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The construction industry is a major contributor to climate change, due to the
extensive use of non-renewable materials, such as concrete and steel. Bio-based
materials manufactured from diverse plant biomass sources — mainly wood,
lignocellulosic biomass, and plant fibres — offer sustainable alternatives,
potentially transforming buildings into net carbon sinks. However, the
establishment of effective value chains for the provision and deployment of
biomass in “largely bio-based” houses (i.e. houses with main elements made up
of bio-based materials) is still far from being reached. This depends largely on the
level of optimisation of bio-based vs conventional construction materials. In this
context, this opinion paper explores the feasibility of building “largely bio-based”
houses by discussing both the availability and the diverse functional roles that
different biomass types from diverse plant species can have in construction
applications. Moreover, the article highlights current research challenges in the
supply of high-quality biomass for “bio-based houses”. Finally, it discusses how
the effective integration of plant science, material engineering, as well as
environmental and economic research in trans-disciplinary research efforts is
key to set up operational and self-standing bio-based construction value chains.
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1 Introduction

The global construction industry causes extensive negative
environmental impacts and represents a major driver of climate
change. On the one hand, this depends on the enormous use of
concrete, steel, aluminium, and glass. These materials are
manufactured by using large amounts of non-renewable
resources, such as iron, bauxite, limestone, clay, sand, and rock
aggregates, whose extraction and processing causes water pollution,
destruction of natural habitats, deforestation, and soil erosion
(Gavriletea, 2017; Joshi et al., 2022; Silveira et al., 2021; Pradhan
et al,, 2024). On the other hand, the construction sector consumes
vast amounts of energy across value chains - from production of
construction materials, to their global trading, to the construction of
buildings. As such, the construction sector currently accounts for
10-15% of the annual global greenhouse gas emissions (UNEP,
2022, 2023).

Actions to mitigate the environmental and climate impact of the
global construction industry are urgently needed, especially in view
of the global demographic and urbanization dynamics (UNEP,
2023; Marinova et al., 2020; Deetman et al., 2020). In fact, both
population growth and urbanization are expanding global demand
for new buildings, which is expected to grow ~50% over 2020 levels
by 2050 (Deetman et al., 2020). In turn, increased housing demands
will also expand the global demand for construction materials, with
a potential deterioration of the associated impacts on environment
and climate (Marinova et al.,, 2020; Deetman et al., 2020). In this
context, bio-based materials can offer options to (partly) replace
non-renewable construction materials and improve the
environmental and carbon footprints of the global construction
industry, possibly turning buildings into net carbon sinks
(Crawford and Cadorel, 2017; Churkina et al., 2020; Abed et al.,
2022). However, there is still unclarity about best practices in the
deployment of bio-based materials in constructions, to promote
sustainability in the sector while avoiding negative side-effects on
land use, biodiversity, carbon cycles, and prices of construction
materials and houses.

Recent research on deploying bio-based materials in
construction focused mainly on the use of mass timber (primarily
cross-laminated timber - CLT - and glue laminated timber -
Glulam) in buildings to replace steel and concrete in load-bearing
elements, highlighting good potential (Crawford and Cadorel, 2017;
Churkina et al., 2020; Abed et al., 2022). However, next to mass
timber, numerous other bio-based alternatives can be used to
produce other relevant construction materials, including particles
and fibres from lignocellulosic crops and by-products of agricultural
practices. Taking an integral perspective on the construction value
chains, by considering all the bioresources that can be used to build
“largely bio-based houses” (i.e. houses with main elements made up
of bio-based materials) is pivotal to establish a bio-based
construction sector where biomass functionality is aligned with
biomass productivity, at the same time ensuring overall system
sustainability. In this view, this perspective paper aims at providing
an overview of promising biomass sources for building “largely bio-
based houses”, with a discussion on their physical properties,
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environmental impact, biomass availability, and socio-economic
aspects. Moreover, avenues for future agricultural and engineering
research are also discussed, with the goal of exploring best practices
and challenges for shifting the construction sector toward
sustainable and circular models.

2 Different biomass sources for
different house components

Central to the design of bio-based houses is the structural
complexity of buildings, which combine different elements
requiring specific properties, particularly in terms of mechanical
characteristics, physical structure and behaviour, durability, and
visual appearance (Figure 1A). Therefore, material choice is critical
to correctly design bio-based houses, and the materials used must
satisfy the properties required by different building parts. In this
regard, different classes of bioresources appear most suitable for
different elements of a bio-based house (Figure 1B). Specifically,
sawn wood, glulam, and cross laminated timber are preferred
materials to be deployed in the construction framework of a bio-
based house, thanks to their high bending strength and stiffness (He
etal., 2018; Arriaga et al., 2023; Ilgin, 2023). In parallel, wood-based
panels and particle boards made up of lignocellulose aggregates are
ideal for semi-structural elements as inner walls, given their
relatively light weight combined with acceptable stiffness and
density, as well as low costs (Klimek et al., 2018; Martins et al.,
20215 Moll et al,, 2024). Conversely, plant-based fibres converted
into low-density mats or panels are ideal for use in insulation layers,
even if attention should be paid for their durability and ignition
resistance (Charai et al., 2021; Chihab et al., 2023).

While it is therefore clear that effective bio-based alternatives of
conventional construction materials exist, open questions remain
about both the sustainable sourcing of these bioresources from
current agricultural landscapes, and the research needed to
optimize these bioresources from a whole value chain point of
view. In this regard, an important aspect entails the identification of
best plant species, crops, and/or crop residues that can supply the
timber, particles (chips), fibres, and other materials of Figure 1B, in
good amounts to satisfy their deployment in economies of scale,
while considering environmental and economic sustainability.
Moreover, identifying bottlenecks for cost- and quality-effective
biomass production is also important to enable this vision.

3 Promising crops and cropping
systems to deliver biomass sources
for the construction sector: a
comparative analysis

Several plant species and crops can be used to supply suitable
biomass for building the different parts of “bio-based houses”
(Table 1). However, the optimal allocation of biomass crops
within multi-purpose agricultural systems must consider several
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FIGURE 1

A

Construction frames:
Load-bearing wood skeleton,
walls, floors, roofs

Relevant bio-based materials:
Sawn wood, CLT-wood, Glulam

Insulation: of walls, floors,
roofing

Relevant bio-based materials:
Fiber mats & blow-in fibers,
bio-plastic foams

Key

for major k

paints, waxes

“Enabling materials”:
Walls, floors, roofing

Relevant bio-based materials:
Bio-based binders, coatings,

Outdoor & indoor finishing:
Weather resistant facades,
interior wall covering, ceilings,
screed floors

Relevant bio-based materials:
Plywood, chipboards, fibre
boards, hard boards, oriented
strand boards

Load-bearing wood-based beams
Non- load bearing particle boards

Load-bearing particle boards

Indoor covering & insulation materials

Structural timber strength class (EN-338) >C18

Bending strength >11.5 MPa; bending stiffness >1500 MPa

Bending strength >16 MPa; bending stiffness >2400 MPa

Thermal resistance of construction elements Rc 3.7-6.3

B

House bio-r

component

Structural Engineerd wood

elements

Insulation Particle-based blow-in
insulation, fiber-based
insulation mats
Cellulose fibers (blow-
in insulation,
insulation mats)

Flooring Solid wood planks
Cork

Sheating Plywood
Particleboards and
medium-density fiber
boards (MDF)

Roofing Wood shingles
Particle boards, fiber
boards

Doors & Solid timber

windows
Bio-based fiber
composite materials

Adhesive & Lignin-based adhesives

coatings

Bio-based paints,
waxes, and finishes

Pr

Cross-laminated, glued, laminated, and
veneered wood (CLT, LVL, glulam)

Thermo-mechanical defibration of wood
and lignocellulose; dry/wet board pressing

Thermo-chemical/mechanical biomass
pulping

Sawmilling and oil/wax impregnation

Compression molding

Wood peeling, veneer drying and hot
pressing with bio-based adhesives

Thermo-mechanical biomass pulping,
blending with bio-based adhesives, and
hot pressing

Precision sawing and oil/wax treatments

Thermo-mechanical biomass pulping,
blending with bio-based adhesives, and
hot pressing

Precision cutting and bio-coating

Thermo-mechanical biomass defibration,
bio-resin blending, extrusion and
compression molding

Lignin extraction and polymerization into
bio-resins

Oil/waxes/pigments extraction, emulsion,
and/or polymerization

Construction applications

Walls, beams, floors, load-
bearing components

Wall, roof, and floor

insulation

Walls and roof insulation

Hardwood floors, parquet
Acoustic and thermal
insulation

Wall sheating, furniture

Interior walls and roofs,
furniture

Roof covering

Roof insulation, interior
walls

Doors & windows frames

Window frames and trims

Wood glues, panel bonding

Surface protection

10.3389/fpls.2025.1697154

(A) Main structural and finishing construction elements found in a house, potential bio-based materials that can potentially be used for their
manufacturing, and relevant qualitative parameters that deployed materials need to meet; (B) Classes of bioresources that can be used to
manufacture bio-based materials for different construction needs in bio-based houses, with indication of methods for their manufacturing and

construction applications.

factors, balancing out production characteristics (quantity and
composition of the biomass) against suitability of plant species
and varieties for local soil, water and climate conditions. This aspect
is particularly important for selecting trees for wood supply, as the
natural growing area of tree species for timber production
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determines geographical patterns of wood production (Verkerk
et al,, 2015, 2019). Therefore, an accurate selection of tree species
for wood supply to construction is pivotal, especially when
promoting locally-oriented value chains for biomass supply is also
a goal. This is a key aspect, as local biomass sourcing minimizes the
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carbon footprint of bio-based houses, while also promoting rural
development through inter-sectorial value chains (agriculture,
wood processing, construction industries) (Palander and Vesa,
2022; Dams et al., 2023).

Considering the aspects just discussed, relatively abundant
sources of hard wood that can overall target different
geographical ranges are beech (Fagus sylvatica), silver birch
(Betula pendula), and different oak species (Quercus spp.)
(Table 1). Conversely, attractive soft wood species include
Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and
poplar trees (Populus spp.). Overall, these tree species grow on
relatively large acreages in Europe and can be sustainably cultivated
under regimes of (short) rotation forestry, as well as sourced
through sustainable management of natural forests (Walle et al.,
2007; Lundmark et al.,, 2018; Ekholm et al., 2023). These types of
agronomic practices promote prolonged land coverage, increasing
the soil, plant, and animal biodiversity of cropping systems (Ekholm
etal., 2023; Oliveira et al., 2024). Moreover, silviculture represents a

10.3389/fpls.2025.1697154

promising activity to prevent abandonment of fragile environments,
such as European mountain areas (Dax et al.,, 2021). For all these
practices, the duration of the rotation cycles of tree cultivation and
of tree harvesting from natural forests is a critical factor to modulate
the hardness and density of wood, through the molecular regulation
of plant cell walls deposition (i.e., thickness of plant cell walls and
total amount of cellulose and lignin) (Guidi et al., 2009; Rizanti
et al, 2018; Ding et al, 2022). These aspects are particularly
important to meet specific wood quality standards for
construction applications, as the molecular composition of wood
determines resistance to mechanical stress and water damage,
stiffness, and durability (Toumpanaki et al., 2021; Ding et al,
2022). Additionally, the length of forestry rotations and frequency
of tree harvesting significantly affects the economic profitability of
wood production (Chen et al., 2017). Therefore, species- and end-
use-specific choices in crop systems management, along with a
transversal minimization of agricultural inputs, are key to establish
profitable value chains. Moreover, an effective allocation of wood

TABLE 1 Plant species suitable for building the different parts of bio-based houses.

Dry wood/
biomass yield
ranges across EU
environments

Common
name

Plant Species

type

species

Time until production
maturity (years,
unless otherwise
specified)

Construction

S References
applications

Structural elements,
; . . . : (Sell, 1987; Pretzsch
Fagus sylvatica = Beech Hardwood tree  1-2 t/ha/year 80-100 interior panelling, flooring,
R et al., 2014)
furniture
Plywood, flooring, interior hansson, 1999;
Betula pendula  Silver birch Hardwood tree  1-4 t/ha/year 40-50 yw 1ng ntert (Johansson
fittings Rowell, 2005)
Structural beams, floorin; (ones, 195%
Quercus spp. Oak Hardwood tree  1-4 t/ha/year 80-120 . ’ & Sanchez-Gonzaleza
furniture
et al., 2005)
Structural walls and beams, .
X X Norway X (Kollmann and Cote,
Picea abies Softwood tree 5-15 t/ha/year 60-80 roof trusses, windows and
spruce 1968; Pretzsch, 2009)
doors frames
Structural elements, (Rydholm, 1965;
Pinus sylvestris | Scots pine Softwood tree 5-15 t/ha/year 60-100 exterior cladding, treated Hynynen et al., 2002;
wood, plywood Zianis et al., 2005)
2-10 (short rotation regime); Lightweight plywood, OSB | (Scarascia-Mugnozza
Populus spp. Poplar Softwood tree 7-13 t/ha/year 15-30 (medium/long rotation for walls and flooring, et al., 1997; Kauter
regimes) composite materials et al., 2003)
Van Der Weijd
) ) ) . . Fibreboards and (Van Der ,C,IJ, ¢ .
Miscanthus . Lignocellulosic 2-3 years until crop maturity, . K . et al,, 2013; Tajuddin
Miscanthus 12-30 t/ha/year particleboards, insulation .
spp. crop followed by annual harvests et al., 2016; Klimek
panels
et al,, 2018)
(Van Der Weijde
. . . . . Composite boards, et al,, 2013;
Panicum . Lignocellulosic 2-3 years until crop maturity, ) . . .
. Switchgrass 9-22 t/ha/year insulation panels, exterior Janiszewska et al.,
virgatum crop followed by annual harvests . .
cladding 2022; Martyniak
et al., 2025)
Bio-based Is, ami et al., 2022;
Cannabis Lignocellulose/ i 10 a.se panets (]1m1/ e
i Hemp 5-15 t/ha/year 3-5 months insulation panels, fibre Martinez et al., 2023;
sativa fibre crop .
boards Pancaldi et al., 2025)
(Pisupati et al., 2021;
Lii'qun? ' Flax Lignocellulose/ 1.5-3 yhatyear 3-5 months Fiber boards, composite Arslanoglu et al.,
usitatissimum fiber crop elements 2022; Mohamed
et al.,, 2025)
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cropping systems into agricultural landscapes is also key. As such,
while converting fertile land to the cultivation of trees for biomass
production can lead to loss of profits for farmers (especially when
the benefits for land coverage and biodiversity preservation are not
subsidized), the allocation of tree production to marginal lands (i.e.
environmentally-degraded lands currently not used by agriculture)
can create new income sources in specific regions (Abolina and
Luzadis, 2015; Valujeva et al., 2022). Recent studies indicated that
about 30 Mha of marginal lands are available at the European level
(Von Cossel et al, 2019). This area could potentially sustain a
standing wood stock of ~5.5 billion m® assuming a tree density
in line with European natural forests, and mid-aged trees (Pilli
et al., 2023).

Next to trees, several lignocellulosic and/or fibre crops also
represent very important species to provide biomass and plant-
based fibres for building bio-based houses, especially for
manufacturing particle boards, insulation elements, and textiles.
These crops include species as Miscanthus spp., switchgrass
(Panicum virgatum), willow (Salix spp.), hemp (Cannabis sativa),
flax (Linum usitatissimum), and nettles (Urtica dioica) (Table 1). As
discussed for trees, the allocation of these crops to agricultural
systems should carefully consider the performance of different
species under different environmental conditions, as the growing
environment can heavily affect the biomass yield and quality of
these crops (Fabio et al., 2017; Petit et al., 2020; Awty-Carroll et al.,
2023). On the one hand, maximizing biomass yield is pivotal for
achieving a profitable cultivation of these species. On the other
hand, biomass quality - generally meant as an optimal ratio of
molecular components of the plant cell walls toward specific
applications - is key to ensure a technically- and cost-effective
processing of the biomass into final applications (Pancaldi and
Trindade, 2020; Van Der Cruijsen et al., 2021, Goudenhooft et al.,
2019). Overall, crops as Miscanthus, switchgrass, hemp, flax, nettles,
and willow can supply lignocellulose and fibres for particle boards
and insulation materials, but so far these feedstock do not reach P5
quality (international standards for particle boards) (van den Oever
et al., 2024). This is mainly due to their cell wall properties — high
silica and wax content, and thin, porous structures — that reduce
resin bonding efficiency and increase moisture uptake, preventing
compliance with the mechanical strength and humidity-resistance
requirements of P5 (van den Oever et al., 2024). Regarding growing
conditions, fibre crops display have advantages over tree species in
terms of growing speed and adaptation to a wide range of
environments, including cooler and warmer locations across large
latitudinal ranges (Petit et al., 2020; Awty-Carroll et al, 2023).
Moreover, these crops can be introduced within the agricultural
systems in different ways, while it is more challenging to introduce
trees in agricultural landscapes. For example, annual fibre crops as
hemp or flax can act as break crops in rotation with cereals and
several annual staple crops (potatoes, sugar beet and some oilseeds).
By contrast, perennial species as Miscanthus, switchgrass and
nettles can be included into current agricultural landscapes under
strip cropping regimes with food crops or, as discussed for woody
species, through cultivation on marginal lands. Under this latter
scenario, European marginal lands could potentially produce ~240
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Mt of biomass per year [considering an average biomass yield of ~8
t/ha] (Nijsen et al., 2012). In parallel, when the cultivation of
perennial biomass crops on marginal lands would take place
through the establishment of mixed cropping systems with
multiple species, the presence of these crops can promote synergy
between the use of agricultural resources and increasing
biodiversity, ecosystem services, and soil quality of marginal lands
(Carlsson et al., 2017; Pancaldi and Trindade, 2020). Nevertheless,
the establishment of subsidies for biodiversity benefits through
these types of cropping systems and for sustainable biomass use
are still critical factors to boost such value chains.

4 Research bottlenecks in the
optimization of bioresources for the
construction sector

The previous section highlighted the critical role of selecting
appropriate crops and cropping systems to sustainably supply
biomass for building bio-based houses. However, the
development of sustainable and economically-competitive value
chains, from biomass sourcing until deployment of bio-based
products in constructions, extends beyond decisions on
agronomic practices and agricultural planning. Specifically, both
the transformation of bioresources into finished products and the
development of crops able to withstand growing conditions found
on lands not used for food production (while maintaining good
biomass quality) pose challenges to plant scientists, as well as
process and material engineers. In fact, the inherent molecular
makeup of plant biomass, which strongly depends on the genetics
and biology of biomass crops, is a major driver of the costs to
transform such biomass into bio-based products (Pancaldi and
Trindade, 2020; Van Der Cruijsen et al., 2021). This is because the
relative proportions of molecular components of lignocellulosic
biomass, such as lignin, cellulose, and hemicellulose, along with
the content of ash and of secondary metabolites, play a crucial role
in the mechanical, thermal, and chemical processes required for
biomass conversion into construction products (Pancaldi and
Trindade, 2020; Van Der Cruijsen et al., 2021). Consequently, the
efficiency, scalability, and affordability of biomass conversion routes
are also affected. A further level of complexity is represented by the
relative novelty of plant molecular targets underlying the optimal
processing of biomass into construction products, as well as of the
technical processing routes. Therefore, we envision that integration
of research efforts between plant scientists and engineers, with the
aim of both improving the genetic makeup of crops that controls
biomass quality and to optimize cost-effective processing of biomass
into construction products, will be pivotal to reduce costs of bio-
based construction materials, while ensuring sustainability of
biomass production and processing for construction.

A concrete case showing how plant science and engineering
expertise can be effectively leveraged into research lines that address
the complete value chains of bio-based construction materials is
given by the transformation of Miscanthus biomass into different
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final products: particle boards, insulation panels, viscose for textiles,
and construction chemicals (e.g. adhesives). Once harvested and
dried, Miscanthus biomass is composed for 80-90% w/w by plant
cell walls, and for the remaining part essentially by ash (Van Der
Weijde et al., 2017a; Xu et al., 2020; Pancaldi et al., 2023).
Depending on the desired final products, the dried biomass is
typically chopped and subsequently thermally or chemically
treated, with the aim of either exposing lignin and hemicellulose
to improve chips binding into boards, or of purifying cellulose and
lignin for manufacturing viscose fibres and natural adhesives
(Klimek et al., 2018; Park et al., 2012; Liu et al., 2022; Gotz et al.,
2022). For all these purposes, the content, branching and molecular
organization of lignin, cellulose, and hemicellulose within plant cell
walls significantly affect both the cost of thermo-chemical biomass
treatments and the yield of fibres and chemicals. Therefore, plant
breeding and biotechnology strategies could be applied to develop
fit-for-purpose Miscanthus varieties. For example, by manipulating
genes underlying cellulose, hemicellulose, and lignin synthesis, level
of cellulose crystallinity, amount of hemicellulose substitutions, and
ratio of different monolignols within biomass (Torres et al., 2015;
Van Der Weijde et al,, 2017b, Pancaldi et al., 2023). This way, fit-
for-purpose varieties with minimized ash content, higher cellulose
and lignin content, and modified bonding between lignin, cellulose
and hemicellulose could be developed, to favour the production of
the different potential outlets: particle boards, insulation panels,
viscose fibres, bio-adhesives, etc. In parallel, process engineers could
optimize milder and cheaper treatments for optimized Miscanthus
varieties, whose molecular biomass structure inherently favours the
processing into specific products.

The trans-disciplinary research approach just proposed could
be extended even beyond plant science and process engineering,
embracing environmental research and logistics engineering. The
aims would consist in precisely quantifying the amount of biomass
with specific properties needed to satisfy the housing demand in
specific regions, to model optimal scenarios in the allocation of crop
varieties within agricultural systems to satisfy such demand, and to
calculate carbon savings of bio-based construction value chains. In
this regard, data from architectural prototypes indicate that
building bio-based houses can require ~13 tons of wood (for a
~100 m? house) (Ballinas and Chavez, 2023) or ~4 tons of
miscanthus straw (for a ~40 m? house where outer walls are built
with miscanthus straw) (Thornton et al., 2025). Assuming an
average building lifetime of 50 years, this material use translates
to a land pressure of ~0.08 ha/year for the wood case and ~0.007 ha/
year for the miscanthus case (assuming yields of 6 and 12 t/ha for
forest timber and miscanthus, respectively — see Table 1). These
estimates could be crossed with other types of data, including geo-
spatial data about land use, or information on crop phenology and
yield of diverse crop varieties. This way, a spatial assessment of the
boundaries for manufacturing bio-based houses with biomass
sourced from specific regions could be obtained. In turn, this type
of information at local scale would allow to plan bio-based
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construction value chains within specific territories and across
traditionally not-connected sectors.

5 Outlook

Building bio-based houses represents a great opportunity to
promote sustainability, circularity, and carbon-storage practices in the
global construction sector, which has currently significant impact on
climate change. Recent studies suggest great potential for producing
bio-based construction materials by using biomass from trees, industrial
crops, and agricultural side streams (Daly and Barril, 2024). However,
this vision poses also important challenges ahead. Specifically, given the
finite amount of land and forests and a growing housing demand, it is
pivotal to coordinate research efforts to carefully model the most
effective ways of sustainably allocating biomass sources to meet
construction demands. Moreover, improvement of crops to maximize
both biomass production and biomass quality to manufacture specific
construction products is also critical. In parallel, optimization of
biomass processing based on biomass properties and construction
needs is equally relevant. Overall, we firmly believe that research lines
that combine all these aspects in unitary, trans-disciplinary, whole
value-chain research efforts represent the most effective way to reach the
goals above. Moreover, this vision allows to also directly scale research
ideas into real-world value chains, by involving industrial partners and
regulatory institutions along the process. This is crucial, as scalability is
key to make value chains economically independent. The solution of
this bottleneck will likely mark the starting point of implementation
bio-based houses at large scales.
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