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Intelligent grading of
sugarcane leaf disease
severity by integrating
physiological traits with the
SSA-XGBoost algorithm
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Engineering, Kunming University, Kunming, Yunnan, China

Introduction: Accurate assessment of sugarcane leaf disease severity is crucial
for early warning and effective disease control.

Methods: In this study, we propose an intelligent method for identifying
sugarcane foliar disease severity based on physiological traits. Field-collected
data—including Soil and Plant Analyzer Development (SPAD) values, leaf surface
temperature, and nitrogen content—were acquired using a plant nutrient
analyzer (TYS-4N) from sugarcane leaves infected with brown stripe disease,
ring spot disease, and mosaic disease at four severity levels (mild, moderate,
moderately severe, and severe). After min-max normalization, six classification
models—KNN, AdaBoost, Random Forest (RF), Logistic Regression (LR), Decision
Tree (DT), and XGBoost—were developed, and the Sparrow Search Algorithm
(SSA) was employed to optimize hyperparameters for enhanced performance.
Results: Results demonstrate that SSA significantly improved the classification
capability of all models. The SSA-XGBoost model achieved the best performance,
with Precision, Recall, F1 Score, and Accuracy all exceeding 0.9186, and a
comprehensive PRFA score of 0.9326. When validated on an independent
dataset from Gengma County, the model achieved an overall accuracy of 0.91,
indicating strong generalization ability and field applicability.

Discussion: Compared to image-based deep learning approaches, the proposed
method offers advantages in terms of data accessibility, computational efficiency,
and model transparency, making it well-suited for rapid on-site diagnosis in
agricultural settings. This study provides an efficient and reliable technical
framework for intelligent diagnosis and early warning of sugarcane
disease severity.
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1 Introduction

Sugarcane is one of the most important sugar crops worldwide,
accounting for approximately 75% of global sugar production
(Qaadan et al., 2025; Kurniawan et al., 2025). However, the
frequent occurrence of foliar diseases severely threatens sugarcane
growth and development, leading to yield loss, reduced sugar
content, and significant economic losses (Bao et al., 2024).
Therefore, accurate identification of disease severity is not only
essential for timely control measures and crop health maintenance,
but also critical for maximizing yield potential, optimizing sugar
accumulation, and promoting sustainable agricultural development.

In recent years, the integration of artificial intelligence and
sensing technologies has opened new pathways for intelligent
diagnosis of crop diseases. Researchers have extensively explored
deep learning models based on image analysis, achieving notable
success in various crop disease recognition tasks. Early approaches
often combined convolutional neural networks (CNNs) with
traditional classifiers. For instance, Shradha et al. (2023) extracted
features using multiple CNNs and employed a support vector
machine (SVM) for classification, achieving an accuracy of
82.80% in plant disease detection. As model architectures evolved,
the You Only Look Once (YOLO) series demonstrated strong
performance in object detection tasks; Kalezhi and Shumba
(2025) achieved over 80% mean average precision (mAP) in
cassava disease detection. For sugarcane-specific diseases, Sun
et al. (2023) proposed the SE-Vit hybrid network, achieving an
accuracy of 89.57%, while Hong et al. (2024) improved a VGG-16-
based model to achieve a high accuracy of 98.89%. To further
enhance model performance, attention mechanisms and optimized
loss functions have been introduced. Sun et al. (2024) integrated the
Efficient Multi-Scale Attention (EMA) attention mechanism and
focal loss into YOLOVS, effectively mitigating issues of complex
backgrounds and sample imbalance in field images. Moreover, the
application of Transformer architectures has pushed performance
boundaries; Kuppusamy et al. (2024) achieved a classification
accuracy of 98.5% in sugarcane leaf disease recognition using a
Hybrid Shifted Vision Transformer.

Meanwhile, researchers have begun to transcend the limitations
of single-modality imaging by exploring diagnostic methods that fuse
multi-source information to improve the scientific rigor and
robustness of assessments. Hyperspectral imaging has gained
attention due to its sensitivity to plant biochemical parameters. Bao
et al. (2024) combined hyperspectral data with deep neural networks
to enable early detection of sugarcane smut, achieving over 90%
accuracy. Pereira et al. (2025), in a systematic review, noted that 88%
of related studies employed hyperspectral technology, often
combined with vegetation indices (VIs) and principal component
analysis (PCA), with classification accuracies generally exceeding
71%. Poblete et al. (2023) utilized high-resolution satellite data to
detect vascular disease symptoms in trees, extending the application
of remote sensing to large-scale monitoring. Additionally, Gianni and
Maridina (2021) proposed a multi-output learning framework to
simultaneously diagnose disease types and stress severity, enhancing
the comprehensiveness of assessment. Adluri and Bhukya (2025)
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further incorporated gene expression data into predictive modeling,
achieving 96.16% accuracy in rice disease early warning using their
adaptively optimized residual long short-term memory with
multilayer perception (AO-RLSTM-MLP) model, enabling
detection of asymptomatic infections.

Despite their strong performance under controlled conditions,
these technologies face multiple challenges in real-field applications.
First, environmental interference significantly affects model
performance: variations in illumination, leaf overlap, and
background noise degrade image quality, causing the accuracy of
hyperspectral models to drop from over 90% in laboratory settings
to below 70% in field conditions (Abbas et al., 2023; Pereira et al.,
2025). Moreover, the high cost and complex calibration
requirements of hyperspectral equipment limit their adoption
among smallholder farmers (Kurniawan et al, 2025). Second,
most disease severity assessments still rely on lesion area or visual
scoring (Qin et al., 2025), making it difficult to dynamically reflect
changes in plant physiological status (e.g., chlorophyll and nitrogen
levels). Although Vasavi et al. (2023) used models such as random
forest and AdaBoost to predict chili diseases, and Bin et al. (2023)
proposed the triple-branch Swin Transformer classification (TSTC)
network to simultaneously classify disease and severity, their inputs
remain limited to image features, lacking integration with
physiological parameters. Furthermore, model optimization is
inefficient: traditional grid search or random search incurs high
computational costs (Sharma et al., 2025), and hybrid optimization
algorithms (e.g., the Hybrid WOAAPSO algorithm, which merges
Adaptive Particle Swarm Optimization (APSO) with the Whale
Optimization Algorithm (WOA) by Vijayan and Chowdhary, 2025)
still face challenges in convergence speed within high-dimensional
parameter spaces. The stacked ensemble framework proposed by
Qaadan et al. (2025) improved classification performance but relied
on resource-intensive models, limiting its deployability in
edge environments.

To address these challenges, this study proposes a novel
approach for assessing sugarcane leaf disease severity using plant
physiological traits and intelligent optimization algorithms. The
main research contributions are:

1. Field Data Collection and Dataset Construction: To
overcome the environmental adaptability issues associated
with traditional image-dependent methods, this study
employs a portable plant nutrient analyzer (TYS-4N) to
collect non-image physiological data from sugarcane leaves
in the field. By measuring SPAD values, leaf surface
temperature, and nitrogen content, we constructed a
comprehensive dataset covering various sugarcane
diseases (brown stripe, ring spot, and mosaic) at different
severity levels.

. Machine Learning Model Optimization Using SSA: To
address the inefficiency of traditional hyperparameter
tuning methods, we employed the SSA to optimize six
mainstream machine learning models (KNN, AdaBoost,
Random Forest, Logistic Regression, Decision Tree, and
XGBoost). We introduced a composite evaluation metric
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PRFA, consisting of Precision, Recall, F1 Score, and
Accuracy, to comprehensively assess model performance.
The objective of SSA optimization was to maximize the
PRFA score on the validation set, thereby enhancing model
robustness and generalization.

3. Physiological Trait-Based Disease Severity Assessment
Model: Based on the optimized models, we developed a
disease severity assessment model centered on SPAD
values, leaf surface temperature, and nitrogen content.
The input layer directly maps physiological features,
while the output layer adopts a multi-classification
strategy (mild, moderate, moderately severe, and severe)
to identify disease severity. To validate model robustness,
cross-regional testing was conducted in sugarcane fields in
Gengma County, Yunnan Province.

This study not only provides a new approach for intelligent
identification of sugarcane disease severity but also offers
methodological support for digital management of diseases in
other crops, demonstrating significant theoretical innovation and
practical value.

2 Materials and methods
2.1 Data collection and preprocessing

The data used in this study were collected from two representative
sugarcane cultivation sites in Yunnan Province, China. The primary
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dataset was obtained from the sugarcane germplasm resource nursery/
breeding station of Yunnan Agricultural University, where two
cultivars—Dianzhe and Xintaitang—were planted. Prior to data
collection, disease severity levels for brown stripe disease, ring spot
disease, and mosaic disease were systematically classified based on
expert consultation and field observations. The assessment was
conducted by evaluating visual symptoms on green leaves, including
lesion morphology (size, number, spatial distribution, and color
change), and disease severity was categorized into four levels: mild,
moderate, moderately severe, and severe (see Figure 1 and
Supplementary Table 1).

Physiological parameters were measured using a portable plant
nutrient analyzer (TYS-4N, Top Cloud-Agro Technology, China).
For each infected leaf, three measurements of SPAD value
(indicating chlorophyll content), leaf surface temperature, and
nitrogen content were taken at different locations within the
lesion area. The average of the three readings was recorded as the
representative value for that sample. The corresponding disease
severity level was also documented for each measurement. Data
were collected during the early maturity stage of sugarcane in
November 2024, resulting in a total of 2,212 valid samples: 343
mild, 628 moderate, 670 moderately severe, and 571 severe cases.

To evaluate the model’s generalization capability, an
independent validation dataset was collected from the Gengma
Sugarcane Plantation, the largest sugarcane production base in
Yunnan Province, primarily cultivating the Dianzhe variety. The
same measurement protocol—identical severity grading criteria and
instrument settings—was strictly followed. Data collection was
completed in December 2024, yielding 635 validation samples: 28

|
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s€vere

Representative symptoms of sugarcane leaf diseases at different severity levels: (A) Brown Stripe, (B) Ring Spot, and (C) Mosaic.
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mild, 63 moderate, 127 moderately severe, and 417 severe. The
geographical, climatic, and agronomic differences between the two
sites enhance the robustness of the model and enable rigorous
cross-regional and cross-ecological validation.

The dataset used in this study comprises three physiological
variables measured from diseased sugarcane leaf regions—SPAD
value, leaf surface temperature, and nitrogen content—along with a
categorical label indicating disease severity, classified into four
levels: mild, moderate, moderately severe, and severe. To facilitate
model training and evaluation, the severity labels were numerically
encoded using ordinal encoding: “mild” was assigned 0, “moderate”
— 1, “moderately severe” — 2, and “severe” — 3. An example of the
preprocessed dataset is presented in Table 1.

2.2 Model selection and hyperparameter
optimization

To address challenges such as limited sample size and class
imbalance inherent in the dataset, six representative machine
learning algorithms were systematically selected and
comparatively evaluated: KNN, a non-parametric method that
classifies samples based on majority voting among their nearest
neighbors (Parthasarathy and Chatterji, 1990); AdaBoost, an
adaptive boosting algorithm that dynamically adjusts sample
weights to focus on hard-to-classify instances (Schwenk and
Bengio et al., 2000); RF, an ensemble of decision trees built using
bagging, offering strong generalization capability; Logistic
Regression (Breiman, 2001), LR, a simple and interpretable linear
classifier (Singh et al., 2009); DT, a model that makes decisions
based on tree-structured rules—easy to interpret but prone to
overfitting (Geibel et al, 2002); and XGBoost, an efficient and
regularized gradient boosting framework that delivers state-of-
the-art performance across a wide range of machine learning
tasks (Chen and Guestrin, 2016). These models span linear
classifiers, instance-based learning, and ensemble learning
frameworks, enabling a comprehensive assessment of the
mapping between physiological features and disease severity

TABLE 1 Example data of SPAD values, leaf surface temperature,
nitrogen content, and disease severity.

Leaf surface

SPAD
temperature

Number

Nitrogen Target

2 46.6 21.37 14.5 1
3 32.3 21.37 10.2 3
2210 49.8 20.31 15.5 0
2211 444 20.31 13.9 1
2212 40.8 20.31 12.8 2
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across diverse hypothesis spaces, thereby ensuring robustness and
representativeness in model selection.

Some of the selected models inherently possess a certain degree
of robustness to class imbalance due to their algorithmic
mechanisms. For instance, ensemble-based methods such as
Random Forest and XGBoost mitigate class bias to some extent
by constructing multiple base learners and incorporating
randomness or gradient-based optimization. AdaBoost, on the
other hand, dynamically adjusts the weights of misclassified
samples, thereby placing greater emphasis on minority-class
instances that are difficult to classify. Given the limited overall
sample size, resampling techniques—such as oversampling (e.g.,
SMOTE) and under sampling—are prone to causing overfitting
under small-sample conditions and may hinder model
generalization. Furthermore, in model evaluation, we primarily
rely on metrics robust to class imbalance, such as the Fl-score
and recall, rather than accuracy alone, to ensure the objectivity and
reliability of our assessment results.

To overcome the inefficiency and tendency to converge to local
optima of traditional hyperparameter tuning methods (e.g., grid
search and random search) in high-dimensional spaces, this study
employs the SSA for automated hyperparameter optimization (Xue
and Shen, 2020). SSA is a metaheuristic optimization algorithm
inspired by the foraging and anti-predation behaviors of sparrow
groups. In this model, the sparrow population is divided into two
roles: scouts, responsible for exploring new food sources (i.e.,
potential optimal solutions in the search space), and followers,
who follow the scouts and utilize existing information. Additionally,
some sparrows act as sentinels, triggering group position updates
upon sensing danger (such as getting stuck in a local optimum),
thereby enhancing the ability to escape local optima. By simulating
this social behavior mechanism, SSA achieves a balance between
global exploration and local exploitation, making it suitable for
complex, non-convex, high-dimensional optimization problems,
such as hyperparameter tuning in machine learning. The
flowchart is shown in Figure 2.

SSA is a population-based metaheuristic algorithm inspired by
the foraging and anti-predation behaviors of sparrows, known for
its strong global search capability and rapid convergence. In this
work, SSA is applied to optimize key hyperparameters of each
model, with the objective of maximizing the composite evaluation
metric PREA—a weighted average of Precision, Recall, F1-score,
and Accuracy (with equal weights)—on the validation set. This
objective function is designed to balance classification performance
across all severity levels, particularly improving detection accuracy
for minority classes (e.g., mild disease cases). Although the F1-score
inherently integrates Precision and Recall, the practical application
context of this study—early detection of mild crop diseases—entails
diverse performance priorities among different stakeholders:
agronomists prioritize minimizing missed diagnoses (high Recall),
system operators emphasize the reliability of alerts (high Precision),
and managers require a balanced view of overall classification
accuracy (Accuracy). Therefore, the PRFA metric is not intended
to be a theoretically non-redundant evaluation measure; rather, it
serves as a compromise proxy metric that reflects the multi-
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FIGURE 2
The SSA flowchart.

stakeholder requirements and guides the hyperparameter
optimization process toward a balanced trade-off across multiple
performance dimensions.

The entire optimization process is conducted within a cross-
validation framework (e.g., 5-fold CV) to ensure stable and
generalizable performance estimation. The final optimized models
are then evaluated on an independent test set and used to construct
the physiological trait-based model for sugarcane disease severity
assessment. The overall technical workflow is illustrated in Figure 3.

All experiments were performed on a computer equipped with
an AMD Ryzen 7 4800H with Radeon Graphics (2.90 GHz), using
Python 3.9. The primary software libraries include Scikit-learn

Frontiers in Plant Science

1.6.0, XGBoost 2.1.3, NumPy, Pandas, and a custom-developed
SSA optimization framework.

Within the SSA framework, hyperparameter optimization for
each machine learning model is conducted over a predefined search
space. Each individual in the sparrow population represents a
candidate hyperparameter combination, and the algorithm
iteratively updates their positions to maximize the PRFA score on
the validation set, which serves as the fitness function. The
algorithm is configured with a maximum of 100 iterations and a
population size of 30. Early stopping is applied if the fitness value
does not improve for 10 consecutive generations. To enhance
computational efficiency, parallel execution is enabled via the

frontiersin.org
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FIGURE 3

Technical workflow.

n_jobs=-1 parameter in scikit-learn, leveraging all available
CPU cores.

Selected hyperparameters and their corresponding search
ranges are listed in Table 2. A fixed random seed
(random_state=42) was used for reproducibility, while remaining
hyperparameters were set to default values. All hyperparameters
were encoded (either continuously or discretely) into the SSA
search vector, with boundary constraints and type validation
enforced during optimization. Ultimately, the optimal
hyperparameter combination yielding the highest PRFA score is
selected for each model and used in subsequent performance
evaluation on the independent test set.

2.3 Model evaluation metrics

To comprehensively evaluate the performance of different
machine learning models in the sugarcane disease severity
classification task, this study employs multiple classification
evaluation metrics, including Accuracy, Precision, Recall, F1-
score, and a custom composite metric named PRFA. All metrics
are computed based on the confusion matrix constructed from the
predicted labels and true labels on the test set.

Frontiers in Plant Science

2.3.1 Accuracy

Accuracy represents the proportion of correctly classified
samples among the total number of samples. It is a widely used
overall performance metric suitable for most classification tasks.
The formula for accuracy is defined as:

R TP + TN
ccuracy =
Y TP+ TN+ FP+FN

2.3.2 Precision

Precision is the ratio of true positive predictions to all samples
predicted as positive. It reflects the model’s ability to avoid false
alarms when identifying diseased samples. The precision for each
class is calculated as:

TP

P .. _
recision —TP T FP

2.3.3 Recall

Recall, also known as True Positive Rate (TPR) or sensitivity,
measures the proportion of actual positive samples that are
correctly identified by the model. It indicates the model’s capacity
to detect all instances of a given severity level. Recall is computed as:
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TABLE 2 Selected hyperparameters and their search spaces for the base

model.

Hyperparameter

Search space/

range

n_neighbors [1,2,3,4,5,6,7,8,9,10]
weights [‘uniform’, ‘distance’]
‘auto’, ‘ball_tree’, kd_tree’,
KNN algorithm auto w re? -tree
brute’]
p [1,2,3,4,5]
leaf_size [10, 20, 30, 40, 50]
. [10, 20, 30, 40, 50, 60, 70,
n_estimators
AdaBoost 80, 90, 100]
learning_rate [0.1, 0.5, 1.0, 1.5, 2.0]
i [10, 20, 30, 40, 50, 60, 70,
n_estimators
80, 90, 100]
[None, 10, 20, 30, 40, 50,
max_depth
60, 70, 80, 90, 100]
RandomForest min_samples_split [2,3,4,5,6,7,8,9,10]
min_samples_leaf [1,2,3,4,5,6,7,8,9, 10]
max_features [None, ‘sqrt’, ‘log2’]
criterion [ glf‘u ’ entrfpy ’
log_loss”]
[1,2,3,4,5,6,7,8,9, 10,
C 11, 12, 13, 14, 15, 16, 17,
18, 19, 20]
LogisticRegression max_iter (10, 20, 30, 40, 50, 60, 70,
8! 8] — 80, 90, 100]
[Ibfgs’, ‘liblinear’, ‘newton-
solver cg’, ‘newton-cholesky’, ‘sag’,
‘saga’]
max_depth [None, 10, 20, 30, 40, 50,
-4 60, 70, 80, 90, 100]
min_samples_split [2,3,4,5,6,7,8,9, 10]
min_samples_leaf [1,2,3,4,5,6,7,8,9,10]
DecisionTree
max_features [None, ‘sqrt’, Tog2’]
criterion [ g1i11 ’ entr’?py ’
log_loss”]
splitter [‘best’, ‘random’]
1 estimators [10, 20, 30, 40, 50, 60, 70,
- 80, 90, 100]
learning_rate [0.1, 0.5, 1.0, 1.5, 2.0]
max_depth [None, 10, 20, 30, 40, 50,
—4eP 60, 70, 80, 90, 100]
XGBoost
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
subsample

colsample_bytree

0.7, 0.8, 0.9, 1.0]

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]
min_child_weight [1,3,5,7,9,11]
(Continued)
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TABLE 2 Continued

Search space/

Model Hyperparameter
yperp range
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
gamma
0.7,0.8, 0.9, 1.0]
res aloha [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
&P 0.7, 0.8, 0.9, 1.0]
res Tambdl [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
¢gfambda 07,08, 0.9, 1.0]
TP
Recall = ———
TP + FN

2.3.4 Fl-score
The Fl-score is the harmonic mean of Precision and Recall,
providing a balanced assessment of model performance, especially in
the presence of class imbalance. The F1-score ranges from 0 to 1, with
values closer to 1 indicating better performance. It is calculated as:
Precision - Recall

F1Score=2 - —————
Precision + Recall

2.3.5 Composite performance metric

To balance the trade-offs among Precision, Recall, F1-score, and
Accuracy, this study proposes a custom composite metric, PRFA,
which computes the equally weighted average of these four metrics:

1
PRFA = 1 (Precision + Recall + F1 Score + Accuracy)

This metric ensures a holistic evaluation of model performance
across multiple dimensions, particularly enhancing sensitivity to
minority classes while maintaining overall classification consistency.

Definitions of Confusion Matrix Components:

TP (True Positive): Number of samples that are actually
positive and correctly predicted as positive.

TN (True Negative): Number of samples that are actually
negative and correctly predicted as negative.

FP (False Positive): Number of samples that are actually
negative but incorrectly predicted as positive.

FN (False Negative): Number of samples that are actually
positive but incorrectly predicted as negative.

3 Results

3.1 Distribution analysis of sugarcane leaf
disease severity

Figure 4 illustrates the distribution patterns of SPAD values, leaf

surface temperature, and nitrogen content in sugarcane leaves
across disease severity levels (Level 0-3), visualized using violin
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FIGURE 4
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i

Distribution of SPAD values, leaf surface temperature, and nitrogen content across different sugarcane disease severity levels (Level 0-3). (A) shows
the distribution of SPAD values; (B) shows the distribution of nitrogen content; (C) shows the distribution of leaf surface temperature.

plots. These plots effectively capture the central tendency,
dispersion, and skewness of each variable within severity classes,
providing insights into their response to disease progression.

3.1.1 SPAD value distribution

Figure 3A and Table 3 illustrate the distribution patterns of SPAD
values across different disease severity levels. At Level 0, SPAD values
are primarily distributed between 47 and 58, with a median of
approximately 51, indicating that chlorophyll content in healthy or
slightly affected leaves is concentrated at higher levels. As the disease
severity increases, SPAD values show a systematic downward trend,
with the distribution becoming wider but shorter. By Level 3, the
range of SPAD values decreases to its lowest point, with the height of
the distribution significantly increasing but the width becoming
narrower, indicating that the data is highly concentrated around
the median but spans a larger overall range, with some low-value
outliers. This reflects the individual variability in chlorophyll
degradation under severe disease conditions.

Overall, both the median and interquartile range of SPAD
values decrease monotonically with disease progression,
demonstrating a strong negative correlation between chlorophyll
content and disease severity. Except for Level 3, the distributions in

Frontiers in Plant Science

08

the first three levels are relatively symmetric and compact,
suggesting stable physiological responses in early to mid-
stage infections.

3.1.2 Nitrogen content distribution

Figure 3B and Table 4 illustrate the evolution patterns of
nitrogen content as the disease progresses. At Level 0, nitrogen
content is concentrated between 15 and 18 mg/kg, with a median of
approximately 16 mg/kg, showing a symmetric and dense
distribution. Similar to the trend observed for SPAD values, as
disease severity increases, the range, median, and height of the
nitrogen content distribution all gradually decrease, while the width
of the distribution becomes wider. By Level 3, both the range and
median of the distribution have reached their lowest points, with
the distribution becoming narrower but showing significant tailing,
particularly at the lower end (<10 mg/kg), where there is a notable
extension of density. This indicates that severe disease leads to
substantial nitrogen depletion and an increased variability
among individuals.

These results confirm a continuous decline in nitrogen content
with disease progression, with distribution morphology
transitioning from symmetric and concentrated to skewed and
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TABLE 3 Distribution ranges and medians of SPAD values across
different disease severity levels.

Disease severity levels Distribution ranges  Medians
Level 0 (mild) 47-58 51
Level 1 (moderate) 42-52 45
Level 2 (moderately severe) 35-45 40
Level 3 (severe) 21-42 35

dispersed in advanced stages. This supports nitrogen content as a
sensitive indicator of disease severity.

3.1.3 Leaf surface temperature distribution

Figure 4C displays the leaf temperature distribution across
severity levels. In Level 0, temperatures range from 18°C to 25°C,
with a median of 20-22°C. From Level 1 to Level 3, the overall range
remains largely unchanged (17-25°C), and the median shows only a
slight downward trend, indicating a weak response of leaf
temperature to disease progression.

Notably, all severity levels exhibit multi-modal and asymmetric
distributions, with multiple density peaks and unequal tails. This
suggests substantial intra-class variability, likely influenced by non-
disease factors such as microclimate, stomatal conductance, or water
stress. Consequently, leaf temperature alone demonstrates limited
discriminative power compared to SPAD and nitrogen content,
highlighting its limited utility as a standalone diagnostic feature.

3.2 Training and optimization of
classification models

Six machine learning models—KNN, AdaBoost, RF, LR, DT,
and XGBoost—were trained to classify sugarcane disease severity
based on SPAD, temperature, and nitrogen data collected from
plants infected with brown stripe, ring spot, and mosaic diseases.
Hyperparameters were optimized using the SSA to enhance model
performance and generalization. The dataset was split into training
(90%) and testing (10%) sets to ensure sufficient training and
independent evaluation.

With default hyperparameters, the models were evaluated on
the test set using Precision, Recall, F1-score, Accuracy, and PRFA
(see Table 5). Logistic Regression (LR) achieved the best

TABLE 4 Distribution ranges and medians of nitrogen content across
different disease severity levels.

Disease severity Distribution ranges Medians
levels (mg/kg) (mg/kqg)
Level 0 (mild) 15-18 16
Level 1 (moderate) 13-16 14.5
Level 2 (moderately
11-14 12.5
severe)
Level 3 (severe) 7-13 10.5
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performance among default models, with Precision=0.9154,
Recall=0.9144, F1-score=0.9145, and Accuracy=0.9144, indicating
high consistency and stability. In contrast, AdaBoost performed the
worst (Precision=0.5898, Recall=0.6216, Fl-score=0.5367),
reflecting its sensitivity to class imbalance and suboptimal default
settings. KNN achieved scores close to LR (>0.90), while RF and
XGBoost showed robust performance (~0.89). DT scored ~0.85—
29% higher than AdaBoost—demonstrating acceptable
baseline performance.

SSA significantly improved the performance of all models by
optimizing key hyperparameters to maximize PRFA on a validation
subset. After optimization: XGBoost emerged as the top performer,
achieving Precision=0.9199, Recall=0.9189, Fl-score=0.9186,
Accuracy=0.9189, surpassing even the unoptimized LR model.
Improvements ranged from +0.027 to +0.028 across metrics,
demonstrating SSA’s effectiveness in fine-tuning ensemble
models. AdaBoost showed the most dramatic improvement: F1-
score increased by 0.1043, with all metrics converging toward 0.67-
0.69, indicating enhanced stability and reduced bias due to better
parameter configuration. KNN, RF, LR, and DT also improved by
0.01-0.03 on average, confirming the broad applicability of SSA in
enhancing model robustness.

To clearly illustrate the relative effectiveness of different
optimization strategies, this study directly compares the original
XGBoost model (accuracy: 89.19%, Fl-score: 89.17%) with various
models optimized by the Sparrow Search Algorithm (SSA). The results
show that SSA-XGBoost achieves the best performance among all
compared models, with an accuracy improvement of 2.70 percentage
points over the baseline XGBoost. Among the other SSA-optimized
models, SSA-LR and SSA-RF both attain an accuracy of 91.44% (F1-
scores of 91.45% and 91.41%, respectively), slightly lower than SSA-
XGBoost. SSA-DT achieves an accuracy of 89.19%, comparable to the
baseline XGBoost, while SSA-KNN (89.64%) and SSA-AdaBoost
(71.62%) show no clear advantage. In summary, XGBoost optimized
by SSA not only significantly outperforms its original version but also
maintains a leading position in comparison with other SSA-optimized
models, demonstrating superior overall classification capability.

The PRFA metric, defined as the equally weighted average of the
four core metrics, was used to rank model performance. As
summarized in Table 6, the SSA-XGBoost model achieved the
highest PRFA of 0.9326, outperforming all other models. This
indicates superior overall performance in balancing precision,
recall, and accuracy across severity levels.

In this study, we evaluated the contribution of each feature to
the predictive performance of the SSA-XGBoost model by
computing feature importance scores using the model’s
‘feature_importances_" attribute and visualized the top 20
features in a bar plot (see Figure 5). As shown in the figure,
among all physiological features related to sugarcane disease,
nitrogen content exhibited a significantly higher importance score
than both SPAD and leaf temperature, while leaf temperature
ranked lowest and contributed minimally. This finding is highly
consistent with our qualitative observations from the disease
severity distribution analysis—namely, that SPAD and nitrogen
concentration eftectively capture the gradient of disease severity,
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TABLE 5 Comparison of model performance before and after optimization.

10.3389/fpls.2025.1698808

Operation Model Precision Recall F1 Score Accuracy
KNN 0.9052 0.9054 0.9051 0.9054
AdaBoost 0.5898 0.6216 0.5367 0.6216
RF 0.8964 0.8964 0.8961 0.8964

Unoptimized
LR 0.9154 0.9144 09145 0.9144
DT 0.8551 0.8559 0.8551 0.8559
XGBoost 0.8918 0.8919 0.8917 0.8919
KNN 0.8965 0.8964 0.8959 0.8964
AdaBoost 0.7589 0.7162 0.6804 07162
RF 09161 0.9144 09141 0.9144

Optimized

LR 09163 0.9144 09145 0.9144
DT 0.8940 0.8919 0.8912 0.8919
XGBoost 0.9199 0.9189 0.9186 0.9189

whereas leaf temperature shows limited discriminative power across
severity levels.

3.3 External validation and generalization
analysis

To evaluate real-world applicability, the optimized SSA-
XGBoost model was externally validated on an independent
dataset of 635 samples collected from the Gengma Sugarcane
Plantation. The dataset includes 28 (Level 0), 63 (Level 1), 127
(Level 2), and 417 (Level 3) samples, reflecting the field-realistic
increasing prevalence of severe disease.

As shown in Table 7, the model achieved an overall Accuracy of
0.91, with a weighted F1-score of 0.91 and a macro F1-score of 0.89,
indicating strong generalization. Specifically: Precision was highest

TABLE 6 PRFA scores and optimal hyperparameters of the six machine
learning models after SSA optimization.

Model PRFA Hyperparameter
KNN 09189 {‘n_neigh})ors’: 5, ‘)w‘ei{;hts": ‘disténc,e’, ‘algorithm’:
ball_tree’, ‘p: 2, ‘leaf_size’: 50}
AdaBoost  0.9016 {'n_estimators”: 80, ‘learning_rate’: 1.0}
{'n_estimators’: 80, ‘max_depth’: 50, ‘min_samples_split™:
RF 09191 | 6, ‘min_samples_leaf’: 9, ‘max_features™: ‘sqrt’, ‘criterion’:
‘log_loss’}
LR 0.9149 {‘C’: 11, ‘max_iter”: 140, ‘solver’: ‘liblinear’}
{‘max_depth’: 70, ‘min_samples_split™: 5,
DT 0.9236 ‘min_samples_leaf: 8, ‘max_features’: ‘log2’, ‘criterion’:
‘gini’, ‘splitter’: ‘random’}
{'n_estimators’: 90, ‘learning_rate’: 0.1, ‘max_depth’: 70,
XGBoost | 0.9326 » ‘sgbsaml?le’:’().z, “colsam?lefby‘tree’: 0.4, ’
min_child_weight’: 5, ‘gamma’: 1.0, ‘reg_alpha’: 0.9,
‘reg_lambda’: 0.8}
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for Level 2 (0.92) and lowest for Level 0 (0.88), suggesting high
specificity for moderately severe cases. Recall was perfect for Level 0
(1.00), indicating no missed detection of healthy/lightly diseased
plants, but lowest for Level 2 (0.65), revealing misclassification or
under-detection. F1-score was highest for Level 3 (0.95) and lowest
for Level 2 (0.76), highlighting classification ambiguity in the
moderately severe category.

To further assess performance stability, confusion matrices were
generated for both the original test set and the independent validation
set (see Figure 6). Both datasets yielded an overall accuracy of 0.91,
confirming model consistency. On the original test set, classification
was balanced: Level 0 accuracy=86.21%, Level 1 = 93.02%, Level 2 F1 =
88.41%, Level 3 = 98.48%. On the Gengma validation set, Level 0 recall
reached 100%, and Level 3 precision was 98.56%, confirming robust
detection of healthy and severely diseased plants.

However, Level 2 recall dropped to 64.57% (F1 = 76.34%), with
many samples misclassified as Level 3. This suggests symptom
overlap and transitional characteristics between moderately severe
and severe disease stages in real-field conditions.

This performance gap indicates that while the current
physiological features (SPAD, temperature, nitrogen) are effective
for detecting extreme disease states, they struggle to distinguish
transitional stages (Level 2), likely due to overlapping symptom
expression and environmental noise.

The SSA-XGBoost model demonstrates superior performance
in classifying sugarcane disease severity using physiological traits,
achieving high accuracy and strong generalization, particularly for
healthy (Level 0) and severely infected (Level 3) plants. SPAD values
and nitrogen content are identified as highly sensitive and reliable
indicators of disease progression, while leaf temperature exhibits
limited discriminative power due to high intra-class variability.
External validation confirms the model’s robustness in real-world
conditions. However, classification of moderately severe cases
(Level 2) remains challenging due to ambiguous symptom
expression, suggesting the need for increased sampling during
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Feature Important

Nitrogen

FIGURE 5
The feature importance results of the SSA-XGBoost model.

transitional stages, integration of temporal or multi-modal data
(e.g., canopy imaging, weather variables), and advanced feature
engineering to improve boundary discrimination. Overall, this
study validates the feasibility of deploying SSA-optimized
XGBoost models for large-scale, non-destructive monitoring of
sugarcane health across diverse agro-ecological environments.

4 Discussion

The current study introduces a novel approach for classifying the
severity of sugarcane leaf diseases by integrating physiological features
with machine learning techniques, aiming to address challenges in early
detection and classification accuracy within disease management. By
leveraging key indicators such as SPAD values, leaf surface
temperature, and nitrogen content acquired through portable plant

TABLE 7 Classification report on the validation dataset.

Class Precision Recall Fl-score  Support

0 0.88 1.00 093 28

1 091 0.92 091 63

2 0.92 0.65 0.76 127

3 091 0.99 0.95 417
accuracy - - 0.91 635
macro avg 0.90 0.89 0.89 635
weighted avg 091 091 091 635
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nutrient analyzers (TYS-4N), six classification models—KNN,
AdaBoost, RF, LR, DT, and XGBoost—were constructed. The SSA
was employed for hyperparameter optimization, significantly
enhancing model performance.

4.1 Biological basis of selected features

The chosen physiological traits are grounded in biological
principles. SPAD values, reflecting chlorophyll content, typically
decrease due to damage to chloroplast structure during disease
progression. Leaf surface temperatures are influenced by stomatal
conductance and transpiration rates, often rising as stomata close
upon infection, reducing heat dissipation. Nitrogen levels directly
affect plant growth and disease resistance, showing systematic
changes throughout disease development. These metrics provide
stable and sensitive inputs for classification models, contrasting with
deep learning approaches that rely on image data. Numerical
physiological parameters obtained via portable devices offer
advantages like ease of collection, robustness against environmental
interference, and minimal preprocessing requirements, making them
more suitable for rapid field detection and practical application.

Nevertheless, this study has two key limitations that should be
acknowledged. First, the current models focus exclusively on disease
severity grading and do not distinguish among specific sugarcane
disease types (e.g., brown stripe, ring spot, or mosaic). Future work
should incorporate visual, spectral, or molecular signatures to enable
precise pathogen identification alongside severity assessment.

Second—and equally important—the set of physiological features
is limited to only three parameters: SPAD value, leaf surface
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Confusion matrices on the original test set and the independent validation set. (A) is the confusion matrix of the optimized XGBoost in the original
test set; (B) is the confusion matrix of the optimized XGBoost in the independent validation set.

temperature, and nitrogen content. While these are biologically
meaningful and field-accessible, they capture only a partial view of
the plant’s stress response. Additional physiological indicators, such as
leaf water potential, relative chlorophyll fluorescence (e.g., Fv/Fm), or
leaf moisture content, reflect complementary mechanisms of plant
defense and could significantly enhance model sensitivity—particularly
to early-stage infections that may not yet manifest in SPAD or
nitrogen changes.

Looking forward, integrating these physiological traits with
multimodal data sources—such as hyperspectral imaging, thermal
infrared sensing, or even metabolomic profiles—could unlock a
more holistic understanding of plant health. Such a multi-layered
approach would not only improve predictive accuracy but also
support earlier and more robust diagnosis under diverse field
conditions, paving the way for next-generation precision disease
management systems in sugarcane and other crops.

4.2 Enhanced model performance through
SSA optimization

The SSA algorithm’s global search capabilities and fast convergence
properties were leveraged to optimize critical hyperparameters across
all six machine learning models. This approach effectively mitigates the
risk of local optima inherent in conventional tuning methods such as
grid or random search. Experimental results demonstrated significant
improvements in classification accuracy and stability after
optimization, with SSA-XGBoost achieving the best overall
performance (Precision, Recall, F1 Score, and Accuracy all exceeding
0.9186; PRFA=0.9326), thereby confirming SSA’s effectiveness in
enhancing model performance.

Notably, XGBoost exhibited greater performance gains from SSA
optimization compared to Random Forest (RF), Logistic Regression
(LR), and Decision Tree (DT). This can be attributed to XGBoost’s
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algorithmic structure: as a gradient boosting framework, it relies on a
complex set of interdependent hyperparameters—such as learning rate,
maximum tree depth, subsample ratio, and L1/L2 regularization—that
jointly control model complexity, bias-variance trade-off, and
generalization. The global exploration ability of SSA is particularly
well-suited to navigating this high-dimensional, non-convex
hyperparameter space, enabling XGBoost to fully exploit its capacity
for modeling nonlinear relationships and high-order feature
interactions—common in agricultural physiological data (e.g., SPAD,
leaf temperature, nitrogen content).

In contrast, LR has limited expressiveness due to its linear nature
and few tunable parameters; DT, while interpretable, lacks robustness
and is prone to overfitting without ensemble strategies; and RF, though
inherently stable through bagging and random feature selection,
exhibits reduced sensitivity to hyperparameter tuning because of its
stochastic design. Consequently, the synergy between SSA’s efficient
global search and XGBoost’s flexible, high-capacity architecture yields
more substantial performance improvements than with other base
learners, highlighting the importance of aligning optimization
strategies with model-specific characteristics.

4.3 Advantages over deep learning
methods

Compared to deep learning alternatives, our method exhibits
several practical advantages. Firstly, it requires minimal annotated
image data, relying instead on a small set of biologically interpretable
physiological parameters (e.g., SPAD, leaf temperature, nitrogen
content) to achieve high-precision severity grading—thereby
significantly reducing data acquisition costs and eliminating the need
for labor-intensive pixel-level or image-level labeling. Secondly, the
lightweight model architecture and fast training/inference speeds make
it well-suited for deployment in resource-constrained agricultural
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environments, such as on edge devices in sugarcane fields. Moreover,
the transparency of input features and model decisions enhances
interpretability, fostering greater trust among agronomists and
end-users.

That said, recent comparative studies (e.g., Maurya et al., 2023;
Gupta et al., 2024) highlight that deep learning models—
particularly convolutional neural networks (CNNs) and vision
transformers—excel at discriminating between visually distinct
disease types from leaf images, a capability our current
physiology-only framework does not address. To bridge this gap,
we envision a hybrid diagnostic system that synergistically
combines the strengths of both paradigms: a deep learning
module could first identify the specific disease type (e.g., brown
stripe vs. mosaic) from RGB or hyperspectral images, while a
physiology-driven module (such as SSA-XGBoost) would then
assess the severity level based on real-time field measurements of
SPAD, temperature, and nitrogen.

Such a two-stage or multi-branch architecture would enable
comprehensive disease diagnosis—simultaneously answering “what
disease is present?” and “how severe is it?”—while leveraging the
robustness of image-based recognition and the field-deployability of
physiological sensing. This integrated approach represents a
promising direction for future work, aligning with emerging
trends in multimodal plant health monitoring.

4.4 Challenges in classifying moderately
severe disease (class 2)

Class 2 (moderately severe) samples achieved a recall of only
64.57% and an Fl-score of 76.34%, significantly lower than other
severity levels, with the majority misclassified as Class 3. This
performance gap suggests that the model struggles to reliably
identify cases at the intermediate stage of disease progression, a
critical window for timely intervention.

This limitation stems not merely from visual or symptomatic
similarity between Class 2 and Class 3 under field conditions, but
more fundamentally from the insufficient representational capacity of
the current physiological feature set during the transitional phase of
disease development. While SPAD, leaf temperature, and nitrogen
content effectively differentiate healthy (Class 0) and severely diseased
(Class 3) plants, their response patterns tend to plateau or change
nonlinearly as symptoms advance from moderate to severe, resulting in
ambiguous decision boundaries in the feature space. The problem is
further highlighted in cross-dataset validation: Class 2 performance
remains relatively stable on the internal test set but declines markedly
in the external validation set collected under real-world, complex field
conditions, indicating limited robustness to environmental
perturbations—such as variations in light and humidity—and natural
inter-plant heterogeneity.

To address these challenges, future efforts could focus on
enriching the input representation through multiple complementary
strategies. Incorporating dynamic physiological indicators—such as
daily SPAD decline rates or diurnal leaf temperature ranges—along
with higher-order feature interactions (e.g., SPAD x nitrogen content)
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may better capture the temporal dynamics of disease progression.
Simultaneously, increasing sampling density during the peak
occurrence of Class 2 symptoms or in representative field plots,
combined with resampling or cost-sensitive learning techniques,
could help mitigate class boundary ambiguity. Most promisingly,
fusing canopy-scale imaging data from UAV-based RGB or
multispectral sensors—providing texture, color, and structural
phenotypic cues—with micro-meteorological variables such as
temperature, humidity, and precipitation would enable a more
holistic “physiology-phenotype-environment” modeling framework.
Although the current model demonstrates strong performance
for healthy and severely diseased cases—making it well-suited for
large-scale screening and early warning—its accuracy for moderately
severe disease remains a key bottleneck. By implementing these
integrated approaches, future systems could evolve from coarse-
grained severity grading toward fine-grained, context-aware
diagnosis, ultimately supporting more precise and actionable crop
protection strategies in real-world agricultural environments.

5 Conclusion

This study proposes an intelligent classification methodology
for determining the severity of sugarcane leaf diseases using
physiological characteristics combined with machine learning.
Key physiological indicators including SPAD values, leaf surface
temperature, and nitrogen content were collected to construct six
classification models: KNN, AdaBoost, RF, LR, DT, and XGBoost.
Hyperparameter optimization was conducted using the SSA.
Results indicate that the SSA-XGBoost model outperformed
others on the test set, with evaluation metrics exceeding 0.9186
and a PRFA score of 0.9326. In the independent validation set from
Gengma County, the overall accuracy reached 0.91, demonstrating
excellent generalization ability and field applicability.

Compared to deep learning models, our approach offers distinct
advantages in terms of data acquisition convenience, computational
efficiency, and model interpretability, making it highly suitable for
rapid diagnostics and early warning in agricultural settings. This
study provides an effective technological pathway for intelligent
management of sugarcane diseases and offers a replicable
methodology for precise identification of other crop diseases.
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