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Introduction: With the continuous advancement of agricultural technology,
automatic weed removal has become increasingly important for precision
agriculture. However, accurate weed identification remains challenging due to
the diversity and varying sizes of weeds, as well as the high visual similarity
between weeds and crops in terms of shape, colour, and texture.

Methods: To address these challenges, this study proposes the HDMS-YOLO
model for robust weed identification, trained and evaluated on the publicly
available CropAndWeed dataset. The model incorporates two novel feature
extraction modules—the Shallow and Deep Receptive Field Distillation (SRFD
and DRFD) modules—to effectively capture both shallow and deep weed
features. The traditional C3K2 structure is replaced by the Partial Convolution-
based Multi-Scale Feature Aggregation (PC-MSFA) module, which enhances
feature representation through partial convolution and residual connections. In
addition, a new IntegraDet dynamic task-alignment detection head is designed
to further improve localisation and classification accuracy.

Results: Experimental results show that HDMS-YOLO achieves an accuracy of
74.2%, a recall of 66.3%, and an mAP of 71.2%, which are 2.6%, 2.1%, and 2.6%
higher, respectively, than those of YOLO11l. Compared with other mainstream
algorithms, HDMS-YOLO demonstrates superior overall detection performance.
Discussion: The proposed HDMS-YOLO model exhibits strong capability in
extracting and representing weed features, leading to improved identification
accuracy and generalisation. These results highlight its potential application in
precision farm management and the development of intelligent weed-removal
robots for unmanned agricultural systems.
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1 Introduction

Weeds are invasive plants that compete with crops for essential resources like water,
nutrients, sunlight, and space, which results in reduced crop yields and hindered growth.
Additionally, weeds often act as hosts for pests and diseases, further exacerbating crop
losses (Zhu et al., 2020; Vasileiou et al., 2024; Wang et al., 2025). As a result, early-stage
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weed control is vital to preserve agricultural productivity and
minimize crop yield losses (Reuter et al., 2025). Traditional
methods, such as manual labor and chemical herbicide
application, are resource-intensive, costly, and environmentally
damaging due to pesticide residues and pollution risks (Yang
et al,, 2024; Munir et al,, 2024; Yu et al., 2025). Precision spraying
robots can achieve large-scale pesticide application on weeds,
effectively preventing issues related to chemical waste and
pesticide residue. Accurate weed detection is crucial for achieving
precise pesticide application to weeds (Upadhyay et al., 2024; Zhang
et al, 2023). With the widespread application of artificial
intelligence technology in agriculture, researchers have
increasingly applied deep learning methods to weed identification
and detection. Mesias et al. combined drone images with the
convolutional neural network model Inception-ResNet-v2 to
advance methods for identifying weeds in their early growth
stages, further promoting the precise and efficient implementation
of SSWM technology (Mesias-Ruiz et al., 2024). Veeragandham
et al. used the AlexNet, VGG-16, VGG-19, ResNet-50, and ResNet-
101 models to classify and compare 15 common weed species in a
peanut crop dataset, finding that the accuracy rate on VGG-19
without frozen layers exceeded 99% (Veeragandham and Santhi,
2022). Duong et al. were able to achieve automatic and highly
accurate detection of weeds through EfficientNet and transfer
learning (Duong et al., 2024). Jian et al. proposed a method for
identifying weeds during the seedling stage of soybeans using drone
data and deep learning algorithms (Cui et al., 2024).

Two-stage object detection method. Although they achieve high
accuracy, two-stage models often fail to meet the real-time
requirements for weed detection and localization. Two-stage
object detection requires generating candidate boxes in advance
before performing classification and regression. This process is
particularly computationally intensive when dealing with high-
resolution images or scenarios that generate numerous candidate
boxes, resulting in a significant decrease in the model’s inference
speed and making it unsuitable for real-time weed detection
applications with high-performance requirements. In contrast,
single-stage object detectors do not require pre-generated
candidate boxes and can directly predict weed categories and
bounding boxes on feature maps. The model structure of single-
stage object detectors is simpler than that of two-stage models,
making them easier to run on edge devices and suitable for real-time
weed detection applications. Zheng et al. improved YOLOvV8 by
utilizing Star Blocks and LSCSBD heads, which reduced the

Abbreviations: SRFD, Shallow Robust Feature Downsampling; DRFD, Deep
Robust Feature Downsampling; PC-MSFA, Partial Convolution Multi-Scale
Feature Aggregation; IntegraDet, Integrated Task-aligned Detection Head; FPS,
Frames Per Second; FLOPs, Floating Point Operations; mAP@0.5, Mean Average
Precision at IoU 0.5; mAP@0.5:0.95, Mean Average Precision at IoU 0.5 to 0.95;
GELU, Gaussian Error Linear Unit; GAP, Global Average Pooling; DCNv2,
Deformable Convolution v2; Conv, Convolution; o, Sigmoid Activation

Function; ®, Element-wise multiplication; 0, Element-wise multiplication
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parameters by 50% and the model size by 47%, achieving a model
detection accuracy of 98% mAP@50 and 95.4% mAP@50-95 on the
CottonWeedDet12 dataset (Lu et al., 2025). Li et al. enhanced the
YOLOv8 and DINO models using mainstream improvement
strategies. They validated the model’s effectiveness by
constructing a new winter wheat weed (3W) dataset (Li et al,
2024). Fan et al. proposed the YOLO-WDNet model, which
replaces CSPDarknet53 with ShuffleNet v2 to reduce the model’s
FLOPs. The PHAM mechanism and the improved BiFPN in the
model facilitate the extraction of plant features in complex scenes,
thereby enhancing the model’s accuracy (Fan et al., 2024). Feng
et al. proposed a 12-class cotton image dataset and evaluated the
impact of data augmentation on weed detection by comparing 18
YOLO models (Dang et al., 2023). Chen et al. proposed a YOLO-
based sesame weed detection model, YOLO-Sesame, by
incorporating an attention mechanism into the SPP structure,
utilizing the SE block to enhance local important pooling, and
integrating the ASFF structure to address false negatives, thereby
effectively improving detection accuracy (Chen et al., 2022). Ma
et al. proposed YOLO-CWD, which employs a novel hybrid
attention mechanism and loss function to enhance model
recognition accuracy, resulting in significant improvements in
detection performance on corn and weed datasets (Ma et al,
2025). Goyal et al. validated the YOLOv8 and Mask RCNN
models on potato plant and weed datasets, demonstrating that the
model can detect weeds in highly complex and severely occluded
environments (Goyal et al., 2025). Xu et al. integrated YOLOV5 with
the Vision Transformer to propose the W-YOLOV5 crop detection
algorithm (Xu et al.,, 2024).

The presence of various-sized weed targets has limited the
accuracy of the model. Especially for crops and weeds with
similar shapes, it cannot effectively distinguish them in complex
environments. To address this issue, this study proposes the
HDMS-YOLO model. It evaluates it on the CropAndWeed
dataset. Firstly, in the feature extraction part, the structured
reconstruction module of shallow features (SRFD) and the
dynamic reconstruction module of deep features (DRFD) are
introduced to form a hierarchical feature processing mechanism,
thereby effectively enhancing the perception ability of the model for
targets at different scales. The PC-MSFA module enhances weed
detection across varying scales via cross-stage partial connections
and progressive multi-scale feature aggregation. Thirdly, IntegraDet
enhances the model’s ability to distinguish morphologically similar
crops from weeds by dynamically adjusting the loss weights for
classification and regression tasks. The proposed HDMS-YOLO
detection model can accurately and in real-time identify the types
of weeds.

2 Materials and methods
2.1 Crop and weed dataset

This study used the CropAndWeed dataset to train and evaluate
the model (Steininger et al., 2023). Researchers collected and
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annotated the dataset from hundreds of commercial croplands in
Austria. They photographed many unique species in a controlled
outdoor environment and divided the dataset into multiple variants,
each containing different object classes. This study used the ‘Fine24’
variant of the dataset. This variant comprises 24 plant classes,
consisting of eight crop species and 16 weed species. This dataset
consists of 7,705 images, which were divided into three parts in the
ratio of 7:1:2: the training set, the validation set, and the test set,
containing 5,393, 770, and 1,542 images, respectively. The dataset
includes images captured under different lighting conditions, soil
types, and humidity levels. To provide a comprehensive overview of
the distribution of each category in the dataset, Figure 1 shows some
examples. Figure 2 displays the quantity and distribution
characteristics of various weed species.

2.2 Experimental setup

This experiment was conducted on a remote server. The
detailed computer software, hardware configuration and training
environment settings are shown in Table 1. This model was trained
using the CropAndWeed dataset. We set the batch size to 16, the
number of epochs to 300, the initial weights to random weights,
seed to 0, Momentum to 0.937, optimizer to SGD, learning rate to
0.01, workers to 8, and seed to 0. The size of the input images was
adjusted to 640 x 640 pixels.

2.3 Construction of weed detection model
based on MMDetection

MMDetection is an open-source object detection toolbox jointly
developed by the Multimedia Laboratory of the Chinese University

Crucifer

Geranium

FIGURE 1
Display of some dataset data.
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of Hong Kong (CUHK-MMLab) and SenseTime. It encapsulates
dataset construction, model building, and training strategies into
individual modules. We can implement a new algorithm with a
small amount of code through module invocation, significantly
enhancing code reusability. A notable advantage of MMDetection is
its fast training speed. In recent years, it has been widely used in
commercial research for detecting moving and stationary objects,
achieving higher accuracy than other object detection frameworks.
Built with PyTorch and CUDA, MMDetection provides powerful,
fast, and highly accurate results. Its products include well-known
models such as RetinaNet50, Fast R-CNN, and Faster R-CNN.

In our study, we employed RetinaNet along with Faster R-CNN.
The model employs FPN as its head, with ResNet-50 and ResNet-
101 serving as the backbone (Chen et al., 2019). Table 2 provides a
summary of the training parameters. These parameters include
iteration (the number of training iterations), Batch size (the number
of data samples per iteration), learning rate (LR), and Maximum
size (the maximum input image size).

2.4 Construction of a weed detection
model based on YOLO11

This study utilizes the YOLO11n model. YOLO11 is a target
detection model in the YOLO family, supporting detection,
classification, and segmentation tasks (Khanam and Hussain,
2024). The neck module of YOLO11 is an improvement based on
the concepts of Feature Pyramid Network (FPN) and Path
Aggregation Network (PAN). YOLOLI1 replaces the C2f module
in the neck with the C3k2 module, aiming to achieve faster speed
and higher efficiency, thereby enhancing the overall performance of
the feature aggregation process. Additionally, the C2PSA module in
the model enables it to focus on key areas in the image, significantly

03

Plantago

frontiersin.org


https://doi.org/10.3389/fpls.2025.1696392
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Hua et al. 10.3389/fpls.2025.1696392
12500 -
» 10000-
()
c
S 7500-
4+
0n
£ 5000-
2500- lI
o- Bllan l-r‘ k.
— e
S PEROCOERE CRUTSRRUITDY
‘R S UAUN BENN 2 9S00 S BaS Tol D
5 Phcc=Coz5920a5030
oY= n-:gEE“‘“So e g_mxm
o5 &0 02ESEEr £Io2
(%(n ON(OEC 0316
© 8
(a) (b)
1.0- 1.0-
0.8- 0.8~
0.6- 0.6=
0.4- 0.4-
0.2- 0.2~
0.0 a 1 0.0 1!‘ . [ 1 1 1
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(c) (d)
FIGURE 2
(a) Statistics and separation of data annotation files (Data annotation weed - species histogram); (b) Distribution map of the length and width of the
dataset annotation box; (c) Histogram of the dataset variables x and y; (d) Histogram of the width and height of the dataset variables.

improving its understanding of complex scenes. YOLO11 utilizes a
decoupled detection head to output prediction results from three
feature maps at varying scales, corresponding to different granular
levels of the image. This approach detects small targets at a finer
level while capturing large targets through higher-level features.

TABLE 1 Experimental conditions.

Device Version

GPU NVIDIA GeForce RTX 2080 Ti
Memory 11GB
Frame Pytorch 2.2.2
Tool Python 3.10.14
GPU accelerator CUDA 122
Frontiers in Plant Science 04

Although the small size of YOLO11 guarantees speed and
efficiency, its accuracy is relatively limited. To address this issue,
we developed an improved HDMS-YOLO model that can
accurately detect various weeds and crops under complex weather
conditions. Firstly, shallow feature extraction SRFD and deep
feature extraction DRFD modules (Lu et al., 2023) are introduced
in the feature extraction part to replace the convolutional modules
in the backbone network, thereby improving the model’s capability
to extract image features during detection processes. Secondly, we
propose a PC-MSFA module that combines partial convolution and
residual connections to expand the receptive field and enhance the
expressive power of the model. Finally, we propose a dynamic task
alignment integrated detection head to enhance target capture
capability, significantly improving detection performance. HDMS-
YOLO achieves higher detection accuracy in crop and weed
detection tasks. Figure 3 shows its architecture. The following
section provides detailed explanations.
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TABLE 2 Model structures and some hyperparameter settings based on MMDetection.

Model Backbone N7 licetyz) et Batch size Leelilig Max size (px)
workers (steps) rate
FPN 8 10000 8 0.01 640
Resnet50
FPN 8 60000 8 0.01 640
RetinaNet
FPN 8 10000 8 0.01 640
Resnet101
FPN 8 60000 8 0.01 640
FPN 8 10000 8 0.01 640
Resnet50
FPN 8 60000 8 0.01 640
Faster R-CNN
FPN 8 10000 8 0.01 640
Resnet101
FPN 8 60000 8 0.01 640
Backbone network Neck network Head network
Head —

Sugar beet
Head —| Sugar beet

PC-MSFA

BNV

SRFD

PC-MSFA

SRFD
PC-MSFA

PC-MSFA

PC-MSFA

SRFD

PC-MSFA

SPPF

C2PSA

FIGURE 3
The overall architecture of the HDMS-YOLO network.
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Input Conv

FIGURE 4
SRFD and DRFD module diagrams.

2.4.1 HRFN module

Traditional convolutional downsampling in object detection
networks often leads to the loss of crucial spatial details, which is
particularly problematic for detecting small weeds in agricultural
fields. To address this issue, we propose the Hierarchical Robust
Feature Network (HRFN), as shown in Figure 4, which replaces
conventional downsampling layers in the YOLO11 backbone with
two specialized modules: Shallow Robust Feature Downsampling
(SRFD) and Deep Robust Feature Downsampling (DRFD).

The SRFD module processes input images through a two-stage
downsampling pipeline. Initially, a 7x7 convolution extracts
preliminary features while preserving spatial resolution. In the
first stage, the image size is halved using two parallel pathways:
CutD, which retains spatial features through slicing, and ConvD,
which employs grouped convolutions to extract local features.
These features are then fused to retain both structural and
semantic information. In the second stage, the resolution is
reduced to a quarter, employing three parallel branches: ConvD
for context, MaxD for prominent features, and CutD for spatial
details, ensuring comprehensive feature preservation during the
downsampling process.

The DRFD module, designed for deeper layers, follows a similar
architecture with some key modifications. It doubles the number of
channels while halving the spatial dimensions, which increases the
network’s ability to represent more complex features. The DRFD
also incorporates GELU activation functions to enhance nonlinear
transformations, which are critical for capturing high-level
semantic patterns in agricultural scenes.

The core innovation of HREN is its multi-path fusion strategy.
Unlike traditional methods that rely on single convolution
operations for downsampling, our approach integrates three
complementary mechanisms: CutD preserves spatial structure,
ConvD extracts contextual features, and MaxD captures salient
patterns. This design ensures that critical information about small
weeds is preserved, even as spatial resolution decreases. The
hierarchical structure, with SRFD handling low-level details and
DRED processing deeper semantic features, creates a robust feature

Frontiers in Plant Science
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pyramid that excels at detecting weeds of varying sizes and
appearances in complex agricultural environments.

Our experiments show that this multi-path downsampling
approach significantly improves small object detection accuracy
compared to conventional methods, particularly in challenging
scenarios with occlusion, varying lighting, and dense crop
backgrounds. The HREN architecture effectively balances
computational efficiency and feature preservation, making it well-
suited for practical agricultural applications.

2.4.2 PC-MSFA module

The standard C3K2 module in YOLOI1 uses fixed-scale
convolutions, limiting its ability to detect weeds at different
growth stages. To overcome this, we propose the Partial
Convolution Multi-Scale Feature Aggregation (PC-MSFA)
module, which enhances multi-scale feature extraction efficiently.
As shown in Figure 5, PC-MSFA employs a hierarchical processing
strategy. Initially, the input features undergo a 3x3 convolution for
basic feature extraction. These feature maps are then split into
subsets: one subset is processed by a 5x5 convolution for medium-
scale features, and another by a 7x7 convolution for capturing
large-scale context. This partial convolution approach—applying
different kernels to specific channel subsets rather than all channels
—reduces computational overhead compared to full-scale
processing at multiple levels.

The multi-scale features are fused through a 1x1 convolution,
then combined with the original features via a residual connection.
This design preserves fine-grained details while capturing broader
contextual information, essential for detecting weeds at various
growth stages, from small seedlings to mature plants.

The key advantage of the PC-MSFA module lies in its efficient
multi-scale processing. By selectively applying convolutions to
channel subsets, it ensures comprehensive feature coverage
without redundant computations. This approach allows the
model to capture the morphological variations of weeds across
different growth stages while maintaining computational efficiency,
making it suitable for real-time field applications.
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PC-MSFA modules.

2.4.3 IntergraDet detection headers

Traditional yolo detection heads process classification and
regression tasks independently, leading to task misalignment that
reduces performance, especially for small and morphologically
similar weeds. To address this, we propose IntegraDet, a task-
aligned dynamic detection head that facilitates bidirectional
information flow between tasks through a unified processing
pipeline. As shown in Figure 6, IntegraDet processes multi-scale

features from the backbone layers via shared convolutions with
GroupNorm activation. These shared features are then decomposed
into task-specific representations using an attention-based
mechanism (Equation 1):

Agsk = (W, - 8(GAP(F))) (1)

Here, A, represents the channel attention weights, enabling
selective emphasis on task-relevant features. For the regression

Conv_ Reg
} Scale
—>|
Generator
Mask&offset i
Conv_GN ﬁ onv_Cls
P3 3*3
Scale
C
” ()
_ (onv_GN
3#3
PS5 g
Scale
ﬁ:GroupNorm

FIGURE 6
IntergraDet detection headers.
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branch, IntegraDet employs Deformable Convolution v2 to
adaptively adjust receptive fields (Equation 2):

Fypy = DCNVv2(F, Ap, m) (2)

Where Ap and m are dynamically predicted offsets and
modulation masks, respectively, allowing precise localization of
irregularly shaped weeds. The classification branch uses spatial
attention for foreground-background discrimination (Equations
3, 4):

Fyo=Ag0F (3)

Acls = O'(COIIlel(F)) (4)

Where Acls generates attention maps to suppress background
noise. Finally, the predictions are integrated across scales using
learnable parameters (Equations 5, 6):

Yreg = zai : Headreg(Freg,i) (5)

Ycls = EO{i . Headcls(Fcls,i) (6)

where o; adaptively weights contributions from different
feature levels.

This design transforms detection by establishing strong
connections between classification and localization, eliminating
the traditional disconnect between classification confidence and
localization precision. The combination of task decomposition,
deformable convolutions, and spatial attention mechanisms
enhances detection accuracy, particularly for small, densely
clustered weeds. It is especially effective in complex agricultural
environments where conventional methods struggle with
morphologically similar species and varying growth stages.

2.5 Evaluation indicators

To comprehensively evaluate the detection performance of the
proposed model, we introduce the standard evaluation metrics in
object detection (Equations 7-10). The evaluation metrics used in
this study include: precision, recall, average precision (AP), and
mean average precision (mAP). Precision measures prediction
accuracy by calculating the proportion of actual positive samples
among all samples predicted as positive. This metric reflects
prediction reliability. Recall assesses detection completeness by
measuring the proportion of actual positive samples correctly
identified. This metric reflects the model’s ability to detect targets.
Average precision (AP) comprehensively reflects the model’s
detection performance for a single category by calculating the
area under the precision-recall curve at various confidence
thresholds. Mean Average Precision (mAP) calculates the average
of AP values across all categories, providing an overall performance
assessment of the model in multi-category detection tasks. This
study employs two evaluation criteria: mAP@50 (IoU threshold =
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0.5) and mAP@50-95 (IoU thresholds from 0.5 to 0.95 at 0.05
intervals), with the latter providing a stricter performance

assessment.
i T
Precision = =+ (7)
_ _TP
Recall = TP+EN (8)
1
AP = / p(r)dr 9)
0
_ A
mAP = classel: (10)

num

Where TP (True Positive) TP (True Positive) refers to the
number of correctly detected targets, i.e., the number of samples
predicted by the model to be positive and being positive; FP (False
Positive) refers to the number of false positives, i.e., the number of
samples predicted by the model to be positive but being negative;
FN (False Negative) refers to the number of false negatives, i.e., the
number of samples that are positive but not detected by the model.

3 Results

3.1 Weed detection results based on
MMDetection

Weed detection usually starts with the widely used
MMDetection framework. Its highly modular code structure
allows flexible component combination and replacement, enabling
a unified configuration file system. This approach enhances clarity
and facilitates extension to other models. We employ two
established object detection algorithms, RetinaNet and Faster R-
CNN, each integrating a Feature Pyramid Network (FPN) model
head with a Resnet50 and Resnetl01 backbone. The training
process consists of two main phases. We converted LabelMe
annotation files to the standard COCO dataset JSON format. We
tune hyperparameters, such as learning rate and maximum
iterations, to optimize performance and reduce overfitting.
Table 3 shows that both RetinaNet and Faster R-CNN models,
using the MMDetection framework, exhibit good performance for
weed detection. As the number of iterations increases and with
larger backbone models (such as ResNetl01), the AP value
continues to improve.

3.2 The weed detection results based on
HDMS-YOLO

The HDMS-YOLO model demonstrates significant
performance improvements over the YOLOIl1ln base model,
especially in challenging weed categories. As shown in Table 4,
key performance improvements include increased accuracy and
recall for several crops. For Maize, accuracy improved from 90.1%
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TABLE 3 Different models based on MMDetection, training iterations, and model evaluation metrics under the backbone network. In the
MMDetection framework, AP stands for Average Precision (mAP).

Model Backbone  Head 't‘(*;t"";g‘s AP (%)  AP50 (%) AP75(%) APs(%)  APm(%)  APL(%)
FPN 10000 393 55.2 42.0 13.1 359 63.9
Resnet50
FPN 60000 422 60.8 45.3 15.0 41.2 68.3
RetinaNet
FPN 10000 39.7 56.0 422 12.7 374 62.3
Resnet101
FPN 60000 41.3 60.0 43.3 14.8 39.8 65.9
FPN 10000 425 61.1 46.1 17.8 41.4 63.6
Resnet50
E FPN 60000 40.0 60.0 42.7 17.0 39.6 62.6
asterR-
CNN FPN 10000 42.8 63.0 45.6 18.8 41.5 61.7
Resnet101
FPN 60000 39.6 59.3 41.9 155 38.7 65.3

TABLE 4 Comparison of weed detection results between YOLO11n and HDMS-YOLO.

HDMS-YOLO

Category  Instances = Precision (%) Recall (%) (%) mAP@50-95 (%) Precision (%) Recall(®%) = mAP@50 (%) mAP@50-95 (%)
Maize 1157 90.1 90.6 95.1 73.2 91.4 91.4 95.5 74.3
Sugar beet 1225 86.2 88.7 92.6 76.7 88.5 89.2 92.8 77.4
Sunflower 889 71.8 72.4 75.2 45.3 78.0 78.6 80.8 49.5
Bean 399 88.3 87.2 92.5 79.4 85.3 89.7 92.7 79.8
Pea 55 91.7 89.1 95.1 82.9 94.1 92.7 96.0 82.7
Soy 100 89.9 88.1 90.2 58.1 89.0 89.4 89.4 61.0
Potato 184 87.3 87.5 93.3 76.1 92.1 88.5 94.4 77.8
Pumpkin 120 90.3 93.0 96.4 88.0 91.0 92.2 95.5 89.7
Grasses 4046 68.8 55.6 60.7 28.0 70.2 555 62.8 29.6
Thistle 447 59.4 48.4 50.8 30.2 60.6 51.0 53.1 322
Geranium 782 64.9 51.7 57.5 38.1 70.6 53.7 62.4 41.7
Knotweed 674 66.8 55.0 62.1 36.8 71.5 58.5 65.5 39.0
Amaranth 140 742 82.9 83.9 50.8 79.2 82.9 86.0 51.1
Goosefoot 48.0 29.0 18.8 19.3 13.0 254 12.5 15.0 9.7
Potato weed 232 60.8 50.4 54.9 40.8 63.6 522 56.5 40.9
Chamomile 485 60.3 48.2 52.2 30.2 58.6 49.7 53.0 30.5
Crucifer 540 74.6 68.7 71.3 51.9 75.7 68.5 73.0 53.4
Plantago 1921 75.3 71.9 77.1 539 75.1 73.9 79.6 56.6
Poppy 246 69.4 20.3 36.1 21.2 68.0 31.9 44.8 248
Corn spurry 1160 58.4 48.4 49.2 232 61.5 47.8 524 24.8
Mercuries 449 56.5 53.2 56.9 35.8 70.5 57.5 65.6 41.5
Solanales 257 73.5 72.3 76.4 50.9 82.6 74.0 80.5 54.1
Chickweed 251 68.4 45.0 52.5 27.8 75.6 48.2 59.0 29.2
Labiate 91 63.1 52.6 54.6 24.3 63.7 61.5 62.9 29.7
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to 91.4%, while recall remained consistent at 91.4%. Similarly, Sugar
beet saw its accuracy rise from 86.2% to 88.5%, and recall increased
from 88.7% to 89.2%. In Sunflower, accuracy increased from 71.8%
to 78.0%, with recall rising from 72.4% to 78.6%. These
improvements highlight HDMS-YOLO’s enhanced capability in
handling diverse crop categories, even under complex conditions.

In more challenging categories, the model showed notable
improvements. Grasses exhibited a performance boost, with
accuracy increasing from 68.8% to 70.2%. Geranium saw a
significant rise in accuracy, increasing by 5.7 percentage points,
from 64.9% to 70.6%, with recall improving by 2.7 percentage
points. As shown in Figure 7, HDMS-YOLO successfully identified
and differentiated various crops and weeds in a real-world
agricultural setting, emphasizing its practical application for
precision farming.

The model also demonstrated improved performance in small-
sample categories. For example, Pea accuracy increased from 91.7%
to 94.1%, and Labiate saw mAP50 improve from 54.6% to 62.9%.
However, Goosefoot and Poppy showed slight reductions in
performance due to limited sample sizes and high visual
similarity between species. Despite these minor reductions,
HDMS-YOLO exhibited robust performance overall.

The integration of the HRFN and PC-MSFA modules
contributed significantly to these results. These modules enhanced
precision and recall across both complex and small-sample weed
categories, further boosting the model’s adaptability to real-world
agricultural environments. For a detailed visualization of the
detection results, refer to Figure 7, which showcases how HDMS-
YOLO distinguishes between different types of weeds and crops in
various scenarios.

10.3389/fpls.2025.1696392

3.3 Ablation experiment results

As summarized in Table 5, the ablation experiments
demonstrate that each proposed module contributes to
performance improvements. HRFN enhances recall, PC-MSFA
increases precision and mAP@50, and IntergraDet strengthens
both localization and classification. When integrated, these
modules provide consistent gains, with the complete HDMS-
YOLO model achieving 74.2 percent precision, 66.3 percent
recall, an mAP@50 of 71.2 percent, and an mAP@50-95 of 49.2
percent, substantially outperforming the baseline.

In terms of efficiency, the YOLO11 baseline required 6.3G FLOPs
and delivered 540 frames per second. The final model increased the
computational load to 10.5G FLOPs but remained compact, with 2.27
million parameters corresponding to a size of 4.6 MB, and sustained
real-time inference at 263 frames per second, or 6.7 milliseconds per
image. These results confirm that the proposed architecture enhances
detection accuracy while maintaining efficiency.

The convergence behavior illustrated in Figure 8 further
validates the robustness of the model. Training and validation
losses decrease smoothly and align closely in the later stages,
while accuracy curves remain stable with minimal fluctuations,
demonstrating strong generalization capability.

3.4 Model performance comparison results
3.4.1 Comparison results of different models

To comprehensively evaluate the effectiveness of HDMS-
YOLO, we compared it with mainstream detectors, optimized
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Based on the weed detection results of HDMS-YOLO, the colors of different boxes represent different types of weeds.
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TABLE 5 Results of the ablation experiment.

10.3389/fpls.2025.1696392

Number = HRFN J;;:F'A IntergraDet  Precision(%) Recal¥) =~ mAP@50(%)  mAP@50-95(%) FLOPS(G) FPS(frames/s) Pa;ir;;et)ers
1 716 642 686 474 63 540 2586832
2 v 716 65.3 694 477 76 136 2594288
3 v 727 645 696 476 77 552 2633688
4 v 72.4 65.0 68.9 47.7 7.9 301 2201699
5 v v 73.0 65.0 70.1 48.0 8.9 443 2641144
6 v v 74.4 65.6 70.1 48.3 9.2 260 2209155
7 v v 72.8 65.4 70.3 48.4 9.3 537 2516072
8 v v v 74.2 66.3 71.2 49.2 10.5 263 2270699

variants, and transformer-based models. As shown in Table 6,
HDMS-YOLO achieved an mAP@50 of 71.2 percent and an
mAP@50-95 of 49.2 percent, outperforming lightweight models
such as YOLOv8n, YOLOv10n, and YOLOvI2n (Talaat and
ZainEldin, 2023; Tian et al., 2025; Wang et al., 2024), and
maintaining a 0.2-point lead over YOLOV9t (Yaseen, 2024). It
also surpassed optimized variants, exceeding the YOLO-CWD
model proposed by Ma et al. with 66.9 percent and 45.6 percent,
and the YOLO-CBAM model proposed by Wang et al. with 70.5
percent and 48.4 percent (Ma et al, 2025; Wang et al, 2022).
Compared with transformer-based detectors, HDMS-YOLO
approached the accuracy of DINO (Zhang et al., 2022), which
reached 50.2 percent mAP@50-95, and outperformed Deformable
DETR (Zhu et al., 2020) with 47.6 percent, while requiring only 10.5
GFLOPs, far less than their 178.5 and 173 GFLOPs.

Beyond accuracy, HDMS-YOLO also demonstrates a favorable
trade-off between precision and complexity. As shown in Figure 9, it
achieved the highest mAP@50 among lightweight YOLO models
while maintaining low FLOPs, improving by about 3 percent over

YOLOv11n without a noticeable increase in computation. Unlike
two-stage detectors such as RetinaNet and Faster R-CNN, which
demand much higher computational cost but deliver lower
accuracy, HDMS-YOLO thus proves particularly effective in low-
resource environments. Its efficiency is further supported by the
results in Table 7, where the model completed evaluation in 18
seconds with an inference time of 6.8 milliseconds per image.
Although YOLOv11n achieved a slightly shorter total time of 17
seconds, its longer postprocessing offset the gain, and the marginal
inference difference is negligible given the superior accuracy of
HDMS-YOLO.

Figure 10 visually compares the weed detection effects of HDMS-
YOLO with other models (YOLOvS, YOLO11, YOLO12). The results
demonstrate that HDMS-YOLO outperforms multiple detection
models, exhibiting a low missed detection rate and enhanced
capability to detect small-target weeds. Nevertheless, accurate weed-
crop detection remains challenging due to the insufficient availability
of mixed samples of specific weed species with crops and the inherent
difficulty in identifying small-target weeds.

7
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FIGURE 8
HDMS-YOLO convergence diagram.
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TABLE 6 Performance comparison results of different models in ablation experiments.

Model Backbone Image size (px) mAP50 (%) mAP50-95 (%) Parameters (M) FLOPS (G)
HDMS-YOLO Ours 640x640 71.2 49.2 227 10.5
YOLOv8n C2f CSPDarkNet 640x640 66.5 45.2 3.01 8.7
YOLOvVOt PGI and GELAN 640x640 68.0 49.0 2.0 7.7
YOLOv10n Improved CSPNet 640x640 67.1 47.2 227 6.7
YOLOI11n C3k2 CSPDarkNet 640x640 68.6 47.4 2.59 6.3
YOLOvI2n R-ELAN 640x640 67.2 46.3 2.56 6.5
RetinaNet Resnet50 640x640 54.7 39.6 36.8 81.69
RetinaNet Resnet101 640x640 552 40.2 55.8 85.41
YOLO-CWD*[1] C2f ECSADarkNet 640x640 66.9 45.6 35 9.6
YOLO-CBAM*[50] Bottleneck_CSP 640x640 70.5 48.4 53.3 135.1
Deformable DETR*[25] ResNet-101 640%x640 65.8 47.6 40.1 173
DINO*[29] ResNet-50 640x640 71.2 50.2 47.5 178.5
Faster R-CNN Resnet50 640x640 62.9 45.1 41.5 78.12
Faster R-CNN Resnet101 640x640 64.4 46.2 60.5 81.77

In the table, the best values for the HDMS-YOLO model have been bolded; however, the optimal values for Parameters (M) and FLOPS (G) correspond to YOLOv9t and YOLO11n, respectively.

3.4.2 Model performance analysis

As shown in Figure 11, the confusion matrices provide a
comparative analysis of the classification results between the
YOLOI1 base model and HDMS-YOLO on the Weed dataset.
The YOLO11 model performs well in most categories, but
notable misclassifications are observed. For example, Grasses and
Sunflower are frequently confused with Soy, as indicated by the

recall values of 55.6% and 72.4%, respectively. The background class
also shows significant overlap with Grasses and Thistle, leading to
missed detections. This suggests that the model struggles with
distinguishing between weeds and crops with similar visual
features, particularly in complex or cluttered scenes.

In contrast, the HDMS-YOLO model shows clear improvements.
The confusion matrix for HDMS-YOLO reveals higher precision and
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FIGURE 9
Comparison of performance and FLOPs among different models.
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TABLE 7 Speed indicators and time Predictions of YOLO11n and HDMS-YOLO.

Model Preprocess (ms) Inference (ms) Postprocess (ms) Test time (s)
Yolo 11n 0.2 2.8 1.7 17
HDMS-YOLO 0.2 6.8 0.9 18

The best values in each column of the table have been highlighted in bold.

recall across multiple categories. For example, Grasses and Sunflower ~ precision and recall across various crop and weed categories.
show increased precision, with Grasses reaching 60% and Sunflower =~ However, further improvements could be made in handling
improving to 78%, compared to 55% and 50% for the YOLO11l  underrepresented classes. Techniques such as data augmentation
model. Additionally, Thistle and Geranium benefit from improved  or few-shot learning could address the performance issues with
recall, with Thistle rising from 48.4% to 51.0% and Geranium from  Goosefoot, Poppy, and Grasses, enhancing the model’s robustness
51.7% to 53.7%, highlighting the model’s enhanced ability to handle  across all categories.
these more challenging categories.

The precision-recall curve in Figure 12 further illustrates
HDMS-YOLO’s improved performance. Soy stands out with 4 Discussion
99.3% precision and recall close to 1.0, demonstrating near-
perfect detection. Maize and Potato also show strong Weed detection is crucial in agriculture, as it helps prevent a
performance, with precision values of 95.9% and 94.9%, reduction in crop yields, which leads to an estimated global loss of
respectively. However, classes like Grasses (precision = 61.1%,  $32 billion annually (Kubiak et al., 2022). Traditional weed control
recall = 39%) and Chickweed (precision = 71.6%, recall = 52%)  methods, including manual labor and chemical applications, are
show lower performance, primarily due to their visual similarity to ~ labor-intensive, expensive, and environmentally damaging.
other species and limited sample sizes in the dataset. The Poppyand ~ Automated systems, like the HDMS-YOLO model, provide a
Goosefoot classes exhibit even lower recall, with Poppy at 31% and ~ more sustainable and efficient solution, capable of detecting weeds
Goosefoot at 25%, which reflects challenges related to class  in real-time and guiding precision herbicide application. While
imbalance and visual similarity to other weeds. HDMS-YOLO performs well on the CropAndWeed dataset, several

These quantitative results confirm that HDMS-YOLO  challenges remain, particularly in detecting small, crowded, or
significantly improves over YOLOI11, particularly in terms of  similar-looking weeds.

Input Images YOLOVS YOLOI11 YOLO12 HDMS-YOLO

FIGURE 10
Comparison of the weed detection effects of different models.
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Confusion matrix of the model's classification results on the dataset. Here, (a) is the confusion matrix diagram of YOLO11N, and (b) is the confusion

matrix diagram of HDMS-YOLO.

The current model significantly improves performance over
earlier versions, such as YOLOv8n and YOLOv10n, with HDMS-
YOLO achieving 71.2% mAP@50 and 49.2% mAP@50-95.
However, as observed, small and similar-looking weeds, such as
Goosefoot and Poppy, showed low recall rates (15.0% and 44.8%,
respectively). This issue is largely due to class imbalance, where
underrepresented species, particularly those with limited training
data, struggle to achieve high accuracy. These findings are
consistent with previous research by Veeragandham et al, where
models like VGG-19 achieved high accuracy on larger datasets but
struggled with rare classes, particularly when there is class
imbalance and limited data for certain species (Veeragandham
and Santhi, 2022). The limited data for rare weeds leads to
overfitting, a challenge that affects models trained on
skewed datasets.

In comparison to two-stage models like Faster R-CNN, HDMS-
YOLO shows a computational advantage, requiring only 10.5
GFLOPs as opposed to the 78.12 GFLOPs required by Faster R-
CNN. However, HDMS-YOLO still faces challenges in high-density
weed environments, where weeds of similar size and shape are often
clustered together. Transformer-based models, such as Deformable
DETR, offer stronger performance in such situations, but their
computational demands may make them unsuitable for real-time
applications. Few-shot learning and domain adaptation, as explored
by Li and Fan et al, could be employed to address the problem of
underrepresented classes in our model by augmenting the dataset
with synthetic data or by transferring knowledge from similar tasks
(Li et al., 2024; Fan et al., 2024).

The limitations of HDMS-YOLO primarily lie in its
generalizability to different environments and handling rare
classes. Although the model performs well in the CropAndWeed
dataset, its performance may degrade in real-world settings, where
lighting conditions, weed species, and crop types vary significantly.
This issue of generalizability is a common problem in AI models, as
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demonstrated in studies like Xu et al, which proposed W-YOLOv5
for crop detection, emphasizing the challenge of adapting models to
new environments (Xu et al., 2024). Furthermore, the risk of
overfitting remains a concern, particularly for models trained on
datasets with imbalanced class distributions.

For future work, we propose integrating multi-sensor fusion,
combining visual, thermal, and LiDAR data to improve detection
under poor visibility or occluded conditions. Temporal tracking of
weed growth, as explored by Goyal et al, could also enhance the
model’s ability to monitor weeds over time and differentiate
between weeds at various growth stages (Goyal et al., 2025).
Additionally, field deployment strategies, such as real-time
decision-making for robotic systems, are essential for applying
HDMS-YOLO in agricultural practices. Implementing few-shot
learning techniques and incorporating domain adaptation
strategies will further improve the model’s generalizability to new
environments and rare species.

5 Conclusion

In this study, we proposed HDMS-YOLO, an improved detection
model based on the YOLOV11 architecture, to address the complex
challenge of recognizing multiple weed and crop types in farmland. A
hierarchical feature processing mechanism was constructed by
introducing the shallow feature structure reconstruction module
(SRFD) and the deep feature dynamic reconstruction module
(DRFD), significantly enhancing multi-scale object perception. The
PC-MSFA module significantly enhanced the detection performance
of weeds across various scales through cross-stage partial connection
and progressive multi-scale feature aggregation. Furthermore, the
dynamic task alignment detection head (IntegraDet) adaptively
adjusted classification and regression task weights, improving
discrimination between morphologically similar crops and weeds.
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Precision-recall curve chart.

Experimental results demonstrated that HDMS-YELO achieved
notable performance on the CropAndWeed dataset, with 74.2%
precision, 66.3% recall, 71.2% mAP@50, and 49.2% mAP@50-95,
requiring only 2.27 million parameters. The combination of high
accuracy and low parameter complexity provides practical technical
support for deployment on embedded devices and intelligent weeding
robot systems, significantly advancing agricultural automation.
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