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Introduction: With the continuous advancement of agricultural technology,

automatic weed removal has become increasingly important for precision

agriculture. However, accurate weed identification remains challenging due to

the diversity and varying sizes of weeds, as well as the high visual similarity

between weeds and crops in terms of shape, colour, and texture.

Methods: To address these challenges, this study proposes the HDMS-YOLO

model for robust weed identification, trained and evaluated on the publicly

available CropAndWeed dataset. The model incorporates two novel feature

extraction modules—the Shallow and Deep Receptive Field Distillation (SRFD

and DRFD) modules—to effectively capture both shallow and deep weed

features. The traditional C3K2 structure is replaced by the Partial Convolution-

based Multi-Scale Feature Aggregation (PC-MSFA) module, which enhances

feature representation through partial convolution and residual connections. In

addition, a new IntegraDet dynamic task-alignment detection head is designed

to further improve localisation and classification accuracy.

Results: Experimental results show that HDMS-YOLO achieves an accuracy of

74.2%, a recall of 66.3%, and an mAP of 71.2%, which are 2.6%, 2.1%, and 2.6%

higher, respectively, than those of YOLO11. Compared with other mainstream

algorithms, HDMS-YOLO demonstrates superior overall detection performance.

Discussion: The proposed HDMS-YOLO model exhibits strong capability in

extracting and representing weed features, leading to improved identification

accuracy and generalisation. These results highlight its potential application in

precision farm management and the development of intelligent weed-removal

robots for unmanned agricultural systems.
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1 Introduction

Weeds are invasive plants that compete with crops for essential resources like water,

nutrients, sunlight, and space, which results in reduced crop yields and hindered growth.

Additionally, weeds often act as hosts for pests and diseases, further exacerbating crop

losses (Zhu et al., 2020; Vasileiou et al., 2024; Wang et al., 2025). As a result, early-stage
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weed control is vital to preserve agricultural productivity and

minimize crop yield losses (Reuter et al., 2025). Traditional

methods, such as manual labor and chemical herbicide

application, are resource-intensive, costly, and environmentally

damaging due to pesticide residues and pollution risks (Yang

et al., 2024; Munir et al., 2024; Yu et al., 2025). Precision spraying

robots can achieve large-scale pesticide application on weeds,

effectively preventing issues related to chemical waste and

pesticide residue. Accurate weed detection is crucial for achieving

precise pesticide application to weeds (Upadhyay et al., 2024; Zhang

et al., 2023). With the widespread application of artificial

intelligence technology in agriculture, researchers have

increasingly applied deep learning methods to weed identification

and detection. Mesıás et al. combined drone images with the

convolutional neural network model Inception-ResNet-v2 to

advance methods for identifying weeds in their early growth

stages, further promoting the precise and efficient implementation

of SSWM technology (Mesıás-Ruiz et al., 2024). Veeragandham

et al. used the AlexNet, VGG-16, VGG-19, ResNet-50, and ResNet-

101 models to classify and compare 15 common weed species in a

peanut crop dataset, finding that the accuracy rate on VGG-19

without frozen layers exceeded 99% (Veeragandham and Santhi,

2022). Duong et al. were able to achieve automatic and highly

accurate detection of weeds through EfficientNet and transfer

learning (Duong et al., 2024). Jian et al. proposed a method for

identifying weeds during the seedling stage of soybeans using drone

data and deep learning algorithms (Cui et al., 2024).

Two-stage object detection method. Although they achieve high

accuracy, two-stage models often fail to meet the real-time

requirements for weed detection and localization. Two-stage

object detection requires generating candidate boxes in advance

before performing classification and regression. This process is

particularly computationally intensive when dealing with high-

resolution images or scenarios that generate numerous candidate

boxes, resulting in a significant decrease in the model’s inference

speed and making it unsuitable for real-time weed detection

applications with high-performance requirements. In contrast,

single-stage object detectors do not require pre-generated

candidate boxes and can directly predict weed categories and

bounding boxes on feature maps. The model structure of single-

stage object detectors is simpler than that of two-stage models,

making them easier to run on edge devices and suitable for real-time

weed detection applications. Zheng et al. improved YOLOv8 by

utilizing Star Blocks and LSCSBD heads, which reduced the
Abbreviations: SRFD, Shallow Robust Feature Downsampling; DRFD, Deep

Robust Feature Downsampling; PC-MSFA, Partial Convolution Multi-Scale

Feature Aggregation; IntegraDet, Integrated Task-aligned Detection Head; FPS,

Frames Per Second; FLOPs, Floating Point Operations; mAP@0.5, Mean Average

Precision at IoU 0.5; mAP@0.5:0.95, Mean Average Precision at IoU 0.5 to 0.95;

GELU, Gaussian Error Linear Unit; GAP, Global Average Pooling; DCNv2,

Deformable Convolution v2; Conv, Convolution; s, Sigmoid Activation

Function; ⊗, Element-wise multiplication; ȯ, Element-wise multiplication
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parameters by 50% and the model size by 47%, achieving a model

detection accuracy of 98% mAP@50 and 95.4% mAP@50–95 on the

CottonWeedDet12 dataset (Lu et al., 2025). Li et al. enhanced the

YOLOv8 and DINO models using mainstream improvement

strategies. They validated the model ’s effectiveness by

constructing a new winter wheat weed (3W) dataset (Li et al.,

2024). Fan et al. proposed the YOLO-WDNet model, which

replaces CSPDarknet53 with ShuffleNet v2 to reduce the model’s

FLOPs. The PHAM mechanism and the improved BiFPN in the

model facilitate the extraction of plant features in complex scenes,

thereby enhancing the model’s accuracy (Fan et al., 2024). Feng

et al. proposed a 12-class cotton image dataset and evaluated the

impact of data augmentation on weed detection by comparing 18

YOLO models (Dang et al., 2023). Chen et al. proposed a YOLO-

based sesame weed detection model, YOLO-Sesame, by

incorporating an attention mechanism into the SPP structure,

utilizing the SE block to enhance local important pooling, and

integrating the ASFF structure to address false negatives, thereby

effectively improving detection accuracy (Chen et al., 2022). Ma

et al. proposed YOLO-CWD, which employs a novel hybrid

attention mechanism and loss function to enhance model

recognition accuracy, resulting in significant improvements in

detection performance on corn and weed datasets (Ma et al.,

2025). Goyal et al. validated the YOLOv8 and Mask RCNN

models on potato plant and weed datasets, demonstrating that the

model can detect weeds in highly complex and severely occluded

environments (Goyal et al., 2025). Xu et al. integrated YOLOv5 with

the Vision Transformer to propose the W-YOLOv5 crop detection

algorithm (Xu et al., 2024).

The presence of various-sized weed targets has limited the

accuracy of the model. Especially for crops and weeds with

similar shapes, it cannot effectively distinguish them in complex

environments. To address this issue, this study proposes the

HDMS-YOLO model. It evaluates it on the CropAndWeed

dataset. Firstly, in the feature extraction part, the structured

reconstruction module of shallow features (SRFD) and the

dynamic reconstruction module of deep features (DRFD) are

introduced to form a hierarchical feature processing mechanism,

thereby effectively enhancing the perception ability of the model for

targets at different scales. The PC-MSFA module enhances weed

detection across varying scales via cross-stage partial connections

and progressive multi-scale feature aggregation. Thirdly, IntegraDet

enhances the model’s ability to distinguish morphologically similar

crops from weeds by dynamically adjusting the loss weights for

classification and regression tasks. The proposed HDMS-YOLO

detection model can accurately and in real-time identify the types

of weeds.
2 Materials and methods

2.1 Crop and weed dataset

This study used the CropAndWeed dataset to train and evaluate

the model (Steininger et al., 2023). Researchers collected and
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annotated the dataset from hundreds of commercial croplands in

Austria. They photographed many unique species in a controlled

outdoor environment and divided the dataset into multiple variants,

each containing different object classes. This study used the ‘Fine24’

variant of the dataset. This variant comprises 24 plant classes,

consisting of eight crop species and 16 weed species. This dataset

consists of 7,705 images, which were divided into three parts in the

ratio of 7:1:2: the training set, the validation set, and the test set,

containing 5,393, 770, and 1,542 images, respectively. The dataset

includes images captured under different lighting conditions, soil

types, and humidity levels. To provide a comprehensive overview of

the distribution of each category in the dataset, Figure 1 shows some

examples. Figure 2 displays the quantity and distribution

characteristics of various weed species.
2.2 Experimental setup

This experiment was conducted on a remote server. The

detailed computer software, hardware configuration and training

environment settings are shown in Table 1. This model was trained

using the CropAndWeed dataset. We set the batch size to 16, the

number of epochs to 300, the initial weights to random weights,

seed to 0, Momentum to 0.937, optimizer to SGD, learning rate to

0.01, workers to 8, and seed to 0. The size of the input images was

adjusted to 640 x 640 pixels.
2.3 Construction of weed detection model
based on MMDetection

MMDetection is an open-source object detection toolbox jointly

developed by the Multimedia Laboratory of the Chinese University
Frontiers in Plant Science 03
of Hong Kong (CUHK-MMLab) and SenseTime. It encapsulates

dataset construction, model building, and training strategies into

individual modules. We can implement a new algorithm with a

small amount of code through module invocation, significantly

enhancing code reusability. A notable advantage of MMDetection is

its fast training speed. In recent years, it has been widely used in

commercial research for detecting moving and stationary objects,

achieving higher accuracy than other object detection frameworks.

Built with PyTorch and CUDA, MMDetection provides powerful,

fast, and highly accurate results. Its products include well-known

models such as RetinaNet50, Fast R-CNN, and Faster R-CNN.

In our study, we employed RetinaNet along with Faster R-CNN.

The model employs FPN as its head, with ResNet-50 and ResNet-

101 serving as the backbone (Chen et al., 2019). Table 2 provides a

summary of the training parameters. These parameters include

iteration (the number of training iterations), Batch size (the number

of data samples per iteration), learning rate (LR), and Maximum

size (the maximum input image size).
2.4 Construction of a weed detection
model based on YOLO11

This study utilizes the YOLO11n model. YOLO11 is a target

detection model in the YOLO family, supporting detection,

classification, and segmentation tasks (Khanam and Hussain,

2024). The neck module of YOLO11 is an improvement based on

the concepts of Feature Pyramid Network (FPN) and Path

Aggregation Network (PAN). YOLO11 replaces the C2f module

in the neck with the C3k2 module, aiming to achieve faster speed

and higher efficiency, thereby enhancing the overall performance of

the feature aggregation process. Additionally, the C2PSA module in

the model enables it to focus on key areas in the image, significantly
FIGURE 1

Display of some dataset data.
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improving its understanding of complex scenes. YOLO11 utilizes a

decoupled detection head to output prediction results from three

feature maps at varying scales, corresponding to different granular

levels of the image. This approach detects small targets at a finer

level while capturing large targets through higher-level features.
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Although the small size of YOLO11 guarantees speed and

efficiency, its accuracy is relatively limited. To address this issue,

we developed an improved HDMS-YOLO model that can

accurately detect various weeds and crops under complex weather

conditions. Firstly, shallow feature extraction SRFD and deep

feature extraction DRFD modules (Lu et al., 2023) are introduced

in the feature extraction part to replace the convolutional modules

in the backbone network, thereby improving the model’s capability

to extract image features during detection processes. Secondly, we

propose a PC-MSFA module that combines partial convolution and

residual connections to expand the receptive field and enhance the

expressive power of the model. Finally, we propose a dynamic task

alignment integrated detection head to enhance target capture

capability, significantly improving detection performance. HDMS-

YOLO achieves higher detection accuracy in crop and weed

detection tasks. Figure 3 shows its architecture. The following

section provides detailed explanations.
FIGURE 2

(a) Statistics and separation of data annotation files (Data annotation weed - species histogram); (b) Distribution map of the length and width of the
dataset annotation box; (c) Histogram of the dataset variables x and y; (d) Histogram of the width and height of the dataset variables.
TABLE 1 Experimental conditions.

Device Version

GPU NVIDIA GeForce RTX 2080 Ti

Memory 11GB

Frame Pytorch 2.2.2

Tool Python 3.10.14

GPU accelerator CUDA 12.2
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FIGURE 3

The overall architecture of the HDMS-YOLO network.
TABLE 2 Model structures and some hyperparameter settings based on MMDetection.

Model Backbone Head
Num

workers
Iterations
(steps)

Batch size
Learning

rate
Max size (px)

RetinaNet

Resnet50
FPN 8 10000 8 0.01 640

FPN 8 60000 8 0.01 640

Resnet101
FPN 8 10000 8 0.01 640

FPN 8 60000 8 0.01 640

Faster R-CNN

Resnet50
FPN 8 10000 8 0.01 640

FPN 8 60000 8 0.01 640

Resnet101
FPN 8 10000 8 0.01 640

FPN 8 60000 8 0.01 640
F
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2.4.1 HRFN module
Traditional convolutional downsampling in object detection

networks often leads to the loss of crucial spatial details, which is

particularly problematic for detecting small weeds in agricultural

fields. To address this issue, we propose the Hierarchical Robust

Feature Network (HRFN), as shown in Figure 4, which replaces

conventional downsampling layers in the YOLO11 backbone with

two specialized modules: Shallow Robust Feature Downsampling

(SRFD) and Deep Robust Feature Downsampling (DRFD).

The SRFD module processes input images through a two-stage

downsampling pipeline. Initially, a 7×7 convolution extracts

preliminary features while preserving spatial resolution. In the

first stage, the image size is halved using two parallel pathways:

CutD, which retains spatial features through slicing, and ConvD,

which employs grouped convolutions to extract local features.

These features are then fused to retain both structural and

semantic information. In the second stage, the resolution is

reduced to a quarter, employing three parallel branches: ConvD

for context, MaxD for prominent features, and CutD for spatial

details, ensuring comprehensive feature preservation during the

downsampling process.

The DRFD module, designed for deeper layers, follows a similar

architecture with some key modifications. It doubles the number of

channels while halving the spatial dimensions, which increases the

network’s ability to represent more complex features. The DRFD

also incorporates GELU activation functions to enhance nonlinear

transformations, which are critical for capturing high-level

semantic patterns in agricultural scenes.

The core innovation of HRFN is its multi-path fusion strategy.

Unlike traditional methods that rely on single convolution

operations for downsampling, our approach integrates three

complementary mechanisms: CutD preserves spatial structure,

ConvD extracts contextual features, and MaxD captures salient

patterns. This design ensures that critical information about small

weeds is preserved, even as spatial resolution decreases. The

hierarchical structure, with SRFD handling low-level details and

DRFD processing deeper semantic features, creates a robust feature
Frontiers in Plant Science 06
pyramid that excels at detecting weeds of varying sizes and

appearances in complex agricultural environments.

Our experiments show that this multi-path downsampling

approach significantly improves small object detection accuracy

compared to conventional methods, particularly in challenging

scenarios with occlusion, varying lighting, and dense crop

backgrounds. The HRFN architecture effectively balances

computational efficiency and feature preservation, making it well-

suited for practical agricultural applications.

2.4.2 PC-MSFA module
The standard C3K2 module in YOLO11 uses fixed-scale

convolutions, limiting its ability to detect weeds at different

growth stages. To overcome this, we propose the Partial

Convolution Multi-Scale Feature Aggregation (PC-MSFA)

module, which enhances multi-scale feature extraction efficiently.

As shown in Figure 5, PC-MSFA employs a hierarchical processing

strategy. Initially, the input features undergo a 3×3 convolution for

basic feature extraction. These feature maps are then split into

subsets: one subset is processed by a 5×5 convolution for medium-

scale features, and another by a 7×7 convolution for capturing

large-scale context. This partial convolution approach—applying

different kernels to specific channel subsets rather than all channels

—reduces computational overhead compared to full-scale

processing at multiple levels.

The multi-scale features are fused through a 1×1 convolution,

then combined with the original features via a residual connection.

This design preserves fine-grained details while capturing broader

contextual information, essential for detecting weeds at various

growth stages, from small seedlings to mature plants.

The key advantage of the PC-MSFA module lies in its efficient

multi-scale processing. By selectively applying convolutions to

channel subsets, it ensures comprehensive feature coverage

without redundant computations. This approach allows the

model to capture the morphological variations of weeds across

different growth stages while maintaining computational efficiency,

making it suitable for real-time field applications.
FIGURE 4

SRFD and DRFD module diagrams.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1696392
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hua et al. 10.3389/fpls.2025.1696392
2.4.3 IntergraDet detection headers
Traditional yolo detection heads process classification and

regression tasks independently, leading to task misalignment that

reduces performance, especially for small and morphologically

similar weeds. To address this, we propose IntegraDet, a task-

aligned dynamic detection head that facilitates bidirectional

information flow between tasks through a unified processing

pipeline. As shown in Figure 6, IntegraDet processes multi-scale
Frontiers in Plant Science 07
features from the backbone layers via shared convolutions with

GroupNorm activation. These shared features are then decomposed

into task-specific representations using an attention-based

mechanism (Equation 1):

Atask = s (W1 · d (GAP(F))) (1)

Here, Atask represents the channel attention weights, enabling

selective emphasis on task-relevant features. For the regression
FIGURE 6

IntergraDet detection headers.
FIGURE 5

PC-MSFA modules.
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branch, IntegraDet employs Deformable Convolution v2 to

adaptively adjust receptive fields (Equation 2):

Freg = DCNv2(F,Dp,m) (2)

Where Dp and m are dynamically predicted offsets and

modulation masks, respectively, allowing precise localization of

irregularly shaped weeds. The classification branch uses spatial

attention for foreground–background discrimination (Equations

3, 4):

Fcls = Acls o ̇ F (3)

Acls = s(Conv1�1(F)) (4)

Where Acls generates attention maps to suppress background

noise. Finally, the predictions are integrated across scales using

learnable parameters (Equations 5, 6):

Yreg =o
i
ai ·Headreg(Freg,i) (5)

Ycls =o
i
ai ·Headcls(Fcls,i) (6)

where ai adaptively weights contributions from different

feature levels.

This design transforms detection by establishing strong

connections between classification and localization, eliminating

the traditional disconnect between classification confidence and

localization precision. The combination of task decomposition,

deformable convolutions, and spatial attention mechanisms

enhances detection accuracy, particularly for small, densely

clustered weeds. It is especially effective in complex agricultural

environments where conventional methods struggle with

morphologically similar species and varying growth stages.
2.5 Evaluation indicators

To comprehensively evaluate the detection performance of the

proposed model, we introduce the standard evaluation metrics in

object detection (Equations 7–10). The evaluation metrics used in

this study include: precision, recall, average precision (AP), and

mean average precision (mAP). Precision measures prediction

accuracy by calculating the proportion of actual positive samples

among all samples predicted as positive. This metric reflects

prediction reliability. Recall assesses detection completeness by

measuring the proportion of actual positive samples correctly

identified. This metric reflects the model’s ability to detect targets.

Average precision (AP) comprehensively reflects the model’s

detection performance for a single category by calculating the

area under the precision-recall curve at various confidence

thresholds. Mean Average Precision (mAP) calculates the average

of AP values across all categories, providing an overall performance

assessment of the model in multi-category detection tasks. This

study employs two evaluation criteria: mAP@50 (IoU threshold =
Frontiers in Plant Science 08
0.5) and mAP@50-95 (IoU thresholds from 0.5 to 0.95 at 0.05

intervals), with the latter providing a stricter performance

assessment.

Precision = TP
TP+FP (7)

Recall = TP
TP+FN (8)

AP =
Z 1

0
p(r)dr (9)

mAP = AP
classesnum

(10)

Where TP (True Positive) TP (True Positive) refers to the

number of correctly detected targets, i.e., the number of samples

predicted by the model to be positive and being positive; FP (False

Positive) refers to the number of false positives, i.e., the number of

samples predicted by the model to be positive but being negative;

FN (False Negative) refers to the number of false negatives, i.e., the

number of samples that are positive but not detected by the model.
3 Results

3.1 Weed detection results based on
MMDetection

Weed detection usually starts with the widely used

MMDetection framework. Its highly modular code structure

allows flexible component combination and replacement, enabling

a unified configuration file system. This approach enhances clarity

and facilitates extension to other models. We employ two

established object detection algorithms, RetinaNet and Faster R-

CNN, each integrating a Feature Pyramid Network (FPN) model

head with a Resnet50 and Resnet101 backbone. The training

process consists of two main phases. We converted LabelMe

annotation files to the standard COCO dataset JSON format. We

tune hyperparameters, such as learning rate and maximum

iterations, to optimize performance and reduce overfitting.

Table 3 shows that both RetinaNet and Faster R-CNN models,

using the MMDetection framework, exhibit good performance for

weed detection. As the number of iterations increases and with

larger backbone models (such as ResNet101), the AP value

continues to improve.
3.2 The weed detection results based on
HDMS-YOLO

The HDMS-YOLO model demonstrates significant

performance improvements over the YOLO11n base model,

especially in challenging weed categories. As shown in Table 4,

key performance improvements include increased accuracy and

recall for several crops. For Maize, accuracy improved from 90.1%
frontiersin.org
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TABLE 3 Different models based on MMDetection, training iterations, and model evaluation metrics under the backbone network. In the
MMDetection framework, AP stands for Average Precision (mAP).

Model Backbone Head
Iterations
(steps)

AP (%) AP50 (%) AP75 (%) AP s(%) APm(%) APl (%)

RetinaNet

Resnet50
FPN 10000 39.3 55.2 42.0 13.1 35.9 63.9

FPN 60000 42.2 60.8 45.3 15.0 41.2 68.3

Resnet101
FPN 10000 39.7 56.0 42.2 12.7 37.4 62.3

FPN 60000 41.3 60.0 43.3 14.8 39.8 65.9

FasterR-
CNN

Resnet50
FPN 10000 42.5 61.1 46.1 17.8 41.4 63.6

FPN 60000 40.0 60.0 42.7 17.0 39.6 62.6

Resnet101
FPN 10000 42.8 63.0 45.6 18.8 41.5 61.7

FPN 60000 39.6 59.3 41.9 15.5 38.7 65.3
F
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TABLE 4 Comparison of weed detection results between YOLO11n and HDMS-YOLO.

YOLO11n HDMS-YOLO

Category Instances Precision (%) Recall (%) mAP@50 (%) mAP@50-95 (%) Precision (%) Recall(%) mAP@50 (%) mAP@50-95 (%)

Maize 1157 90.1 90.6 95.1 73.2 91.4 91.4 95.5 74.3

Sugar beet 1225 86.2 88.7 92.6 76.7 88.5 89.2 92.8 77.4

Sunflower 889 71.8 72.4 75.2 45.3 78.0 78.6 80.8 49.5

Bean 399 88.3 87.2 92.5 79.4 85.3 89.7 92.7 79.8

Pea 55 91.7 89.1 95.1 82.9 94.1 92.7 96.0 82.7

Soy 100 89.9 88.1 90.2 58.1 89.0 89.4 89.4 61.0

Potato 184 87.3 87.5 93.3 76.1 92.1 88.5 94.4 77.8

Pumpkin 120 90.3 93.0 96.4 88.0 91.0 92.2 95.5 89.7

Grasses 4046 68.8 55.6 60.7 28.0 70.2 55.5 62.8 29.6

Thistle 447 59.4 48.4 50.8 30.2 60.6 51.0 53.1 32.2

Geranium 782 64.9 51.7 57.5 38.1 70.6 53.7 62.4 41.7

Knotweed 674 66.8 55.0 62.1 36.8 71.5 58.5 65.5 39.0

Amaranth 140 74.2 82.9 83.9 50.8 79.2 82.9 86.0 51.1

Goosefoot 48.0 29.0 18.8 19.3 13.0 25.4 12.5 15.0 9.7

Potato weed 232 60.8 50.4 54.9 40.8 63.6 52.2 56.5 40.9

Chamomile 485 60.3 48.2 52.2 30.2 58.6 49.7 53.0 30.5

Crucifer 540 74.6 68.7 71.3 51.9 75.7 68.5 73.0 53.4

Plantago 1921 75.3 71.9 77.1 53.9 75.1 73.9 79.6 56.6

Poppy 246 69.4 20.3 36.1 21.2 68.0 31.9 44.8 24.8

Corn spurry 1160 58.4 48.4 49.2 23.2 61.5 47.8 52.4 24.8

Mercuries 449 56.5 53.2 56.9 35.8 70.5 57.5 65.6 41.5

Solanales 257 73.5 72.3 76.4 50.9 82.6 74.0 80.5 54.1

Chickweed 251 68.4 45.0 52.5 27.8 75.6 48.2 59.0 29.2

Labiate 91 63.1 52.6 54.6 24.3 63.7 61.5 62.9 29.7
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to 91.4%, while recall remained consistent at 91.4%. Similarly, Sugar

beet saw its accuracy rise from 86.2% to 88.5%, and recall increased

from 88.7% to 89.2%. In Sunflower, accuracy increased from 71.8%

to 78.0%, with recall rising from 72.4% to 78.6%. These

improvements highlight HDMS-YOLO’s enhanced capability in

handling diverse crop categories, even under complex conditions.

In more challenging categories, the model showed notable

improvements. Grasses exhibited a performance boost, with

accuracy increasing from 68.8% to 70.2%. Geranium saw a

significant rise in accuracy, increasing by 5.7 percentage points,

from 64.9% to 70.6%, with recall improving by 2.7 percentage

points. As shown in Figure 7, HDMS-YOLO successfully identified

and differentiated various crops and weeds in a real-world

agricultural setting, emphasizing its practical application for

precision farming.

The model also demonstrated improved performance in small-

sample categories. For example, Pea accuracy increased from 91.7%

to 94.1%, and Labiate saw mAP50 improve from 54.6% to 62.9%.

However, Goosefoot and Poppy showed slight reductions in

performance due to limited sample sizes and high visual

similarity between species. Despite these minor reductions,

HDMS-YOLO exhibited robust performance overall.

The integration of the HRFN and PC-MSFA modules

contributed significantly to these results. These modules enhanced

precision and recall across both complex and small-sample weed

categories, further boosting the model’s adaptability to real-world

agricultural environments. For a detailed visualization of the

detection results, refer to Figure 7, which showcases how HDMS-

YOLO distinguishes between different types of weeds and crops in

various scenarios.
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3.3 Ablation experiment results

As summarized in Table 5, the ablation experiments

demonstrate that each proposed module contributes to

performance improvements. HRFN enhances recall, PC-MSFA

increases precision and mAP@50, and IntergraDet strengthens

both localization and classification. When integrated, these

modules provide consistent gains, with the complete HDMS-

YOLO model achieving 74.2 percent precision, 66.3 percent

recall, an mAP@50 of 71.2 percent, and an mAP@50–95 of 49.2

percent, substantially outperforming the baseline.

In terms of efficiency, the YOLO11 baseline required 6.3G FLOPs

and delivered 540 frames per second. The final model increased the

computational load to 10.5G FLOPs but remained compact, with 2.27

million parameters corresponding to a size of 4.6 MB, and sustained

real-time inference at 263 frames per second, or 6.7 milliseconds per

image. These results confirm that the proposed architecture enhances

detection accuracy while maintaining efficiency.

The convergence behavior illustrated in Figure 8 further

validates the robustness of the model. Training and validation

losses decrease smoothly and align closely in the later stages,

while accuracy curves remain stable with minimal fluctuations,

demonstrating strong generalization capability.
3.4 Model performance comparison results

3.4.1 Comparison results of different models
To comprehensively evaluate the effectiveness of HDMS-

YOLO, we compared it with mainstream detectors, optimized
FIGURE 7

Based on the weed detection results of HDMS-YOLO, the colors of different boxes represent different types of weeds.
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variants, and transformer-based models. As shown in Table 6,

HDMS-YOLO achieved an mAP@50 of 71.2 percent and an

mAP@50–95 of 49.2 percent, outperforming lightweight models

such as YOLOv8n, YOLOv10n, and YOLOv12n (Talaat and

ZainEldin, 2023; Tian et al., 2025; Wang et al., 2024), and

maintaining a 0.2-point lead over YOLOv9t (Yaseen, 2024). It

also surpassed optimized variants, exceeding the YOLO-CWD

model proposed by Ma et al. with 66.9 percent and 45.6 percent,

and the YOLO-CBAM model proposed by Wang et al. with 70.5

percent and 48.4 percent (Ma et al., 2025; Wang et al., 2022).

Compared with transformer-based detectors, HDMS-YOLO

approached the accuracy of DINO (Zhang et al., 2022), which

reached 50.2 percent mAP@50-95, and outperformed Deformable

DETR (Zhu et al., 2020) with 47.6 percent, while requiring only 10.5

GFLOPs, far less than their 178.5 and 173 GFLOPs.

Beyond accuracy, HDMS-YOLO also demonstrates a favorable

trade-off between precision and complexity. As shown in Figure 9, it

achieved the highest mAP@50 among lightweight YOLO models

while maintaining low FLOPs, improving by about 3 percent over
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YOLOv11n without a noticeable increase in computation. Unlike

two-stage detectors such as RetinaNet and Faster R-CNN, which

demand much higher computational cost but deliver lower

accuracy, HDMS-YOLO thus proves particularly effective in low-

resource environments. Its efficiency is further supported by the

results in Table 7, where the model completed evaluation in 18

seconds with an inference time of 6.8 milliseconds per image.

Although YOLOv11n achieved a slightly shorter total time of 17

seconds, its longer postprocessing offset the gain, and the marginal

inference difference is negligible given the superior accuracy of

HDMS-YOLO.

Figure 10 visually compares the weed detection effects of HDMS-

YOLO with other models (YOLOv8, YOLO11, YOLO12). The results

demonstrate that HDMS-YOLO outperforms multiple detection

models, exhibiting a low missed detection rate and enhanced

capability to detect small-target weeds. Nevertheless, accurate weed-

crop detection remains challenging due to the insufficient availability

of mixed samples of specific weed species with crops and the inherent

difficulty in identifying small-target weeds.
FIGURE 8

HDMS-YOLO convergence diagram.
TABLE 5 Results of the ablation experiment.

Number HRFN
PC-
MSFA

IntergraDet Precision(%) Recal(%) mAP@ 50(%) mAP@50-95(%) FLOPs(G) FPS(frames/s)
Parameters

(×106)

1 71.6 64.2 68.6 47.4 6.3 540 2586832

2 ✓ 71.6 65.3 69.4 47.7 7.6 436 2594288

3 ✓ 72.7 64.5 69.6 47.6 7.7 552 2633688

4 ✓ 72.4 65.0 68.9 47.7 7.9 301 2201699

5 ✓ ✓ 73.0 65.0 70.1 48.0 8.9 443 2641144

6 ✓ ✓ 74.4 65.6 70.1 48.3 9.2 260 2209155

7 ✓ ✓ 72.8 65.4 70.3 48.4 9.3 537 2516072

8 ✓ ✓ ✓ 74.2 66.3 71.2 49.2 10.5 263 2270699
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3.4.2 Model performance analysis
As shown in Figure 11, the confusion matrices provide a

comparative analysis of the classification results between the

YOLO11 base model and HDMS-YOLO on the Weed dataset.

The YOLO11 model performs well in most categories, but

notable misclassifications are observed. For example, Grasses and

Sunflower are frequently confused with Soy, as indicated by the
Frontiers in Plant Science 12
recall values of 55.6% and 72.4%, respectively. The background class

also shows significant overlap with Grasses and Thistle, leading to

missed detections. This suggests that the model struggles with

distinguishing between weeds and crops with similar visual

features, particularly in complex or cluttered scenes.

In contrast, the HDMS-YOLOmodel shows clear improvements.

The confusion matrix for HDMS-YOLO reveals higher precision and
FIGURE 9

Comparison of performance and FLOPs among different models.
TABLE 6 Performance comparison results of different models in ablation experiments.

Model Backbone Image size (px) mAP50 (%) mAP50-95 (%) Parameters (M) FLOPS (G)

HDMS-YOLO Ours 640×640 71.2 49.2 2.27 10.5

YOLOv8n C2f CSPDarkNet 640×640 66.5 45.2 3.01 8.7

YOLOv9t PGI and GELAN 640×640 68.0 49.0 2.0 7.7

YOLOv10n Improved CSPNet 640×640 67.1 47.2 2.27 6.7

YOLO11n C3k2 CSPDarkNet 640×640 68.6 47.4 2.59 6.3

YOLOv12n R-ELAN 640×640 67.2 46.3 2.56 6.5

RetinaNet Resnet50 640×640 54.7 39.6 36.8 81.69

RetinaNet Resnet101 640×640 55.2 40.2 55.8 85.41

YOLO-CWD*[1] C2f ECSADarkNet 640×640 66.9 45.6 3.5 9.6

YOLO-CBAM*[50] Bottleneck_CSP 640×640 70.5 48.4 53.3 135.1

Deformable DETR*[25] ResNet-101 640×640 65.8 47.6 40.1 173

DINO*[29] ResNet-50 640×640 71.2 50.2 47.5 178.5

Faster R-CNN Resnet50 640×640 62.9 45.1 41.5 78.12

Faster R-CNN Resnet101 640×640 64.4 46.2 60.5 81.77
In the table, the best values for the HDMS-YOLO model have been bolded; however, the optimal values for Parameters (M) and FLOPS (G) correspond to YOLOv9t and YOLO11n, respectively.
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recall across multiple categories. For example, Grasses and Sunflower

show increased precision, with Grasses reaching 60% and Sunflower

improving to 78%, compared to 55% and 50% for the YOLO11

model. Additionally, Thistle and Geranium benefit from improved

recall, with Thistle rising from 48.4% to 51.0% and Geranium from

51.7% to 53.7%, highlighting the model’s enhanced ability to handle

these more challenging categories.

The precision-recall curve in Figure 12 further illustrates

HDMS-YOLO’s improved performance. Soy stands out with

99.3% precision and recall close to 1.0, demonstrating near-

perfect detection. Maize and Potato also show strong

performance, with precision values of 95.9% and 94.9%,

respectively. However, classes like Grasses (precision = 61.1%,

recall = 39%) and Chickweed (precision = 71.6%, recall = 52%)

show lower performance, primarily due to their visual similarity to

other species and limited sample sizes in the dataset. The Poppy and

Goosefoot classes exhibit even lower recall, with Poppy at 31% and

Goosefoot at 25%, which reflects challenges related to class

imbalance and visual similarity to other weeds.

These quantitative results confirm that HDMS-YOLO

significantly improves over YOLO11, particularly in terms of
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precision and recall across various crop and weed categories.

However, further improvements could be made in handling

underrepresented classes. Techniques such as data augmentation

or few-shot learning could address the performance issues with

Goosefoot, Poppy, and Grasses, enhancing the model’s robustness

across all categories.
4 Discussion

Weed detection is crucial in agriculture, as it helps prevent a

reduction in crop yields, which leads to an estimated global loss of

$32 billion annually (Kubiak et al., 2022). Traditional weed control

methods, including manual labor and chemical applications, are

labor-intensive, expensive, and environmentally damaging.

Automated systems, like the HDMS-YOLO model, provide a

more sustainable and efficient solution, capable of detecting weeds

in real-time and guiding precision herbicide application. While

HDMS-YOLO performs well on the CropAndWeed dataset, several

challenges remain, particularly in detecting small, crowded, or

similar-looking weeds.
TABLE 7 Speed indicators and time Predictions of YOLO11n and HDMS-YOLO.

Model Preprocess (ms) Inference (ms) Postprocess (ms) Test time (s)

Yolo 11n 0.2 2.8 1.7 17

HDMS-YOLO 0.2 6.8 0.9 18
The best values in each column of the table have been highlighted in bold.
FIGURE 10

Comparison of the weed detection effects of different models.
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The current model significantly improves performance over

earlier versions, such as YOLOv8n and YOLOv10n, with HDMS-

YOLO achieving 71.2% mAP@50 and 49.2% mAP@50-95.

However, as observed, small and similar-looking weeds, such as

Goosefoot and Poppy, showed low recall rates (15.0% and 44.8%,

respectively). This issue is largely due to class imbalance, where

underrepresented species, particularly those with limited training

data, struggle to achieve high accuracy. These findings are

consistent with previous research by Veeragandham et al, where

models like VGG-19 achieved high accuracy on larger datasets but

struggled with rare classes, particularly when there is class

imbalance and limited data for certain species (Veeragandham

and Santhi, 2022). The limited data for rare weeds leads to

overfitting, a challenge that affects models trained on

skewed datasets.

In comparison to two-stage models like Faster R-CNN, HDMS-

YOLO shows a computational advantage, requiring only 10.5

GFLOPs as opposed to the 78.12 GFLOPs required by Faster R-

CNN. However, HDMS-YOLO still faces challenges in high-density

weed environments, where weeds of similar size and shape are often

clustered together. Transformer-based models, such as Deformable

DETR, offer stronger performance in such situations, but their

computational demands may make them unsuitable for real-time

applications. Few-shot learning and domain adaptation, as explored

by Li and Fan et al, could be employed to address the problem of

underrepresented classes in our model by augmenting the dataset

with synthetic data or by transferring knowledge from similar tasks

(Li et al., 2024; Fan et al., 2024).

The limitations of HDMS-YOLO primarily lie in its

generalizability to different environments and handling rare

classes. Although the model performs well in the CropAndWeed

dataset, its performance may degrade in real-world settings, where

lighting conditions, weed species, and crop types vary significantly.

This issue of generalizability is a common problem in AI models, as
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demonstrated in studies like Xu et al, which proposed W-YOLOv5

for crop detection, emphasizing the challenge of adapting models to

new environments (Xu et al., 2024). Furthermore, the risk of

overfitting remains a concern, particularly for models trained on

datasets with imbalanced class distributions.

For future work, we propose integrating multi-sensor fusion,

combining visual, thermal, and LiDAR data to improve detection

under poor visibility or occluded conditions. Temporal tracking of

weed growth, as explored by Goyal et al, could also enhance the

model’s ability to monitor weeds over time and differentiate

between weeds at various growth stages (Goyal et al., 2025).

Additionally, field deployment strategies, such as real-time

decision-making for robotic systems, are essential for applying

HDMS-YOLO in agricultural practices. Implementing few-shot

learning techniques and incorporating domain adaptation

strategies will further improve the model’s generalizability to new

environments and rare species.
5 Conclusion

In this study, we proposed HDMS-YOLO, an improved detection

model based on the YOLOv11 architecture, to address the complex

challenge of recognizing multiple weed and crop types in farmland. A

hierarchical feature processing mechanism was constructed by

introducing the shallow feature structure reconstruction module

(SRFD) and the deep feature dynamic reconstruction module

(DRFD), significantly enhancing multi-scale object perception. The

PC-MSFA module significantly enhanced the detection performance

of weeds across various scales through cross-stage partial connection

and progressive multi-scale feature aggregation. Furthermore, the

dynamic task alignment detection head (IntegraDet) adaptively

adjusted classification and regression task weights, improving

discrimination between morphologically similar crops and weeds.
FIGURE 11

Confusion matrix of the model’s classification results on the dataset. Here, (a) is the confusion matrix diagram of YOLO11N, and (b) is the confusion
matrix diagram of HDMS-YOLO.
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Experimental results demonstrated that HDMS-YELO achieved

notable performance on the CropAndWeed dataset, with 74.2%

precision, 66.3% recall, 71.2% mAP@50, and 49.2% mAP@50-95,

requiring only 2.27 million parameters. The combination of high

accuracy and low parameter complexity provides practical technical

support for deployment on embedded devices and intelligent weeding

robot systems, significantly advancing agricultural automation.
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