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Intelligent grading of
sugarcane leaf disease
severity by integrating
physiological traits with the
SSA-XGBoost algorithm
Xinrui Wang1, Jihong Sun2, Peng Tian1, Mengyao Wu1,
Jiawei Zhao1, Jiangquan Chen1, Ye Qian1* and Canyu Wang1*

1College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, China, 2College of Information
Engineering, Kunming University, Kunming, Yunnan, China
Introduction: Accurate assessment of sugarcane leaf disease severity is crucial

for early warning and effective disease control.

Methods: In this study, we propose an intelligent method for identifying

sugarcane foliar disease severity based on physiological traits. Field-collected

data—including Soil and Plant Analyzer Development (SPAD) values, leaf surface

temperature, and nitrogen content—were acquired using a plant nutrient

analyzer (TYS-4N) from sugarcane leaves infected with brown stripe disease,

ring spot disease, and mosaic disease at four severity levels (mild, moderate,

moderately severe, and severe). After min-max normalization, six classification

models—KNN, AdaBoost, Random Forest (RF), Logistic Regression (LR), Decision

Tree (DT), and XGBoost—were developed, and the Sparrow Search Algorithm

(SSA) was employed to optimize hyperparameters for enhanced performance.

Results: Results demonstrate that SSA significantly improved the classification

capability of all models. The SSA-XGBoost model achieved the best performance,

with Precision, Recall, F1 Score, and Accuracy all exceeding 0.9186, and a

comprehensive PRFA score of 0.9326. When validated on an independent

dataset from Gengma County, the model achieved an overall accuracy of 0.91,

indicating strong generalization ability and field applicability.

Discussion: Compared to image-based deep learning approaches, the proposed

method offers advantages in terms of data accessibility, computational efficiency,

and model transparency, making it well-suited for rapid on-site diagnosis in

agricultural settings. This study provides an efficient and reliable technical

framework for intelligent diagnosis and early warning of sugarcane

disease severity.
KEYWORDS

sugarcane leaf diseases, disease severity grading, physiological traits, machine learning
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1 Introduction

Sugarcane is one of the most important sugar crops worldwide,

accounting for approximately 75% of global sugar production

(Qaadan et al., 2025; Kurniawan et al., 2025). However, the

frequent occurrence of foliar diseases severely threatens sugarcane

growth and development, leading to yield loss, reduced sugar

content, and significant economic losses (Bao et al., 2024).

Therefore, accurate identification of disease severity is not only

essential for timely control measures and crop health maintenance,

but also critical for maximizing yield potential, optimizing sugar

accumulation, and promoting sustainable agricultural development.

In recent years, the integration of artificial intelligence and

sensing technologies has opened new pathways for intelligent

diagnosis of crop diseases. Researchers have extensively explored

deep learning models based on image analysis, achieving notable

success in various crop disease recognition tasks. Early approaches

often combined convolutional neural networks (CNNs) with

traditional classifiers. For instance, Shradha et al. (2023) extracted

features using multiple CNNs and employed a support vector

machine (SVM) for classification, achieving an accuracy of

82.80% in plant disease detection. As model architectures evolved,

the You Only Look Once (YOLO) series demonstrated strong

performance in object detection tasks; Kalezhi and Shumba

(2025) achieved over 80% mean average precision (mAP) in

cassava disease detection. For sugarcane-specific diseases, Sun

et al. (2023) proposed the SE-Vit hybrid network, achieving an

accuracy of 89.57%, while Hong et al. (2024) improved a VGG-16-

based model to achieve a high accuracy of 98.89%. To further

enhance model performance, attention mechanisms and optimized

loss functions have been introduced. Sun et al. (2024) integrated the

Efficient Multi-Scale Attention (EMA) attention mechanism and

focal loss into YOLOv8, effectively mitigating issues of complex

backgrounds and sample imbalance in field images. Moreover, the

application of Transformer architectures has pushed performance

boundaries; Kuppusamy et al. (2024) achieved a classification

accuracy of 98.5% in sugarcane leaf disease recognition using a

Hybrid Shifted Vision Transformer.

Meanwhile, researchers have begun to transcend the limitations

of single-modality imaging by exploring diagnostic methods that fuse

multi-source information to improve the scientific rigor and

robustness of assessments. Hyperspectral imaging has gained

attention due to its sensitivity to plant biochemical parameters. Bao

et al. (2024) combined hyperspectral data with deep neural networks

to enable early detection of sugarcane smut, achieving over 90%

accuracy. Pereira et al. (2025), in a systematic review, noted that 88%

of related studies employed hyperspectral technology, often

combined with vegetation indices (VIs) and principal component

analysis (PCA), with classification accuracies generally exceeding

71%. Poblete et al. (2023) utilized high-resolution satellite data to

detect vascular disease symptoms in trees, extending the application

of remote sensing to large-scale monitoring. Additionally, Gianni and

Maridina (2021) proposed a multi-output learning framework to

simultaneously diagnose disease types and stress severity, enhancing

the comprehensiveness of assessment. Adluri and Bhukya (2025)
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further incorporated gene expression data into predictive modeling,

achieving 96.16% accuracy in rice disease early warning using their

adaptively optimized residual long short-term memory with

multilayer perception (AO-RLSTM-MLP) model, enabling

detection of asymptomatic infections.

Despite their strong performance under controlled conditions,

these technologies face multiple challenges in real-field applications.

First, environmental interference significantly affects model

performance: variations in illumination, leaf overlap, and

background noise degrade image quality, causing the accuracy of

hyperspectral models to drop from over 90% in laboratory settings

to below 70% in field conditions (Abbas et al., 2023; Pereira et al.,

2025). Moreover, the high cost and complex calibration

requirements of hyperspectral equipment limit their adoption

among smallholder farmers (Kurniawan et al., 2025). Second,

most disease severity assessments still rely on lesion area or visual

scoring (Qin et al., 2025), making it difficult to dynamically reflect

changes in plant physiological status (e.g., chlorophyll and nitrogen

levels). Although Vasavi et al. (2023) used models such as random

forest and AdaBoost to predict chili diseases, and Bin et al. (2023)

proposed the triple-branch Swin Transformer classification (TSTC)

network to simultaneously classify disease and severity, their inputs

remain limited to image features, lacking integration with

physiological parameters. Furthermore, model optimization is

inefficient: traditional grid search or random search incurs high

computational costs (Sharma et al., 2025), and hybrid optimization

algorithms (e.g., the Hybrid WOAAPSO algorithm, which merges

Adaptive Particle Swarm Optimization (APSO) with the Whale

Optimization Algorithm (WOA) by Vijayan and Chowdhary, 2025)

still face challenges in convergence speed within high-dimensional

parameter spaces. The stacked ensemble framework proposed by

Qaadan et al. (2025) improved classification performance but relied

on resource-intensive models, limiting its deployability in

edge environments.

To address these challenges, this study proposes a novel

approach for assessing sugarcane leaf disease severity using plant

physiological traits and intelligent optimization algorithms. The

main research contributions are:
1. Field Data Collection and Dataset Construction: To

overcome the environmental adaptability issues associated

with traditional image-dependent methods, this study

employs a portable plant nutrient analyzer (TYS-4N) to

collect non-image physiological data from sugarcane leaves

in the field. By measuring SPAD values, leaf surface

temperature, and nitrogen content, we constructed a

comprehensive dataset covering various sugarcane

diseases (brown stripe, ring spot, and mosaic) at different

severity levels.

2. Machine Learning Model Optimization Using SSA: To

address the inefficiency of traditional hyperparameter

tuning methods, we employed the SSA to optimize six

mainstream machine learning models (KNN, AdaBoost,

Random Forest, Logistic Regression, Decision Tree, and

XGBoost). We introduced a composite evaluation metric
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PRFA, consisting of Precision, Recall, F1 Score, and

Accuracy, to comprehensively assess model performance.

The objective of SSA optimization was to maximize the

PRFA score on the validation set, thereby enhancing model

robustness and generalization.

3. Physiological Trait-Based Disease Severity Assessment

Model: Based on the optimized models, we developed a

disease severity assessment model centered on SPAD

values, leaf surface temperature, and nitrogen content.

The input layer directly maps physiological features,

while the output layer adopts a multi-classification

strategy (mild, moderate, moderately severe, and severe)

to identify disease severity. To validate model robustness,

cross-regional testing was conducted in sugarcane fields in

Gengma County, Yunnan Province.
This study not only provides a new approach for intelligent

identification of sugarcane disease severity but also offers

methodological support for digital management of diseases in

other crops, demonstrating significant theoretical innovation and

practical value.
2 Materials and methods

2.1 Data collection and preprocessing

The data used in this study were collected from two representative

sugarcane cultivation sites in Yunnan Province, China. The primary
tiers in Plant Science 03
dataset was obtained from the sugarcane germplasm resource nursery/

breeding station of Yunnan Agricultural University, where two

cultivars—Dianzhe and Xintaitang—were planted. Prior to data

collection, disease severity levels for brown stripe disease, ring spot

disease, and mosaic disease were systematically classified based on

expert consultation and field observations. The assessment was

conducted by evaluating visual symptoms on green leaves, including

lesion morphology (size, number, spatial distribution, and color

change), and disease severity was categorized into four levels: mild,

moderate, moderately severe, and severe (see Figure 1 and

Supplementary Table 1).

Physiological parameters were measured using a portable plant

nutrient analyzer (TYS-4N, Top Cloud-Agro Technology, China).

For each infected leaf, three measurements of SPAD value

(indicating chlorophyll content), leaf surface temperature, and

nitrogen content were taken at different locations within the

lesion area. The average of the three readings was recorded as the

representative value for that sample. The corresponding disease

severity level was also documented for each measurement. Data

were collected during the early maturity stage of sugarcane in

November 2024, resulting in a total of 2,212 valid samples: 343

mild, 628 moderate, 670 moderately severe, and 571 severe cases.

To evaluate the model’s generalization capability, an

independent validation dataset was collected from the Gengma

Sugarcane Plantation, the largest sugarcane production base in

Yunnan Province, primarily cultivating the Dianzhe variety. The

same measurement protocol—identical severity grading criteria and

instrument settings—was strictly followed. Data collection was

completed in December 2024, yielding 635 validation samples: 28
FIGURE 1

Representative symptoms of sugarcane leaf diseases at different severity levels: (A) Brown Stripe, (B) Ring Spot, and (C) Mosaic.
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mild, 63 moderate, 127 moderately severe, and 417 severe. The

geographical, climatic, and agronomic differences between the two

sites enhance the robustness of the model and enable rigorous

cross-regional and cross-ecological validation.

The dataset used in this study comprises three physiological

variables measured from diseased sugarcane leaf regions—SPAD

value, leaf surface temperature, and nitrogen content—along with a

categorical label indicating disease severity, classified into four

levels: mild, moderate, moderately severe, and severe. To facilitate

model training and evaluation, the severity labels were numerically

encoded using ordinal encoding: “mild” was assigned 0, “moderate”

→ 1, “moderately severe”→ 2, and “severe”→ 3. An example of the

preprocessed dataset is presented in Table 1.
2.2 Model selection and hyperparameter
optimization

To address challenges such as limited sample size and class

imbalance inherent in the dataset, six representative machine

learning algorithms were systematical ly selected and

comparatively evaluated: KNN, a non-parametric method that

classifies samples based on majority voting among their nearest

neighbors (Parthasarathy and Chatterji, 1990); AdaBoost, an

adaptive boosting algorithm that dynamically adjusts sample

weights to focus on hard-to-classify instances (Schwenk and

Bengio et al., 2000); RF, an ensemble of decision trees built using

bagging, offering strong generalization capability; Logistic

Regression (Breiman, 2001), LR, a simple and interpretable linear

classifier (Singh et al., 2009); DT, a model that makes decisions

based on tree-structured rules—easy to interpret but prone to

overfitting (Geibel et al., 2002); and XGBoost, an efficient and

regularized gradient boosting framework that delivers state-of-

the-art performance across a wide range of machine learning

tasks (Chen and Guestrin, 2016). These models span linear

classifiers, instance-based learning, and ensemble learning

frameworks, enabling a comprehensive assessment of the

mapping between physiological features and disease severity
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across diverse hypothesis spaces, thereby ensuring robustness and

representativeness in model selection.

Some of the selected models inherently possess a certain degree

of robustness to class imbalance due to their algorithmic

mechanisms. For instance, ensemble-based methods such as

Random Forest and XGBoost mitigate class bias to some extent

by constructing multiple base learners and incorporating

randomness or gradient-based optimization. AdaBoost, on the

other hand, dynamically adjusts the weights of misclassified

samples, thereby placing greater emphasis on minority-class

instances that are difficult to classify. Given the limited overall

sample size, resampling techniques—such as oversampling (e.g.,

SMOTE) and under sampling—are prone to causing overfitting

under small-sample conditions and may hinder model

generalization. Furthermore, in model evaluation, we primarily

rely on metrics robust to class imbalance, such as the F1-score

and recall, rather than accuracy alone, to ensure the objectivity and

reliability of our assessment results.

To overcome the inefficiency and tendency to converge to local

optima of traditional hyperparameter tuning methods (e.g., grid

search and random search) in high-dimensional spaces, this study

employs the SSA for automated hyperparameter optimization (Xue

and Shen, 2020). SSA is a metaheuristic optimization algorithm

inspired by the foraging and anti-predation behaviors of sparrow

groups. In this model, the sparrow population is divided into two

roles: scouts, responsible for exploring new food sources (i.e.,

potential optimal solutions in the search space), and followers,

who follow the scouts and utilize existing information. Additionally,

some sparrows act as sentinels, triggering group position updates

upon sensing danger (such as getting stuck in a local optimum),

thereby enhancing the ability to escape local optima. By simulating

this social behavior mechanism, SSA achieves a balance between

global exploration and local exploitation, making it suitable for

complex, non-convex, high-dimensional optimization problems,

such as hyperparameter tuning in machine learning. The

flowchart is shown in Figure 2.

SSA is a population-based metaheuristic algorithm inspired by

the foraging and anti-predation behaviors of sparrows, known for

its strong global search capability and rapid convergence. In this

work, SSA is applied to optimize key hyperparameters of each

model, with the objective of maximizing the composite evaluation

metric PRFA—a weighted average of Precision, Recall, F1-score,

and Accuracy (with equal weights)—on the validation set. This

objective function is designed to balance classification performance

across all severity levels, particularly improving detection accuracy

for minority classes (e.g., mild disease cases). Although the F1-score

inherently integrates Precision and Recall, the practical application

context of this study—early detection of mild crop diseases—entails

diverse performance priorities among different stakeholders:

agronomists prioritize minimizing missed diagnoses (high Recall),

system operators emphasize the reliability of alerts (high Precision),

and managers require a balanced view of overall classification

accuracy (Accuracy). Therefore, the PRFA metric is not intended

to be a theoretically non-redundant evaluation measure; rather, it

serves as a compromise proxy metric that reflects the multi-
TABLE 1 Example data of SPAD values, leaf surface temperature,
nitrogen content, and disease severity.

Number SPAD
Leaf surface
temperature

Nitrogen Target

1 7.6 20 2.8 3

2 46.6 21.37 14.5 1

3 32.3 21.37 10.2 3

… … … … …

2210 49.8 20.31 15.5 0

2211 44.4 20.31 13.9 1

2212 40.8 20.31 12.8 2
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stakeholder requirements and guides the hyperparameter

optimization process toward a balanced trade-off across multiple

performance dimensions.

The entire optimization process is conducted within a cross-

validation framework (e.g., 5-fold CV) to ensure stable and

generalizable performance estimation. The final optimized models

are then evaluated on an independent test set and used to construct

the physiological trait-based model for sugarcane disease severity

assessment. The overall technical workflow is illustrated in Figure 3.

All experiments were performed on a computer equipped with

an AMD Ryzen 7 4800H with Radeon Graphics (2.90 GHz), using

Python 3.9. The primary software libraries include Scikit-learn
Frontiers in Plant Science 05
1.6.0, XGBoost 2.1.3, NumPy, Pandas, and a custom-developed

SSA optimization framework.

Within the SSA framework, hyperparameter optimization for

each machine learning model is conducted over a predefined search

space. Each individual in the sparrow population represents a

candidate hyperparameter combination, and the algorithm

iteratively updates their positions to maximize the PRFA score on

the validation set, which serves as the fitness function. The

algorithm is configured with a maximum of 100 iterations and a

population size of 30. Early stopping is applied if the fitness value

does not improve for 10 consecutive generations. To enhance

computational efficiency, parallel execution is enabled via the
FIGURE 2

The SSA flowchart.
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n_jobs=-1 parameter in scikit-learn, leveraging all available

CPU cores.

Selected hyperparameters and their corresponding search

ranges are l i s t ed in Table 2 . A fixed random seed

(random_state=42) was used for reproducibility, while remaining

hyperparameters were set to default values. All hyperparameters

were encoded (either continuously or discretely) into the SSA

search vector, with boundary constraints and type validation

enforced during optimization. Ultimately, the optimal

hyperparameter combination yielding the highest PRFA score is

selected for each model and used in subsequent performance

evaluation on the independent test set.
2.3 Model evaluation metrics

To comprehensively evaluate the performance of different

machine learning models in the sugarcane disease severity

classification task, this study employs multiple classification

evaluation metrics, including Accuracy, Precision, Recall, F1-

score, and a custom composite metric named PRFA. All metrics

are computed based on the confusion matrix constructed from the

predicted labels and true labels on the test set.
Frontiers in Plant Science 06
2.3.1 Accuracy
Accuracy represents the proportion of correctly classified

samples among the total number of samples. It is a widely used

overall performance metric suitable for most classification tasks.

The formula for accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
2.3.2 Precision
Precision is the ratio of true positive predictions to all samples

predicted as positive. It reflects the model’s ability to avoid false

alarms when identifying diseased samples. The precision for each

class is calculated as:

Precision =
TP

TP + FP
2.3.3 Recall
Recall, also known as True Positive Rate (TPR) or sensitivity,

measures the proportion of actual positive samples that are

correctly identified by the model. It indicates the model’s capacity

to detect all instances of a given severity level. Recall is computed as:
FIGURE 3

Technical workflow.
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Recall =
TP

TP + FN
2.3.4 F1-score
The F1-score is the harmonic mean of Precision and Recall,

providing a balanced assessment of model performance, especially in

the presence of class imbalance. The F1-score ranges from 0 to 1, with

values closer to 1 indicating better performance. It is calculated as:

F1Score = 2 ·
Precision · Recall
Precision + Recall
2.3.5 Composite performance metric
To balance the trade-offs among Precision, Recall, F1-score, and

Accuracy, this study proposes a custom composite metric, PRFA,

which computes the equally weighted average of these four metrics:

PRFA =
1
4
(Precision + Recall + F1 Score + Accuracy)

This metric ensures a holistic evaluation of model performance

across multiple dimensions, particularly enhancing sensitivity to

minority classes while maintaining overall classification consistency.

Definitions of Confusion Matrix Components:
TP (True Positive): Number of samples that are actually

positive and correctly predicted as positive.

TN (True Negative): Number of samples that are actually

negative and correctly predicted as negative.

FP (False Positive): Number of samples that are actually

negative but incorrectly predicted as positive.

FN (False Negative): Number of samples that are actually

positive but incorrectly predicted as negative.
3 Results

3.1 Distribution analysis of sugarcane leaf
disease severity

Figure 4 illustrates the distribution patterns of SPAD values, leaf

surface temperature, and nitrogen content in sugarcane leaves

across disease severity levels (Level 0–3), visualized using violin
TABLE 2 Selected hyperparameters and their search spaces for the base
model.

Model Hyperparameter
Search space/

range

KNN

n_neighbors [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

weights [‘uniform’, ‘distance’]

algorithm
[‘auto’, ‘ball_tree’, ‘kd_tree’,

‘brute’]

p [1, 2, 3, 4, 5]

leaf_size [10, 20, 30, 40, 50]

AdaBoost
n_estimators

[10, 20, 30, 40, 50, 60, 70,
80, 90, 100]

learning_rate [0.1, 0.5, 1.0, 1.5, 2.0]

RandomForest

n_estimators
[10, 20, 30, 40, 50, 60, 70,

80, 90, 100]

max_depth
[None, 10, 20, 30, 40, 50,

60, 70, 80, 90, 100]

min_samples_split [2, 3, 4, 5, 6, 7, 8, 9, 10]

min_samples_leaf [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

max_features [None, ‘sqrt’, ‘log2’]

criterion
[“gini”, “entropy”,

“log_loss”]

LogisticRegression

C
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17,

18, 19, 20]

max_iter
[10, 20, 30, 40, 50, 60, 70,

80, 90, 100]

solver
[‘lbfgs’, ‘liblinear’, ‘newton-
cg’, ‘newton-cholesky’, ‘sag’,

‘saga’]

DecisionTree

max_depth
[None, 10, 20, 30, 40, 50,

60, 70, 80, 90, 100]

min_samples_split [2, 3, 4, 5, 6, 7, 8, 9, 10]

min_samples_leaf [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

max_features [None, ‘sqrt’, ‘log2’]

criterion
[“gini”, “entropy”,

“log_loss”]

splitter [‘best’, ‘random’]

XGBoost

n_estimators
[10, 20, 30, 40, 50, 60, 70,

80, 90, 100]

learning_rate [0.1, 0.5, 1.0, 1.5, 2.0]

max_depth
[None, 10, 20, 30, 40, 50,

60, 70, 80, 90, 100]

subsample
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]

colsample_bytree
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]

min_child_weight [1, 3, 5, 7, 9, 11]

(Continued)
TABLE 2 Continued

Model Hyperparameter
Search space/

range

gamma
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]

reg_alpha
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]

reg_lambda
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]
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plots. These plots effectively capture the central tendency,

dispersion, and skewness of each variable within severity classes,

providing insights into their response to disease progression.

3.1.1 SPAD value distribution
Figure 3A and Table 3 illustrate the distribution patterns of SPAD

values across different disease severity levels. At Level 0, SPAD values

are primarily distributed between 47 and 58, with a median of

approximately 51, indicating that chlorophyll content in healthy or

slightly affected leaves is concentrated at higher levels. As the disease

severity increases, SPAD values show a systematic downward trend,

with the distribution becoming wider but shorter. By Level 3, the

range of SPAD values decreases to its lowest point, with the height of

the distribution significantly increasing but the width becoming

narrower, indicating that the data is highly concentrated around

the median but spans a larger overall range, with some low-value

outliers. This reflects the individual variability in chlorophyll

degradation under severe disease conditions.

Overall, both the median and interquartile range of SPAD

values decrease monotonically with disease progression,

demonstrating a strong negative correlation between chlorophyll

content and disease severity. Except for Level 3, the distributions in
Frontiers in Plant Science 08
the first three levels are relatively symmetric and compact,

suggesting stable physiological responses in early to mid-

stage infections.

3.1.2 Nitrogen content distribution
Figure 3B and Table 4 illustrate the evolution patterns of

nitrogen content as the disease progresses. At Level 0, nitrogen

content is concentrated between 15 and 18 mg/kg, with a median of

approximately 16 mg/kg, showing a symmetric and dense

distribution. Similar to the trend observed for SPAD values, as

disease severity increases, the range, median, and height of the

nitrogen content distribution all gradually decrease, while the width

of the distribution becomes wider. By Level 3, both the range and

median of the distribution have reached their lowest points, with

the distribution becoming narrower but showing significant tailing,

particularly at the lower end (<10 mg/kg), where there is a notable

extension of density. This indicates that severe disease leads to

substantial nitrogen depletion and an increased variability

among individuals.

These results confirm a continuous decline in nitrogen content

with disease progression, with distribution morphology

transitioning from symmetric and concentrated to skewed and
FIGURE 4

Distribution of SPAD values, leaf surface temperature, and nitrogen content across different sugarcane disease severity levels (Level 0–3). (A) shows
the distribution of SPAD values; (B) shows the distribution of nitrogen content; (C) shows the distribution of leaf surface temperature.
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dispersed in advanced stages. This supports nitrogen content as a

sensitive indicator of disease severity.

3.1.3 Leaf surface temperature distribution
Figure 4C displays the leaf temperature distribution across

severity levels. In Level 0, temperatures range from 18°C to 25°C,

with a median of 20–22°C. From Level 1 to Level 3, the overall range

remains largely unchanged (17–25°C), and the median shows only a

slight downward trend, indicating a weak response of leaf

temperature to disease progression.

Notably, all severity levels exhibit multi-modal and asymmetric

distributions, with multiple density peaks and unequal tails. This

suggests substantial intra-class variability, likely influenced by non-

disease factors such as microclimate, stomatal conductance, or water

stress. Consequently, leaf temperature alone demonstrates limited

discriminative power compared to SPAD and nitrogen content,

highlighting its limited utility as a standalone diagnostic feature.
3.2 Training and optimization of
classification models

Six machine learning models—KNN, AdaBoost, RF, LR, DT,

and XGBoost—were trained to classify sugarcane disease severity

based on SPAD, temperature, and nitrogen data collected from

plants infected with brown stripe, ring spot, and mosaic diseases.

Hyperparameters were optimized using the SSA to enhance model

performance and generalization. The dataset was split into training

(90%) and testing (10%) sets to ensure sufficient training and

independent evaluation.

With default hyperparameters, the models were evaluated on

the test set using Precision, Recall, F1-score, Accuracy, and PRFA

(see Table 5). Logistic Regression (LR) achieved the best
Frontiers in Plant Science 09
performance among default models, with Precision=0.9154,

Recall=0.9144, F1-score=0.9145, and Accuracy=0.9144, indicating

high consistency and stability. In contrast, AdaBoost performed the

worst (Precision=0.5898, Recall=0.6216, F1-score=0.5367),

reflecting its sensitivity to class imbalance and suboptimal default

settings. KNN achieved scores close to LR (>0.90), while RF and

XGBoost showed robust performance (~0.89). DT scored ~0.85—

29% higher than AdaBoost—demonstrating acceptable

baseline performance.

SSA significantly improved the performance of all models by

optimizing key hyperparameters to maximize PRFA on a validation

subset. After optimization: XGBoost emerged as the top performer,

achieving Precision=0.9199, Recall=0.9189, F1-score=0.9186,

Accuracy=0.9189, surpassing even the unoptimized LR model.

Improvements ranged from +0.027 to +0.028 across metrics,

demonstrating SSA’s effectiveness in fine-tuning ensemble

models. AdaBoost showed the most dramatic improvement: F1-

score increased by 0.1043, with all metrics converging toward 0.67–

0.69, indicating enhanced stability and reduced bias due to better

parameter configuration. KNN, RF, LR, and DT also improved by

0.01–0.03 on average, confirming the broad applicability of SSA in

enhancing model robustness.

To clearly illustrate the relative effectiveness of different

optimization strategies, this study directly compares the original

XGBoost model (accuracy: 89.19%, F1-score: 89.17%) with various

models optimized by the Sparrow Search Algorithm (SSA). The results

show that SSA-XGBoost achieves the best performance among all

compared models, with an accuracy improvement of 2.70 percentage

points over the baseline XGBoost. Among the other SSA-optimized

models, SSA-LR and SSA-RF both attain an accuracy of 91.44% (F1-

scores of 91.45% and 91.41%, respectively), slightly lower than SSA-

XGBoost. SSA-DT achieves an accuracy of 89.19%, comparable to the

baseline XGBoost, while SSA-KNN (89.64%) and SSA-AdaBoost

(71.62%) show no clear advantage. In summary, XGBoost optimized

by SSA not only significantly outperforms its original version but also

maintains a leading position in comparison with other SSA-optimized

models, demonstrating superior overall classification capability.

The PRFAmetric, defined as the equally weighted average of the

four core metrics, was used to rank model performance. As

summarized in Table 6, the SSA-XGBoost model achieved the

highest PRFA of 0.9326, outperforming all other models. This

indicates superior overall performance in balancing precision,

recall, and accuracy across severity levels.

In this study, we evaluated the contribution of each feature to

the predictive performance of the SSA-XGBoost model by

computing feature importance scores using the model’s

`feature_importances_` attribute and visualized the top 20

features in a bar plot (see Figure 5). As shown in the figure,

among all physiological features related to sugarcane disease,

nitrogen content exhibited a significantly higher importance score

than both SPAD and leaf temperature, while leaf temperature

ranked lowest and contributed minimally. This finding is highly

consistent with our qualitative observations from the disease

severity distribution analysis—namely, that SPAD and nitrogen

concentration effectively capture the gradient of disease severity,
TABLE 3 Distribution ranges and medians of SPAD values across
different disease severity levels.

Disease severity levels Distribution ranges Medians

Level 0 (mild) 47–58 51

Level 1 (moderate) 42–52 45

Level 2 (moderately severe) 35–45 40

Level 3 (severe) 21–42 35
TABLE 4 Distribution ranges and medians of nitrogen content across
different disease severity levels.

Disease severity
levels

Distribution ranges
(mg/kg)

Medians
(mg/kg)

Level 0 (mild) 15–18 16

Level 1 (moderate) 13–16 14.5

Level 2 (moderately
severe)

11–14 12.5

Level 3 (severe) 7–13 10.5
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whereas leaf temperature shows limited discriminative power across

severity levels.
3.3 External validation and generalization
analysis

To evaluate real-world applicability, the optimized SSA-

XGBoost model was externally validated on an independent

dataset of 635 samples collected from the Gengma Sugarcane

Plantation. The dataset includes 28 (Level 0), 63 (Level 1), 127

(Level 2), and 417 (Level 3) samples, reflecting the field-realistic

increasing prevalence of severe disease.

As shown in Table 7, the model achieved an overall Accuracy of

0.91, with a weighted F1-score of 0.91 and a macro F1-score of 0.89,

indicating strong generalization. Specifically: Precision was highest
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for Level 2 (0.92) and lowest for Level 0 (0.88), suggesting high

specificity for moderately severe cases. Recall was perfect for Level 0

(1.00), indicating no missed detection of healthy/lightly diseased

plants, but lowest for Level 2 (0.65), revealing misclassification or

under-detection. F1-score was highest for Level 3 (0.95) and lowest

for Level 2 (0.76), highlighting classification ambiguity in the

moderately severe category.

To further assess performance stability, confusion matrices were

generated for both the original test set and the independent validation

set (see Figure 6). Both datasets yielded an overall accuracy of 0.91,

confirming model consistency. On the original test set, classification

was balanced: Level 0 accuracy=86.21%, Level 1 = 93.02%, Level 2 F1 =

88.41%, Level 3 = 98.48%. On the Gengma validation set, Level 0 recall

reached 100%, and Level 3 precision was 98.56%, confirming robust

detection of healthy and severely diseased plants.

However, Level 2 recall dropped to 64.57% (F1 = 76.34%), with

many samples misclassified as Level 3. This suggests symptom

overlap and transitional characteristics between moderately severe

and severe disease stages in real-field conditions.

This performance gap indicates that while the current

physiological features (SPAD, temperature, nitrogen) are effective

for detecting extreme disease states, they struggle to distinguish

transitional stages (Level 2), likely due to overlapping symptom

expression and environmental noise.

The SSA-XGBoost model demonstrates superior performance

in classifying sugarcane disease severity using physiological traits,

achieving high accuracy and strong generalization, particularly for

healthy (Level 0) and severely infected (Level 3) plants. SPAD values

and nitrogen content are identified as highly sensitive and reliable

indicators of disease progression, while leaf temperature exhibits

limited discriminative power due to high intra-class variability.

External validation confirms the model’s robustness in real-world

conditions. However, classification of moderately severe cases

(Level 2) remains challenging due to ambiguous symptom

expression, suggesting the need for increased sampling during
TABLE 5 Comparison of model performance before and after optimization.

Operation Model Precision Recall F1 Score Accuracy

Unoptimized

KNN 0.9052 0.9054 0.9051 0.9054

AdaBoost 0.5898 0.6216 0.5367 0.6216

RF 0.8964 0.8964 0.8961 0.8964

LR 0.9154 0.9144 0.9145 0.9144

DT 0.8551 0.8559 0.8551 0.8559

XGBoost 0.8918 0.8919 0.8917 0.8919

Optimized

KNN 0.8965 0.8964 0.8959 0.8964

AdaBoost 0.7589 0.7162 0.6804 0.7162

RF 0.9161 0.9144 0.9141 0.9144

LR 0.9163 0.9144 0.9145 0.9144

DT 0.8940 0.8919 0.8912 0.8919

XGBoost 0.9199 0.9189 0.9186 0.9189
TABLE 6 PRFA scores and optimal hyperparameters of the six machine
learning models after SSA optimization.

Model PRFA Hyperparameter

KNN 0.9189
{‘n_neighbors’: 5, ‘weights’: ‘distance’, ‘algorithm’:

‘ball_tree’, ‘p’: 2, ‘leaf_size’: 50}

AdaBoost 0.9016 {‘n_estimators’: 80, ‘learning_rate’: 1.0}

RF 0.9191
{‘n_estimators’: 80, ‘max_depth’: 50, ‘min_samples_split’:
6, ‘min_samples_leaf’: 9, ‘max_features’: ‘sqrt’, ‘criterion’:

‘log_loss’}

LR 0.9149 {‘C’: 11, ‘max_iter’: 140, ‘solver’: ‘liblinear’}

DT 0.9236
{‘max_depth’: 70, ‘min_samples_split’: 5,

‘min_samples_leaf’: 8, ‘max_features’: ‘log2’, ‘criterion’:
‘gini’, ‘splitter’: ‘random’}

XGBoost 0.9326

{‘n_estimators’: 90, ‘learning_rate’: 0.1, ‘max_depth’: 70,
‘subsample’: 0.2, ‘colsample_bytree’: 0.4,

‘min_child_weight’: 5, ‘gamma’: 1.0, ‘reg_alpha’: 0.9,
‘reg_lambda’: 0.8}
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transitional stages, integration of temporal or multi-modal data

(e.g., canopy imaging, weather variables), and advanced feature

engineering to improve boundary discrimination. Overall, this

study validates the feasibility of deploying SSA-optimized

XGBoost models for large-scale, non-destructive monitoring of

sugarcane health across diverse agro-ecological environments.
4 Discussion

The current study introduces a novel approach for classifying the

severity of sugarcane leaf diseases by integrating physiological features

withmachine learning techniques, aiming to address challenges in early

detection and classification accuracy within disease management. By

leveraging key indicators such as SPAD values, leaf surface

temperature, and nitrogen content acquired through portable plant
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nutrient analyzers (TYS-4N), six classification models—KNN,

AdaBoost, RF, LR, DT, and XGBoost—were constructed. The SSA

was employed for hyperparameter optimization, significantly

enhancing model performance.
4.1 Biological basis of selected features

The chosen physiological traits are grounded in biological

principles. SPAD values, reflecting chlorophyll content, typically

decrease due to damage to chloroplast structure during disease

progression. Leaf surface temperatures are influenced by stomatal

conductance and transpiration rates, often rising as stomata close

upon infection, reducing heat dissipation. Nitrogen levels directly

affect plant growth and disease resistance, showing systematic

changes throughout disease development. These metrics provide

stable and sensitive inputs for classification models, contrasting with

deep learning approaches that rely on image data. Numerical

physiological parameters obtained via portable devices offer

advantages like ease of collection, robustness against environmental

interference, and minimal preprocessing requirements, making them

more suitable for rapid field detection and practical application.

Nevertheless, this study has two key limitations that should be

acknowledged. First, the current models focus exclusively on disease

severity grading and do not distinguish among specific sugarcane

disease types (e.g., brown stripe, ring spot, or mosaic). Future work

should incorporate visual, spectral, or molecular signatures to enable

precise pathogen identification alongside severity assessment.

Second—and equally important—the set of physiological features

is limited to only three parameters: SPAD value, leaf surface
FIGURE 5

The feature importance results of the SSA-XGBoost model.
TABLE 7 Classification report on the validation dataset.

Class Precision Recall F1-score Support

0 0.88 1.00 0.93 28

1 0.91 0.92 0.91 63

2 0.92 0.65 0.76 127

3 0.91 0.99 0.95 417

accuracy – – 0.91 635

macro avg 0.90 0.89 0.89 635

weighted avg 0.91 0.91 0.91 635
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temperature, and nitrogen content. While these are biologically

meaningful and field-accessible, they capture only a partial view of

the plant’s stress response. Additional physiological indicators, such as

leaf water potential, relative chlorophyll fluorescence (e.g., Fv/Fm), or

leaf moisture content, reflect complementary mechanisms of plant

defense and could significantly enhance model sensitivity—particularly

to early-stage infections that may not yet manifest in SPAD or

nitrogen changes.

Looking forward, integrating these physiological traits with

multimodal data sources—such as hyperspectral imaging, thermal

infrared sensing, or even metabolomic profiles—could unlock a

more holistic understanding of plant health. Such a multi-layered

approach would not only improve predictive accuracy but also

support earlier and more robust diagnosis under diverse field

conditions, paving the way for next-generation precision disease

management systems in sugarcane and other crops.
4.2 Enhanced model performance through
SSA optimization

The SSA algorithm’s global search capabilities and fast convergence

properties were leveraged to optimize critical hyperparameters across

all six machine learning models. This approach effectively mitigates the

risk of local optima inherent in conventional tuning methods such as

grid or random search. Experimental results demonstrated significant

improvements in classification accuracy and stability after

optimization, with SSA-XGBoost achieving the best overall

performance (Precision, Recall, F1 Score, and Accuracy all exceeding

0.9186; PRFA=0.9326), thereby confirming SSA’s effectiveness in

enhancing model performance.

Notably, XGBoost exhibited greater performance gains from SSA

optimization compared to Random Forest (RF), Logistic Regression

(LR), and Decision Tree (DT). This can be attributed to XGBoost’s
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algorithmic structure: as a gradient boosting framework, it relies on a

complex set of interdependent hyperparameters—such as learning rate,

maximum tree depth, subsample ratio, and L1/L2 regularization—that

jointly control model complexity, bias-variance trade-off, and

generalization. The global exploration ability of SSA is particularly

well-suited to navigating this high-dimensional, non-convex

hyperparameter space, enabling XGBoost to fully exploit its capacity

for modeling nonlinear relationships and high-order feature

interactions—common in agricultural physiological data (e.g., SPAD,

leaf temperature, nitrogen content).

In contrast, LR has limited expressiveness due to its linear nature

and few tunable parameters; DT, while interpretable, lacks robustness

and is prone to overfitting without ensemble strategies; and RF, though

inherently stable through bagging and random feature selection,

exhibits reduced sensitivity to hyperparameter tuning because of its

stochastic design. Consequently, the synergy between SSA’s efficient

global search and XGBoost’s flexible, high-capacity architecture yields

more substantial performance improvements than with other base

learners, highlighting the importance of aligning optimization

strategies with model-specific characteristics.
4.3 Advantages over deep learning
methods

Compared to deep learning alternatives, our method exhibits

several practical advantages. Firstly, it requires minimal annotated

image data, relying instead on a small set of biologically interpretable

physiological parameters (e.g., SPAD, leaf temperature, nitrogen

content) to achieve high-precision severity grading—thereby

significantly reducing data acquisition costs and eliminating the need

for labor-intensive pixel-level or image-level labeling. Secondly, the

lightweight model architecture and fast training/inference speeds make

it well-suited for deployment in resource-constrained agricultural
FIGURE 6

Confusion matrices on the original test set and the independent validation set. (A) is the confusion matrix of the optimized XGBoost in the original
test set; (B) is the confusion matrix of the optimized XGBoost in the independent validation set.
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environments, such as on edge devices in sugarcane fields. Moreover,

the transparency of input features and model decisions enhances

interpretability, fostering greater trust among agronomists and

end-users.

That said, recent comparative studies (e.g., Maurya et al., 2023;

Gupta et al., 2024) highlight that deep learning models—

particularly convolutional neural networks (CNNs) and vision

transformers—excel at discriminating between visually distinct

disease types from leaf images, a capability our current

physiology-only framework does not address. To bridge this gap,

we envision a hybrid diagnostic system that synergistically

combines the strengths of both paradigms: a deep learning

module could first identify the specific disease type (e.g., brown

stripe vs. mosaic) from RGB or hyperspectral images, while a

physiology-driven module (such as SSA-XGBoost) would then

assess the severity level based on real-time field measurements of

SPAD, temperature, and nitrogen.

Such a two-stage or multi-branch architecture would enable

comprehensive disease diagnosis—simultaneously answering “what

disease is present?” and “how severe is it?”—while leveraging the

robustness of image-based recognition and the field-deployability of

physiological sensing. This integrated approach represents a

promising direction for future work, aligning with emerging

trends in multimodal plant health monitoring.
4.4 Challenges in classifying moderately
severe disease (class 2)

Class 2 (moderately severe) samples achieved a recall of only

64.57% and an F1-score of 76.34%, significantly lower than other

severity levels, with the majority misclassified as Class 3. This

performance gap suggests that the model struggles to reliably

identify cases at the intermediate stage of disease progression, a

critical window for timely intervention.

This limitation stems not merely from visual or symptomatic

similarity between Class 2 and Class 3 under field conditions, but

more fundamentally from the insufficient representational capacity of

the current physiological feature set during the transitional phase of

disease development. While SPAD, leaf temperature, and nitrogen

content effectively differentiate healthy (Class 0) and severely diseased

(Class 3) plants, their response patterns tend to plateau or change

nonlinearly as symptoms advance frommoderate to severe, resulting in

ambiguous decision boundaries in the feature space. The problem is

further highlighted in cross-dataset validation: Class 2 performance

remains relatively stable on the internal test set but declines markedly

in the external validation set collected under real-world, complex field

conditions, indicating limited robustness to environmental

perturbations—such as variations in light and humidity—and natural

inter-plant heterogeneity.

To address these challenges, future efforts could focus on

enriching the input representation through multiple complementary

strategies. Incorporating dynamic physiological indicators—such as

daily SPAD decline rates or diurnal leaf temperature ranges—along

with higher-order feature interactions (e.g., SPAD × nitrogen content)
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may better capture the temporal dynamics of disease progression.

Simultaneously, increasing sampling density during the peak

occurrence of Class 2 symptoms or in representative field plots,

combined with resampling or cost-sensitive learning techniques,

could help mitigate class boundary ambiguity. Most promisingly,

fusing canopy-scale imaging data from UAV-based RGB or

multispectral sensors—providing texture, color, and structural

phenotypic cues—with micro-meteorological variables such as

temperature, humidity, and precipitation would enable a more

holistic “physiology–phenotype–environment” modeling framework.

Although the current model demonstrates strong performance

for healthy and severely diseased cases—making it well-suited for

large-scale screening and early warning—its accuracy for moderately

severe disease remains a key bottleneck. By implementing these

integrated approaches, future systems could evolve from coarse-

grained severity grading toward fine-grained, context-aware

diagnosis, ultimately supporting more precise and actionable crop

protection strategies in real-world agricultural environments.
5 Conclusion

This study proposes an intelligent classification methodology

for determining the severity of sugarcane leaf diseases using

physiological characteristics combined with machine learning.

Key physiological indicators including SPAD values, leaf surface

temperature, and nitrogen content were collected to construct six

classification models: KNN, AdaBoost, RF, LR, DT, and XGBoost.

Hyperparameter optimization was conducted using the SSA.

Results indicate that the SSA-XGBoost model outperformed

others on the test set, with evaluation metrics exceeding 0.9186

and a PRFA score of 0.9326. In the independent validation set from

Gengma County, the overall accuracy reached 0.91, demonstrating

excellent generalization ability and field applicability.

Compared to deep learning models, our approach offers distinct

advantages in terms of data acquisition convenience, computational

efficiency, and model interpretability, making it highly suitable for

rapid diagnostics and early warning in agricultural settings. This

study provides an effective technological pathway for intelligent

management of sugarcane diseases and offers a replicable

methodology for precise identification of other crop diseases.
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