
qinghai-tibet plateau. Remote Sensing 15, 4101. doi: 10.3390/rs15164101

Immerzeel, W. W, Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., et al.
(2020). Importance and vulnerability of the world’s water towers. Nature 577, 364-369.
doi: 10.1038/s41586-019-1822-y

Immerzeel, W. W, van Beek, L. P. H., and Bierkens, M. F. P. (2010). Climate change
will affect the asian water towers. Science 328, 1382-1385. doi: 10.1126/science.1183188

Klynge, D., Svenning, J.-C., and Skov, F. (2020). Floristic changes in the understory
vegetation of a managed forest in Denmark over a period of 23 years — Possible drivers
of change and implications for nature and biodiversity conservation. For. Ecol. Manage.
466, 118128. doi: 10.1016/j.foreco.2020.118128

Knapp, A. K., Ciais, P, and Smith, M. D. (2017). Reconciling inconsistencies in
precipitation-productivity relationships: implications for climate change. New Phytol.
214, 41-47. doi: 10.1111/nph.14381

Kollury, V., John, R, Chen, J., Xiao, J., Amirkhiz, R. G., Giannico, V., et al. (2022).
Optimal ranges of social-environmental drivers and their impacts on vegetation dynamics
in Kazakhstan. Sci. Total Environ. 847, 157562. doi: 10.1016/j.scitotenv.2022.157562

Krémer, N., and Sugiyama, M. (2011). The degrees of freedom of partial least squares
regression. J. Am. Stat. Assoc. 106, 697-705. doi: 10.1198/jasa.2011.tm10107

LaPaix, R., Freedman, B., and Patriquin, D. (2009). Ground vegetation as an
indicator of ecological integrity. Environ. Rev. 17, 249-265. doi: 10.1139/A09-012

Leprieur, C., Verstraete, M. M., and Pinty, B. (1994). Evaluation of the performance
of various vegetation indices to retrieve vegetation cover from AVHRR data. Remote
Sens. Rev. 10, 265-284. doi: 10.1080/02757259409532250

Frontiers in Plant Science

19

10.3389/fpls.2025.1691672

Li, X,, Chen, J., Chen, Z, Lan, Y., Ling, M., Huang, Q., et al. (2024). Explainable
machine learning-based fractional vegetation cover inversion and performance
optimization - A case study of an alpine grassland on the Qinghai-Tibet Plateau.
Ecol. Inf. 82, 102768. doi: 10.1016/j.ecoinf.2024.102768

Li, X. L., Gao, J., Brierley, G., Qiao, Y. M., Zhang, J., and Yang, Y. W. (2013).
RANGELAND DEGRADATION ON THE QINGHAI-TIBET PLATEAU:
IMPLICATIONS FOR REHABILITATION. Land Degradation Dev. 24, 72-80.
doi: 10.1002/1dr.1108

Li, H., Renssen, H., and Roche, D. M. (2019). Global vegetation distribution driving
factors in two Dynamic Global Vegetation Models of contrasting complexities. Global
Planetary Change 180, 51-65. doi: 10.1016/j.gloplacha.2019.05.009

Li, J., Wang, J., Zhang, J.,, Liu, C,, He, S, and Liu, L. (2022). Growing-season
vegetation coverage patterns and driving factors in the China-Myanmar Economic
Corridor based on Google Earth Engine and geographic detector. Ecol. Indic. 136,
108620. doi: 10.1016/j.ecolind.2022.108620

Li, G, Yu, Z, Wang, W,, Ju, Q, and Chen, X. (2021). Analysis of the spatial
Distribution of precipitation and topography with GPM data in the Tibetan Plateau.
Atmospheric Res. 247, 105259. doi: 10.1016/j.atmosres.2020.105259

Liu, X, Cheng, Z., Yan, L., and Yin, Z.-Y. (2009). Elevation dependency of recent and
future minimum surface air temperature trends in the Tibetan Plateau and its
surroundings. Global Planetary Change 68, 164-174. doi: 10.1016/
j.gloplacha.2009.03.017

Liu, H. Q., and Huete, A. (1995). A feedback based modification of the NDVI to
minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens.
33, 457-465. doi: 10.1109/TGRS.1995.8746027

Liu, Y., Li, Z., and Chen, Y. (2021c). Continuous warming shift greening towards
browning in the Southeast and Northwest High Mountain Asia. Sci. Rep. 11, 17920.
doi: 10.1038/s41598-021-97240-4

Liu, C, Li, W., Wang, W., Zhou, H,, Liang, T., Hou, F,, et al. (2021a). Quantitative
spatial analysis of vegetation dynamics and potential driving factors in a typical alpine
region on the northeastern Tibetan Plateau using the Google Earth Engine. CATENA
206, 105500. doi: 10.1016/j.catena.2021.105500

Liu, Y., Liu, R, Qi, L., Chen, J., Dong, J., and Wei, X. (2024). Global mapping of
fractional tree cover for forest cover change analysis. ISPRS J. Photogrammetry Remote
Sens. 211, 67-82. doi: 10.1016/j.isprsjprs.2024.03.019

Liu, Q., Peng, C., Schneider, R., Cyr, D., Liu, Z., Zhou, X,, et al. (2023). Vegetation
browning: global drivers, impacts, and feedbacks. Trends Plant Sci. 28, 1014-1032.
doi: 10.1016/j.tplants.2023.03.024

Liu, L., Wang, Y., Wang, Z,, Li, D., Zhang, Y., Qin, D,, et al. (2019a). Elevation-
dependent decline in vegetation greening rate driven by increasing dryness based on
three satellite NDVI datasets on the Tibetan Plateau. Ecol. Indic. 107, 105569.
doi: 10.1016/j.ecolind.2019.105569

Liu, J., You, Y., Li, J., Sitch, S., Gu, X., Nabel, J. E. M. S., et al. (2021b). Response of
global land evapotranspiration to climate change, elevated CO2, and land use change.
Agric. For. Meteorology 311, 108663. doi: 10.1016/j.agrformet.2021.108663

Liu, Y., Zhao, W., Hua, T., Wang, S., and Fu, B. (2019b). Slower vegetation greening
faced faster social development on the landscape of the Belt and Road region. Sci. Total
Environ. 697, 134103. doi: 10.1016/j.scitotenv.2019.134103

Lou, P, Wu, T., Yang, S., Wu, X,, Chen, J., Zhu, X,, et al. (2023). Deep learning reveals
rapid vegetation greening in changing climate from 1988 to 2018 on the Qinghai-Tibet
Plateau. Ecol. Indic. 148, 110020. doi: 10.1016/j.ecolind.2023.110020

Lu, G. Y., and Wong, D. W. (2008). An adaptive inverse-distance weighting spatial
interpolation technique. Comput. Geosciences 34, 1044-1055. doi: 10.1016/
j.cageo.2007.07.010

Ma, Y., He, T., McVicar, T. R, Liang, S., Liu, T., Peng, W., et al. (2024b). Quantifying
how topography impacts vegetation indices at various spatial and temporal scales.
Remote Sens. Environ. 312, 114311. doi: 10.1016/j.rse.2024.114311

Ma, J,, Li, W.,, Dai, X,, and Tang, Y. (2024a). Spatio-temporal dynamics and
attribution analysis of vegetation in gansu province. Ecology and Environment 33,
1163-1173. doi: 10.16258/j.cnki.1674-5906.2024.08.001

Mao, P., Zhang, J., Li, M., Liu, Y., Wang, X,, Yan, R, et al. (2022). Spatial and
temporal variations in fractional vegetation cover and its driving factors in the Hulun
Lake region. Ecol. Indic. 135, 108490. doi: 10.1016/j.ecolind.2021.108490

Meng, Y., Duan, K., Shi, P., Shang, W., Li, S., Cheng, Y., et al. (2023). Sensitive
temperature changes on the Tibetan Plateau in response to global warming.
Atmospheric Res. 294, 106948. doi: 10.1016/j.atmosres.2023.106948

Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C.,
Bernacchi, C. J., et al. (2021). The effect of increasing temperature on crop
photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822-2844.
doi: 10.1093/jxb/erab090

Nasution, M. I, Fahmi, M., Jufrizen,, Muslih,, and Prayogi, M. A. (2020). The quality
of small and medium enterprises performance using the structural equation model-part
least square (SEM-PLS). J. Physics: Conf. Ser. 1477, 52052. doi: 10.1088/1742-6596/
1477/5/052052

Pearl, J. (2012). The causal mediation formula—A guide to the assessment of
pathways and mechanisms. Prev. Sci. 13, 426-436. doi: 10.1007/s11121-011-0270-1

frontiersin.org


https://doi.org/10.3389/fpls.2022.854152
https://doi.org/10.1016/j.agee.2019.106684
https://doi.org/10.2166/wcc.2018.033
https://doi.org/10.1016/j.scitotenv.2021.148918
https://doi.org/10.1016/j.rse.2009.04.004
https://doi.org/10.1111/j.1365-2486.2007.01478.x
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/j.ecolind.2022.108745
https://doi.org/10.1016/j.jhydrol.2003.09.029
https://doi.org/10.1016/j.ecolind.2022.108700
https://doi.org/10.1016/j.jag.2024.104027
https://doi.org/10.1007/s11442-014-1134-y
https://doi.org/10.1007/s11442-014-1134-y
https://doi.org/10.1038/s41598-023-39761-8
https://doi.org/10.3389/ffgc.2023.1138317
https://doi.org/10.1007/s00180-012-0317-1
https://doi.org/10.3390/rs15164101
https://doi.org/10.1038/s41586-019-1822-y
https://doi.org/10.1126/science.1183188
https://doi.org/10.1016/j.foreco.2020.118128
https://doi.org/10.1111/nph.14381
https://doi.org/10.1016/j.scitotenv.2022.157562
https://doi.org/10.1198/jasa.2011.tm10107
https://doi.org/10.1139/A09-012
https://doi.org/10.1080/02757259409532250
https://doi.org/10.1016/j.ecoinf.2024.102768
https://doi.org/10.1002/ldr.1108
https://doi.org/10.1016/j.gloplacha.2019.05.009
https://doi.org/10.1016/j.ecolind.2022.108620
https://doi.org/10.1016/j.atmosres.2020.105259
https://doi.org/10.1016/j.gloplacha.2009.03.017
https://doi.org/10.1016/j.gloplacha.2009.03.017
https://doi.org/10.1109/TGRS.1995.8746027
https://doi.org/10.1038/s41598-021-97240-4
https://doi.org/10.1016/j.catena.2021.105500
https://doi.org/10.1016/j.isprsjprs.2024.03.019
https://doi.org/10.1016/j.tplants.2023.03.024
https://doi.org/10.1016/j.ecolind.2019.105569
https://doi.org/10.1016/j.agrformet.2021.108663
https://doi.org/10.1016/j.scitotenv.2019.134103
https://doi.org/10.1016/j.ecolind.2023.110020
https://doi.org/10.1016/j.cageo.2007.07.010
https://doi.org/10.1016/j.cageo.2007.07.010
https://doi.org/10.1016/j.rse.2024.114311
https://doi.org/10.16258/j.cnki.1674-5906.2024.08.001
https://doi.org/10.1016/j.ecolind.2021.108490
https://doi.org/10.1016/j.atmosres.2023.106948
https://doi.org/10.1093/jxb/erab090
https://doi.org/10.1088/1742-6596/1477/5/052052
https://doi.org/10.1088/1742-6596/1477/5/052052
https://doi.org/10.1007/s11121-011-0270-1
https://doi.org/10.3389/fpls.2025.1691672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

Piao, S., Cui, M., Chen, A., Wang, X,, Ciais, P., Liu, J,, et al. (2011). Altitude and
temperature dependence of change in the spring vegetation green-up date from 1982 to
2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorology 151, 1599-1608.
doi: 10.1016/j.agrformet.2011.06.016

Pu, G., Han, L, Chen, L., Wan, D., and Teng, H. (2025). Elevational dynamics of
vegetation changes in response to climate change on the Tibetan plateau. Sci. Rep. 15,
9813. doi: 10.1038/541598-025-94896-0

Qin, B,, and Huang, Q. (1998). Evaluation of the climatic change impacts on the
inland lake - A case study of lake qginghai, China. Climatic Change 39, 695-714.
doi: 10.1023/A:1005319616456

Rice, A. H,, Pyle, E. H,, Saleska, S. R., Hutyra, L., Palace, M., Keller, M., et al. (2004).
CARBON BALANCE AND VEGETATION DYNAMICS IN AN OLD-GROWTH
AMAZONIAN FOREST. Ecol. Appl. 14, 55-71. doi: 10.1890/02-6006

Sarstedt, M., Ringle, C. M., and Hair, J. F. (2022). “Partial least squares structural
equation modeling,” in Handbook of market research. Eds. C. Homburg, M. Klarmann
and A. Vomberg (Springer International Publishing, Cham), 587-632.

Sen, P. K. (1968). Estimates of the regression coefficient based on kendall’s tau. J. Am.
Stat. Assoc. 63, 1379-1389. doi: 10.1080/01621459.1968.10480934

Shang, Z., and Long, R. (2007). Formation causes and recovery of the “Black Soil
Type” degraded alpine grassland in Qinghai-Tibetan Plateau. Front. Agric. China 1,
197-202. doi: 10.1007/s11703-007-0034-7

Shao, Q., Cao, W,, Fan, J., Huang, L., and Xu, X. (2017). Effects of an ecological
conservation and restoration project in the Three-River Source Region, China. J.
Geographical Sci. 27, 183-204. doi: 10.1007/s11442-017-1371-y

Shen, M., Wang, S,, Jiang, N, Sun, ], Cao, R,, Ling, X,, et al. (2022). Plant phenology
changes and drivers on the Qinghai-Tibetan Plateau. Nat. Rev. Earth Environ. 3, 633-
651. doi: 10.1038/s43017-022-00317-5

Shi, J., Zhang, P., Liu, Y., Tian, L, Cao, Y., Guo, Y., et al. (2024). Study on
spatiotemporal changes of wetlands based on PLS-SEM and PLUS model: The case
of the Sanjiang Plain. Ecol. Indic. 169, 112812. doi: 10.1016/j.ecolind.2024.112812

Tao, S., Peng, W., and Xiang, J. (2022). Spatiotemporal variations and driving
mechanisms of vegetation coverage in the Wumeng Mountainous Area, China. Ecol.
Inf. 70, 101737. doi: 10.1016/j.ecoinf.2022.101737

Tao, J., Zhang, Y., Dong, J., Fu, Y., Zhu, J,, Zhang, G., et al. (2015). Elevation-
dependent relationships between climate change and grassland vegetation variation
across the Qinghai-Xizang Plateau. Int. J. Climatology 35, 1638-1647. doi: 10.1002/
joc.4082

Tao, J., Zhang, Y., Zhu, ], Jiang, Y., Zhang, X., Zhang, T., et al. (2014). Elevation-
dependent temperature change in the Qinghai-Xizang Plateau grassland during the
past decade. Theor. Appl. Climatology 117, 61-71. doi: 10.1007/s00704-013-0976-z

Tezara, W., Mitchell, V. J., Driscoll, S. D., and Lawlor, D. W. (1999). Water stress
inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914-
917. doi: 10.1038/44842

Theil, H. (1992). “A rank-invariant method of linear and polynomial regression
analysis,” in Henri theil’s contributions to economics and econometrics: econometric
theory and methodology. Eds. B. Raj and J. Koerts (Springer Netherlands, Dordrecht),
345-381.

Thompson, C. G., Kim, R. S., Aloe, A. M., and Becker, B. J. (2017). Extracting the
variance inflation factor and other multicollinearity diagnostics from typical regression
results. Basic Appl. Soc. Psychol. 39, 81-90. doi: 10.1080/01973533.2016.1277529

Tucker, C. J., Newcomb, W. W, Los, S. O., and Prince, S. D. (1991). Mean and inter-
year variation of growing-season normalized difference vegetation index for the Sahel
1981-1989. Int. J. Remote Sens. 12, 1133-1135. doi: 10.1080/01431169108929717

Wang, S., Cui, D., Wang, L., and Peng, J. (2023a). Applying deep-learning enhanced
fusion methods for improved NDVI reconstruction and long-term vegetation cover
study: A case of the Danjiang River Basin. Ecol. Indic. 155, 111088. doi: 10.1016/
j.ecolind.2023.111088

Wang, H,, Liu, J., Luo, Z., Nazli, S., and Shi, L. (2025). Hydrologic response and
prediction of future water level changes in Qinghai Lake of Tibet Plateau, China. J.
Hydrology: Regional Stud. 57, 102168. doi: 10.1016/j.ejrh.2024.102168

Wang, X,, Liu, G., Xiang, A., Xiao, S., Lin, D,, Lin, Y., et al. (2023b). Terrain gradient
response of landscape ecological environment to land use and land cover change in the
hilly watershed in South China. Ecol. Indic. 146, 109797. doi: 10.1016/
j.ecolind.2022.109797

Wang, C., Ma, L, Zhang, Y., Chen, N., and Wang, W. (2022a). Spatiotemporal
dynamics of wetlands and their driving factors based on PLS-SEM: A case study in
Wuhan. Sci. Total Environ. 806, 151310. doi: 10.1016/j.scitotenv.2021.151310

Wang, H,, Qi, Y., Lian, X, Zhang, J., Yang, R, and Zhang, M. (2022c). Effects of
climate change and land use/cover change on the volume of the Qinghai Lake in China.
J. Arid Land 14, 245-261. doi: 10.1007/s40333-022-0062-4

Wang, Y., Sun, J., and Lee, T. M. (2023c). Altitude dependence of alpine grassland
ecosystem multifunctionality across the Tibetan Plateau. J. Environ. Manage. 332,
117358. doi: 10.1016/j.jenvman.2023.117358

Wang, Z., Wang, Y., Liu, Y., Wang, F., Deng, W., and Rao, P. (2023d).
Spatiotemporal characteristics and natural forces of grassland NDVI changes in
Qilian Mountains from a sub-basin perspective. Ecol. Indic. 157, 111186.
doi: 10.1016/j.ecolind.2023.111186

Frontiers in Plant Science

10.3389/fpls.2025.1691672

Wang, C., Wang, J., Naudiyal, N., Wu, N,, Cui, X., Wei, Y., et al. (2022b). Multiple
effects of topographic factors on spatio-temporal variations of vegetation patterns in the
three parallel rivers region, southeast ginghai-tibet plateau. Remote Sensing 14, 151.
doi: 10.3390/rs14010151

Wang, R, Wang, Y, and Yan, F. (2022d). Vegetation growth status and topographic
effects in frozen soil regions on the ginghai-tibet plateau. Remote Sensing 14, 4830.
doi: 10.3390/rs14194830

Wang, D., Zhou, H., Yao, B., Wang, W., Dong, S., Shang, Z., et al. (2020). Effects of
nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: A
meta-analysis. Agriculture Ecosyst. Environ. 301, 106970. doi: 10.1016/
j.agee.2020.106970

Wei, J., Liu, X., and Zhou, B. (2023). Sensitivity of vegetation to climate in mid-to-
high latitudes of asia and future vegetation projections. Remote Sens. 15, 2648.
doi: 10.3390/rs15102648

Wetzels, M., and Odekerken, G. (2009). Using PLS path modeling for assessing
hierarchical construct models: guidelines and empirical illustration. Manage. Inf. Syst.
Q. - MISQ 33, 177-195. doi: 10.2307/20650284

Woodward, F. I, and McKee, I. F. (1991). Vegetation and climate. Environ. Int. 17,
535-546. doi: 10.1016/0160-4120(91)90166-N

Wu, J., Li, M., Zhang, X,, Fiedler, S., Gao, Q., Zhou, Y., et al. (2021). Disentangling
climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland
productivity on the Qinghai-Tibetan Plateau. J. Environ. Manage. 281, 111875.
doi: 10.1016/j.jenvman.2020.111875

Xian, Y., Wang, T., Leng, W., Letu, H., Shi, J., Wang, G., et al. (2024). Can
topographic effects on solar radiation be ignored: evidence from the tibetan plateau.
Geophysical Res. Lett. 51, €2024GL108653. doi: 10.1029/2024GL108653

Xiang, X., Huang, Y.-M,, Yang, C.-Y,, Li, Z.-Q,, Chen, H.-Y., Pan, Y.-P,, et al. (2021).
Effect of altitude on community-level plant functional traits in the Qinghai Lake Basin,
China. Chin. ]. Plant Ecol. 45, 456-466. doi: 10.17521/cjpe.2020.0140

Xiao, T., Li, P., Fei, W., and Wang, J. (2024). Effects of vegetation roots on the
structure and hydraulic properties of soils: A perspective review. Sci. Total Environ.
906, 167524. doi: 10.1016/j.scitotenv.2023.167524

Xu, F,, Dong, G., Wang, Q,, Liu, L., Yu, W., Men, C, et al. (2016). Impacts of DEM
uncertainties on critical source areas identification for non-point source pollution
control based on SWAT model. J. Hydrology 540, 355-367. doi: 10.1016/
jjhydrol.2016.06.019

Xu, B, Li, ], Liu, Y., Zhang, T., Luo, Z., and Pei, X. (2024). Disentangling the
response of vegetation dynamics to natural and anthropogenic drivers over the
Qinghai-Tibet Plateau using dimensionality reduction and structural equation
model. For. Ecol. Manage. 554, 121677. doi: 10.1016/j.foreco.2023.121677

Xuelu, W, Tiangang, L., Hongjie, X., Xiaodong, H., and Huilong, L. (2016). Climate-
driven changes in grassland vegetation, snow cover, and lake water of the Qinghai Lake
basin. J. Appl. Remote Sens. 10, 36017. doi: 10.1117/1.JRS.10.036017

Yan, Y., Liu, Z., Chen, L., Chen, X,, Lin, K., Zeng, Z., et al. (2025). Earth greening and
climate change reshaping the patterns of terrestrial water sinks and sources. Proc. Natl.
Acad. Sci. 122, €2410881122. doi: 10.1073/pnas.2410881122

Yan, K., Wang, W., Li, Y., Wang, X, Jin, J., Jiang, J., et al. (2022). Identifying priority
conservation areas based on ecosystem services change driven by Natural Forest
Protection Project in Qinghai province, China. J. Cleaner Production 362, 132453.
doi: 10.1016/j.jclepro.2022.132453

Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., et al. (2022). The
imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618-632. doi: 10.1038/
543017-022-00299-4

Yao, Y., Wang, X,, Li, Y., Wang, T., Shen, M., Du, M., et al. (2018). Spatiotemporal

pattern of gross primary productivity and its covariation with climate in China over the
last thirty years. Global Change Biol. 24, 184-196. doi: 10.1111/gcb.13830

Yu, S., Liu, X., Chen, X., Sun, M., Cao, Y., Hu, J., et al. (2022). Effects of shrub
encroachment on grassland community and soil nutrients among three typical shrubby
grasslands in the alpine subhumid region of the Qinghai-Tibet Plateau, China. Front.
Ecol. Evol. 10, 1068200. doi: 10.3389/fev0.2022.1068200

Yu, K, Yang, C,, Wu, T., Zhai, Y., Tian, S., and Feng, Y. (2025). Analysis of vegetation
coverage changes and driving forces in the source region of the yellow river. Sci. Rep. 15,
22569. doi: 10.1038/s41598-025-06921-x

Zhai, B., Hu, Z., Sun, S., Tang, Z., and Wang, G. (2024). Characteristics of
photosynthetic rates in different vegetation types at high-altitude in mountainous
regions. Sci. Total Environ. 907, 168071. doi: 10.1016/j.scitotenv.2023.168071

Zhang, Z., Cong, Z., Gao, B., Li, G., and Wang, X. (2024). The water level change and
its attribution of the Qinghai Lake from 1960 to 2020. J. Hydrology: Regional Stud. 52,
101688. doi: 10.1016/j.ejrh.2024.101688

Zhang, J., Ma, X,, Qi, Y., Yang, R, Li, L., Zhang, ., et al. (2025). Effects of climate
change and human activities on grassland productivity: A case study of the Qinghai
Lake Basin, China. J. Arid Land 17, 997-1013. doi: 10.1007/s40333-025-0022-x

Zhang, G., Xie, H.,, Yao, T., Li, H., and Duan, S. (2014). Quantitative water resources
assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM). J. Hydrology
519, 976-987. doi: 10.1016/}.jhydrol.2014.08.022

Zhang, Y., and Ye, A. (2021). Quantitatively distinguishing the impact of climate
change and human activities on vegetation in mainland China with the improved

frontiersin.org


https://doi.org/10.1016/j.agrformet.2011.06.016
https://doi.org/10.1038/s41598-025-94896-0
https://doi.org/10.1023/A:1005319616456
https://doi.org/10.1890/02-6006
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1007/s11703-007-0034-7
https://doi.org/10.1007/s11442-017-1371-y
https://doi.org/10.1038/s43017-022-00317-5
https://doi.org/10.1016/j.ecolind.2024.112812
https://doi.org/10.1016/j.ecoinf.2022.101737
https://doi.org/10.1002/joc.4082
https://doi.org/10.1002/joc.4082
https://doi.org/10.1007/s00704-013-0976-z
https://doi.org/10.1038/44842
https://doi.org/10.1080/01973533.2016.1277529
https://doi.org/10.1080/01431169108929717
https://doi.org/10.1016/j.ecolind.2023.111088
https://doi.org/10.1016/j.ecolind.2023.111088
https://doi.org/10.1016/j.ejrh.2024.102168
https://doi.org/10.1016/j.ecolind.2022.109797
https://doi.org/10.1016/j.ecolind.2022.109797
https://doi.org/10.1016/j.scitotenv.2021.151310
https://doi.org/10.1007/s40333-022-0062-4
https://doi.org/10.1016/j.jenvman.2023.117358
https://doi.org/10.1016/j.ecolind.2023.111186
https://doi.org/10.3390/rs14010151
https://doi.org/10.3390/rs14194830
https://doi.org/10.1016/j.agee.2020.106970
https://doi.org/10.1016/j.agee.2020.106970
https://doi.org/10.3390/rs15102648
https://doi.org/10.2307/20650284
https://doi.org/10.1016/0160-4120(91)90166-N
https://doi.org/10.1016/j.jenvman.2020.111875
https://doi.org/10.1029/2024GL108653
https://doi.org/10.17521/cjpe.2020.0140
https://doi.org/10.1016/j.scitotenv.2023.167524
https://doi.org/10.1016/j.jhydrol.2016.06.019
https://doi.org/10.1016/j.jhydrol.2016.06.019
https://doi.org/10.1016/j.foreco.2023.121677
https://doi.org/10.1117/1.JRS.10.036017
https://doi.org/10.1073/pnas.2410881122
https://doi.org/10.1016/j.jclepro.2022.132453
https://doi.org/10.1038/s43017-022-00299-4
https://doi.org/10.1038/s43017-022-00299-4
https://doi.org/10.1111/gcb.13830
https://doi.org/10.3389/fevo.2022.1068200
https://doi.org/10.1038/s41598-025-06921-x
https://doi.org/10.1016/j.scitotenv.2023.168071
https://doi.org/10.1016/j.ejrh.2024.101688
https://doi.org/10.1007/s40333-025-0022-x
https://doi.org/10.1016/j.jhydrol.2014.08.022
https://doi.org/10.3389/fpls.2025.1691672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

residual method. GIScience Remote Sens. 58, 235-260. doi: 10.1080/
15481603.2021.1872244

Zhao, X, Tan, S, Li, Y., Wu, H,, and Wu, R. (2024). Quantitative analysis of fractional
vegetation cover in southern Sichuan urban agglomeration using optimal parameter
geographic detector model, China. Ecol. Indic. 158, 111529. doi: 10.1016/j.ecolind.2023.111529

Zhou, S., and Yu, B. (2025). Neglecting land-atmosphere feedbacks overestimates
climate-driven increases in evapotranspiration. Nat. Climate Change. 15 (10), 1099-
1106 doi: 10.1038/s41558-025-02428-5

Frontiers in Plant Science

21

10.3389/fpls.2025.1691672

Zou, L, Tian, F,, Liang, T., Fensholt, R, He, T., and Schaepman-Strub, G. (2025).
Topographic effects on vegetation greening and area expansion in global alpine zones
under climate change. Int. J. Appl. Earth Observation Geoinformation 142, 104727.
doi: 10.1016/}.jag.2025.104727

Zuo, Y., Li, Y., He, K., and Wen, Y. (2022). Temporal and spatial variation
characteristics of vegetation coverage and quantitative analysis of its potential
driving forces in the Qilian Mountains, China 2000-2020. Ecol. Indic. 143, 109429.
doi: 10.1016/j.ecolind.2022.109429

frontiersin.org


https://doi.org/10.1080/15481603.2021.1872244
https://doi.org/10.1080/15481603.2021.1872244
https://doi.org/10.1016/j.ecolind.2023.111529
https://doi.org/10.1038/s41558-025-02428-5
https://doi.org/10.1016/j.jag.2025.104727
https://doi.org/10.1016/j.ecolind.2022.109429
https://doi.org/10.3389/fpls.2025.1691672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Vegetation dynamics and its driving force in the Qinghai Lake Basin, China
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data sources
	2.3 Study framework
	2.4 Dimidiate pixel model
	2.5 Maximum value composite
	2.6 Trend analysis
	2.7 Coefficient of variation
	2.8 Transition matrix
	2.9 Terrain distribution index
	2.10 Geographic detector
	2.11 Partial least squares structural equation model

	3 Results and analysis
	3.1 Characteristics of the spatial and temporal variations of FVC
	3.1.1 Temporal changes in the FVC
	3.1.2 Spatial variation in the FVC
	3.1.3 Changes in the FVC of different classes

	3.2 Topographic effects of the FVC
	3.2.1 Distributional characteristics of FVC change types at different elevations
	3.2.2 Distributional characteristics of FVC change types at different slopes
	3.2.3 Distributional characteristics of FVC change types with different slope directions

	3.3 Analysis of drivers of FVC
	3.3.1 Influence of driving factors on the spatial distribution patterns of the FVC
	3.3.2 Exploration of the driving mechanism via the PLS–SEM


	4 Discussion
	4.1 Main mechanisms affecting the spatial distribution of the FVC in the Qinghai Lake Basin
	4.2 The main factors influencing the change in the FVC in the Qinghai Lake Basin at the time scale

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


