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The construction industry is a major contributor to climate change, due to the

extensive use of non-renewable materials, such as concrete and steel. Bio-based

materials manufactured from diverse plant biomass sources – mainly wood,

lignocellulosic biomass, and plant fibres – offer sustainable alternatives,

potentially transforming buildings into net carbon sinks. However, the

establishment of effective value chains for the provision and deployment of

biomass in “largely bio-based” houses (i.e. houses with main elements made up

of bio-based materials) is still far from being reached. This depends largely on the

level of optimisation of bio-based vs conventional construction materials. In this

context, this opinion paper explores the feasibility of building “largely bio-based”

houses by discussing both the availability and the diverse functional roles that

different biomass types from diverse plant species can have in construction

applications. Moreover, the article highlights current research challenges in the

supply of high-quality biomass for “bio-based houses”. Finally, it discusses how

the effective integration of plant science, material engineering, as well as

environmental and economic research in trans-disciplinary research efforts is

key to set up operational and self-standing bio-based construction value chains.
KEYWORDS

biomaterials, lignocellulosic crops, biobased houses, biomaterial value chains, fibre
crops, woody crops, biobased construction
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1 Introduction

The global construction industry causes extensive negative

environmental impacts and represents a major driver of climate

change. On the one hand, this depends on the enormous use of

concrete, steel, aluminium, and glass. These materials are

manufactured by using large amounts of non-renewable

resources, such as iron, bauxite, limestone, clay, sand, and rock

aggregates, whose extraction and processing causes water pollution,

destruction of natural habitats, deforestation, and soil erosion

(Gavriletea, 2017; Joshi et al., 2022; Silveira et al., 2021; Pradhan

et al., 2024). On the other hand, the construction sector consumes

vast amounts of energy across value chains – from production of

construction materials, to their global trading, to the construction of

buildings. As such, the construction sector currently accounts for

10-15% of the annual global greenhouse gas emissions (UNEP,

2022, 2023).

Actions to mitigate the environmental and climate impact of the

global construction industry are urgently needed, especially in view

of the global demographic and urbanization dynamics (UNEP,

2023; Marinova et al., 2020; Deetman et al., 2020). In fact, both

population growth and urbanization are expanding global demand

for new buildings, which is expected to grow ~50% over 2020 levels

by 2050 (Deetman et al., 2020). In turn, increased housing demands

will also expand the global demand for construction materials, with

a potential deterioration of the associated impacts on environment

and climate (Marinova et al., 2020; Deetman et al., 2020). In this

context, bio-based materials can offer options to (partly) replace

non-renewable construction materials and improve the

environmental and carbon footprints of the global construction

industry, possibly turning buildings into net carbon sinks

(Crawford and Cadorel, 2017; Churkina et al., 2020; Abed et al.,

2022). However, there is still unclarity about best practices in the

deployment of bio-based materials in constructions, to promote

sustainability in the sector while avoiding negative side-effects on

land use, biodiversity, carbon cycles, and prices of construction

materials and houses.

Recent research on deploying bio-based materials in

construction focused mainly on the use of mass timber (primarily

cross-laminated timber – CLT – and glue laminated timber –

Glulam) in buildings to replace steel and concrete in load-bearing

elements, highlighting good potential (Crawford and Cadorel, 2017;

Churkina et al., 2020; Abed et al., 2022). However, next to mass

timber, numerous other bio-based alternatives can be used to

produce other relevant construction materials, including particles

and fibres from lignocellulosic crops and by-products of agricultural

practices. Taking an integral perspective on the construction value

chains, by considering all the bioresources that can be used to build

“largely bio-based houses” (i.e. houses with main elements made up

of bio-based materials) is pivotal to establish a bio-based

construction sector where biomass functionality is aligned with

biomass productivity, at the same time ensuring overall system

sustainability. In this view, this perspective paper aims at providing

an overview of promising biomass sources for building “largely bio-

based houses”, with a discussion on their physical properties,
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environmental impact, biomass availability, and socio-economic

aspects. Moreover, avenues for future agricultural and engineering

research are also discussed, with the goal of exploring best practices

and challenges for shifting the construction sector toward

sustainable and circular models.
2 Different biomass sources for
different house components

Central to the design of bio-based houses is the structural

complexity of buildings, which combine different elements

requiring specific properties, particularly in terms of mechanical

characteristics, physical structure and behaviour, durability, and

visual appearance (Figure 1A). Therefore, material choice is critical

to correctly design bio-based houses, and the materials used must

satisfy the properties required by different building parts. In this

regard, different classes of bioresources appear most suitable for

different elements of a bio-based house (Figure 1B). Specifically,

sawn wood, glulam, and cross laminated timber are preferred

materials to be deployed in the construction framework of a bio-

based house, thanks to their high bending strength and stiffness (He

et al., 2018; Arriaga et al., 2023; Ilgın, 2023). In parallel, wood-based

panels and particle boards made up of lignocellulose aggregates are

ideal for semi-structural elements as inner walls, given their

relatively light weight combined with acceptable stiffness and

density, as well as low costs (Klıḿek et al., 2018; Martins et al.,

2021; Moll et al., 2024). Conversely, plant-based fibres converted

into low-density mats or panels are ideal for use in insulation layers,

even if attention should be paid for their durability and ignition

resistance (Charai et al., 2021; Chihab et al., 2023).

While it is therefore clear that effective bio-based alternatives of

conventional construction materials exist, open questions remain

about both the sustainable sourcing of these bioresources from

current agricultural landscapes, and the research needed to

optimize these bioresources from a whole value chain point of

view. In this regard, an important aspect entails the identification of

best plant species, crops, and/or crop residues that can supply the

timber, particles (chips), fibres, and other materials of Figure 1B, in

good amounts to satisfy their deployment in economies of scale,

while considering environmental and economic sustainability.

Moreover, identifying bottlenecks for cost- and quality-effective

biomass production is also important to enable this vision.
3 Promising crops and cropping
systems to deliver biomass sources
for the construction sector: a
comparative analysis

Several plant species and crops can be used to supply suitable

biomass for building the different parts of “bio-based houses”

(Table 1). However, the optimal allocation of biomass crops

within multi-purpose agricultural systems must consider several
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factors, balancing out production characteristics (quantity and

composition of the biomass) against suitability of plant species

and varieties for local soil, water and climate conditions. This aspect

is particularly important for selecting trees for wood supply, as the

natural growing area of tree species for timber production
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determines geographical patterns of wood production (Verkerk

et al., 2015, 2019). Therefore, an accurate selection of tree species

for wood supply to construction is pivotal, especially when

promoting locally-oriented value chains for biomass supply is also

a goal. This is a key aspect, as local biomass sourcing minimizes the
FIGURE 1

(A) Main structural and finishing construction elements found in a house, potential bio-based materials that can potentially be used for their
manufacturing, and relevant qualitative parameters that deployed materials need to meet; (B) Classes of bioresources that can be used to
manufacture bio-based materials for different construction needs in bio-based houses, with indication of methods for their manufacturing and
construction applications.
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carbon footprint of bio-based houses, while also promoting rural

development through inter-sectorial value chains (agriculture,

wood processing, construction industries) (Palander and Vesa,

2022; Dams et al., 2023).

Considering the aspects just discussed, relatively abundant

sources of hard wood that can overall target different

geographical ranges are beech (Fagus sylvatica), silver birch

(Betula pendula), and different oak species (Quercus spp.)

(Table 1). Conversely, attractive soft wood species include

Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and

poplar trees (Populus spp.). Overall, these tree species grow on

relatively large acreages in Europe and can be sustainably cultivated

under regimes of (short) rotation forestry, as well as sourced

through sustainable management of natural forests (Walle et al.,

2007; Lundmark et al., 2018; Ekholm et al., 2023). These types of

agronomic practices promote prolonged land coverage, increasing

the soil, plant, and animal biodiversity of cropping systems (Ekholm

et al., 2023; Oliveira et al., 2024). Moreover, silviculture represents a
Frontiers in Plant Science 04
promising activity to prevent abandonment of fragile environments,

such as European mountain areas (Dax et al., 2021). For all these

practices, the duration of the rotation cycles of tree cultivation and

of tree harvesting from natural forests is a critical factor to modulate

the hardness and density of wood, through the molecular regulation

of plant cell walls deposition (i.e., thickness of plant cell walls and

total amount of cellulose and lignin) (Guidi et al., 2009; Rizanti

et al., 2018; Ding et al., 2022). These aspects are particularly

important to meet specific wood quality standards for

construction applications, as the molecular composition of wood

determines resistance to mechanical stress and water damage,

stiffness, and durability (Toumpanaki et al., 2021; Ding et al.,

2022). Additionally, the length of forestry rotations and frequency

of tree harvesting significantly affects the economic profitability of

wood production (Chen et al., 2017). Therefore, species- and end-

use-specific choices in crop systems management, along with a

transversal minimization of agricultural inputs, are key to establish

profitable value chains. Moreover, an effective allocation of wood
TABLE 1 Plant species suitable for building the different parts of bio-based houses.

Plant
species

Common
name

Species
type

Dry wood/
biomass yield
ranges across EU
environments

Time until production
maturity (years,
unless otherwise
specified)

Construction
applications

References

Fagus sylvatica Beech Hardwood tree 1–2 t/ha/year 80-100
Structural elements,
interior panelling, flooring,
furniture

(Sell, 1987; Pretzsch
et al., 2014)

Betula pendula Silver birch Hardwood tree 1–4 t/ha/year 40-50
Plywood, flooring, interior
fittings

(Johansson, 1999;
Rowell, 2005)

Quercus spp. Oak Hardwood tree 1–4 t/ha/year 80-120
Structural beams, flooring,
furniture

(Jones, 1959;
Sánchez-Gonzáleza
et al., 2005)

Picea abies
Norway
spruce

Softwood tree 5–15 t/ha/year 60-80
Structural walls and beams,
roof trusses, windows and
doors frames

(Kollmann and Côté,
1968; Pretzsch, 2009)

Pinus sylvestris Scots pine Softwood tree 5–15 t/ha/year 60-100
Structural elements,
exterior cladding, treated
wood, plywood

(Rydholm, 1965;
Hynynen et al., 2002;
Zianis et al., 2005)

Populus spp. Poplar Softwood tree 7–13 t/ha/year
2-10 (short rotation regime);
15-30 (medium/long rotation
regimes)

Lightweight plywood, OSB
for walls and flooring,
composite materials

(Scarascia-Mugnozza
et al., 1997; Kauter
et al., 2003)

Miscanthus
spp.

Miscanthus
Lignocellulosic
crop

12–30 t/ha/year
2–3 years until crop maturity,
followed by annual harvests

Fibreboards and
particleboards, insulation
panels

(Van Der Weijde
et al., 2013; Tajuddin
et al., 2016; Klıḿek
et al., 2018)

Panicum
virgatum

Switchgrass
Lignocellulosic
crop

9–22 t/ha/year
2–3 years until crop maturity,
followed by annual harvests

Composite boards,
insulation panels, exterior
cladding

(Van Der Weijde
et al., 2013;
Janiszewska et al.,
2022; Martyniak
et al., 2025)

Cannabis
sativa

Hemp
Lignocellulose/
fibre crop

5–15 t/ha/year 3–5 months
Bio-based panels,
insulation panels, fibre
boards

(Jami et al., 2022;
Martıńez et al., 2023;
Pancaldi et al., 2025)

Linum
usitatissimum

Flax
Lignocellulose/
fiber crop

1.5–3 t/ha/year 3–5 months
Fiber boards, composite
elements

(Pisupati et al., 2021;
Arslanoglu et al.,
2022; Mohamed
et al., 2025)
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cropping systems into agricultural landscapes is also key. As such,

while converting fertile land to the cultivation of trees for biomass

production can lead to loss of profits for farmers (especially when

the benefits for land coverage and biodiversity preservation are not

subsidized), the allocation of tree production to marginal lands (i.e.

environmentally-degraded lands currently not used by agriculture)

can create new income sources in specific regions (Abolina and

Luzadis, 2015; Valujeva et al., 2022). Recent studies indicated that

about 30 Mha of marginal lands are available at the European level

(Von Cossel et al., 2019). This area could potentially sustain a

standing wood stock of ~5.5 billion m3, assuming a tree density

in line with European natural forests, and mid-aged trees (Pilli

et al., 2023).

Next to trees, several lignocellulosic and/or fibre crops also

represent very important species to provide biomass and plant-

based fibres for building bio-based houses, especially for

manufacturing particle boards, insulation elements, and textiles.

These crops include species as Miscanthus spp., switchgrass

(Panicum virgatum), willow (Salix spp.), hemp (Cannabis sativa),

flax (Linum usitatissimum), and nettles (Urtica dioica) (Table 1). As

discussed for trees, the allocation of these crops to agricultural

systems should carefully consider the performance of different

species under different environmental conditions, as the growing

environment can heavily affect the biomass yield and quality of

these crops (Fabio et al., 2017; Petit et al., 2020; Awty-Carroll et al.,

2023). On the one hand, maximizing biomass yield is pivotal for

achieving a profitable cultivation of these species. On the other

hand, biomass quality – generally meant as an optimal ratio of

molecular components of the plant cell walls toward specific

applications – is key to ensure a technically- and cost-effective

processing of the biomass into final applications (Pancaldi and

Trindade, 2020; Van Der Cruijsen et al., 2021, Goudenhooft et al.,

2019). Overall, crops as Miscanthus, switchgrass, hemp, flax, nettles,

and willow can supply lignocellulose and fibres for particle boards

and insulation materials, but so far these feedstock do not reach P5

quality (international standards for particle boards) (van den Oever

et al., 2024). This is mainly due to their cell wall properties – high

silica and wax content, and thin, porous structures – that reduce

resin bonding efficiency and increase moisture uptake, preventing

compliance with the mechanical strength and humidity-resistance

requirements of P5 (van den Oever et al., 2024). Regarding growing

conditions, fibre crops display have advantages over tree species in

terms of growing speed and adaptation to a wide range of

environments, including cooler and warmer locations across large

latitudinal ranges (Petit et al., 2020; Awty-Carroll et al., 2023).

Moreover, these crops can be introduced within the agricultural

systems in different ways, while it is more challenging to introduce

trees in agricultural landscapes. For example, annual fibre crops as

hemp or flax can act as break crops in rotation with cereals and

several annual staple crops (potatoes, sugar beet and some oilseeds).

By contrast, perennial species as Miscanthus, switchgrass and

nettles can be included into current agricultural landscapes under

strip cropping regimes with food crops or, as discussed for woody

species, through cultivation on marginal lands. Under this latter

scenario, European marginal lands could potentially produce ~240
Frontiers in Plant Science 05
Mt of biomass per year [considering an average biomass yield of ~8

t/ha] (Nijsen et al., 2012). In parallel, when the cultivation of

perennial biomass crops on marginal lands would take place

through the establishment of mixed cropping systems with

multiple species, the presence of these crops can promote synergy

between the use of agricultural resources and increasing

biodiversity, ecosystem services, and soil quality of marginal lands

(Carlsson et al., 2017; Pancaldi and Trindade, 2020). Nevertheless,

the establishment of subsidies for biodiversity benefits through

these types of cropping systems and for sustainable biomass use

are still critical factors to boost such value chains.
4 Research bottlenecks in the
optimization of bioresources for the
construction sector

The previous section highlighted the critical role of selecting

appropriate crops and cropping systems to sustainably supply

biomass for building bio-based houses. However, the

development of sustainable and economically-competitive value

chains, from biomass sourcing until deployment of bio-based

products in constructions, extends beyond decisions on

agronomic practices and agricultural planning. Specifically, both

the transformation of bioresources into finished products and the

development of crops able to withstand growing conditions found

on lands not used for food production (while maintaining good

biomass quality) pose challenges to plant scientists, as well as

process and material engineers. In fact, the inherent molecular

makeup of plant biomass, which strongly depends on the genetics

and biology of biomass crops, is a major driver of the costs to

transform such biomass into bio-based products (Pancaldi and

Trindade, 2020; Van Der Cruijsen et al., 2021). This is because the

relative proportions of molecular components of lignocellulosic

biomass, such as lignin, cellulose, and hemicellulose, along with

the content of ash and of secondary metabolites, play a crucial role

in the mechanical, thermal, and chemical processes required for

biomass conversion into construction products (Pancaldi and

Trindade, 2020; Van Der Cruijsen et al., 2021). Consequently, the

efficiency, scalability, and affordability of biomass conversion routes

are also affected. A further level of complexity is represented by the

relative novelty of plant molecular targets underlying the optimal

processing of biomass into construction products, as well as of the

technical processing routes. Therefore, we envision that integration

of research efforts between plant scientists and engineers, with the

aim of both improving the genetic makeup of crops that controls

biomass quality and to optimize cost-effective processing of biomass

into construction products, will be pivotal to reduce costs of bio-

based construction materials, while ensuring sustainability of

biomass production and processing for construction.

A concrete case showing how plant science and engineering

expertise can be effectively leveraged into research lines that address

the complete value chains of bio-based construction materials is

given by the transformation of Miscanthus biomass into different
frontiersin.org
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final products: particle boards, insulation panels, viscose for textiles,

and construction chemicals (e.g. adhesives). Once harvested and

dried, Miscanthus biomass is composed for 80-90% w/w by plant

cell walls, and for the remaining part essentially by ash (Van Der

Weijde et al., 2017a; Xu et al., 2020; Pancaldi et al., 2023).

Depending on the desired final products, the dried biomass is

typically chopped and subsequently thermally or chemically

treated, with the aim of either exposing lignin and hemicellulose

to improve chips binding into boards, or of purifying cellulose and

lignin for manufacturing viscose fibres and natural adhesives

(Klıḿek et al., 2018; Park et al., 2012; Liu et al., 2022; Götz et al.,

2022). For all these purposes, the content, branching and molecular

organization of lignin, cellulose, and hemicellulose within plant cell

walls significantly affect both the cost of thermo-chemical biomass

treatments and the yield of fibres and chemicals. Therefore, plant

breeding and biotechnology strategies could be applied to develop

fit-for-purpose Miscanthus varieties. For example, by manipulating

genes underlying cellulose, hemicellulose, and lignin synthesis, level

of cellulose crystallinity, amount of hemicellulose substitutions, and

ratio of different monolignols within biomass (Torres et al., 2015;

Van Der Weijde et al., 2017b, Pancaldi et al., 2023). This way, fit-

for-purpose varieties with minimized ash content, higher cellulose

and lignin content, and modified bonding between lignin, cellulose

and hemicellulose could be developed, to favour the production of

the different potential outlets: particle boards, insulation panels,

viscose fibres, bio-adhesives, etc. In parallel, process engineers could

optimize milder and cheaper treatments for optimized Miscanthus

varieties, whose molecular biomass structure inherently favours the

processing into specific products.

The trans-disciplinary research approach just proposed could

be extended even beyond plant science and process engineering,

embracing environmental research and logistics engineering. The

aims would consist in precisely quantifying the amount of biomass

with specific properties needed to satisfy the housing demand in

specific regions, to model optimal scenarios in the allocation of crop

varieties within agricultural systems to satisfy such demand, and to

calculate carbon savings of bio-based construction value chains. In

this regard, data from architectural prototypes indicate that

building bio-based houses can require ~13 tons of wood (for a

~100 m2 house) (Ballinas and Chávez, 2023) or ~4 tons of

miscanthus straw (for a ~40 m2 house where outer walls are built

with miscanthus straw) (Thornton et al., 2025). Assuming an

average building lifetime of 50 years, this material use translates

to a land pressure of ~0.08 ha/year for the wood case and ~0.007 ha/

year for the miscanthus case (assuming yields of 6 and 12 t/ha for

forest timber and miscanthus, respectively – see Table 1). These

estimates could be crossed with other types of data, including geo-

spatial data about land use, or information on crop phenology and

yield of diverse crop varieties. This way, a spatial assessment of the

boundaries for manufacturing bio-based houses with biomass

sourced from specific regions could be obtained. In turn, this type

of information at local scale would allow to plan bio-based
Frontiers in Plant Science 06
construction value chains within specific territories and across

traditionally not-connected sectors.
5 Outlook

Building bio-based houses represents a great opportunity to

promote sustainability, circularity, and carbon-storage practices in the

global construction sector, which has currently significant impact on

climate change. Recent studies suggest great potential for producing

bio-based constructionmaterials by using biomass from trees, industrial

crops, and agricultural side streams (Daly and Barril, 2024). However,

this vision poses also important challenges ahead. Specifically, given the

finite amount of land and forests and a growing housing demand, it is

pivotal to coordinate research efforts to carefully model the most

effective ways of sustainably allocating biomass sources to meet

construction demands. Moreover, improvement of crops to maximize

both biomass production and biomass quality to manufacture specific

construction products is also critical. In parallel, optimization of

biomass processing based on biomass properties and construction

needs is equally relevant. Overall, we firmly believe that research lines

that combine all these aspects in unitary, trans-disciplinary, whole

value-chain research efforts represent themost effective way to reach the

goals above. Moreover, this vision allows to also directly scale research

ideas into real-world value chains, by involving industrial partners and

regulatory institutions along the process. This is crucial, as scalability is

key to make value chains economically independent. The solution of

this bottleneck will likely mark the starting point of implementation

bio-based houses at large scales.
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Ballinas, M. B. P., and Chávez, L. G. (2023). Linking the European housing demand to
sustainable wood construction materials: Wooden Housing Prototype (No. 2432)
(Wageningen, The Netherlands: Wageningen Food & Biobased Research).

Carlsson, G., Mårtensson, L. M., Prade, T., Svensson, S. E., and Jensen, E. S. (2017).
Perennial species mixtures for multifunctional production of biomass on marginal
land. Gcb Bioenergy 9, 191–201. doi: 10.1111/gcbb.12373

Charai, M., Sghiouri, H., Mezrhab, A., and Karkri, M. (2021). Thermal insulation
potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-
based building materials. J. Cleaner Production 292, 126064. doi: 10.1016/
j.jclepro.2021.126064

Chen, S., Shahi, C., Chen, H. Y., and Mclaren, B. (2017). Economic analysis of forest
management alternatives: Compositional objectives, rotation ages, and harvest
methods in boreal forests. For. Policy Econ 85, 124–134. doi: 10.1016/
j.forpol.2017.09.006

Chihab, Y., Laaroussi, N., and Garoum, M. (2023). Thermal performance and energy
efficiency of the composite clay and hemp fibers. J. Building Eng. 73, 106810.
doi: 10.1016/j.jobe.2023.106810

Churkina, G., Organschi, A., Reyer, C. P., Ruff, A., Vinke, K., Liu, Z., et al. (2020).
Buildings as a global carbon sink. Nat. sustainability 3, 269–276. doi: 10.1038/s41893-
019-0462-4

Crawford, R. H., and Cadorel, X. (2017). A framework for assessing the
environmental benefits of mass timber construction. Proc. Eng. 196, 838–846.
doi: 10.1016/j.proeng.2017.08.015

Daly, P., and Barril, P. G. (2024). Biobased construction from agricultural crops: Paper
2-Supply chain dynamics of European case studies.
Dams, B., Maskell, D., Shea, A., Allen, S., Cascione, V., and Walker, P. (2023).
Upscaling bio-based construction: challenges and opportunities. Building Res. Inf. 51,
764–782. doi: 10.1080/09613218.2023.2204414

Dax, T., Schroll, K., Machold, I., Derszniak-Noirjean, M., Schuh, B., and Gaupp-
Berghausen, M. (2021). Land abandonment in mountain areas of the EU: An inevitable
side effect of farming modernization and neglected threat to sustainable land use. Land
10, 591. doi: 10.3390/land10060591

Deetman, S., Marinova, S., van der Voet, E., Van Vuuren, D. P., Edelenbosch, O., and
Heijungs, R. (2020). Modelling global material stocks and flows for residential and
service sector buildings towards 2050. J. Cleaner Production 245, 118658. doi: 10.1016/
j.jclepro.2019.118658

Ding, Y., Pang, Z., Lan, K., Yao, Y., Panzarasa, G., Xu, L., et al. (2022). Emerging
engineered wood for building applications. Chem. Rev. 123, 1843–1888. doi: 10.1021/
acs.chemrev.2c00450

Ekholm, A., Lundqvist, L., Axelsson, E. P., Egnell, G., Hjältén, J., Lundmark, T., et al.
(2023). Long-term yield and biodiversity in stands managed with the selection system
and the rotation forestry system: A qualitative review. For. Ecol. Manage. 537, 120920.
doi: 10.1016/j.foreco.2023.120920

Fabio, E. S., Volk, T. A., Miller, R. O., Serapiglia, M. J., Kemanian, A. R., Montes, F.,
et al. (2017). Contributions of environment and genotype to variation in shrub willow
biomass composition. Ind. Crops products 108, 149–161. doi: 10.1016/
j.indcrop.2017.06.030

Gavriletea, M. D. (2017). Environmental impacts of sand exploitation. Analysis of
sand market. Sustainability 9, 1118. doi: 10.3390/su9071118

Götz, M., Rudi, A., Heck, R., Schultmann, F., and Kruse, A. (2022). Processing
Miscanthus to high-value chemicals: A techno-economic analysis based on process
simulation. GCB Bioenergy 14, 447–462. doi: 10.1111/gcbb.12923

Goudenhooft, C., Bourmaud, A., and Baley, C. (2019). Flax (Linum usitatissimum L.)
fibers for composite reinforcement: exploring the link between plant growth, cell walls
development, and fiber properties. Front. Plant Sci. 10, 411. doi: 10.3389/fpls.2019.00411

Guidi, W., Tozzini, C., and Bonari, E. (2009). Estimation of chemical traits in poplar
short-rotation coppice at stand level. Biomass Bioenergy 33, 1703–1709. doi: 10.1016/
j.biombioe.2009.09.004

He, M., Sun, X., and Li, Z. (2018). Bending and compressive properties of cross-
laminated timber (CLT) panels made from Canadian hemlock. Construction Building
Materials 185, 175–183. doi: 10.1016/j.conbuildmat.2018.07.072

Hynynen, J., Ojansuu, R., Hökkä, H., Siipilehto, J., Salminen, H., and Haapala, P. (2002).
“Models for pred ic t ing s tand deve lopment in MELA Sys tem,” in
METSÄNTUTKIMUSLAITOKSEN TIEDONANTOJA (Forest Research Institute, Vantaa).

Ilgın, H. E. (2023). High-rise residential timber buildings: emerging architectural and
structural design trends. Buildings 14, 25. doi: 10.3390/buildings14010025
frontiersin.org

https://doi.org/10.3390/su14095570
https://doi.org/10.1016/j.landusepol.2015.08.022
https://doi.org/10.1016/j.landusepol.2015.08.022
https://doi.org/10.3390/f14061202
https://doi.org/10.3390/f14061202
https://doi.org/10.3390/su14084710
https://doi.org/10.1111/gcbb.13026
https://doi.org/10.1111/gcbb.13026
https://doi.org/10.1111/gcbb.12373
https://doi.org/10.1016/j.jclepro.2021.126064
https://doi.org/10.1016/j.jclepro.2021.126064
https://doi.org/10.1016/j.forpol.2017.09.006
https://doi.org/10.1016/j.forpol.2017.09.006
https://doi.org/10.1016/j.jobe.2023.106810
https://doi.org/10.1038/s41893-019-0462-4
https://doi.org/10.1038/s41893-019-0462-4
https://doi.org/10.1016/j.proeng.2017.08.015
https://doi.org/10.1080/09613218.2023.2204414
https://doi.org/10.3390/land10060591
https://doi.org/10.1016/j.jclepro.2019.118658
https://doi.org/10.1016/j.jclepro.2019.118658
https://doi.org/10.1021/acs.chemrev.2c00450
https://doi.org/10.1021/acs.chemrev.2c00450
https://doi.org/10.1016/j.foreco.2023.120920
https://doi.org/10.1016/j.indcrop.2017.06.030
https://doi.org/10.1016/j.indcrop.2017.06.030
https://doi.org/10.3390/su9071118
https://doi.org/10.1111/gcbb.12923
https://doi.org/10.3389/fpls.2019.00411
https://doi.org/10.1016/j.biombioe.2009.09.004
https://doi.org/10.1016/j.biombioe.2009.09.004
https://doi.org/10.1016/j.conbuildmat.2018.07.072
https://doi.org/10.3390/buildings14010025
https://doi.org/10.3389/fpls.2025.1697154
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pancaldi et al. 10.3389/fpls.2025.1697154
Jami, T., Karade, S. R., and Singh, L. P. (2022). “Current trends in applications of
cannabis/hemp in construction,” in Cannabis/hemp for sustainable agriculture and
materials. Eds. D. C. Agrawal, R. Kumar and M. Dhanasekaran (Singapore, Singapore:
Springer Nature), 203–237.
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