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This paper draws on three case studies to examine some of the challenges and

tensions involved in the use of Autonomous Decision-Making Systems (ADMS).

In particular, the paper highlights: (i) challenges around the shifting “locale” of

the decision, and the associated consequences for stakeholders; (ii) potential

implications for stakeholders from regulation such as the General Data Protection

Regulation (GDPR); (iii) the di�erent values that stakeholder groups bring to the

“decision” question; (iv) how complex pre-existing webs of stakeholders and

decision-making authorities may be disrupted or disempowered by the use of

an automated system and the lack of evaluation of possible consequences; (v)

how ADMS for non-technical users can lead to circumvention of the boundaries

of intended system use. We illustrate these challenges through case studies in

three domains: adult social care, aviation, and vehicle driver monitoring systems.

The paper closes with recommendations for both practice and policy in the

deployment of ADMS.
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1 Introduction

Autonomous Decision-Making Systems (ADMS) are one example of increasingly

complex computing systems that can take in and respond to information, either digitally

or physically, producing outputs that can either support or replace human decision-

making. ADMS can be defined as “a (computational) process, including AI techniques and

approaches, that, fed by inputs and data received or collected from the environment, can

generate, given a set of predefined objectives, outputs in a wide variety of forms (content,

ratings, recommendations, decisions, predictions, etc.)” (ELI, 2022). ADMS can be used

in any field or realm in which a decision may be made: an ADMS has the potential to

either augment or be substituted for a human decision or decision-maker. As the following

case studies demonstrate, this breadth of application indicates that field- and domain-

specific challenges should be carefully evaluated and that generalizable principles should be

formulated with care.
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While attitudes toward acceptability of ADMS vary by

application and individual, there are clear potential benefits of such

systems. The individual decision-making capacity of humans is

relatively limited, and scales on an individual level: one human

can only respond to so many stimuli at once. Conversely, once

an ADMS is trained, it is then unlimitedly replicable. Besides

computational efficiency, the use of ADMS may present other

potential advantages such as safety, cost reductions, efficiency,

and accuracy.

However, there are inherent challenges to ADMS. Human

decision making is often based on a wide variety of heavily

contextual factors, many of which are extremely difficult to distill

into discrete data streams and be assigned different weights.

Additionally, ADMS may either retain or introduce undesirable

errors or bias, which may then be replicated on an ongoing basis

until the error is detected. This is a sizeable task—while it may be

comparatively simple to see where a physically-embodied system,

such as an automated light rail system, has gone wrong, it would

be comparatively difficult to uncover a systemic issue such as

assigning higher fares to certain passengers using that system.

Consequently, there are multiple kinds of harm that may ensue,

including both direct physical harm and indirect or non-physical

harm. These will vary depending on what outcome the ADMS was

built to accomplish, as well as the way in which it was designed

to accomplish that goal. A non-physical ADMS error may also

result in physical harm, for example, an ADMS recommending that

a patient take a certain medication that is contra-indicated. The

number of variables therefore makes it problematic to generalize

about ADMS except insofar as to note that they should be

carefully assessed with a broad understanding of the context, and

anticipatory work to understand possible outcomes.

The shortcomings of ADMS and the serious harms they could

bring about to humans, in particular in safety critical domains

such as healthcare, warfare, finance, and justice, are the main

reasons to introduce human beings into the “loop” of these

automated systems, which is frequently presented as a crucial

means of achieving accountability and oversight. However, the

concept of meaningful human control presents us with something

of a paradox. On the one hand, by designing systems that can make

decisions autonomously, we attempt to reduce or remove human

involvement in order to increase safety (avoiding human error);

reduce costs (replacing humans with automation); or improve

efficiency (predicting the behavior of something). On the other

hand, the growing call to supervise autonomous systems in order to

achieve ethical goals such as fairness, through human oversight and

accountability (e.g., Ozmen Garibay et al., 2023), reintroduces the

impacts of human involvement. In fact, meaningful human control

presents several challenges too.

Of major concern is the issue of quasi-automation, which

essentially entails humans acting simply as a rubber-stamping

mechanism in an otherwise completely automated decision-

making system (Wagner, 2019). Often companies do not

sufficiently train their staff or provide adequate time for making

decisions. A key example is when Amazon came under scrutiny

in 2018 for its recruiting tool algorithm that ranked candidates

and turned out to be biased against women (Dastin, 2018). The

algorithm gave applicants a score of 1–5 based on their resume

but consistently discriminated against women as it was built on

historical data which showed male dominance of the technology

industry. Recruiters did not have much agency in choosing who

to interview due to the volume of applicants and sparse time for

decision-making. It is critical that certain criteria be created to

define meaningful human control. The Article 29 Working Party

has developed a classification relating to this: “[t]o qualify as human

intervention, the controller must ensure that any oversight of the

decision is meaningful, rather than just a token gesture. It should

be carried out by someone who has the authority and competence

to change the decision. As part of the analysis, they should consider

all the available input and output data” (Article 29 Data Protection

Working Party, 2017, p. 10).

1.1 Challenges for ADMS

The four questions below, summarize the main challenges

for ADMS:

1. Whether an ADMS should be used—does the utility outweigh

the inherent risks?

2. If it is acceptable for the system to be used, is human

intervention required and under what conditions?

3. If the system is used, what level of human oversight over the

operation as a whole is appropriate?

4. If a certain level of oversight is needed, can that oversight

feasibly be undertaken by a human?

All four of these challenges are in essence a risk-balancing

exercise. For (1), this risk balancing includes consideration of

whether and how often human error is likely to occur in practice,

and the potential risks between human and ADMS use. For

example, many societies have adapted well to traffic lights, and,

though they are automated, do not argue for their abolishment in

favor of a human signaler. As to (2), this includes a weighing of the

type of risks that are likely to arise. In our traffic light example, there

is no human at a central control board monitoring the conditions

and timing of traffic lights. However, there would almost certainly

be a human monitoring the administration of anesthetic during a

surgery, even if certain portions of the procedure are automated.

The third question of such a risk-balancing exercise refers to a

level of recursive checks: how often, to what extent, and by what

measures are the ADMS monitored? If a human is not “in the

loop” at the time of use, it may still be necessary to perform

checks on the system overall. For example, if using an automated

weed-killing system by which an ADMS targeted certain plants

it identified as weeds rather than all crops in a field, it may still

be appropriate to monitor the level of chemicals deployed by the

automated system overall. Finally, feasibility of human oversight

must also be considered. For instance, it might be impossible for

a human to check all data processed by an ADMS. Moreover,

engaging with ADMS can affect the ways in which humans make

decisions themselves, and can lead to physical and cognitive issues

such as deskilling, automation bias, distraction and automation

complacency (Parasuraman et al., 1993), among other issues. Such

factors have raised concern in computer-aided tasks such as piloting

aircraft (Carr, 2015), making medical decisions (Povyakalo et al.,

2013) and driving semi-autonomous vehicles (Dunn et al., 2021).
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The overall goal of this paper is to articulate the problems of

human participation in ADMS. We will focus on three specific

domains: social care, aviation, and road vehicles. After describing

the methodology, we present the three case studies and finally,

drawing on the lessons learned from them, we propose a number

of reflections for the design, development and use of ADMS.

2 Methodology and discussion

The first case study is based on a fieldwork conducted by one

of the authors. We focus on an ADMS designed to (a) predict

the risk of elderly adults falling (which can be very serious in

this population) and (b) offer an enhanced care service to try and

prevent such falls. This situation therefore provides an opportunity

to examine questions around use, oversight, and monitoring of

such systems, and provide draft guidance around what questions

should be considered in cases where ADMS has the potential to

support and enhance human decision-making.

The second and third case studies are both based on desk

research. In the second, we examine a notorious event, the crashes

of two Boeing 737 MAX which caused the deaths of 346 people.

Among the main causes of the accidents was the Maneuvering

Characteristics Augmentation System (MCAS), a software system

designed to manage the aircraft’s stabilizer. While many ADMS use

big data or machine learning aspects, the MCAS does not, and is

an interesting example of an algorithm designed to manage the

aircraft’s stabilizer, without human supervision. In the third case

study, we examine Driver Monitoring Systems (DMS), which are

integrated into partially-autonomous vehicles to ensure that the

driver is adequately supervising the vehicle’s automated functions.

2.1 Case 1: ADMS for fall prevention in
adult social care

The adult social care sector in England is undergoing what

many commentators refer to as a “crisis” (Alderwick et al., 2019;

Dowling, 2021). The crisis is generally regarded as arising from an

imbalance between supply and demand in care services. An aging

population with increasing comorbidities demands additional care;

yet social care organizations—local authorities and private care

providers–struggle to meet their needs due to decades of budget

cuts under governmental “austerity” policies, and high attrition

rates for underpaid social care workers (Hamblin, 2020; Wright,

2020; Dowling, 2021; The King’s Fund, 2023).

Faced with these challenges, over the past two decades

policymakers and sector associations have proposed various forms

of digital technology as one possible remedy (Skills for Care, 2015;

Hamblin, 2020; IIPC, 2021; DHSC, 2022; Wright and Hamblin,

2023). Recently, these proposals have turned toward data analytics

and the use of ADMS. A repository of case studies on “AI in social

care” in England, hosted by the country’s digital transformation

directorate, shows that many applications center around leveraging

ADMS to facilitate preventative care programs (NHS England,

n.d.).

In this case study, we draw from a 5-month field study on the

implementation of such an ADMS within a social care organization

in England. We begin by providing further context on the project,

namely: the role of local authorities in adult social care and

high-level descriptions of the system and the preventative care

program. Then, we introduce the tension that arose during the

study on determining the appropriate form and extent of human

involvement in the ADMS.

2.1.1 Case overview
“Adult social care” refers to a suite of care services for those

18 years or older who struggle with essential daily activities—such

as eating, washing, and socializing—due to a physical or mental

impairment or illness (NAO, 2021). In England, the 152 local

authorities have devolved responsibility for the delivery of care

services. “Service users” can receive their care either directly from

the local authority or, more commonly, from private providers and

volunteer or charitable organizations who have been commissioned

by the local authority.

For the field study, a member of our research team enlisted as a

participant observer on a team responsible for the implementation

of an ADMS within the adult social services department of

a local authority in England. The project team was composed

of individuals from three different organizations: an operations

consultancy, a technology provider, and the local authority.

Responsibilities for different aspects of the project were distributed

across these groups. For instance, the technology provider was

subcontracted by the consultancy to help deliver the technology

underlying the ADMS, while the consultancy managed the design

and implementation of the preventative care program. Acting as

the client, the local authority retained ultimate decision-making

authority, but, of course, its decisions were influenced by the

guidance of actors within the two other organizations.

The objective of the project was to implement an ADMS, jointly

developed by the consultancy and technology provider, that would

support a preventative care program focused on reducing the rate

of falls among older adults in the community. Falls among older

adults present a significant challenge to England’s health and social

care systems. Each year, around 30% of older adults living at home

fall at least once, and these incidents impact an individual’s quality

of life and health, as well as adding substantial costs to health and

social care services (NICE, 2013).

The ADMS is formed of two components: a natural language

processing (NLP) framework and a machine learning (ML) model.

As an input, the ADMS analyses case notes written by social care

practitioners. Case notes are unstructured text data that social

care practitioners create during their interactions with service

users. The NLP framework—created by the technology provider—

would extract “risks” from the case notes. For example, if the NLP

framework identifies the word “fall” in a case note, it would indicate

that this particular service user has a fall risk. TheNLP framework is

shielded behind intellectual property protection; in effect, only the

technology provider has insight into its structure and functioning.

This process then results in a “master risk table”: a structured data

set that presents occurrences of risks for each service user. Using

different combinations of risks as features, a binary classification

algorithm was trained on this structured data set to create a model

to predict whether a service user is likely to have a fall risk appear
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in their case notes in the next 9 months. The model calculates a

probability score for each service user, and those with a score over

a set threshold are identified to be at risk of falling.

Once the ADMS identifies service users who are at risk

of falling, they are allocated to the local authority’s new falls

prevention program. After a series of preliminary checks to ensure

that non-eligible individuals are not contacted—which include

identifying and excluding those who are deceased, in residential

care, or under the age of 65—the list of service users are shared

with a call center team. Members of this team are non-clinical

practitioners: while they do not have a background in health

or social care, they have experience performing this role for

similar public health programs. This team contacts each service

user to conduct an over-the-phone assessment, asking a series of

predefined questions; the purpose of these assessments is to gain a

better understanding of the factors that lead to an individual being

at risk of falling. Based on this discussion, the call center team

member would allocate the individual to an appropriate prevention

service, such as exercise classes for mobility and strength or a home

safety assessment.

2.1.2 Open questions of human involvement in
ADMS

Using this case, we explore the complexities of human

involvement in ADMS. To structure our discussion, we draw

from the UK General Data Protection Regulation’s (UK GDPR)

provision on automated decision-making. Apart from guidance

on automated decision-making, UK GDPR of course includes

extensive requirements on data privacy. The project team navigated

several processes, including: negotiating data sharing agreements

across multiple organizations; drafting data protection impact

assessments; communicating privacy-related decisions to service

users; and implementing several modes of data quality evaluation.

These tasks take up considerable time and expertise and highlight

the complicated tasks practitioners must perform when following

data protection regulation in the public sector.

Despite these efforts, UK GDPR, and in particular Article 22

(1), generate several ambiguities that practitioners must contend

with. We argue that these difficulties are not restricted to any one

group, but are relevant to all organizations hoping to comply with

this provision. In fact, scholars such as Binns and Veale (2021)

have previously argued that Article 22 (1) is limited by several

such complications. Through our case study, we observe two of

the ambiguities identified by Binns and Veale (2021), lending an

empirical basis to their conceptual analysis.

In this section, we first provide a brief description of Article

22 (1), underlining the restrictions it imposes on the use of

automated decision-making. Leveraging the work of Binns and

Veale (2021), we point to two ambiguities found when interpreting

the regulation: the notion of singular decision, and deciding on

what form human involvement will take. The remainder of the

section explores those two points in further detail, drawing on

empirical data from our case study.

Article 22 (1) of the UK GDPR delineates the bases for the

lawful use of automated decision-making and profiling. Specifically,

it states:

The data subject shall have the right not to be subject

to a decision based solely on automated processing, including

profiling, which produces legal effects concerning him or her or

similarly affects him or her (ICO, 2018).

While on initial review the provisions laid out in Article 22

(1) seem fairly categorical, serious questions are left to discretion

when interpreting this guidance in practice. These ambiguities rose

to prominence throughout our case, emphasized by the conflicting

interpretations of two aspects of Article 22 (1) held by different

members of the project team:what decision is being automated? and

what form should human involvement take?

2.1.3 What decision is being automated?
Article 22 (1) specifies that individuals have the right to not

be subject to a solely automated decision which has a legally

significant effect. This language, particularly the notion of “a

decision,” seems to imply that there is a unitary point at which a

decision is made that can be considered in isolation: for example,

deciding whether an individual is eligible for a loan or if a

person should be interviewed for a new role. Yet, as the following

discussion elaborates, locating the specific decision (Binns and

Veale, 2021) that may be considered automated proves in practice

to be challenging. In real applications of ADMS such as this, these

systems sit within complex processes composed of “upstream” and

“downstream” decision points.

Throughout the project, team members frequently

reminded one another that the ADMS is not deciding what

sort of care someone should receive. That decision is always

left to a practitioner, made through the over-the-phone

assessment conversation.

Yet, by broadening the perspective to focus on the entire

process, other significant decisions that have the potential to be

automated become apparent. One alternative framing, brought up

several times by a practitioner closely involved with the project’s

data privacy considerations, is that sharing the predictions made

by the ADMS with the call center team constitutes a decision. This

view brought out questions of whether data sharing has a “legally

significant effect” on an individual and assurances that data sharing

agreements between organizations adequately cover this transfer of

information. Meanwhile, moving further “upstream” in the process

highlights other decisions that must be considered; for example,

whether an individual is eligible for services in the first place. From

this vantage point, measures for meaningful human control must

move further up in the process, and the concern becomes less

one of preserving practitioner expertise than of equitable access

to services.

These examples highlight how the location and boundaries of

the “decision” can take many different shapes, each formulation

bringing with it a different set of questions and considerations.

When the decision under question is what care a person should

receive, anxieties over practitioner expertise take center stage. But,

once the lens shifts toward whether the decision is one of data

sharing or eligibility for services, questions of privacy, data sharing,

and access gain prominence.
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2.1.4 What form should human involvement
take?

The next ambiguity emerges from Article 22’s statement

that decisions shall not be solely automated. An immediate

implication of this requirement is that there must be some form

of meaningful human control over the outcomes of a decision-

making process. In our case study, this prompted significant debate

over what constitutes proportionate human involvement. While

this question presents several interesting directions for research,

such as what mechanisms of control satisfy the requirement that

human involvement is “active and not just a token gesture”

(ICO, 2018), they are not the focus of our present discussion.

Instead, we use this provision and the discussion it engenders on

mechanisms for meaningful human control to explore a different

complexity. ADMS works to categorize people: in this case, service

users are allocated into “high” or “low” risk subgroups. For

both high and low risk service users, UK GDPR mandates that

decisions should not be based solely on automated processing.

Yet, as the following discussion illustrates, this requirement points

to an impracticality when deploying ADMS that operate at the

population level.

When working to satisfy this guideline, the project team

considered two routes for meaningful human control. The first

would involve a practitioner in the local authority manually

reviewing the list of people predicted by the ADMS to be at

risk of falling. This practitioner would review the case notes of

each individual and either confirm or reject the ADMS’ output.

Others proposed to use a set of exclusion criteria to identify people

predicted by the ADMS but who are not in fact eligible for the

program. For example, using Excel, they would check whether

the list of predictions included any people who were in a care

home or are deceased; if an individual met either of these criteria,

he or she would not be contacted by the call center and would

therefore be excluded from the program. At the time of writing, the

ADMS predictions are disseminated as an Excel spreadsheet which

includes the service user’s personal information, the probability

estimate generated by the ML model, and the top 15 most locally

important features for each prediction.

As these proposed interventions show, the focus was primarily

on ensuring that people who are not eligible for the preventative

care program are not erroneously included. In other words, these

interventions sought to limit the number of false positives made by

the ADMS.

But false positives are only one side of the story: in classification

tasks such as this, ADMS also produces another type of error:

false negatives. In this case, that means people who are actually

at risk of falling but are not predicted as such by the ADMS.

Although UK GDPR would require each individual, regardless of

his or her estimated level of risk, to be subject to some form of

active human involvement, this provision proves infeasible when

ADMS generate probability estimates for thousands of service

users. How organizations should account for this provision when

deploying ADMS that operate at the population level thus remains

an open question.

Article 22 (1) of UK GDPR presents significant complications

to organizations attempting to deploy ADMS. Some of these

challenges are amplified when the system in question operates at

the population level, as highlighted by the requirement that human

involvement must be active across all predictions. By connecting

the conceptual discussion of Binns and Veale (2021) to the on-the-

ground work of practitioners in a real-world organization, we show

how such complications are not merely speculative or isolated to

one particular organization, but are in fact challenges that many

organizations planning to deploy ADMS will have to contend with.

2.2 Case 2: the Boeing 737 MAX MCAS
system

As a second case study, we examine the story of the two

fatal crashes of Boeing 737 MAX: the Lion Air 610 on October

29, 2018 and Ethiopian 302, on March 10, 2019. The MCAS

system (Maneuvering Characteristics Augmentation System), a

flight control software designed to prevent stalls, is known to have

been the main cause of the two plane crashes. Aviation industry is

usually regarded as a model for safety. However, in this particular

case, the Boeing 737 MAX example is useful for reflecting on how

AI systems should and should not be implemented. Mongan and

Kohli (2020) draw five lessons from the 737 MAX disaster, and

apply these to the implementation of AI in medicine in general and

radiology specifically.

In the opinion of the present authors, the lessons learned from

the Boeing MCAS case can more broadly provide relevant insights

on the design, development and deployment of ADMS in general.

We set out to an overview of what happened and highlight

open questions around human involvement focusing on the

interactions with the flight control software and beyond. As we

shall see, the explanations of the accidents include other factors

and issues emerging from failures at different levels of granularity:

leadership, governance, engineering, risk analysis and safety culture

(Sullenberger, 2019).

2.2.1 Case overview
The context is that of market competition between Boeing

and Airbus, the two largest aircraft manufacturers in the world.

In December 2010, Airbus announced the launch of the A320neo

family and in August 2011 Boeing responded with the launch of

the 737 MAX family (Herkert et al., 2020). The 737 MAX is an

update of the latest 737NG, a model dating back to the 60s (Herkert

et al., 2020). The most substantial change to the old model concerns

the engines, which have been replaced with more fuel-efficient

engines. However, the new engines are larger than the old ones and

consequently have had to bemounted in a higher andmore forward

position on the wing. This change created an aerodynamic stability

problem, which was discovered in the late flight testing phase:

the high risk of a stall in certain flight conditions. The engineers

decided to solve this hardware problem by developing a flight

control software—the MCAS (Gates, 2019a,b). The MCAS can

be described as a closed-loop system that activates automatically

during manual flight, without the pilots being aware of it, and

repeatedly adjusts the plane’s stabilizer every time the Angle of

Attack (AOA) sensor signals a dangerous up-pitch inclination of

the plane’s nose. The AOA sensor measures the angle formed

between the direction of the air during flight and the nose of the
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aircraft. If the angle increases to the point of stall, in some cases,

it could lead to a crash. The MCAS task is to bring the plane nose

down in order to avoid a stall situation.

The MAX passed the certification procedures by the US FAA

and entered service in May 2017. What happened then is well

known. In 2019 the planes were grounded and Boeing announced

the suspension of production. The accident investigations led to the

discovery that the triggering cause was the malfunction of the AOA

sensor and highlighted serious safety flaws at numerous stages: in

the design of the MCAS; in the assessment of the risks associated

with its operation; in the certification procedures; and, above all, in

the omission of relevant information to pilots and flight companies

(Herkert et al., 2020).

In November 2020, the Boeing 737 returned to service after

being grounded for around 20 months (The Boeing Company,

n.d.). During this period, the US company claims to have made

improvements to the 737MAX, includingMCAS; the pilot training

procedure; and the process for returning the aircraft to service.

With respect to MCAS, the main updates consist of

increased levels of protection in response to the flight control

system weaknesses:

• “Measurements from two Angle of Attack (AOA) sensors will

be compared.

• Each sensor will submit its own data to the airplane’s flight

control computer.

• MCAS will only be activated if both sensors agree.

• MCAS will only be activated once.

• MCAS will never override the pilot’s ability to control

the airplane using the control column alone” (The Boeing

Company, n.d.).

To overcome the problem of possible incorrect readings from

the AOA sensor, since all 737 MAX aircraft have two AOA sensors,

the new MCAS software is activated only if the values of both

sensors are in agreement. If there is a discrepancy, a flashing light

warns the pilots. In addition, while in the previous version, the

MCAS started automatically and repeatedly every time the sensor

reads the data, in the updated version it corrects only once and

without disabling the control column, therefore allowing the pilot

to always take control (The Boeing Company, n.d.).

In January 2021, the US charged Boeing with fraud against the

Federal Aviation Administration’s Aircraft Evaluation Group (FAA

AEG) for failing to provide relevant information about MCAS

during certification procedure and in pilot manuals and training

guidance. According to Acting Assistant Attorney General David

P. Burns of the Justice Department’s Criminal Division: “Boeing’s

employees chose the path of profit over candor by concealing

material information from the FAA concerning the operation

of its 737 Max airplane and engaging in an effort to cover up

their deception. This resolution holds Boeing accountable for its

employees’ criminal misconduct, addresses the financial impact to

Boeing’s airline customers, and hopefully provides some measure

of compensation to the crash-victims’ families and beneficiaries.”

(Burns in TheUnited States Department of Justice, 2021). However,

the company was able to avoid going on trial, by agreeing to

pay $2.5 bn, including $500m to the families of those killed, and

promising to tighten up its compliance procedures (Leggett, 2023).

2.2.2 Reflections on human involvement
The Boeing 737 MAX story demonstrates that human

involvement with ADMS, in this case the MCAS, is not just about

those who have to interact with it (i.e., the pilots). The involvement

of people begins earlier in the design phase and it is also affected by

non-technological factors. As pointed out by Sullenberger (2019)

“Accidents are the end result of a causal chain of events, and in

the case of the Boeing 737 MAX, the chain began with decisions

that had been made years before, to update a half-century old

design”. Among the many failures are: the competition with Airbus

that prompted Boeing’s managers and engineers to try and use

software to remediate a hardware problem; flawed design with

grave errors in safety; the lack of funds and resources in the FAA

which led it to increasingly delegate certification work to Boeing

itself; the conflict of interests of Boeing technical flight pilots

(Boeing’s employees) responsible for the risk assessment evaluation

and successful certification of their employer’s product. As Chang,

Lee, and Mas argue, the Boeing affair is not a case of a “computer

bug” but of a scandal originating out of economic interests (Chang

et al., 2019). In this respect it bears comparison with the Challenger

Space shuttle disaster (Werhane, 1991).

In relation to MCAS, a number of design issues can be

highlighted which may also be relevant to ADMS in general.

According to the accident investigations, the main triggering event

was malfunction of the AOA sensor rather than a malfunction of

the MCAS software. The software would—in theory—have done its

job correctly, but its “decision” was based on the wrong data. As

pointed out by Mongan and Kohli (2020), “such a failure illustrates

that the output of an AI system is only as good as its inputs”. To

date it is not known what caused the malfunction of the sensor,

but the crucial question is: why did the engineers rely on just one

sensor reading for such a critical function, in so doing violating the

principles of security, especially that of redundancy? This is even

more egregious because it was known MAX 737 planes had two

AOA sensors, and despite the fact that “the black box data provided

in the preliminary investigation report shows that readings from

the two sensors differed by some 20 degrees not only throughout

the flight but also while the airplane taxied on the ground before

takeoff” (Gates, 2019b).

Related to this design issue is the authority given to the MCAS,

in other words, the excessive controlling power of the system

compared to the pilots. The systemwas allowed to tilt by 2.5 degrees

(in an earlier version the tilt variation was 0.6 degrees, but then was

modified because this was not enough). According to Sullenberger

(2019), “Boeing designers also gave MCAS too much authority,

meaning that they allowed it to autonomously move the horizontal

stabilizer to the full nose-down limit”.

Not only was this authority conferred on the MCAS system,

but moreover, it was designed to activate independently, and

repeatedly, without the pilots being aware of it. In fact, the pilots

were designedly unaware of the existence of MCAS—a deliberate

omission on Boeing’s part. According to Travis “MCAS was not

disclosed to pilots in order to preserve the fiction that the 737MAX

was just an update of an earlier 737 model which served as a way to

circumvent the more stringent FAA certification requirement for a

new airplane” (Herkert et al., 2020). Finally, in the original version

of MCAS the ability to disable the stabilization system using the
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conventional control levers was removed, in this way preventing

pilots from quickly overriding the system. According to Boeing’s

engineers, the authority given to MCAS was nothing exceptional.

It should have been activated in the background, only in special

emergency situations. However, the problem is not just one of

transparency, but of safety risk assessment: the Boeing engineers

did not question what happens if this system fails? How can this be

remedied? In fact, they did, but in the wrong way. They did not

categorize MCAS failure as a critical “because they assumed that

pilot action would be the ultimate safeguard” (Sullenberger, 2019).

In this case, it can be seen that the failure to anticipate possible

poor outcomes led to an increase in overall risk.

Related to the risks associated with the failure of the MCAS is

the question of how to manage an emergency situation. So here the

question is not what happens if the MCAS stops working but what

pilots can do in such a critical situation?

This is a matter of human factors in emergency situations.

As pointed out by Sullenberger (2019), besides activating the

MCAS, “in both 737 MAX accidents, the failure of an AOA

sensor quickly caused multiple instrument indication anomalies

and cockpit warnings. And because in this airplane type the AOA

sensors provide information to airspeed and altitude displays, the

failure triggered false warnings simultaneously of speed being too

low and also of speed being too fast. The too slow warning was a

‘stick-shaker’ rapidly and loudly shaking the pilots’ control wheel.

The too fast warning was a ‘clacker’, another loud repetitive noise

signalizing overspeed”. Of course individual characteristics can

make the difference in these situations. Indeed, according to other

experts, the case of the Boeing 737 crashes is also a matter of

pilot training. Indeed, Langewiesche (2021) points out that crew

performance was critical in these accidents. Sullenberger (2019)

goes on saying that he recreated in a flight simulator the cockpit

situation with all warnings of the accident flights and concludes

“Even knowing what was going to happen, I could see how crews

could have run out of time and altitude before they could have

solved the problems”. It is clear that in such a situation it can be

difficult to manage and solve the problem.

In conclusion, for ADMS in general human understandability

is paramount, even more so in safety critical situations where there

is little time to work with the system.

2.3 Case 3: vehicle driver monitoring
systems

In the third case study we examine how over-reliance on

automated systems can occur not only at the governance,

engineering, or technical user level but also at the consumer level.

ADMS can capitalize on consumer desire to offload difficult tasks

to machines and can exhibit system design that allows the user to

have peace of mind by gaming compliance of supervision without

actually complying in the intended manner. One such example

is misleading the Driver Monitoring Systems (DMS) on semi-

autonomous vehicles.

The automotive industry has been striving tomake driving safer

through the development of Advanced Driver Assistance System

(ADAS) and autonomous vehicle technologies such as Adaptive

Cruise Control (ACC) and Automatic Lane Keeping Systems

(ALKS). These technologies have already shown some success in

preventing accidents as well as helping drivers practice safer habits

(Isaksson-Hellman and Lindman, 2016; Spicer et al., 2018; Lyu et

al., 2019; Gouribhatla and Pulugurtha, 2022). As their capabilities

increase and they burgeon on true self-driving capabilities, the

temptation arises to use the system not merely as a driving assist or

safety aide but as a replacement for the driving task itself. Because

ADAS capabilities are still limited, supervision of these vehicles is

required by the driver. However, monitoring the vehicle and the

environment can be fatiguing, making it difficult to remain vigilant,

even for eager operators (Körber et al., 2015; Arakawa et al., 2019;

Vogelpohl et al., 2019; Huang et al., 2021). Long-term studies have

shown that increased familiarity and experience with an ADAS can

lead to more distracted driving behaviors and more time with eyes

off the road (Dunn et al., 2021; Morando et al., 2021; Reagan et al.,

2022). ADAS functions may also make drivers more likely to speed

(Monfort et al., 2022).

Because of ADAS capability limitations, at any given moment it

must be determined if the vehicle is adequately able to navigate the

environment and if the driver is in a state to handle the driving task.

Naturally, determining these things is difficult for two reasons: (1)

It is an unsolved problem for a vehicle to accurately estimate its own

ability in any given environment (Michelmore et al., 2018; Stocco et

al., 2020), and (2) it is difficult to measure current driver distraction

or fatigue to understand if the driver is in a state to safely conduct

the vehicle (Albadawi et al., 2022). In this case study, we will focus

on the second issue of using ADMS in the form of DMS to estimate

driver readiness.

2.3.1 Case overview
Driver inattention of ADAS functions has already been

considered a major contributing factor in a couple of notable

crashes (NTSB, 2017, 2020). For this reason, DMS are becoming

a common feature on vehicles with Level 2 (L2) and Level 3 (L3)

autonomous driving features (as defined by SAE International,

2021). DMS can vary in what they measure and how they

perform measurements. In research settings, DMS often measure

physiological responses of the driver by using Electrocardiogram

(ECG) or Galvanic Skin Response (GSR) techniques. However,

these methods usually involve attaching sensors to the human’s

skin and thus are not done in production systems (Begum, 2013).

In production vehicles, popular methods include checking seat

weight, checking seat belt connectivity, monitoring eye gaze, feeling

pressure of a hand on the wheel, or using skin conductance to

check if a hand is on the wheel (United Nations, 2021; Gross, 2022).

Overall, DMS have several notable benefits including:

• Detecting if the driver is not safely supervising the vehicle,

potentially protecting vehicle occupants and other road users

from unsafe driving.

• Detecting a medical emergency of the driver and maneuvering

the vehicle to a safe location.

• Allowing the driver time to take over when the system

anticipates it will need to disengage soon.

• Recording user state to help with accident

scenario investigations.
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However, DMS are not created equally and the underlying

assisted driving functions may not be able to perform all of the

above functions (including emergency maneuvers) in all situations

(Capallera et al., 2019; Monticello, 2023). Both regulators and

automakers have promoted DMS as a solution to permitting

imperfect autonomous systems in vehicles. The idea is that they

will enforce drivers to maintain the legally required supervision

over L2 systems even if the driver over-trusts system capabilities.

According to Rule 150 of the UK Highway Code, the driver is

always responsible when using driver assistance systems and must

have full control over the systems at all times (Gov.uk, 2022, 2023).

The Alliance for Automotive Innovation (2023) has proposed that

DMS should be a standard feature of all L2 systems, however,

the recommendation allows for rudimentary torque-based steering

detection as a form of DMS. As ADAS advance, the United

Nations has created provisions to require DMS on L3 vehicles

(United Nations, 2021). The UK Law Commission found that

experts express concerns about proving the safety of assisted driving

features due to the infancy of DMS currently found in vehicles

(UK Department for Transport, 2021). In the United States, a bill

has been introduced that, if passed, would require all new vehicles

with ADAS functions to have a DMS installed as early as 2027

(Congress.gov, 2021).

2.3.2 Open questions of human involvement with
DMS

Analyzing the role of human involvement in DMS we draw out

four main takeaways:

1. ADMS aimed at non-technical users do not guarantee

user understanding of the system, potentially leading to

unsafe scenarios.

2. ADMS should be avoided if possible in situations where there

is little oversight and the operator has incentive to trick or

override the system.

3. DMS are currently rudimentary and may not function

appropriately even for users attempting to comply.

4. DMS raise privacy concerns that must be considered by

automakers and communicated to users.

2.3.2.1 ADMS for non-technical users

Even a simple ADAS can be convoluted to understand for non-

technical users or require dedicated learning on the part of the

operator (Orlovska et al., 2020). If this learning does not occur

in a controlled training environment, it will occur during system

operation. DMS do not have a driver’s mental model of the ADAS

system, and thus they believe that the user understands the ADAS

capabilities. This leads to the assumption that a user is a safe

operator as long as users are attentive to the system. However,

a user may be monitoring the ADAS while also expecting it to

perform maneuvers of which it is not capable. This can lead to

dangerous situations that leave the user little time to respond to

vehicle deficiencies. More importantly, ADAS vary greatly in their

capabilities and reliability (Monticello, 2023). Nevertheless, to the

average user all systems may appear similar or the user may simply

not be aware of the vehicle’s capabilities (Harms et al., 2020). This

can lead to situations of over-trust if the user is accustomed to

a more advanced system and switches to a vehicle with a less

advanced system.

2.3.2.2 Incentives to trick ADMS

In the case of DMS, drivers have incentives to mislead the

system into believing they are attentive. The drivers have bought

the system tomake the driving task easier. However, monitoring the

system can still be a fatiguing process, leading the user to offload as

much work to the system as possible. It has been found through a

long-term study of driver gaze behavior that Tesla drivers exhibit

significantly less attentiveness to the road when using Autopilot

systems, even compared to vehicles with ACC and ALKS where

this phenomenon also exists (Morando et al., 2021). This is likely

due to the increased perceptions around the capabilities of Tesla

Autopilot. Tesla uses steering wheel motion-based recognition to

detect if the driver is monitoring the vehicle. However, in the

context of detecting distracted driving behavior in young drivers

in Germany, authors found that motion-based recognition is not

enough to detect and classify distracting behaviors (Jannusch et al.,

2021). Instead, camera and acoustic based systems are necessary.

Ultimately, it seems that eye gaze and vision based systems (as

proposed by the UN regulation on L3 systems) are sufficiently more

difficult to trick and may be a practicable compromise between

the easily mislead torque-based systems and potentially intrusive

multimodal systems that would analyse all driver behaviors and

emotions (Gross, 2022).

Lack of oversight at the user level can also provide incentive

to mislead DMS. For personally-owned vehicles, there is no

managerial oversight of operator behavior like there would be

in an industrial context (such as bus or tram driving) and in

many cases there are no passengers in the vehicle that the driver

might otherwise feel an increased obligation to be especially safe

around (Rosenbloom and Perlman, 2016). For this reason, the

driver may feel the desire to trick the DMS even if it presents a

safety risk. This is not to say there should be centralized oversight

from insurance agencies, government, or automotive companies on

personally-owned ADAS systems, but rather that DMS designers

should recognize this lack of oversight and make the systems more

difficult to mislead.

2.3.2.3 System knowledge and accuracy limitations

An open question with DMS is what data is needed to perform

adequate monitoring and accurately quantify driver attention. For

steering wheel detection methods, having one hand on the wheel is

hardly an indication that the driver is not on their smartphone or

other device (NTSB, 2017). Steering wheel methods alone simply

do not provide enough information to properly understand driver

distraction (Jannusch et al., 2021). The American Automobile

Association (AAA) found that camera-based DMS were able to

detect driver distraction 50 s sooner than steering wheel DMS

(Gross, 2022). Likewise, steering wheel DMS users were able

to perform 5.65min of continuous distracted driving before the

system alerted the driver to pay attention, compared to 2.25min

for camera-based DMS users.

A further knowledge limitation of DMS is that they do

not understand the intricacies of driver engagement with other

activities and thus they grant a fixed amount of time when
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requesting a driver control takeover in situations where the ADAS

can no longer operate. For L3 systems, the UN has proposed

that the driver has 10 s to take over before the vehicle performs

an emergency maneuver (United Nations, 2021). However, the

amount of time that a driver will actually need during a transition

period to gain situational awareness can vary greatly (Li et

al., 2018; Morales-Alvarez et al., 2020; Huang and Pitts, 2022).

More time for the driver to prepare improves the situational

awareness and safety of the driver (Tan and Yiqi, 2022). The

required time largely depends on how attentive the driver is in

the moments leading up to the transition period, the complexity

of the environment, and the driver’s stress during the transition

(Agrawal and Peeta, 2021). The UK Law Commission found

that many experts suggest that 10 s is too short of a time for a

transition (UK Department for Transport, 2021). Transitions from

the automation can be either planned (e.g., a highway exit) or

unplanned (e.g., an emergency maneuver) (United Nations, 2021).

In the situation of the unplanned transitions, it is important the

driver quickly gains situational awareness since the vehicle may

not be able to give the driver much advance notice before they

need to take over. For L2 systems, there is no regulated transition

time since the driver is supposed to remain situationally aware at

all times. This can lead to quick disengagements by the system

that leave even an attentive driver needing to react quickly to

control the vehicle. For this reason, it is critical that DMS on L2

systems are sophisticated enough to ensure drivers are continually

paying attention.

Going beyond information limitations, DMS also suffer

accuracy limitations even when presented with extensive data on

driver emotion, gaze, and interaction with other objects. Although

they work relatively well (even working through sunglasses in

the case of gaze detection), their accuracy is not 100%. For

fatigue detection, advanced research-grade systems using image-

based methods only achieve around 70–98% accuracy and the

vehicle motion-based methods achieve around 72–98% accuracy

(Albadawi et al., 2022). The authors also found accuracy of

these systems can vary depending on facial characteristics, skin

colors, and illumination changes. For this reason, it may be

necessary to combine both camera- and motion-based DMS

to understand if the driver behaviors identified with camera

measures are truly affecting the driving and attention level

(Jannusch et al., 2021).

Finally, let us consider the potential accuracy of a DMS. If

we assign a system distraction alert to be a positive value, then

our best and worst cases can be represented by false positives

and false negatives, respectively. In the best case, the system

thinks the driver is not paying attention when they are (false

positive) and this results in alerts that annoy the driver and

cause them to take unnecessary action to assure the car of their

attention. This can lead to frustration, lack of automated function

use, and potentially general distrust of autonomy that can arise

from poor failure rates of autonomous systems (Shahrdar et al.,

2019). However in the worst case, the system thinks the driver

is attentively supervising the system when they are not (false

negative). A false negative situation could lead to crashes if the

system reaches a road scenario it is not prepared to handle,

and the driver is not paying attention to circumvent the hazard

in time.

2.3.2.4 Privacy concerns

Finally, any discussion of camera-based systems should

consider privacy concerns. We must take steps to ensure that

DMS, and particularly more advanced ones that have yet to reach

the consumer market, are designed to prioritize user privacy.

The first step involves considering what data DMS store and

who has access to that data. There has been legislation stating

that processing of footage should remain on the vehicle.1 This

regulation is a good step, but is aimed at DMS involving eye gaze

monitoring. However, future systems may record driver emotion as

well as driver interactions with vehicle interfaces or other objects.

Concerning driver emotion, there emerge issues with accuracy of

the system and how the data is used. Imagine emotion detection is

used to understand user interface frustrations and better improve

the user experience (provided that the user can opt out of sharing

these metrics). If the system inaccurately measures emotion in

these cases, there is no penalty to the user. However, imagine

DMS are used to determine insurance prices. There is already

some user acceptance of sharing vehicle emotion recognition

data with insurers (Mangano et al., 2023). Emotion detection

accuracy becomes much more important because it would affect

the user’s financial stability and ability to get good insurance rates.

Can these systems be verified to be equally good at emotion

detection for those of all backgrounds, vocal tones, and skin tones

(Albadawi et al., 2022)? Can emotion be reliably determined in

general from facial expression alone? We caution automakers and

users to consider the above accuracy concerns before accepting

these technologies.

2.3.3 DMS going forward
Ultimately, we argue that the presence of DMS is not inherently

sufficient for ensuring safety of vehicles with ADAS. We highlight

that average users might have incentives to circumvent or control

ADMS through input manipulation. Any system will have its

limitations, and this is not to say that DMS are fatally flawed.

As previously mentioned works demonstrate, ADAS and DMS

have certainly helped reduce crashes and have made drivers think

twice about their attention. Going forward, careful regulation

of DMS is critical. UN regulation on L3 systems provides an

excellent step of promoting DMS designed to measure at least two

metrics, meaning they are less likely to be misled (United Nations,

2021). However, the lack of application to L2 systems raises a

concern that automakers may be encouraged to remain at L2

certification. A company could lack L3 certification by not installing

emergency maneuver capabilities on the vehicle but still making

the vehicle’s autonomy increasingly capable in diverse situations.

These advanced capabilities combined with intelligent branding

could encourage users to treat the L2 system as if it were an L3 or L4

system. In this way, an automaker could avoid having sophisticated

1 European Union Supplementing Regulation (EU) 2019/2144 of the

European Parliament and of the Council by laying down detailed rules

concerning the specific test procedures and technical requirements for the

type-approval of motor vehicles with regard to their driver drowsiness and

attention warning systems and amending Annex II to that Regulation [2021]

OJ 1 2639/01.

Frontiers in Political Science 09 frontiersin.org

https://doi.org/10.3389/fpos.2023.1238461
https://www.frontiersin.org/journals/political-science
https://www.frontiersin.org


Salvini et al. 10.3389/fpos.2023.1238461

DMS while also providing advanced driving features that their

customers want. L2 systems will likely be around for a long while,

and regulators and automakers together must appreciate that a

safer future requires thinking critically about how attention and

conformance is measured.

3 Reflections for the design,
development, and deployment of
ADMS

3.1 The ELI guiding principles

To structure our reflections, we draw on the Guiding Principles

on automated decision systems drafted by the European Law

Institute (ELI, 2022). The ELI principles are an attempt to offer

ADM operators a coherent governing framework, drawing on

existing EU legal provisions, which—according to the authors—

are often “scattered in different pieces of legislation,” “partial

in their scope,” “unharmonised,” “sector specific” and “their

implementation is still uncertain in practice, may be unfeasible or

too costly, or may become significantly complex” (ELI, 2022).

In the Table 1, we list and briefly describe the ELI principles and

reflect on their application to the three case studies.

3.2 General recommendations

In the following section, we offer a few recommendations for

practice in the design, development and deployment of ADMS.

3.2.1 To the person with a hammer, everything
looks like a nail

Reducing the focus of human involvement to the interaction

between humans and the ADMS alone can make us lose sight

of other and perhaps more important aspects influencing the

use of autonomous decision making systems. These devices

cannot be considered independently from their ecosystem of

relationships and preconceptions. As Mindell argues: “we must

deeply grasp how human intentions, plans, and assumptions are

always built into machines. Every operator, when controlling his

or her machine, interacts with designers and programmers who

are still present inside it - perhaps through design and coding

done many years before” (Mindell, 2015—emphasis ours). It is

critical, therefore, that when assessing the design and performance

of an automated system, these inbuilt assumptions, networks of

relationships, and overall contexts are taken into account. Avoiding

an overly narrow focus on the locality of the decision that the

system is purportedly making, could help foster a wider awareness

of the range of inputs—and therefore of possible outputs—of

the system.

In the first case, the crisis of the adult social care sector in

the UK (and the related need to reduce costs) has led to an

ADMS being designed to prevent the risk fall in old adults. The

deployment of the ADMS system coincides with the creation of the

preventative care program. In this case the system was not meant

to replace a critical function previously performed by humans or

improve the accuracy or the efficiency of an existing service (e.g.,

reducing the number of false negatives during the identification

process of beneficiaries). A comparison between a human-based

and a machine based preventative program is not possible, because

the preventative care program did not exist before the project.

However, one could wonder whether the preventative care program

could have existed without an ADMS. Would a human based

system have been able to perform a preventative care program? In

which ways does the AI system outperform humans in this task?

We believe that these are important questions to address when

introducing AI in sensitive domains such as social care.

In the second case, Boeing’s market competition with Airbus

led to an attempt to solve a hardware problem with a software

solution. In this case automation originates out of a problematic

situation and becomes bolted on to the situation as a fix rather

than in the form of added value (e.g., a system providing a new

feature or capability). In this case, economic drivers have led to

an automated decision making system being applied to a situation

for which it is a poor “fit”, demonstrating that when automation

is used as a “patch” to remedy a complex situation, there may be

unforeseen consequences.

In the third case, DMS are an attempt to solve an underlying

deficiency in driving algorithms (the inability to safely perform L3

or L4 driving) by promising that the human will closely supervise

the system. Rather than providing value to the driver, they are

used as an easier alternative to safe algorithms and some DMS

are made as simple as possible to avoid the cost of creating more

effective ones. However, there will always be changing edge cases

in autonomous driving systems and human-vehicle teaming needs

to be better at adapting to these changes (Lee et al., 2023). Adding

an attention monitor is hardly sufficient for ensuring that the

driver accurately understands the system and where it is most likely

to need help. Full autonomy is a myth (Mindell, 2015) and the

question is therefore not whether autonomy is possible but why we

want full autonomy. What is the purpose? What are the benefits

and the risks? While we acknowledge the benefits brought about by

ADMS, attention should be paid when ADMS are used as fixes.

3.2.2 Safety and ethical risk assessments
Depending on the application domain, the use of ADMS can

result in a range of harms. For critical applications those harms

might be very serious indeed. To mitigate these harms (i) all critical

application systems should be subject to risk assessment before

use, in order to identify application domain risks and mitigation

policies, (ii) risk assessment should be transparent and auditable,

and (iii) risk assessment should determine the level of human

oversight that is applied to every system.

Risk Assessment is a well-known method for discovering

and mitigating risks, and hence improving safety. Ethical Risk

Assessment (ERA) is not new either; it is essentially what research

ethics committees do. But the idea of extending the envelope of

safety risk assessment of intelligent systems to encompass ethical

risks is new. Given the growing awareness of the ethical risks of

intelligent systems in recent years, ERA offers a powerful method

for systematically identifying and mitigating the ethical, societal

and environmental risks associated with the use of robots and AI.

British Standard BS861 Guide to the ethical design and

application of robots and robotic systems, sets out a method for

Frontiers in Political Science 10 frontiersin.org

https://doi.org/10.3389/fpos.2023.1238461
https://www.frontiersin.org/journals/political-science
https://www.frontiersin.org


Salvini et al. 10.3389/fpos.2023.1238461

TABLE 1 Column 1 and 2 of the table provides the number and the title of the guiding principle, respectively; column 3 contains a short description of

each principle, directly taken from ELI (2022) and finally, in column 4, we o�er our reflections on each principle with respect to the three case studies.

No. Title Short description of principles Reflections on case studies 1, 2 and 3

1 Law-compliant ADM “An operator that decides to use ADM for a

particular purpose shall ensure that the design and

the operation of the ADM are compliant with the

laws applicable to an equivalent non automated

decision-making system”

Given the differences in nature, it is not always

straightforward to find an equivalent, non-automated (i.e.,

human?) system, to be used as a term of reference (as case

studies 2 and 3 demonstrate). Moreover, there might not be

laws applicable because the function of the system is new, as

in case study 1. Finally, compliance with law may not imply

inherent and complete protection of interests and rights, as

the three case studies demonstrate.

2 Non-discrimination against

ADM

“As a general rule, ADM shall not be denied legal

effect, validity or enforceability solely on the

grounds that it is automated”.

Not relevant

3 Attribution of decisions

adopted by ADM

“The decision adopted by ADM shall be attributed

to the operator. The operator shall not deny the

attribution of a decision solely on the grounds that

it was made by automated means”.

In case study 1, the function and form of the NLP component

is shielded from operators (i.e., the local authority) by

intellectual property protection. It is difficult to attribute

responsibility over a decision to an operator who does not

have full understanding of the ADMS.

In case study 2, neither the operators (i.e., the airline

companies using Boeing 737 MAX) nor the users (i.e., the

pilots) were not aware of the MCAS system and therefore, in

our opinion, they cannot be held responsible for the ADMS

decisions. Case study 3 demonstrates that car manufacturers

(i.e., developers and operators at the same time) are

responsible for choosing the DMS type, and this choice can

have significant safety implications.

4 Disclosure that the

decision-making is automated

“Unless it is obvious or unnecessary from the

circumstances and the context of use or exempted

by law, it shall be disclosed that the decision is

being made by automated means”.

In case study 1, the local authority informed the public that

they may use ADMS to make decisions through its privacy

policy which is available online and was shared with the

people who engage with the local authority. Additionally,

they completed Data Protection Impact Assessments to

inform government stakeholders that they are analyzing data

for this program. However they did not specifically mention

to the public that this program uses ADMS. In case study 2,

neither pilots nor aircraft companies had been informed

about the existence of the MCAS. Disclosure could have

prevented accidents. In case study 3, drivers are aware of the

presence of DMS. However, we pointed out how the lack of

understanding of DMS capabilities by average drivers and

the great variety of systems in use could lead to misuse.

5 Traceable decisions “ADM shall be designed and operate in a manner

that enables the traceability of any decision”.

In case 2, it was possible to trace MCAS decisions thanks to

the presence of the flight data recorder. Concerning the

DMS of case 3, DMS data in crash recorders should include

more than the binary output of attentive or not. This will

help investigators understand what the driver may have been

doing at the time of any crash incident and why the DMS

recorded a certain attention label. Likewise, this decision

making should be understandable by drivers in real time so

that they may modify their behavior to comply to DMS

warnings.

6 Reasoned decision “The complexity, the opacity or the

unpredictability of ADM is not a valid ground for

rendering an unreasoned, unfounded or arbitrary

decision”.

In case study 1, a statement of reasons would allow the

affected person to challenge the decision made by the system

(e.g., the exclusion from the program). There should be the

possibility to appeal the local authority’s decision to exclude

someone from the preventive program (i.e., adults belonging

to the false negative category should have the possibility to

dispute the decision made by the automated system).

Reasoned decisions could have informed the pilots about the

problem with the AoA sensor in case study 2. In case study 3,

courts must holistically consider the output of the DMS

during a crash investigation. DMS may perceive drivers

incorrectly, and the result of a DMS is not conclusive proof

that the driver was distracted at the time of the incident.

Drivers should have the ability to appeal a decision made on

the basis of a DMS output with limited information.

(Continued)
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TABLE 1 (Continued)

No. Title Short description of principles Reflections on case studies 1, 2 and 3

7 Allocation of risks to the

operator

“The risks that the ADMmay cause any harm or

damage shall be allocated to the operator”.

In case study 2, neither the operator (airline company) nor

the pilots were aware of the system, only the developers (i.e.,

Boeing company). Moreover, the damage was caused by a

defect of the sensor. In the end, it was the developer who was

held responsible. In case study 3, DMS do allocate the risks

to the operator, but issues may arise due to the

non-professional nature of the operator having little

incentive to comply. For case study 1 see GP3

8 No limitations to the exercise

of rights and access to justice

“Automation shall not prevent, limit, or render

unfeasible the exercise of rights and access to

justice by affected persons”. An alternative

human-based route to exercise rights should be

available.

As far as we know, in the three case studies no automated

procedures were in use that prevented the affected person

from exercising their rights.

9 Human oversight/action ‘The operator shall ensure reasonable and

proportionate human oversight over the operation

of ADM taking into consideration the risks

involved and the rights and legitimate interests

potentially affected by the decision”.

In case study 1, there is a problem with the feasibility

of human oversight. A human team checking the ADMS

outputs by reviewing the case notes of each individual was

not considered as a viable option because “disproportionate”

and not in line with the project goals.

In case study 2, operators were not aware of the decision

system. Developers gave the MCAS full authority over pilots.

Although there are pilots who believe it was possible to

disable the system, the issue of human factors in the

oversight function (e.g., how easy is to take back control?)

should also be considered in the system design. In case study

3, there are mixed human and machine oversight layers. The

partially automated vehicle is supervised by the human,

whose level of attention, in turn, is monitored by the DMS.

Further considerations in Section 3.3

10 Human review of significant

decisions

“Human review of selected significant decisions

on the grounds of the relevance of the legal effects,

the irreversibility of their consequences, or the

seriousness of the impact on rights and legitimate

interests shall be made available by the operator”.

In case study 1, it was decided to avoid reviewing each single

decision and on the contrary to task humans to perform a

false positive check according to predefined criteria, which

nevertheless did not identify false negatives. In case studies

2, MCAS decisions were not possible to review by the pilots

because they did not know about the existence of the system.

In case study 3, there is a conflict of interest because the

human capable of reviewing the DMS decisions is the subject

of monitoring and may have incentive to mislead the DMS.

11 Responsible ADM “Operators should acknowledge the potential

impact of the ADM systems they employ on the

socio-economic context (democratic values,

fundamental rights and liberties, human dignity,

social cohesion, etc.), and ensure that they use

ADM systems responsibly”.

We discuss these two very general principles in the

remaining sections.

12 Risk-based approach to ADM “These Guiding Principles shall be applied on a

risk-based approach”.

ethical risk assessment (BSI, BS8611:2023, 2023). BS8611 defines

an ethical harm as “anything likely to compromise psychological

and/or societal and environmental well-being”. An ethical hazard

as “a potential source of ethical harm” and an ethical risk as the

“probability of ethical harm occurring from the frequency and

severity of exposure to a hazard”. ERA thus extends the envelope

of risk assessment to include ethical harms, hazards and risks, in

addition to physical risks. For examples of ethical risk assessment

following BS8611 of robot toys see (Winfield et al., 2022).

The first two case studies analyzed in this paper demonstrate a

failure somehow related to design, risk assessment and certification

procedures. In the preventive care program case, as far as we

know, the local authority used the UK Government Algorithmic

Transparency Reporting Standard (Algorithmic Transparency

Recording Standard, 2021) to conduct a risk assessment of the

ADMS before it was deployed, but after it was developed. We do

not have insight into how the technology provider conducts their

own risk analyses, but they supported the local authority in drafting

the transparency report. The local authority also conducted data

protection impact assessments to evaluate privacy risks, which are

mandated by GDPR.

However, neither the risk assessment carried out by the local

authority, nor the risk analyses conducted by the technology

provider highlighted the false negative problem. AI systems

are never 100% accurate because of errors and because the

existence of false positives and false negatives is not a novelty,

especially in the medical field. Testing the software not just for

its functionality but at the level of integration and system level

can be useful for identifying emerging errors and problems during

the development phase. Moreover, independent expert evaluations,

such as certification procedures are also important, although they

are not currently required in preventative care, but only in some
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safety-critical sectors such as nuclear, aerospace and medical. In

fact, the GDPR is the only piece of UK legislation that addresses

ADMS specifically and cross-sectorally. However, there are a variety

of other laws that may apply in practice, depending on both the

party employing the ADMS, and in which sector they propose

to do so. For example, ADMS employed in the public sector

would be subject to the GDPR in terms of data protection, as well

as equality law stemming from the Public Sector Equality Duty,

and the common law of judicial review (Edwards et al., 2021).

Specific sectors includingmedicine also have independent agencies,

guidelines and regulation, such as the Medicines and Healthcare

products Regulatory Agency, which is under the Department of

Health and Social Care.While such sectoral regulatorsmay increase

the specificity of their address of ADMS, all original laws and

regulations laid down without such specificity apply to ADMS

as well. These regulations require specific contextual and legal

interpretation beyond the scope of this paper, such as, for example,

how the definition of “defect” in the Product Liability Directive

applies to ADMS. TheUK’sMarch 2023White Paper onAI, entitled

“A Pro-Innovation approach to AI regulation,” confirms that the

UK does not, at this time, plan to create legislation specific to AI,

nor to create an AI-specific regulator. While AI and ADMS are not

inherently identical, this does signal that there does not appear to be

incoming legislation that might cover an overlap between the two.

The situation is different in the Boeing 737 MAX scenario.

Notwithstanding stringent risk assessment procedures and

mandatory certification, safety assurance was nonetheless very

poor. This was mainly due to the way the people responsible

for it performed their duties. We have already mentioned

how production pressures, financial drivers, outsourcing the

certification works, and conflict of interests had a role in

the disaster.

However, the Boeing case examined in the article shows that

the problem is not the technology itself, but once again the human

in and on the loop. Whether or not specific regulations, standards,

safety risk assessment, certification bodies, oversight measures, or

codes of ethics exist, the misconduct of humans is a different area

than technological issues. What are the remedies? The solution

cannot be technology or process-oriented, but must be human-

oriented. A possible way out is to encourage and protect whistle-

blowers. As pointed out by Sullenberger (2019): “whistle-blower

protection must be strong and effective, and if it is not strong

enough, we must strengthen it”. Other scholars have suggested

considering the Boeing 737 MAX case from the perspective of

engineering ethics: “to strengthen the voice of engineers within

large organizations” and to ensure “broader focus onmoral courage

in engineering ethics education” (Herkert et al., 2020).

The DMS case study shows that during deployment drivers

have incentives tomislead the systemwith dangerous consequences

for safety. Were these flaws not identified during the risk

assessment phase?

Overall risk assessments are fundamental tools for balancing

risks and benefits and therefore to decide whether or not to use

an ADMS. In particular, they can help answer the question: What

if the ADMS system does not work? In fact, as pointed out by

Mongan and Kohli (2020) “There is a natural tendency to assume

that systems intended to improve safety will do just that, and

that their worst-case failure will be the absence of the additional

safety the system is supposed to provide”. In all the cases analyses,

in particular the Boeing case, it can be seen that the failure to

anticipate possible poor outcomes led to an increase in overall risk.

3.2.3 The human factor in meaningful human
control

In the social care case, what could be considered a meaningful

form of human control? As discussed in Section 2.1, a human

team checking the ADMS outputs by reviewing the case notes

of each individual was not considered as a viable option because

“disproportionate” and not in line with the project goals (it would

be non-sense to exploit the preventive capabilities of ADMS and

then to ask a human to repeat the process manually). This control

task could have been better performed by a software specifically

designed for that purpose. In this case, the human is forcefully out

of the loop due to its limited capabilities with respect to the AI

based system. In certain cases, meaningful human control should

be identified during the ADMS design process rather than once the

service is developed.

Moreover, as the Boeing case demonstrates, human factors play

a role in meaningful human control. The human factor should be

studied in normal conditions as well as in emergency situations.

Considering the human factor in an emergency situation, such as

the event of an accident caused by the failure of an automated

system, can be vital for specific application domains in which

humans are supposed to take back control from AI systems.

As pointed out by Sullenberger (2019): “[w]e must make sure

that everyone who occupies a pilot seat is fully armed with the

information, knowledge, training, skill, experience and judgement

they need to be able to be the absolute master of the aircraft and

all its component systems, and of the situation, simultaneously

and continuously throughout a flight”. Moreover, concerning the

DMS, can we consider that ensuring the driver has a hand on

the wheel is meaningful monitoring and control over the vehicle?

First, the vehicle should more clearly explain what attention is

expected of the driver when the system is engaged. Next, for

the user to have meaningful control over the vehicle even in an

attentive state, system visualizations are important. There should

be real-time explanations for how the DMS perceives the driver

and real-time explanations for how the ADAS is perceiving the

environment so the user can better understand vehicle perception

and capabilities. In this way, there is open dialogue between the

two parties controlling the vehicle leading to safe environment

understanding and response.

The DMS case illustrates that human control cannot be

assumed to be a constant, fixed factor, especially in non-technical

and non-work settings. Humans will not provide the same effort

and supervision as each other and their individual supervision will

vary with time. Likewise, drivers will experience passive fatigue

while monitoring the autonomous functions which maymean their

attention is reduced at certain points. It is important that the DMS

be designed to accommodate the lowest reasonable level of human

control so that unsafe situations are not created. There should

additionally be more standardized forms of driving monitoring so

there is less variation across vehicles in how the driver is being
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monitored. This will lead to more consistent and manageable

expectations for the driver.

3.2.4 Data accuracy and integrity
The problem of false negatives and false positives is a

problem of accuracy of inputs as well as a problem of ADMS.

The old database adage of “garbage in, garbage out” applies

exponentially to automated decision makers, where the accuracy

of the output may be to a safety-critical system, or to a life-

changing medical intervention. The quality of the data should

therefore be of key importance when planning the deployment of

an automated system—while humans are often able to extrapolate

from context or supplement incomplete information from prior

knowledge, this is not a facility yet available to the generality

of automated systems. Consequently, designers need to allow

for these flaws and plan for the highest possible data integrity

and legibility.

3.2.5 Transparency and explainability
IEEE Standard 7001-2021 on Transparency of Autonomous

Systems defines transparency as “the transfer of information from

an autonomous system or its designers to a stakeholder, which is

honest, contains information relevant to the causes of some action,

decision or behavior and is presented at a level of abstraction and in

a form meaningful to the stakeholder.” (Winfield et al., 2021; IEEE,

2022). The same standard defines explainability as transparency

that is accessible to non-experts. Transparency is defined with

respect to five different categories of stakeholders: users, the

general public and bystanders, safety certification agencies,

incident/accident investigators and lawyers/expert witnesses. The

standard sets out 5 normative levels of transparency for each

stakeholder group.

Common to the first two cases reviewed in Section 2 is the

lack of transparency and explainability. According to Mongan and

Kohli “people working with AI need to be made aware of the

system’s existence and must be trained on its expected function

and anticipated dysfunction” (Mongan and Kohli, 2020). They are

referring to professionals. In the Boeing case, neither pilots nor

flight companies knew about MCAS; the flight control system was

not included in operations manuals and pilots had not been trained

on possible failures of the system. Knowing about MCAS and how

to handle possible failures could have saved many lives. However, it

would have been irrelevant for passengers to be aware of MCAS as

of the many other technological systems at work in an airplane. In

the other case study, the practitioners in the adult care program

were aware of the ADMS. However, because of the technology

provider’s IP protection it makes it difficult to understand clearly

how the system works, although it has an explainability mechanism

in place (e.g., locally important features). For instance, we are

not 100% sure whether the system takes account of context. For

example, if the word “fall” was used in a note that read “Not

considered to be at risk for fall”—would the system still pick it up

as a fall risk?

Moreover, in this case, the people directly involved, or maybe

affected, by the decision making system were not the practitioners,

but the care service beneficiaries, namely adults at risk of falling.

They should have known that the decision concerning the

possibility to be part of a care service or not was made by an

AI-based system, as were all people evaluated, selected, treated

etc. by an AI based system, whether for financial, medical, job or

educational purposes.

Transparency is not only relevant for understanding how an

intelligent system works, but also for challenging the outcomes

of decisions made by such systems (OECD, 2019). DMS function

in a simple enough fashion that telling the user to look at the

road is mostly sufficient for explaining how the system perceives

the user. However, for future systems that may include emotion

detection and object recognition it will be increasingly important

that the DMS communicates to the user how it perceives them.

The system may have inaccuracies that will be frustrating if the

user cannot understand why the vehicle is alerting them and how

they can modify their behavior to comply. Perhaps the system

has malfunctioned and is getting a bad reading from the camera,

perhaps the user is wearing a hat that obstructs the camera’s view,

perhaps the user is holding a drink that the system perceives to be

a smartphone. Being able to understand how the camera perceives

the driver can help the driver have agency to modify their behavior

to comply or to account for system inadequacies. In the example

mentioned previously where emotion data is used to potentially

raise insurance rates or canceling a policy, there needs to be a way

to verify that the system has interpreted the situation accurately as

well as a way for a user to file an appeal for an agent to evaluate

the case, which would help insurance rate determination better

align with the aforementioned Article 22. For safety certification

agencies, a more explainable mode of the DMS could be helpful for

understanding how well the system is perceiving the user in real

time. Additionally, it should be transparent how the user’s data is

being handled and where it is going for privacy reasons and peace

of mind. It should be transparent to users if camera and audio are

being recorded. If the user knew that the vehicle was monitoring

their emotion, they may be more conscious of their behaviors.

4 Conclusions

ADMS may present advantages in terms of costs, efficiency,

and safety. However, they are not risk free, making it extremely

important to be very clear about the goal of the automation of a

decision making process. In this paper, we have discussed three

case studies concerning different applications of ADMS in different

domains: administration, engineering, and non-technical user. In

all three case studies, the main problems concerned the connection

between humans and the system, in particular common issues such

as design flaws, failure of safety assessment and certification, and

human factors. Moreover, we have shown that oversight of these

systems is not easily defined or implemented. Finally, we believe

that there should be more interactions among ADMS developers,

operators, users and third parties affected by the decisions during

the risk assessment phases. In particular, the results obtained from

risk assessment procedures should be made publicly available to

all relevant stakeholders. This brings back the issue of how to

solve the clash between the need to protect intellectual property

for developers and the need to fully understand how the system is

working for operators and other parties.
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