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Soil salinization severely restricts agricultural production and the sustainable use
of soil. While plant growth-promoting rhizobacteria (PGPR) and hydrogen-rich
water (HRW) have individually been reported to alleviate salt tolerance, their
synergistic effects and molecular mechanisms remain largely unexplored. In this
study, we investigated the combined application of a salt-tolerant PGPR strain
Cytobacillus firmus L71 and HRW in Pennisetum giganteum under NaCl stress. A
factorial pot experiment was conducted under three salt levels (0, 250, and 500
mM NaCl) with or without PGPR-HRW treatment. Growth traits, antioxidant
activities, osmotic regulators, and transcriptomic responses were measured. The
combined treatment significantly promoted growth under severe salinity, with
shoot fresh weight increasing by 148% and root length by 54.60% compared with
untreated control. Physiological measurements showed elevated activities of
Superoxide Dismutase (SOD), Peroxidase (POD), and Catalase (CAT), and
reduced accumulation of Malondialdehyde (MDA) and Hydrogen peroxide
(H2O5). Transcriptome analysis indicated consistent enrichment in plant
hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and
plant-pathogen interaction pathways. Negative regulators such as CaM/CML
(induces stomatal closure), CDPK (triggers hypersensitive response), WRKY25/33
(inhibits DNA defense genes), and JAZ (accelerates stress-induced senescence)
were down-regulated, while positive regulators including A-ARR (enhances cell
division and shoot growth) were up-regulated, contributing to sustained
stomatal function, delayed senescence, and improved reactive oxygen species
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(ROS) balance. These results demonstrate that PGPR-HRW synergy enhances salt
tolerance through coordinated physiological and transcriptional regulation,
highlighting the potential of integrating microbial inoculants with HRW for
sustainable saline soil remediation and crop improvement.
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Pennisetum giganteum, hydrogen-rich water, plant growth-promoting rhizobacteria,
salinity stress, transcriptome

GRAPHICAL ABSTRACT

Physiological and molecular mechanisms underlying the induction of salt tolerance in megacephala by PGPR-HRW co-treatment. (1) Maintaining
normal stomatal opening; (2) Maintaining reactive oxygen species (ROS) balance; (3) Delayed hypersensitivity (HR) response; (4) Reduces ethylene
(ETH) synthesis and slows down aging; (5) Promote cytokinin (CTK) synthesis.The abstract should ideally be structured according to the IMRaD for-
mat (Introduction, Methods, Results and Discussion). Provide a structured abstract if possible. If your article has been copyedited by us, please pro-

vide the updated abstract based on this version.

1 Introduction

Among various abiotic stresses, soil salinity significantly
constrains crop yields and global sustainable development
(Mukhopadhyay et al., 2021; Litalien and Zeeb, 2020). According
to the Food and Agriculture Organization (FAO), salt-affected soils
cover 424 million hectares of topsoil (0-30 cm) and 833 million
hectares of subsoil (30-100 cm), based on 73% of mapped land
(Negacz et al,, 2022). In China, nearly 97 million hectares of saline
soil are primarily distributed in the North China Plain, the Yellow
River Hetao Plain, and the northwest inland area (Bian et al., 2021).
The area of saline soils is increasing at a rate of 10% per year (Sharif
et al,, 2019). Soil salinization adversely affects plant growth by
causing osmotic imbalance, which hinders the absorption of water
and nutrients (Santander et al, 2020). Additionally, salt stress
induces ion imbalance and oxidative stress in plants, leading to
secondary stress reactions and potentially severe outcomes,
including plant death (Li et al., 2017; Balasubramaniam et al., 2023).
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Phytoremediation using halophytic or salt-tolerant plants for
saline soil remediation is low-cost, sustainable, and ecologically
beneficial. It is an effective measure for efficient saline soil utilization
(Srivastava, 2020). Pennisetum giganteum Z.X. Lin, a perennial C4
grass species in Poaceae family, was characterized by its rapid
growth, extensive root system, and strong tillering ability (Hayat
et al, 2022). In recent years, it had been gradually applied in the
remediation of heavy metal-contaminated soils (Yankey et al., 2021)
and in the improvement of saline soils. Previous research had
shown that P. giganteum exhibited good salt tolerance, being able
to withstand light to moderate salt stress without affecting its
biomass (Hayat et al., 2020).

To achieve better plant improvement efficiency, various
remediation technologies were applied to saline soil improvement,
with PGPR being one of them. PGPRs are soil bacteria that alleviate
the adverse effects of ethylene on plants by producing ACC
deaminase, which decomposes the ethylene precursor (Gupta
et al,, 2022). They accelerated phosphate solubilization, produced
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extracellular polysaccharide, iron-producing carriers, and volatile
compounds (Kumawat et al., 2022; Ha-Tran et al, 2021), and
synthesized various plant hormones such as auxins (IAA),
cytokinins (CTK), and gibberellins (GA) (Saleem et al., 2021; Li
et al., 2020). Additionally, they maintained normal plant growth
under salt stress through multiple pathways, including increasing
the potassium to sodium ion ratio, reducing intracellular electrolyte
leakage, and promoting nutrient and water uptake (Bhat
et al,, 2020).

On the other hand, H,, as a novel gaseous signaling molecule, was
shown to have promising applications in enhancing plant salt
tolerance. When H, was supplied to plants as HRW, it acted as a
beneficial gaseous molecule in adaptive responses. HRW enhanced
plant stress resistance by improving antioxidant system activity and
osmotic regulation capacity (Hu et al, 2021). The molecular
mechanisms by which H, promoted plant stress resistance involved
the regulation of miRNA, gene expression, hormone levels, and
protein modifications, and were possibly related to various gaseous
signaling pathways such as Nitric Oxide (NO) and carbon monoxide
(CO) (Wang et al,, 2022; Chen et al., 2017). Existing studies indicated
that HRW showed good effects in alleviating various abiotic stresses
such as drought, salinity, heavy metal stress, and extreme
temperatures in plants (Wang et al., 2023). Under salt stress, HRW
enhanced plant salt tolerance by re-establishing reactive oxygen
species homeostasis and ion homeostasis (Su et al., 2021).
However, previous studies mainly focused on single remediation
methods, the effects and molecular mechanisms of combined PGPR-
HRW remediation remained unclear.

In this study, we conducted a factorial experiment in P.
giganteum that combined NaCl salinity with a treatment using a
salt-tolerant PGPR and HRW. The objectives were to: (1) quantify
the effects of the PGPR-HRW treatment on seedling growth and
biomass across different NaCl levels; (2) determine changes osmotic
adjustment, oxidative status, and antioxidant enzyme activities
under PGPR-HRW treatment; and (3) investigate the molecular
mechanism for alleviating salt stress under PGPR-HRW treatment.
These analyses provide a physiological and molecular basis for the
alleviation of salt stress by PGPR-HRW and offer guidance for its
application in the remediation of salinized soil.

2 Materials and methods

2.1 Plant materials, growth conditions, and
stress treatment

In our previous research, a salt-tolerant growth-promoting
bacterium, C.firmus L71, was isolated from saline-alkaline coastal
soil (16S rDNA gene sequence registration number in GenBank:
OP935756. CGMCC depository number: 26877). Pot experiments
with P. giganteum under different salt stress were conducted with
varying concentrations of HRW and L71 strain. It was found that
combined treatment of L71 strain and 50% HRW had the best
growth-promoting effect on P. giganteum (Supplementary Figures
S$1-53). Principal component analysis (PCA) results showed that the
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50% HRW-L71 combined treatment effectively alleviated the effects
of 250 mM and 500 mM salt stress on P. giganteum. The highest
overall score at the same concentration was obtained under both
salt stress conditions (Supplementary Figure S4). Therefore, the
50% HRW-L71 combined treatment was selected for further
experiments as the subsequent PGPR-HRW
treatment combination.

The effect of PGPR-HRW was studied through a two-factor pot
experiment. Three levels of NaCl stress were applied: 0 mM (AO0),
250 mM (Al), and 500 mM (A2). For each salt stress, two
treatments were applied: without PGPR-HRW (B0) and with
PGPR-HRW (B1). This resulted in six treatment groups (A0BO,
AOB1, A1BO, A1BI1, A2B0, A2B1), each with ten replicates.
Conducted at Shanghai Jiao Tong University (31°11'N, 121°36'E).
After 14 days of planting, NaCl treatment and PGPR-HRW
treatment were applied. Salt treatment was conducted every 20
days at a volume of 100 ml per pot. L71 was dissolved in hydrogen-
rich water as a liquid inoculant and applied via irrigation at 100 ml
per pot per application. The detailed procedure involved
centrifuging the fermented culture at 4 °C and 12,000 rpm for 10
minutes. After decanting the supernatant, the resulting bacterial
pellet was uniformly dissolved in hydrogen-rich water to prepare a
liquid inoculum solution with a concentration of 10 CFU/mL. 50%
HRW (0.8 ppm H,) was prepared using CA/H-1 hydrogen
generator. Control groups received the same volume of water.
After 40 days, P. giganteum was harvested for
indicator measurements.

2.2 Determination of plant morphological
and physiological indicators

After 40 days of treatment, phenotypic traits were determined
by measuring plant height, root length, fresh and dry weights of
shoot and root parts (Hayat et al., 2020). The activities of SOD,
POD, and CAT, as well as the contents of H,0,, MDA, proline
(Pro), and soluble sugars (SS), were measured using kits provided
by the Nanjing Jiancheng Bioengineering Institute.

2.3 Transcriptomic analysis

Plant leaves subjected to different treatments for 40 d were
sampled, and their leaves were rinsed thrice with ultrapure water
and immediately frozen in liquid nitrogen. Total RNA from P.
giganteum leaves was extracted using TRIzol® Reagent. The specific
methods and quality requirements for RNA extraction were
described in Supplementary Text S1. RNA purification, reverse
transcription, library construction, and sequencing were performed
at Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd.
(Shanghai, China) according to the manufacturer’s instructions.
Specific methods, processes, and sequencing platform were
described in Supplementary Text S2. RNA-seq was performed on
four treatment combinations (A0BO, AOB1, A2B0, A2B1), each with
three biological replicates (total n = 12). Sequencing generated 88.64
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Gb of clean reads in total (25.98 Gb per sample; Q30 >95.92%;
Supplementary Table S1). Clean reads from all samples were
assembled de novo with Trinity, yielding 108308 unigenes and
210290 transcripts (mean length: 955.7 bp; N50: 1689 bp). Reads
were mapped back to the assembly with rates of 85.01-86.03%
(Supplementary Table S2). Detailed processes for quality control
and de novo assembly were described in Supplementary Text S3.
The methods and parameter settings for differential expression
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional enrichment analysis were described in Supplementary
Text S4. Read counts were normalized with DESeq2 using the
median-of-ratios procedure. Differential expression was called at |
log,FC| > 1 with FDR < 0.05.

2.4 Quantitative real-time PCR validation

12 candidate DEGs revealed by transcriptome sequencing were
randomly selected for further validation of differential expression by
qRT-PCR. The DEGs ID, annotation description (NR) and primer
pairs used were listed in Supplementary Table S3. Briefly, total RNA
was extracted using the RNAprep Pure Plant Kit (TTANGEN,
DP432). Total RNA from each sample was then reverse
transcribed using reverse transcriptase MMLV (TaKaRa,
RR047A) and used as a template. qRT-PCR was performed with
TB Green® Premix Ex TaqTM II (TaKaRa, RR820A) on an ABI 7500
System (Applied Biosystems, Foster City, CA) (Gutsch et al., 2019).
GAPDH was used as an internal control to normalize gene
expression levels. The relative expression of each DEG was
evaluated using the 2724 method (Zhao et al., 2021). For each
gene and sample, 3 biological replicates and 3 technical replicates
were used.

2.5 Statistical analysis

The RNA-Seq assay was performed in triplicate for each
treatment. Bar charts were generated using Origin 2024 software.
Gene expression heatmaps were created using R 4.3.2. Analysis of
variance (ANOVA) was conducted for statistical analysis with SPSS
27 software, followed by multiple pairwise comparisons using
Duncan’s test at the p < 0.05 level. Morphological and physiological
indices were determined using 4 replicates. The two-way ANOV As of
SAS software (SAS Institute, Cary, NC) was used to indicate the effect
of NaCl and PGPR-HRW treatments on the test variables.

3 Results

3.1 PGPR-HRW combined treatment
promoted the growth of P. giganteum
under high salt stress

The growth of P. giganteum under 40 days of different salt stress
was shown in Figure 1. The combined treatment of salt stress and
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PGPR-HRW significantly affected both shoot fresh weight, the root
length and root fresh weight (p < 0.5). As the salt stress increased,
tillering of P. giganteum gradually decreased, and the leaves turned
yellow. Under treatment A2, the degree of leaf yellowing was lower
in treatment Bl compared to treatment BO. The impact of the
PGPR-HRW combined treatment on the growth of P. giganteum
was further compared under different salt stress. Under no salt
stress (AO0), the difference between Bl and B0 treatments was
minimal. Under 250 mM (A1) salt stress, the root fresh weight in
the B1 treatment was significantly higher than in the BO treatment,
increasing by 92.94% (Figure le). At a salt stress of 500 mM (A2),
the growth advantage under the Bl treatment became more
apparent. Plant height, root length, and shoot fresh weight in
A2BI treatment were significantly higher than A2B0 treatment,
increasing by 17.13%, 54.60%, and 148%, respectively. The shoot
dry weight increased by 81.25% (Figures 1a, b, d). Additionally, it
was observed that there was no significant difference in plant height
and root length between the A1B0 and A0BO groups (Figures 1a, d),
indicating that P. giganteum has certain level of salt tolerance. The
PGPR-HRW combined treatment exhibited better growth-
promoting effects under high salt stress.

3.2 PGPR-HRW combined treatment
enhanced the physiological activity of P.
giganteum under salt stress

Salt stress disrupted the ROS scavenging balance, leading to
oxidative stress (Yan et al., 2016). Therefore, physiological
measurements of P. giganteum under salt stress were performed.
The results indicated that under no salt stress (A0), the Bl
treatment increased POD and CAT activities and decreased MDA
content in P. giganteum (Figures 2b, ¢, e). When salt stress increased
to 250 mM (A1), SOD activity in the Bl treatment was significantly
higher than in the B0 treatment by 26.63%, and soluble sugar
content increased by 57.36% (Figures 2a, f). When salt stress
continued to increase to 500 mM (A2), POD and CAT activities
in the Bl treatment were higher than B0 treatment by 5.99% and
13.48%, respectively (Figures 2b, c). The contents of SS and Pro
increased significantly by 63.21% and 114%, respectively
(Figures 2f, g), while MDA content decreased significantly by
63.89% and H,0, content dropped by 48.78% (Figures 2d, e).
This indicated that with increasing salt stress, the PGPR-HRW
combined treatment enhanced the antioxidant enzyme activity of P.
giganteum, maintained osmotic regulation balance, and reduced the
production of peroxidation products such as MDA and H,O,. The
combined treatment of salt stress and PGPR-HRW had a highly
significant effect on both CAT and proline (p < 0.01).

3.3 Global analysis of differentially
expressed genes

Biological replicates showed high pairwise correlation (R*
between 0.8 and 1), supporting data reliability (Figure 3a). PCA
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FIGURE 1

Phenotype and Growth characteristics of P. giganteum between all treatments. AO: 0OmM NaCl, A1:250mM NaCl, A2:500mM NaCl. BO: no PGPR-
HRW treatment, B1: PGPR-HRW treatment. Scale bar = 10 cm. (a-c) Shoot length (a), fresh weight (b) and dry weight (c). (d-f) Root length (d), fresh
weight (e) and dry weight (f). Different lowercase letters indicate significant differences between treatments (p<0.05), different capital letters indicate
significant differences between the two groups under the same concentration of salt treatment (p<0.05). The results of two-way ANOVA are listed
as: A, NaCl effect; B, PGPR-HRW effect; AXB, interaction effect; *p < 0.05; **p < 0.01; ns, not significant.

analysis showed distinct gene cluster expression patterns across the
different treatments ( ). The differences in DEGs among
three comparison groups were analyzed: A2B1 vs A2B0, AOBI vs
AOBO, and A2B0 vs A0BO. In the comparison of A2B1 vs A2B0, a
total of 375 DEGs were identified, with 25 genes upregulated and
). For AOB1 vs AOBO, 813 DEGs
were identified, with 49 genes upregulated and 764 genes
downregulated ( ). In the comparison of A2B0 vs A0OBO,
1356 DEGs were identified, with 393 genes upregulated and 963
genes downregulated ( ). The unique DEGs for A2BI vs
A2B0, AOB1 vs A0BO, and A2B0 vs A0BO were 153, 349, and 969
respectively. There were 168 common DEGs between A2B1 vs
A2B0 and AOB1 vs AO0BO; 91 common DEGs between A2B1 vs
A2B0 and A2B0 vs A0BO; and 33 common DEGs between A0B1 vs
AOBO and A2B0 vs A0OBO. Among these, 37 DEGs were common
across all three comparisons ( ).

350 genes downregulated (

KEGG pathway analysis was conducted to explore the biological
pathways represented by DEGs in the three comparison groups.
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05

There were 10, 14 and 20 enriched pathways in the comparisons:
A2B1 vs A2B0, AOBI vs AOBO, A2B0 vs AOBO (p < 0.05). The “MAPK

» <

signaling pathway — plant”, “plant-pathogen interaction”, and “plant
hormone signal transduction” pathways were significantly enriched
and contained the highest number of differentially expressed genes
). These three

pathways were thus identified as the primary common pathways. In

(DEGs) across all three comparison groups (
addition, the “Indole alkaloid biosynthesis”, “Betalain biosynthesis”,
“Phenylalanine metabolism”, and “Arginine and proline metabolism”
pathways were consistently enriched in all three comparison groups.
Specifically, the “Biosynthesis of various plant secondary metabolites”
and “Pyrimidine metabolism” pathways were enriched only in the
A2B1 vs A2B0 comparison. The “Exopolysaccharide biosynthesis”,
“Fatty acid elongation”, and “Fatty acid biosynthesis” pathways were
specific to AOB1 vs A0OBO. Meanwhile, the “Phenylpropanoid
biosynthesis”, “Tyrosine metabolism”, and “Tryptophan
metabolism” pathways were uniquely enriched in A2B0 vs AOBO.
This suggested that the Bl (PGPR-HRW) treatment may have a
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considerable overlap with the inherent salt tolerance mechanisms of
P. giganteum, and B1 treatment could enhance certain inherent salt
tolerance pathways of P. giganteum.

3.4 Analysis of “plant hormone signal
transduction pathway”, “plant-pathogen
interaction” and “MAPK signaling pathway
- plant”

3.4.1 Plant hormone signal transduction pathway

KEGG analysis showed significant enrichment of “Plant
hormone signal transduction pathway”, “Plant-pathogen
interaction and “MAPK signaling pathway — plant” in all three
comparison groups (Figure 4). Key regulatory nodes and expression
patterns within these pathways were further examined.

In the plant hormone signal transduction pathway, DEGs were
enriched in pathways mediated by CTK, abscisic acid (ABA), and
jasmonic acid (JA). In the CTK pathway, CTK bound to the
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receptor CREI, inducing phosphorylation of AHP, which
translocated to the nucleus and phosphorylated B-ARR,
regulating A-ARR to control cell division and bud sprouting
(Figure 5a). High expression of 3 ARR-A DEGs was observed in
all comparison groups, with significant differences in AOB1 vs AOBO
and A2B0 vs AOBO (Figure 5a). These results suggested that Bl
treatment enhanced cell division and bud sprouting in P. giganteum
under salt stress.

In the ABA signaling pathway, the intracellular receptor PYR/
PYL inhibited PP2C (protein phosphatase 2C), releasing SnRK2
(serine/threonine-protein kinase SRK2). Activated SnRK2 regulated
downstream pathways controlling stomatal closure and seed
dormancy (Figure 5b). A total of 1, 5, and 3 DEGs were identified
for PYR/PYL, PP2C, and SnRK2, respectively (Figure 5b). In the
A2B0 vs AOBO group, 5 PP2C DEGs were significantly up-regulated,
whereas 3 SnRK2 DEGs were down-regulated in A0OB1 vs A0BO.
Elevated PP2C and reduced SnRK2 expression suppressed stomatal
closure, cooperating with the CaM/CML pathway to maintain
normal stomatal opening in P. giganteum.
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FIGURE 5

Different contrast groups activated ‘hormone signal transduction’ pathway. (a) CTK pathway; (b) ABA signaling pathway; (c) JA signaling pathway.

2.Heat maps showing the log2 expression values of DEGs in each treatment. 3.The color |

function, and the color '

" indicates a positive regulator of the final expression

\' indicates a negative regulator of the final expression function. 4.Three different marks indicate that the difference in

the expression of DEGs in the corresponding comparison groups reached a significant level. Notes 2—4 below.

In JA signaling pathway, JA was catalyzed by jasmonate amino
acid synthase JARI to form JA-lle (jasmonoyl-isoleucine). JA-lle
acted on COIl, entered nucleus and inhibited the dissociation of
JAZ from MYC2 after ubiquitination, thereby regulating senescence
and stress responses (Figure 5¢). 5 JAZ DEGs were differentially
expressed and consistently down-regulated across all comparison
groups, with four showing significant down-regulation in A2B1 vs
A2BO0 (Figure 5¢). This indicated that under A2 salt stress, the B1
treatment could inhibit plant senescence and stress responses,
supporting normal plant growth.

3.4.2 Plant-pathogen interaction pathway

In the Plant-pathogen interaction pathway, cytoplasmic RPM1/
2-type resistance proteins (RIN4, RPM1, RPS2) mediated
hypersensitive response (HR). The RIN4 protein dissociated from
RPS2 and associated with RPM1, indirectly inducing the expression
of RARI, suppressor SGT1, and heat shock protein HSP90, thereby
triggering intracellular HR (Figure 6). 1 RIN4 DEG, 2 RPM1 DEGs,
and 1 RPS2 DEG were down-regulated in AOB1 vs AOBO and A2B0
vs AOBO. In A2B1 vs A2BO0, except for 1 DEG of RPMI
(TRINITY_DN9710_c0_gl) was up-regulated, the other 3 DEGs
also showed down-regulated expression trend (Figure 6). The
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down-regulation of these genes could indirectly inhibit the HR
response, reducing browning and senescence of plant leaves.

3.4.3 Plant-pathogen and MAPK signaling-plant
interactions pathway

In the Ca®*-CaM4 dependent signaling pathway of the MAPK
signaling pathway - plant, Ca®" signals were transduced by CaM4,
which suppressed the expression of OXI1, a serine/threonine kinase
transcription factor maintaining ROS balance. Separate
comparisons revealed that 1 CaM4 DEGs was significantly down-
regulated between B0 and Bl at A2, 3 CaM4 DEGs were down-
regulated between B0 and BI at Al, and 2 CaM4 DEGs were down-
regulated between A0 and A2 at BO. TRINITY_DN13030_c0_gl
was commonly down-regulated in all these comparisons
(Figure 7a). CaM4 activated MPKS8, negatively regulating RbohD
to maintain ROS homeostasis. This indicated that under salt stress,
P. giganteum down-regulated CaM4 to balance ROS, and Bl
treatment enhanced this effect. Notably, 3 DEGs
(TRINITY_DN13030_c0_gl, TRINITY_DN11419_c0_g1, and
TRINITY_DN11419_c0_g2) also participated in the Ca?*-
dependent signaling pathway of plant-pathogen interactions,
functioning in CaM/CML (calmodulin/calcium-binding proteins).
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Here, Ca®" signals were transduced by CaM/CML or CDPK,
activating stomatal closure and ROS-dependent hypersensitive
response (HR). CaM/CML regulated NOS (nitric oxide synthase)
activity, influencing NO production and inducing stomatal closure
and HR. Among 13 CaM/CML DEGs, all were significantly down-
regulated under B1 treatment compared to B0, and down-regulated
in A2B0 vs AOBO (Figure 7b). This repression likely helped maintain
stomatal opening under salt stress, an effect intensified by BI.
Similarly, in the expression of CDPK calcium-dependent protein
kinases, with the exception of TRINITY_DN22981_c0_gl was up-
regulated in A2B0 vs AOBO, the other 8 DEGs were significantly
repressed in AOBI vs AOBO or A2B0 vs A0BO (Figure 7b). CDPK
promoted the phosphorylation of Rboh (respiratory burst oxidase),
activating the ROS-dependent HR in plants. The down-regulation
of CDPK related gene expression inhibited this process.

Another Plant-pathogen interaction pathway was initiated by the
LRR receptor-like serine/threonine kinase FLS2, activating MAPK
signaling. This defense response was mediated by MEKK1-MKK1/2-
MPK4-WRKY25/33 or MEKKI1-MKK4/5-MPK3/6-WRKY22/29
cascades. In these pathways, 4 WRKY25/33 DEGs were specifically
expressed across three comparison groups (Figure 7¢). Both B1 and
A2 treatments significantly suppressed WRKY25/33 expression. As
negative transcriptional regulators, WRKY25/33 inhibited defense-
related genes like NHO1I and PRI. Their down-regulation enhanced
defense gene expression via a double-negative mechanism,
promoting salt stress defense in P. giganteum. Additionally, MPK3/
6, involved in both pathways, acted as ethylene (ETH) synthesis
inducers, regulating H,O, production and cell death. MPK3/6
showed down-regulation in all comparison groups (Figure 7d),
suggesting that Bl treatment delayed leaf senescence by
suppressing ETH synthesis.

3.5 Validation of the DEGs results by qRT-
PCR analysis
To validate the reliability of RNA-Seq data, 12 DEGs associated

with ethylene activation signaling, NAC domain-containing
proteins, and glutathione transferase activity were selected and
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tested by qRT-PCR (Supplementary Table S3). The relative
expression trends of selected DEGs were similar to those observed
in RNA-Seq data and were consistent with Illumina sequencing
results (Figure 8), demonstrating the reliability of RNA-Seq data.

4 Discussion

4.1 Effects of PGPR-HRW combined
treatment on the growth and physiology of
P. giganteum under salt stress

The combined application of PGPR and HRW markedly
improved the growth and salt tolerance of P. giganteum. The
results showed that the plant height, root length, and shoot fresh
weight of P. giganteum treated with PGPR-HRW were significantly
higher than those of the control. Moreover, the differences became
more pronounced with increasing salt stress (Figure 1).

The physiological basis for enhanced plant growth was supported
by the combined effects of the PGPR-HRW treatment on the
antioxidant system and osmotic homeostasis of plant. The PGPR-
HRW treatment increased activities of antioxidant enzymes (POD
and CAT), and contents of Pro and soluble sugars, while reducing
levels of peroxidation products (MDA and H,0,) (Figure 2). This
finding was consistent with previous studies. The addition of NaCl
was found by Wu to significantly inhibit the elongation of barley
roots and cause a loss of cell viability, however, these adverse effects
were significantly reversed by HRW treatment (Wu et al., 2020).
Kumar isolated Bacillus pumilus strain JPVS11 from saline soil and
inoculated it into salt-stressed rice, finding significant increases in
plant height, root length, fresh and dry weight, and the activities of
CAT and SOD after treatment (Kumar et al., 2021). Patani used 5
PGPR Bacillus strains to inoculate salt-stressed tomatoes, finding
significant improvements in phenotype, antioxidant enzyme activity,
and nutrient contents (magnesium, calcium, and potassium) (Patani
et al, 2023). Our findings extend these reports by demonstrating that
combining HRW with PGPR enhances growth in P. giganteum more
effectively than either treatment alone, suggesting a synergistic rather
than merely additive effect.
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4.2 PGPR-HRW treatment might alleviate
salt stress effects in P. giganteum by
inhibiting negative regulatory factors

Transcriptomic analysis provided more effective means to
further reveal the salt tolerance mechanisms in plants. In DEG
analysis, it was found that both PGPR-HRW treatment and 500
mM salt stress treatment resulted in more down-regulated genes
than up-regulated genes in P. giganteum (Figures 3d-f). The down-
regulation of gene expression was observed in A2B0 vs A0BO, which
is similar to the general trend of gene suppression in olive roots
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treated with NaCl as reported by Skodra (Skodra et al., 2023). This
suggests that P. giganteum alleviated salt stress effects not primarily
through massive activation of stress-responsive genes, but via a
targeted suppression of negative regulatory factors.

KEGG pathway enrichment analysis confirmed that this
repression strategy operates within key signaling pathways known
to mediate stress responses, including “MAPK signaling pathway -
plant”,

» «

plant hormone signal transduction”, and “plant-pathogen
interaction”. The enrichment of these pathways is a common
hallmark of plant salt stress (Ma et al., 2022; Kumar et al., 2020).

Mohamed’s transcriptomic analysis of rapeseed during germination
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under salt stress found significant enrichment in pathways related
to Plant hormone signal transduction, MAPK signaling pathway-
2022).
When plants under salt stress were inoculated with PGPR, they

plant, and Glycolysis/gluconeogenesis (Mohamed et al,

produced large amounts of IAA, ABA, or other growth factors.
These regulated gene expression and metabolism, accumulated
osmolytes (Pro and betaine), and increased antioxidant enzymes
and their activities to enhance stress tolerance (Zahra et al., 2023;
Cam et al, 2023). The Plant-pathogen interaction pathway is
particularly important in the interaction between PGPR and
plants and is often observed to be enriched in this pathway
(Zarattini et al., 2021; , 2024). Li through KEGG

enrichment analysis found that DEGs of Nitraria sibirica Pall

Khoso et al.

under salt stress mainly included Plant-pathogen interaction,
Plant hormone signal transduction, and B-alanine metabolism (Li
et al,, 2021). Our KEGG pathway enrichment analysis results were
highly consistent with previous studies. Importantly, the overlap
between PGPR-HRW induced changes and the plant’s inherent salt
tolerance pathways suggests that the combined treatment reinforces
intrinsic mechanisms rather than activating entirely
novel processes.

The essence of this mechanism is that the suppression of gene
identity. The down-regulation of key negative regulatory
transcription factors (e.g., WRKY25/33, JAZ) and signaling
components (e.g., CaM/CML, CDPK) indicates that signal
cascades were experienced synergistic inhibition. Overactivation
of these cascades would lead to excessive defense responses,
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accelerated senescence, and growth arrest. This pattern implies
that PGPR-HRW promotes a more energy-efficient stress
response, allowing P. giganteum to maintain growth while
withstanding salinity.

4.3 Molecular mechanisms of salt
tolerance induced by PGPR-HRW
combined treatment in P. giganteum

Through integrated transcriptomic and physiological findings,
this study proposes that the synergistic action of PGPR-HRW
induces a complex regulatory network centered on inhibiting key
negative regulators. This network regulates salt tolerance through
five interconnected mechanisms:

4.3.1 Regulation of stomatal aperture by CaM/
CML and ABA signaling

Salt stress typically triggers stomatal closure via ABA signaling
to conserve water, at the cost of photosynthetic efficiency (Zhao
2022; Hedrich and Shabala, 2018). Our data reveal a dual
mechanism to maintain stomatal opening. First, exogenous H,
supplied via HRW significantly downregulated CaM/CML
expression in P. giganteum (Figure 7b). This change was

et al.,

associated with reduced NOS activity and suppressed NO
production in leaves, thereby alleviating NO-mediated stomatal
closure. This aligns with previous reports of H, modulating gas
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signaling and attenuating NO-dependent stress responses (Zhu
et al, 2016) and HRW alleviated the inhibition of Al-induced
root elongation in alfalfa by reducing NO production (Chen
et al., 2014). Consistent with this mechanism, our study observed
inhibition of stomatal closure under PGPR-HRW. Second, within
the ABA signaling pathway, the upregulation of the negative
regulator PP2C and the downregulation of the positive regulator
SnRK2 synergistically suppressed the closure signal initiated by
ABA (Figure 5b). This transcriptional pattern provides a direct
pathway for stomata to maintain a better open state under PGPR-
HRW treatment, considering ABA’s central role in the closure of
stomata induced by drought/salt stress (Liu et al., 2022). Notably, 5
DEGs of negative regulatory factor PP2C were significantly up-
regulated (A2B0 vs AOBO) explained the inherent salt tolerance of P.
giganteum (Figure 5b), which is then significantly enhanced
following PGPR-HRW treatment.

4.3.2 Maintaining ROS balance and promoting
defense response

When plants are subjected to salt stress, they need to activate
ROS system to promote defense response, but excessive ROS would
damage cells (Leshem et al., 2007). In physiological measurements
of P. giganteurn, PGPR-HRW under high salt stress (500 mM)
significantly increased the activities of several antioxidant enzymes
and the contents of osmotic regulatory substances, while decreasing
levels of peroxidation products such as MDA and H,O,. (Figure 2).
These physiological changes were consistent with reports that
PGPR and HRW enhance plant antioxidant capacity (Giannelli
et al,, 2024). In KEGG enrichment analysis, two main pathways
were found to be related to increased ROS system activity. In MAPK
signaling pathway - plant, the negative regulatory factor CaM4
calmodulin was significantly down-regulated in all three
comparison groups (Figure 7a), thereby maintaining ROS
balance. Second, in the FLS2 pathway of Plant-pathogen
interactions, the down-regulated expression of WRKY25/33
DEGs, which function as negative transcriptional regulators
(Figure 7c), enhanced the defense response of P. giganteum under
salt stress. Previously, it was observed that the number of down-
regulated genes in P. giganteum was greater than up-regulated genes
in all three comparison groups (Figures 3d-f). P. giganteum likely
alleviated salt stress effects primarily by inhibiting the expression of
certain negative regulatory factors when subjected to salt stress or
PGPR-HRW treatment. Overall, these changes release the
suppression of antioxidant and defense genes, helping plants
maintain reactive oxygen species at manageable levels while
preserving their defense capabilities.

4.3.3 Attenuating the HR to minimize cellular
damage

The HR is a localized, programmed cell death (PCD) that can
help defense, that assists defense mechanisms but causes tissue
damage when overactivated under non-biotic stress (Lam et al,
2001; Baebler et al.,, 2020; Noman et al., 2020). Morphologically,
leaves display browning, wilting, and other deteriorative states (Liu
et al., 2022). Transcriptome data indicated that HR showed a
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significant downward trend under PGPR-HRW. First, calcium
sensors and relays were suppressed. CaM/CML and CDPKs
showed coordinated down-regulation (Figures 6, 7b), which
would weaken Ca®*-dependent signals that feed into HR
execution. Second, expression of the RPM1/2 disease-resistant
protein was also down-regulated (Figure 6), indicating that the
NLR-mediated HR pathway was in a lower state of activation. These
changes combined to reduce the occurrence of HR-induced
programmed cell death under salt stress. The phenotypic changes
in P. giganteum also confirmed this mechanism, that is, PGPR-
HRW treatment reduced leaf yellowing, increased biomass, and
mitigated HR response under high salt stress. Our results were
highly consistent with Akbar’s findings. They inoculated two PGPR,
Bacillus subtilis and Bacillus pumilus, into salt-stressed cotton and
observed similar transcriptomic results, with down-regulation of
genes related to CaM/CML, CDPK, and Rboh following PGPR salt
stress treatment (Akbar et al., 2022).

4.3.4 Inhibition of ethylene synthesis and delayed
senescence

Regarding the response mechanism of ETH under salt stress,
scientists have two differing views. Some suggest that ETH
production enhances plant salt tolerance (Jahan et al., 2021; An
et al,, 2018), while others argue that ETH production accelerates
plant senescence under stress (Paes de Melo et al., 2022; Gou et al,,
2022). In our study, it was found that PGPR-HRW treatment
inhibited ETH synthesis, delaying plant senescence under salt
stress. In our previous study, it has been demonstrated that the
employed PGPR-C. firmus L71 functions as an ACC deaminase-
producing enzyme, which inhibits ETH production by catabolizing
ETH precursors. At the transcriptome level, MPK3/6, as inducers of
ethylene synthesis, cell death, and H,0, production in MAPK
signaling pathway-plant, showed down-regulated expression trend
in all three comparison groups (Figure 7d). Additionally, in JA
signaling of Plant hormone signal transduction pathway, significant
down-regulation of JAZ DEGs inhibited plant senescence and stress
response (Figure 5¢), which together slowed down plant senescence.
Our gRT-PCR results validated this. Among 12 selected DEGs, the
first 8 were ETH activation signaling pathway/ETH response
transcription factors (Supplementary Table S3), all observed low
expression under A2B1 treatment (Figure 8). It was inferred that
that delayed senescence is a key component of the PGPR-HRW
induced tolerance.

4.3.5 Promotion cytokinin synthesis

Cytokinin (CTK) acts as antagonistic hormone to ABA and
ETH under salt stress, promoting cell division and inhibiting the
senescence effects caused by ABA and ETH (Li et al., 2021). In CTK
signaling pathway of Plant hormone signal transduction, high
expression of regulatory factor A-ARR related to cell division
and shoot initiation was observed in all three comparison groups
(Figure 5a). This indicated that PGPR-HRW effectively promoted
cell division and shoot initiation in P. giganteum, enhancing its
response to salt stress. This may be related to the fact
that RGPR inhibits ETH production, which is negatively
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feedback-regulated with CTK (Yu et al., 2023). The results
highlight the interconnectedness of hormonal pathways in this
coordinated response.

In summary, it was concluded that the molecular mechanisms
by which PGPR-HRW combined treatment induced salt tolerance
in P. giganteum primarily included the following five mechanisms:
maintaining stomatal opening, maintaining ROS balance and
promoting defense responses, inhibiting HR response, inhibiting
ETH synthesis and delaying senescence, and promoting CTK
synthesis. These mechanisms were not independent. Some DEGs
functioned in different pathways, collectively forming the PGPR-
HRW salt stress response network and required further study.
Notably, certain key DEGs appearing in multiple pathways could
alter plant salt tolerance when over-expressed or knocked out,
providing new insights for breeding salt-tolerant plants.

This study revealed a novel integrated perspective on the
synergistic interaction between PGPR and HRW at the molecular
and physiological levels. The core mechanism revealed in this study
is that this synergistic effect is due to the extensive and strategic
suppression of negative regulators across multiple signaling
pathways (MAPK pathway, hormone pathway, pathogen response
pathway). This precise inhibitory regulation enables P. giganteum to
more efficiently modulate its stress responses, thereby conserving
energy and resources for growth and maintenance processes. From
a practical application perspective, the PGPR-HRW combination
demonstrated a highly promising sustainable strategy for
phytoremediation and agricultural production in the saline soil.
By combining the naturally salt-tolerant P. giganteum with a
precisely formulated biological agents, the efficiency of the saline
soil remediation could be significantly enhanced. The future
research should focus on field trials to validate this synergistic
effect under natural conditions and explore its application efficacy
in other economically important and salt-tolerant crops.

5 Conclusion

This study demonstrated that the combined application of
PGPR and HRW significantly enhanced the salt tolerance of P.
giganteum under different NaCl levels. The treatment improved
plant growth traits, including plant height, root length, and shoot
biomass, while enhancing antioxidant enzyme activities and
osmotic adjustment, and reducing oxidative damage. These effects
became more pronounced under higher salinity, highlighting the
potential of PGPR-HRW for severe salt stress mitigation.
Transcriptomic analysis revealed that PGPR-HRW treatment
primarily alleviated salt stress by suppressing negative regulators.
Key down-regulated genes included CaM/CML, CaM4, CDPK,
WRKY25/33, and JAZ. Enrichment of the “Plant hormone signal
transduction”, “MAPK signaling”, and “Plant-pathogen
interaction” pathways further supported the coordinated
regulation of stress responses. Overall, the mechanisms
underlying PGPR-HRW induced tolerance involve maintaining
stomatal opening, restoring ROS balance, suppressing HR,
reducing ethylene synthesis and delaying senescence, and
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promoting cytokinin signaling. These findings provide new
insights into the interactive roles of microbial inoculants and
HRW in plant stress tolerance. The identified pathways and
candidate genes merit further functional validation, which may
contribute to breeding and management strategies for enhancing
crop resilience in saline environments.
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